
Gravitational wave searches for ultralight bosons with LIGO and LISA

Richard Brito,1,* Shrobana Ghosh,2 Enrico Barausse,3 Emanuele Berti,2,4 Vitor Cardoso,4,5

Irina Dvorkin,3,6 Antoine Klein,3 and Paolo Pani7,4
1Max Planck Institute for Gravitational Physics (Albert Einstein Institute),

Am Mühlenberg 1, Potsdam-Golm 14476, Germany
2Department of Physics and Astronomy, The University of Mississippi, University, Mississippi 38677, USA

3Institut d’Astrophysique de Paris, Sorbonne Universités,
UPMC Univ Paris 6 & CNRS, UMR 7095, 98 bis bd Arago, 75014 Paris, France

4CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,
Avenida Rovisco Pais 1, 1049 Lisboa, Portugal

5Perimeter Institute for Theoretical Physics, 31 Caroline Street North Waterloo, Ontario N2L 2Y5, Canada
6Institut Lagrange de Paris (ILP), Sorbonne Universités, 98 bis bd Arago, 75014 Paris, France

7Dipartimento di Fisica, “Sapienza” Università di Roma & Sezione INFN Roma1,
Piazzale Aldo Moro 5, 00185 Roma, Italy

(Received 23 June 2017; published 27 September 2017)

Ultralight bosons can induce superradiant instabilities in spinning black holes, tapping their rotational
energy to trigger the growth of a bosonic condensate. Possible observational imprints of these boson clouds
include (i) direct detection of the nearly monochromatic (resolvable or stochastic) gravitational waves
emitted by the condensate, and (ii) statistically significant evidence for the formation of “holes” at large
spins in the spin versus mass plane (sometimes also referred to as “Regge plane”) of astrophysical black
holes. In this work, we focus on the prospects of LISA and LIGO detecting or constraining scalars with
mass in the range ms ∈ ½10−19; 10−15� eV and ms ∈ ½10−14; 10−11� eV, respectively. Using astrophysical
models of black-hole populations calibrated to observations and black-hole perturbation theory calcu-
lations of the gravitational emission, we find that, in optimistic scenarios, LIGO could observe a stochastic
background of gravitational radiation in the range ms ∈ ½2 × 10−13; 10−12� eV, and up to 104 resolvable
events in a 4-year search if ms ∼ 3 × 10−13 eV. LISA could observe a stochastic background for boson
masses in the range ms ∈ ½5 × 10−19; 5 × 10−16�, and up to ∼103 resolvable events in a 4-year search
if ms ∼ 10−17 eV. LISA could further measure spins for black-hole binaries with component masses in
the range ½103; 107�M⊙, which is not probed by traditional spin-measurement techniques. A statistical
analysis of the spin distribution of these binaries could either rule out scalar fields in the mass range
∼½4 × 10−18; 10−14� eV, or measure ms with ten percent accuracy if light scalars in the mass range
∼½10−17; 10−13� eV exist.

DOI: 10.1103/PhysRevD.96.064050

I. INTRODUCTION

The first gravitational wave (GW) detections by the
Laser Interferometric Gravitational-wave Observatory
(LIGO) are a historical landmark. GW150914 [1],
GW151226 [2], GW170104 [3] and the LVT151012 trigger
[4] provided the strongest evidence to date that stellar-mass
black holes (BHs) exist and merge [5–9]. In this work
we discuss the exciting possibility that LIGO and space-
based detectors like LISA [10,11] could revolutionize our
understanding of dark matter and of fundamental inter-
actions in the Universe.
Ultralight bosons—such as dark photons, the QCD axion

or the axionlike particles predicted by the string axiverse
scenario—could be a significant component of dark matter
[12–15]. These fields interact very feebly with standard

model particles, but the equivalence principle imposes
some universality in the way that they gravitate. Light
bosonic fields around spinning black holes trigger super-
radiant instabilities, which can be strong enough to have
astrophysical implications [16]. Therefore, GW detectors
can either probe the existence of new particles beyond the
standard model or—in the absence of detections—impose
strong constraints on their masses and couplings [17–22].
Superradiance by rotating BHs was first demonstrated

with a thought experiment involving particles [16,23].
Penrose imagined a particle falling into a BH and splitting
into two particles. If the splitting occurs in the ergoregion,
one of the fragmentation products can be in a negative-
energy state as seen by an observer at infinity, and therefore
the other fragmentation product can escape to infinity with
energy larger than the original particle. The corresponding
process involving waves amplifies any bosonic wave whose
frequency ω satisfies 0 < ω < mΩH, where m is the*richard.brito@aei.mpg.de
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azimuthal index of the (spheroidal) harmonics used to
separate the angular dependence, and ΩH is the horizon
angular velocity [16,24,25]. The wave is amplified at the
expense of the BH’s rotational energy. If the wave is
trapped—for example, through a confining mechanism like
a mirror placed at some finite distance—the amplification
process will repeat, destabilizing the system. This creates a
“BH bomb” [26,27]. Massive fields are naturally trapped by
their own mass, leading to a superradiant instability of the
Kerr geometry. The time scales and evolution of BH super-
radiant instabilities were extensively studied by several
authors for massive spin-0 [28–31], spin-1 [21,32–35] and
spin-2 fields [36], usingboth analytic andnumericalmethods.
For a bosonic field with massms, superradiant instabilities

are strongest when the Compton wavelength of the massive
boson ℏ=ðmscÞ is comparable to the Schwarzschild radius
R ¼ 2GM=c2, where M is the BH mass. Under these
conditions the bosonic field can bind to the BH, forming
a “gravitational atom.” Instabilities can produce holes in the
BH mass/spin plane (sometimes also called the BH “Regge
plane”): for a given boson mass, spinning BHs should not
exist when the dimensionless spin χ ≡ a=M is above an
instability window centered around values of order unity of
the dimensionless quantity [16,17]

2GMms

cℏ
¼ 1.5

M
106 M⊙

msc2

10−16 eV
: ð1Þ

Typical instability windows for selected values of ms are
shown as shaded areas in Fig. 1, which shows the spinversus
mass plane. These instability windows are obtained by
requiring that the instability acts on timescales shorter than
known astrophysical processes such as accretion, i.e., we
require that the superradiant instability time scales for scalar
field perturbations with l ¼ m ¼ 1, 2, 3 are shorter than a
typical accretion time scale, here conservatively assumed to
be the Salpeter time scale defined below for a typical
efficiency η¼0.1 andEddington rate fEdd ¼ 1 [cf. Eq. (51)].
In Fig. 1, black data points denote electromagnetic

estimates of stellar or massive BH spins obtained using
either the Kα iron line or the continuum fitting method
[37,38]. Roughly speaking, massive BH spin measure-
ments probe the existence of instability windows in the
mass range ms ∼ 10−19–10−17 eV. For stellar-mass BHs,
the relevant mass range is ms ∼ 10−12–10−11 eV. Red data
points are LIGO 90% confidence levels for the spins of the
primary and secondary BHs in the three merger events
detected so far (GW150914, GW151226 and GW170104
[3,4]). For LIGO BH binaries accretion should not be
important. In such case, our choice for the reference time
scale tS is conservative: more accurate and stringent
constraints can be imposed by comparing the instability
time scale with the Hubble time or with the age of the BHs.
On the other hand, in Fig. 1 we do not include the remnant
BHs detected by LIGO because the observation time scale

of the latter is obviously much shorter than the superradiant
instability time scale, and therefore post-merger observa-
tions cannot be used to place constraints on the boson mass.
Blue, green and brown data points are projected LISA

measurements for three different astrophysical black-hole
population models (popIII, Q3, Q3-nod) from [39], assum-
ing one year of observation. The main point of Fig. 1 is
to highlight one of the most remarkable results of this work:
LISA BH spin measurements cover the intermediate mass
range (roughly ms ∼ 10−13–10−16 eV, with the lower and
upper bounds depending on the astrophysical model, and
more specifically on the mass of BH seeds in the early
Universe), unaccessible to electromagnetic observations of
stellar and massive BHs. In other words, LISA’s capability
to measure the mass and spin of binary BH components
out to cosmological distances.1 implies that LISA can also

FIG. 1. Exclusion regions in the BH mass-spin plane (Regge
plane) for a massive scalar field. For each mass ms, the instability
threshold is obtained by setting the superradiant instability time
scales for l ¼ m ¼ 1, 2, 3 equal to a typical accretion time scale,
taken to be τ ¼ 50 Myr (see main text for details). Black data
points (with error bars) are spin estimates of stellar and massive
BHs obtained through the Kα or continuum fitting methods
[37,38]. Red data points are GW measurements of the primary
and secondary BHs from the three LIGO detections (GW150914,
GW151226 and GW170104 [3,4]). Blue, green and brown data
points are projected LISAmeasurements under the assumption that
there are no light bosons for three different astrophysical black hole
populationmodels (popIII,Q3 andQ3-nod from [39]), as discussed
in the text.We assume a LISAobservation timeTobs ¼ 1 yr, and to
avoid cluttering we only show events for which LISA spin
measurement errors are relatively small (Δχ=χ ≤ 2=3). The top
horizontal line is a frequency scale corresponding to the BH mass,
f ≈ μ=π with μ ∼ 0.2=M as a reference value.

1We do not study holes in the Regge plane for LIGO because
spin magnitude measurements for the binary components are
expected to be poor, even with third-generation detectors [40,41],
and they overlap in mass with existing EM spin estimates.
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probe the existence of light bosonic particles in a large mass
range that is not accessible by other BH-spin measurement
methods. In Sec. VI below we quantify this expectation
with a more detailed Bayesian model-selection analysis,
showing in addition that (if light bosons exist) LISA could
measure their mass with ∼10% accuracy.
We note that electromagnetic measurements of black-

hole spins also provide constraints on the scalar field
masses that partly overlap with constraints derived in this
paper. For example, the spin measurements of stellar mass
BHs disfavor the existence of a scalar field with masses
between roughly 2 × 10−11 eV > ms > 6 × 10−13 eV [19]
and 4 × 10−17 eV > ms > 5 × 10−20 eV for massive BHs.
However, GW spin measurements and constraints rely on
fewer astrophysical assumptions (e.g. on the accretion
disk and its spectrum) than electromagnetic constraints,
and are therefore more robust. On the other hand, while
electromagnetic observations of stellar mass BHs partly
overlap with the GW constraints from LIGO, the electro-
magnetic observation of massive BHs probe lower scalar
field masses that the ones coming from GWobservations,
and are thus complementary to the constraints that we
estimate in this paper. Fig. 1 shows that electromagnetic
and GW observations should be considered jointly to
build evidence for or against the existence of a scalar field
with a given mass.
An even more exciting prospect is the direct detection

of the GWs produced by a BH-boson condensate system
[19–21]. Through superradiance, energy and angular
momentum are extracted from a rotating BH and the
number of bosons grows exponentially, producing a
bosonic “cloud” at distance ∼ℏ2ð2GMm2

sÞ−1 from the
BH. This nonaxisymmetric cloud creates a time-varying
quadrupole moment, leading to long-lasting, monochro-
matic GWs with frequency determined by the boson mass.
Thus, the existence of light bosons can be tested (or
constrained) directly with GW detectors.
To estimate the detectability of these signals we need

careful estimates of the signal strength and astrophysical
models for stellar-mass and massive BH populations. Here
we compute the GW signal produced by superradiant
instabilities using GWemission models in BH perturbation
theory [42], which are expected to provide an excellent
approximation for all situations of physical interest
[18,34,35]. On the astrophysical side, we adopt the same
BH formation models [43] that were used in previous
LISA studies [39,44–47]. As shown below, semicoherent
searches with LISA (LIGO) could detect individual signals
at luminosity distances as large as ∼2 Gpc (∼200 Mpc) for
a boson of mass 10−17ð10−13Þ eV (compare this with the
farthest estimated distance for LIGO BH binary merger
detections so far, the 880þ450

−390 Mpc of GW170104 [3]).
The plan of the paper is as follows. In Sec. II we

outline our calculation of gravitational radiation from
bosonic condensates around rotating BHs. In Sec. III

and Sec. IV we present our astrophysical models of massive
and stellar-mass BH formation, respectively. Our predic-
tions for rates of boson-condensate GW events detectable
by LISA and LIGO, either as resolvable events or as a
stochastic background, are given in Sec. V. In Sec. VI
we use a Bayesian model selection framework to quantify
how LISA spin measurements in BH binary mergers can
either exclude certain boson mass ranges by looking at the
presence of holes in the Regge plane, or (if bosons exist in
the Universe) be used to estimate boson masses. We
conclude by summarizing our main results and identifying
some promising avenues for future work.
In the following, we use geometrized units G ¼ c ¼ 1.

II. GRAVITATIONAL WAVES FROM BOSONIC
CONDENSATES AROUND BLACK HOLES

In general, the development of instabilities must be
followed through nonlinear evolutions. Numerical studies
of the development of superradiant instabilities are still in
their infancy (see e.g. [34,35,48–51]), mainly because of
the long instability growth time for scalar perturbations,
which makes simulations computationally prohibitive. If
we restrict attention to near-vacuum environments, the
scalar cloud around the spinning BH can only grow by
tapping the BH’s rotational energy. Standard arguments
[52] imply that the BH can lose at most 29% of its mass.
For the process at hand, it turns out that the cloud can store
at most ∼10% of the BH’s mass [34,53], therefore the
spacetime is described to a good approximation by the
Kerr metric, and perturbative calculations are expected to
give good estimates of the emitted radiation [18,42]. These
expectations were recently validated by nonlinear numeri-
cal evolutions in the spin-1 case [34,35], where the
instability growth time scale is faster. Reassuringly, these
numerical simulations are consistent with qualitative and
quantitative predictions from BH perturbation theory
[21,32,33]. In summary, a body of analytic and numerical
work justifies the use of calculations in BH perturbation
theory to estimate the gravitational radiation emitted by
bosonic condensates around Kerr BHs. We now turn to a
detailed description of this calculation.

A. Test scalar field on a Kerr background

Neglecting possible self-interaction terms or couplings
to other fields, the action describing a real scalar field
minimally coupled to gravity is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

2
gμνΨ;μΨ;ν −

μ2

2
Ψ2

�
: ð2Þ

Here we defined a parameter

μ ¼ ms=ℏ; ð3Þ
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which has dimensions of an inverse mass (in our geom-
etrized units). The field equations derived from this action
are ∇μ∇μΨ ¼ μ2Ψ and Gμν ¼ 8πTμν, with

Tμν ¼ Ψ;μΨ;ν −
1

2
gμνðΨ;αΨ;α þ μ2Ψ2Þ: ð4Þ

In the test-field approximation, where the scalar field
propagates on a fixed Kerr background with mass M and
spin J ¼ aM, the general solution of the Klein-Gordon
equation can be written as

Ψ ¼ ℜ

�Z
dωe−iωtþimφ

0SlmωðϑÞψlmωðrÞ
�
; ð5Þ

where a sum over harmonic indices ðl; mÞ is implicit, and

sYlmωðϑ;φÞ ¼ sSlmωðϑÞeimφ are the spin-weighted sphe-
roidal harmonics of spin weight s, which reduce to the
scalar spheroidal harmonics for s ¼ 0 [54]. The radial and
angular functions satisfy the following coupled system of
differential equations:

Dϑ½0S� þ
�
a2ðω2 − μ2Þcos2ϑ −

m2

sin2ϑ
þ λ

�
0S ¼ 0;

Dr½ψ � þ ½ω2ðr2 þ a2Þ2 − 4aMrmωþ a2m2

− Δðμ2r2 þ a2ω2 þ λÞ�ψ ¼ 0;

where for simplicity we omit the ðl; mÞ subscripts,
r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
denotes the coordinate location of

the inner and outer horizons, Δ ¼ ðr − rþÞðr − r−Þ,
Dr ¼ Δ∂rðΔ∂rÞ, and Dϑ ¼ ðsinϑÞ−1∂ϑðsinϑ∂ϑÞ. For
a ¼ 0, the angular eigenfunctions 0SlmðϑÞ reduce to the
usual scalar spherical harmonics with eigenvalues
λ ¼ lðlþ 1Þ.
Imposing appropriate boundary conditions, a solution to

the above coupled system can be obtained using, e.g. a
continued-fraction method [30,31]. Because of dissipation,
this boundary value problem is non-Hermitian. The sol-
utions are generically described by an infinite, discrete set
of complex eigenfrequencies [55]

ωlmn ≡ ω ¼ ωR þ iωI; ð6Þ

where n is the overtone number and fωR;ωIg ∈ R. In
particular, this system admits quasi-bound state solutions
which become unstable—i.e., from Eq. (5), have ωI > 0—
for modes satisfying the superradiant condition ωR < mΩH,
with ΩH ¼ a=ð2MrþÞ [28,31]. For these solutions the
eigenfunctions are exponentially suppressed at spatial
infinity:

ψðrÞ ∝ rνe−
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r

r
as r → ∞; ð7Þ

where ν ¼ Mð2ω2 − μ2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
. In the small-mass

limit Mμ ≪ 1 these solutions are well approximated by a
hydrogenic spectrum [28,31] with angular separation con-
stant λ≃ lðlþ 1Þ and frequency

ω ∼ μ −
μ

2

�
Mμ

lþ nþ 1

�
2

þ i
γl

�
am
M

− 2μrþ

�
ðMμÞ4lþ5;

ð8Þ

where n ¼ 0; 1; 2…, and γ1 ¼ 48 for the dominant unstable
l ¼ 1 mode.

B. Gravitational-wave emission

For a real scalar, the condensate is a source of GWs. For
a monochromatic source with frequency ωR, one can easily
see by, plugging the solution (5) into the stress-energy
tensor (4), that the scalar field sources GWs with frequency
2ωR. In the fully relativistic regime, gravitational radiation
can be computed using the Teukolsky formalism [56]. This
calculation is described in detail here (see also [18,42]).
In the Teukolsky formalism, gravitational radiation is

encoded in the Newman-Penrose scalar ψ4, which can be
decomposed as

ψ4ðt; r;ΩÞ ¼
X
lm

ρ4
Z

∞

−∞
dω

X
lm

RlmωðrÞ−2SlmωðΩÞe−iωt;

ð9Þ

where ρ ¼ ðr − ia cosϑÞ−1. The radial function RðrÞ sat-
isfies the inhomogeneous equation

Δ2
d
dr

�
Δ−1 dR

dr

�
þ
�
K2 þ 4iðr −MÞK

Δ
− 8iωr − λ

�
R

¼ Tlmω; ð10Þ

where again we omit angular indices for simplicity,
K ≡ ðr2 þ a2Þω − am, λ≡ Aslm þ a2ω2 − 2amω, and
Aslm are the angular eigenvalues. The source term Tlmω

is given by

Tlmω ≡ 1

2π

Z
dΩdt−2S̄lmT eiωt; ð11Þ

where T is related to the scalar field stress-energy tensor (4)
and can be found in [56,57].
To solve the radial equation (10) we use a Green-

function approach. The Green function can be found by
considering two linearly independent solutions of the
homogeneous Teukolsky equation (10), with the following
asymptotic behavior (see e.g. [57]):

RH →

�
Δ2e−ikr

�
for r → rþ;

r3Bouteiωr
� þ r−1Bine−iωr

�
for r → þ∞;

ð12Þ
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R∞ →

�
Aouteikr

� þ Δ2Aine−ikr
�

for r → rþ;

r3eiωr
�

for r → þ∞;
ð13Þ

where k ¼ ω −mΩH, fA;Bgin;out are constants, and the
tortoise coordinate is defined as

r� ¼ rþ 2Mrþ
rþ − r−

ln
r − rþ
2M

−
2Mr−
rþ − r−

ln
r − r−
2M

: ð14Þ

Imposing ingoing boundary conditions at the horizon and
outgoing boundary conditions at infinity, one finds that the
solution of Eq. (10) is given by [57]

R ¼ 1

W

�
R∞

Z
r

rþ
dr0

RHTlmω

Δ2
þ RH

Z
∞

r
dr0

R∞Tlmω

Δ2

�
;

ð15Þ

where the Wronskian W ¼ ðR∞∂rRH − RH∂rR∞Þ=Δ is a
constant by virtue of the homogeneous Teukolsky equa-
tion (10). Using Eqs. (13) and (12) one finds

W ¼ 2iωBin: ð16Þ
At infinity the solutions reads

Rðr→∞Þ→ r3eiωr
�

2iωBin

Z
∞

rþ
dr0Tlmω

RH

Δ2
≡ ~Z∞r3eiωr

�
: ð17Þ

Since the frequency spectrum of the source Tlmω is
discrete with frequency ~ω¼�2ωlmn and ~m¼�2m, where
ωlmn are the scalar field eigenfrequencies, ~Z∞ takes the
form

~Z∞ ¼
X
l ~mn

δðω − ~ωÞZ∞
l ~mω; ð18Þ

and at r → ∞, ψ4 is given by

ψ4 ¼
1

r

X
l ~mn

Z∞
l ~m ~ω−2Yl ~m ~ωe

i ~ωðr�−tÞ: ð19Þ

At infinity the Newman-Penrose scalar can be written as

ψ4 ¼
1

2
ðḧþ − iḧ×Þ; ð20Þ

where hþ and h× are the two independent GW polar-
izations. The energy flux carried by these waves at infinity
is given by

dE
dtdΩ

¼ r2

16π
ð _h2þ þ _h2×Þ: ð21Þ

Using Eqs. (19) and (20) we get

dE
dt

¼
X
l ~mn

1

4π ~ω2
jZ∞

l ~m ~ωj2: ð22Þ

We note that jZ∞
l ~m ~ωj ∝ MS=M2, whereMS is the total mass

of the scalar cloud:

MS ¼
Z

Tt
t

ffiffiffiffiffiffi
−g

p
drdϑdφ; ð23Þ

and
ffiffiffiffiffiffi−gp ¼ ðr2 þ a2 cos2 ϑÞ sinϑ is the Kerr metric deter-

minant. Here we neglected the energy flux at the horizon,
which in general is subdominant [58]. In fact, we will only
need to compute radiation at the superradiant threshold,
where the flux at the horizon—being proportional to
k ¼ ðω −mΩHÞ—vanishes exactly [59].
Figure 2 shows the dominant GW energy flux computed

numerically within the perturbative framework described
above. Our results are compared to the analytic results of
Refs. [17,18]. The flat-space approximation adopted in [17]
underestimates the flux by some orders of magnitude,
especially when μM ≪ 0.3, for any spin. Likewise, the
Schwarzschild approximation adopted in [18] overesti-
mates the GW flux. To improve on both approximations,
in the rest of this work we will use the numerical results,
which are valid in the entire ðχ; μMÞ plane and agree with
those of [42].

C. Evolution of the superradiant instability
and of the BH-condensate system

Current nonlinear evolutions are unable to probe the
development of the instability in the scalar case [48].
However, since the time scales of both the superradiant
instability and the GW emission are much longer than the
dynamical time scale of the BH, the evolution of the

FIG. 2. Flux for l ¼ m ¼ 1 and taking the first two leading
order terms in the flux ~l ¼ ~m ¼ 2 and ~l ¼ 3; ~m ¼ 2 as a
function of the scalar mass and for the spin computed at the
superradiant threshold (25). The numerical results computed
in this work are compared with the analytic formula obtained
in [18], labeled “Britoþ”, and the one obtained in [17],
labeled “Arvanitakiþ”.
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BH-condensate system can be studied within a quasiadia-
batic approximation [18]. The scalar field can be consid-
ered almost stationary, and its backreaction on the geometry
neglected, as long as the scalar stress-energy tensor is small
compared to the BH energy density [18].
Recent nonlinear evolutions by East and Pretorius in the

spin-1 case [34,35], where the instability develops more
rapidly, lend support to an adiabatic treatment of the
evolution of the field. The evolution happens in two steps
characterized by very different time scales. First a scalar
condensate grows around the BH until the superradiant
condition is saturated; then the condensate is dissipated
through GW emission. Neglecting accretion for simplicity,
the evolution of the system is governed by the Eq. [18]8>>>>><

>>>>>:

_M ¼ − _ES;
_M þ _MS ¼ − _E;
_J ¼ −m _ES=ωR;
_J þ _JS ¼ −m _E=ωR;

ð24Þ

where _ES ¼ 2MSωI is the scalar energy flux extracted from
the horizon through superradiance. In the above equations,
we have used the fact that—for a single ðl; mÞ mode—the
GWangular momentum flux ism _E=ωR and that the angular
momentum flux of the scalar field extracted at the horizon
is m _ES=ωR.
The system (24) shows that for a superradiantly unstable

state (ωI > 0) the instability will cause the BH to transfer
mass and spin to the scalar field until the system reaches the
saturation point, given by ωI ¼ 0, i.e., ωR ¼ mΩH.

2 This
process occurs on a time scale τinst ≡ 1=ωI ≫ M, and the
saturation point corresponds a final BH angular momentum

Jf ¼ 4mM3
fωR

m2 þ 4M2
fω

2
R
< Ji; ð25Þ

where Ji=f,Mi=f are the initial/final BH angular momentum
and mass, respectively. The system (24) also shows that
the variation of the BH mass δM is related to the variation
of the BH angular momentum δJ by δM ¼ ωR

m δJ, which
implies

Mf ¼ Mi −
ωR

m
ðJi − JfÞ: ð26Þ

When the instability saturates, the total mass of the scalar
cloud is roughly given by Mmax

S ∼Mi −Mf, namely

Mmax
S ∼

JiωR

m
−

4M3
fω

2
R

m2 þ 4M2
fω

2
R
≈
JiωR

m
; ð27Þ

where the last step is valid when MfωR ≪ 1.
After the superradiant phase, the mass and the angular

momentum of the BH remain constant [cf. Eq. (24)],
whereas the scalar field is dissipated through the emission
of GWs3 as given by Eq. (22). We neglect GWabsorption at
the event horizon—which is always subdominant [58]—
and GW emission due to the transition of bosons between
different energy levels, which is also a subdominant effect
as long as the condensate is mostly populated by a single
level [19]. By using again Eq. (24), after the superradiant
phase we get

_MS ¼ −
dE
dt

¼ −
d ~E
dt

M2
S

M2
f

; ð28Þ

where we used the fact that jZ∞
lmωj2 ∝ M2

S to factor out the

dependence on MSðtÞ, and we defined d ~E
dt ≡ dE

dt

M2
f

M2
S
. This

quantity is shown in Fig. 2 and it is constant after the
superradiant phase, since it depends only on the final BH
mass and spin. Therefore, setting t ¼ 0 to be the time at
which the superradiant phase saturates, the above equation
yields

MSðtÞ ¼
Mmax

S

1þ t=τGW
; ð29Þ

where Mmax
S is the mass of the condensate at the end of the

superradiant phase [cf. Eq. (27)] and

τGW ≈Mf

�
d ~E
dt

Mmax
S

Mf

�−1

≈ 8 × 105 yr

�
Mf

106 M⊙

��
10−11

d ~E=dt

��
0.2Mf

Mmax
S

�
ð30Þ

is the gravitational radiation time scale.
Finally, we note that the self-gravity of the boson cloud

will cause the GW frequency to change slightly as the cloud
dissipates via GWs [19,21]. The estimates given in Eq. (28)
of Ref. [19] and Appendix E of Ref. [21] suggest that, for
scalar fields, this small change should not affect current
continuous-wave searches. Taking these estimates and the
duration of the signal of Figs. 3 and 4 for resolved events,
one can see that for both LIGO and LISA a vast majority of

2Fully nonlinear evolutions of a charged scalar field around a
charged BH enclosed by a reflecting mirror [50,60,61] or in anti-
de Sitter spacetime [51] have shown that the end state for this
system indeed consists of a scalar condensate around a charged
BH saturating the superradiant condition. East and Pretorius
reached the same conclusion for massive spin-1 fields [34,35].
For complex fields, truly stationary metric solutions of the field
equations describing a boson condensate saturating the super-
radiant condition around spinning BH have been explicitly shown
to exist [62–64].

3In the language of [19] this process corresponds to the
“axionþ axion → graviton” annihilation process. In our nota-
tion, their “occupation number” is N ¼ MS=ms.
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FIG. 3. Gravitational radiation time scale, instability time scale, and the signal duration Δt [defined in Eq. (33)] for detectable LISA
sources and for different boson masses.

FIG. 4. Gravitational radiation time scale, instability time scale, and the signal duration Δt [defined in Eq. (33)] for detectable LIGO
sources and for different boson masses. Dashed lines represent extragalactic sources and bold lines represent Galactic sources.
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the sources will have a small positive frequency drift
_f ≪ 10−9 Hz=s, which is the current upper limit on the
frequency time derivative of the latest all-sky search from
LIGO [65]. However, even though this frequency drift
should be very small and undetectable for most sources, the
positive frequency time derivative of GWs from boson
clouds could be used to distinguish them from other
continuous sources, such as rotating neutron stars, which
have a negative frequency drift [66].

D. Instability and gravitational radiation time scales

As discussed above, the basic features of the evolution
of the BH superradiant instability in the presence of light
bosons can be understood as a two-step process, governed
by two different time scales. The first time scale is the typical
e-folding time of the superradiant instability given by
τinst ≡ 1=ωI , where in theMμ ≪ 1 limit,ωI is the imaginary
part of Eq. (8). The boson condensate grows over the time
scale τinst until the superradiant condition is saturated.
Subsequently, the condensate is dissipated through GW
emission over a time scale τGW given by Eq. (30). In
the Mμ ≪ 1 limit, d ~E=dt ¼ ð484þ 9π2Þ=23040ðμMÞ14≃
0.025ðμMÞ14 [18,42]. Thus, using Eqs. (8), (27), (30) and
reinstating physical units, the two most relevant time scales
of the system are of the order

τinst ∼ 105 yrðM8
6μ

9
17χÞ−1; ð31Þ

τGW ∼ 5 × 1011 yrðM14
6 μ1517χÞ−1; ð32Þ

where M6 ¼ M=ð106 M⊙Þ and μ17 ¼ ms=ð10−17 eVÞ and
χ ≪ 1.
These relations are still a reasonably good approximation

when Mμ ∼ 1 and χ ∼ 1. They show that there is a clear
hierarchy of time scales (τGW ≫ τinst ≫ M), and this is
important for two reasons. First of all it is crucial that
τGW ≫ τinst, otherwise the boson condensatewould not have
time to grow. Second, the time scale hierarchy justifies the
use of an adiabatic approximation to describe the evolution.
Beyond the instability and gravitational radiation time

scales, from the point of view of detection it is important to
estimate the distribution of signal durations Δt. For
LIGO we can safely neglect accretion, because accreted
matter is not expected to significantly alter the birth spin of
stellar-mass BHs [67]. We can also neglect the effect of
mergers, since mergers affect a very small fraction of the
overall population of isolated BHs [68–72], and LIGO data
already suggest that multiple mergers should be unlikely
[73,74]. Therefore, for LIGO we will simply assume
Δt ¼ min ðτGW; t0Þ, where t0 ≈ 13.8 Gyr is the age of the
Universe.
For massive BHs that radiate in the LISA band, both

mergers and accretion are expected to be important [75,76].
Therefore we conservatively assume that whenever an

accretion event or a merger happens the boson-condensate
signal is cut short, and for LISA we define

Δt ¼
	
min

�
τGW

Nm þ 1
; tS; t0

�

; ð33Þ

where the signal duration τGW in the absence of mergers
and accretion is given by Eq. (30), h� � �i denotes an average
weighted by the probability distribution function of the
Eddington ratios, tS is the “Salpeter” accretion time scale
[Eq. (51)], and Nm is the average number of mergers
expected in the interval ½t − τGW=2; tþ τGW=2�, t being the
cosmic time corresponding to the cosmological redshift z of
the GW source. Note that this definition also enforces the
obvious fact that the signal cannot last longer than the age of
the Universe (Δt ≤ t0). We also note that the estimates
of Refs. [19,21] suggest that the close passage of a stellar-
mass compact object around the massive BH could
affect the boson cloud when Mμ ≪ 0.1. This part of the
parameter space is mostly irrelevant for our results, and so
weneglect this contribution.Moreover, estimates of the rates
of extrememass-ratio inspirals predict atmost a fewhundred
such close passages per Gyr per galaxy [46]. Therefore, the
average timescale between these events is ≳107 yr. This is
comparable with the accretion timescale [Eq. (51)], which
we have already taken into account. Thus, we expect our
results to be robust against inclusion of this effect. In
addition, stars and compact objects could, in principle,
affect the boson cloud also at larger orbital distances,
comparable to the peak of the cloud R ∼ 4M=ðMμÞ2 [18].
This could also become relevant forMμ ≪ 0.1, but even in
this case passages of stars at R ∼ 1000M or larger are
expected to be quite rare. Indeed, tidal disruption of stars are
about 10−5 per yr per galaxy [77], hence stars at distances
R ∼ 1000M from the BH should only appear roughly every
105 yr. We have checked that even if we include this effect
by adding an extra time scale ∼105 yr to Eq. (33), the
background and the resolved event rates would only
decrease by about an order of magnitude (and only for
Mμ ≪ 0.1), thus leaving our conclusions unchanged.
Figures 3 and 4 show histograms of τinst, τGW and Δt

for resolvable sources with SNR ρ ≥ 8 [cf. Eq. (34)]. When
computing the SNR, we use an observation time Tobs ¼ 2 yr
for LIGO and Tobs ¼ 4 yr for LISA. We adopt the LISA
noise power spectral density specified in the ESA proposal
for L3 mission concepts [11] and the design sensitivity of
Advanced LIGO [78]. The events are binned by gravitational
radiation time scale τGW, instability time scale τinst, and signal
duration Δt, as defined in Eq. (33). For concreteness, in the
plotwe focus on themost optimistic astrophysicalmodel, and
we neglect the confusion noise due to the stochastic back-
ground produced by these sources (cf. [79]). For LIGO we
show both Galactic and extragalactic sources.
The signal duration Δt is typically equal to the

gravitational radiation time scale τGW, and (as antici-
pated) much longer than the instability time scale τinst.
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Since for LIGO we neglect the effects of mergers and
accretion, the only visible difference between Δt and τGW
is due to the fact that we cut off the signal when its typical
time scale is longer than the age of the Universe (i.e., as
mentioned above, we set Δt ¼ t0 if τGW > t0). For LISA
there are more subtle effects related to accretion and
mergers [cf. Eq. (33)], but Figs. 3 and 4 demonstrate that
the signal duration Δt is always much longer than the
instability time scale τinst, as suggested by the rough
estimates of Eqs. (31) and (32).

E. Gravitational waveform

Since the GW signal from boson condensates is quasi-
monochromatic, we can compute the (average) signal-to-
noise ratio (SNR) as [80,81]

ρ≃
	
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Toverlap

p
ffiffiffiffiffiffiffiffiffiffiffi
ShðfÞ

p 

; ð34Þ

where h is the root-mean-square (rms) strain amplitude;
ShðfÞ is the noise power spectral density at the (detector-
frame) frequency f of the signal, which is related to the
source-frame frequency fs ≡ ω=ð2πÞ by f ¼ fs=ð1þ zÞ (z
being the redshift); Toverlap is the overlap time between the
observation periodTobs and the signal durationΔtð1þ zÞ [in
the detector frame, hence the factor 1þ z multiplying the
signal durationΔt in the source frame]; and h…i denotes an
average over the possible overlap times. In practice, when
our astrophysical models predict that a signal should overlap
with the observation window, we compute this average by
randomizing the signal’s starting time with uniform prob-
ability distribution in the interval ½−Δtð1þ zÞ; Tobs� (where
we assume, without loss of generality, that t ¼ 0 is the
starting time of the observation period).
Coherent searches for almost-monochromatic sources

are computationally expensive, and normally only feasible
when the intrinsic parameters of the source and its sky
location are known. For all-sky searches, where the proper-
ties and location of the sources are typically unknown, it is
more common to use semicoherent methods, where the
signal is divided in N coherent segments with time length
Tcoh. The typical sensitivity threshold, for signals of
duration Δtð1þ zÞ ≫ Tobs, is [cf. e.g. [66]]

hthr ≃ 25

N 1=4

ffiffiffiffiffiffiffiffiffiffiffi
ShðfÞ
Tcoh

s
; ð35Þ

where hthr is the minimum rms strain amplitude detectable
over the observation timeN × Tcoh. This criterionwas used,
for example, in [19]. In the followingwe consider both cases
(a full coherent search and a semicoherent method) in
order to bracket uncertainties due to specific data analysis
choices. For the semicoherent searches we only consider
events for which Δtð1þ zÞ ≫ Tobs [since the threshold
given by Eq. (35) only holds for long-lived signals].

A useful quantity to compare the sensitivity of different
searches independently of the data-analysis technique and
the quality and amount of data is the so-called “sensitivity
depth,” defined by [82]

DðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ShðfÞ

p
hthr

: ð36Þ

For example, the average sensitivity depth of the last
EINSTEIN@HOME search was D ≈ 35 Hz−1=2 [83].
To compute h, we first use Eqs. (9), (19) and (20) to get a

combination of the two GW polarizations,

H ≡ hþ − ih× ¼ −
2

~ω2r

X
l ~mn

Z∞
l ~m ~ω−2Yl ~m ~ωe

i ~ωðr�−tÞ: ð37Þ

In the following we will omit the sum over l ~mn for ease of
notation. Let us focus on a single scalar field mode.4 If the
scalar field has azimuthal numberm and real frequency ωR,
the GW emitted by the scalar cloud will have azimuthal
number ~m ¼ �2m and frequency ~ω ¼ �2ωR. Defining
Z∞ ¼ jZje−iϕ, where jZj and ϕ are both real, we have

H ¼ −
2jZj
~ω2r

�
−2Yl ~m ~ωe

i½ ~ωðr�−tÞþϕ�þ−2Yl− ~m− ~ωe
−i½ ~ωðr�−tÞþϕ�

�
;

ð38Þ

where we used the fact that Z∞
l− ~m− ~ω ¼ Z∞

l ~m ~ω. Since

sYl ~m ~ωðϑ;φÞ ¼ sSl ~m ~ωðϑÞeimφ and S is a real function for
real ~ω, we get

hþ ¼ ℜðHÞ≡ −
2jZj
~ω2r

ð−2Sl ~m ~ω þ −2Sl− ~m− ~ωÞ
× cos ½ ~ωðr� − tÞ þ ϕþ ~mφ�; ð39Þ

h× ¼ ℑðHÞ≡ −
2jZj
~ω2r

ð−2Sl ~m ~ω − −2Sl− ~m− ~ωÞ
× sin ½ ~ωðr� − tÞ þ ϕþ ~mφ�: ð40Þ

The GW strain measured at the detector is

h ¼ hþFþ þ h×F×; ð41Þ

where Fþ;× are pattern functions that depend on the
orientation of the detector and the direction of the source.
To get the rms strain of the signal we angle-average over
source and detector directions and use hF2þi ¼ hF2

×i ¼ 1=5,
hFþF×i ¼ 0, hjsSl ~m ~ωj2i ¼ 1=ð4πÞ and hcos2½ ~ωðr� − tÞþ
ϕþ ~mφ�i ¼ hsin2½ ~ωðr� − tÞ þ ϕþ ~mφ�i ¼ 1=2. We then
obtain

4In this work we will focus on the mode with the smallest
instability time scale l ¼ m ¼ 1, which should be the dominant
source of GW radiation [19].
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h≃ hh2i1=2 ¼
�

2jZj2
5π ~ω4r2

�
1=2

¼
�

4 _E
5 ~ω2r2

�1=2

; ð42Þ

where _E is given in Eq. (22), which for a single scalar mode
reads _E ¼ P

ljZlj2=ð2π ~ω2Þ. Finally, let us factor out the
BH mass and the mass of the scalar condensate: jZj ¼
Aðχ; μMÞðM ~ωÞ2MS=M2, where Aðχ; μMÞ is a dimension-
less quantity. The final expression for the rms strain reads

h ¼
ffiffiffiffiffiffi
2

5π

r
M
r
MS

M
Aðχ; μMÞ: ð43Þ

We conservatively assume that the GWs observed at the
detector are entirely produced after the saturation phase of
the instability. Therefore, we compute h using the final BH
mass and spin, as computed in Eqs. (26) and (25), respec-
tively. Larger initial spins imply that a larger fraction of the
BHmass is transferred to the scalar condensate [cf. Eq. (27)].
So, for a given scalar field mass and initial BH mass, the
strain grows with the initial spin.
Equation (43) is valid for any interferometric detector for

which the arms form a 90-degree angle, such as Advanced
LIGO. For a triangular LISA-like detector the arms form a
60-degree angle, and we must multiply all amplitudes by a
geometrical correction factor

ffiffiffi
3

p
=2 [5,84]. Additionally,

since we sky-average the signal, we will use an effective
non-sky-averaged noise power spectral density, obtained
by multiplying LISA’s sky-averaged Sh by 3=20 [85]. The
analysis presented below takes into account these corrective
factors.

F. Cosmological effects

Since some sources can be located at non-negligible
redshifts, the root-mean-square strain amplitude of Eqs. (42)
and (43)must be corrected to take into account cosmological
effects, which affect the propagation of the waves to the
detector [86]. These effects have two main consequences.
First, the frequency f of the signal as measured at the

detector’s location (“detector frame”) is redshifted with
respect to the emission frequency fs in the “source-frame”,
i.e., f ¼ fs=ð1þ zÞ.
Second, in the strain amplitude given by Eq. (43), the

distance r to the detector should be interpreted as the
comoving distance, which for a flat Friedmann-Lemaitre-
Robertson-Walker model is given by

DcðzÞ ¼ DH

Z
z

0

dz0ffiffiffiffiffiffiffiffiffiffiffi
Δðz0Þp ; ð44Þ

where ΔðzÞ ¼ ΩMð1þ zÞ3 þ ΩΛ, DH is the Hubble dis-
tance, ΩM is the dimensionless matter density and ΩΛ is
the dimensionless cosmological constant density. All other
quantities (masses, lengths and frequencies) in Eq. (43)
should be instead be interpreted as measured by an observer
in the source frame.

Alternatively, one might wish to use quantities measured
by an observer at the detector’s location to compute the strain
amplitude of Eq. (43). Detector-frame quantities are related
to source-frame ones by powers of (1þ z), namely all
quantities with dimensions ½mass�p (in our geometrized
units G ¼ c ¼ 1) are multiplied by the factor ð1þ zÞp, e.g.
masses are multiplied by (1þ z) (“redshifted masses”),
frequencies are divided by the same factor (“redshifted
frequencies”), while the comoving distance is multiplied by
a factor (1þ z), thus becoming the luminosity distance
DL ¼ Dcð1þ zÞ. Since the strain amplitude of Eq. (43) is
dimensionless, that equation yields the same result when
using detector-frame quantities as when using source-
frame ones.
The typical distance up to which BH-condensate sources

are detectable can be estimated by defining an “angle-
averaged range” Drange as the luminosity distance at which
either the SNR ρðDrangeÞ¼ 8 [cf. Eq. (34)] for coherent
searches, or hðDrangeÞ ¼ hthr for semicoherent searches
[cf. Eq. (35)].
In Fig. 5 we show Drange for both LISA and LIGO at

design sensitivity under different assumptions on the initial
BH spin. The left panels refer to single coherent observa-
tion with Tobs ¼ 4 yr for LISA (Tobs ¼ 2 yr for Advanced
LIGO), whereas the right panels refer to a (presumably
more realistic) semicoherent search withN ¼ 121 coherent
segments of duration Tcoh ¼ 250 hr. In the more optimistic
case, sources are detectable up to cosmological distances of
∼20 Gpc ð∼2 GpcÞ if the BH is nearly extremal and the
boson mass is in the optimal mass range ms ∼ 10−17 eV
(ms ∼ 10−13 eV) for LISA (LIGO). For the semicoherent
search,Drange is reduced by roughly one order of magnitude,
with a maximum detector reach ∼2 Gpc and ∼200 Mpc for
LISA and Advanced LIGO, respectively.

III. MASSIVE BLACK HOLE
POPULATION MODELS

An assessment of the detectability of GWs from super-
radiant instabilities requires astrophysical models for the
massive BH population. In this section we describe the
models adopted in our study, and in particular our
assumptions on (A) the mass and spin distribution of
isolated massive BHs, (B) their Eddington ratio distribu-
tion, and (C) their merger history.

A. Mass and spin distribution of isolated black holes

Let n be the comoving-volume number density of BHs.
For the mass and spin distribution of isolated BHs we
consider:

(A.1) A model where d2n=ðd log10MdχÞ is computed
using the semianalytic galaxy formation model of
[43] (with later improvements described in
[76,87,88]). This distribution is redshift-dependent
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and skewed toward large spins, at least at low masses
(cf. [76]). It also has a negative slope dn=dlog10M∝
M−0.3 for BH masses M<107M⊙, which is com-
patible with observations (cf. [76], Fig. 7). The
normalization is calibrated so as to reproduce the
observed M–σ and M–M⋆ scaling relations of [89],
where σ is the galaxy velocity dispersion and M⋆ is
the stellar mass. We also account for the bias due to
the resolvability of the BH sphere of influence
[90,91]. Because of the slope, normalization and
spin distribution, this model is optimistic.

(A.2) An analytic mass function [46,47]

dn
dlog10M

¼0.005

�
M

3×106M⊙

�
−0.3

Mpc−3; ð45Þ

which we use for redshifts and BH masses in
the range 104 M⊙ < M < 107 M⊙ and z < 3. For
M > 107 M⊙ we use a mass distribution with nor-
malization 10 times lower than the optimistic one. For
this model we use a uniform distribution of the initial
spins χ ∈ ½0; 1�. Because of the lower normalization
and the spin distribution, this model is less optimistic.

(A.3) An analytic mass function

dn
dlog10M

¼0.002

�
M

3×106M⊙

�
0.3

Mpc−3; ð46Þ

which we use again for 104M⊙<M<107M⊙ and
z < 3, whereas for M > 107 M⊙ we use a mass
distribution with normalization 100 times lower than
the optimistic one. For this model we also consider a
uniform distribution of the initial spins χ ∈ ½0; 1�.
Because of the normalization, slope and spin dis-
tribution, this model is pessimistic.

B. Black hole mergers

Our standard choice for BH mergers is to compute the
comoving-volume number density nm of mergers per
(logarithmic) unit of totalmassMtot¼M1þM2, unit redshift
and (logarithmic) unit of mass ratio q ¼ M2=M1 ≤ 1, i.e.,

νðMtot; z; qÞ≡ d3nm
dlog10Mtotdzdlog10q

; ð47Þ

from the semianalytic model of [43].

FIG. 5. Angle-averaged range Drange for LISA (top) and Advanced LIGO at design sensitivity (bottom) computed for selected
initial BH spin (χi ¼ 0.998, 0.95, 0.7). Left panels: the range is computed using a coherent search over an observation time
Tobs ¼ 4 yr (for LISA) and Tobs ¼ 2 yr (for LIGO). Right panels: we assume a semicoherent search with N ¼ 121 coherent
segments of duration Tcoh ¼ 250 hr.
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We can then estimate the average number of mergers
(between z and zþ dz) for a BH of mass M as

dNmðM; zÞ ¼ μðM; zÞ
ϕðM; zÞ dz: ð48Þ

Here

ϕðM; zÞ≡ dn
d log10M

¼
Z

d2n
d log10Mdχ

dχ ð49Þ

is the (isolated BH) mass function, and

μðMtot; zÞ≡ d2nmerger

d log10Mtotdz
¼

Z
q>qc

νd log10 q;

where qc is the critical mass ratio above which we assume
mergers make an impact. In practice, most BH mergers in
our semianalytic models have q≳ 0.01–0.001 (especially
in the LISA band, cf. [92]), so our results are robust against
the exact choice of qc. Nevertheless, to be on the
conservative side, we set qc ¼ 0. A larger qc would
produce a slightly lower BH merger number and, in turn,
a slightly higher number of boson-condensate sources,
under the conservative assumption that mergers destroy the
boson cloud. We can then compute the average number of
mergers experienced by a BH of mass M in the redshift
interval ½z1; z2� as

Nm ¼
Z

z2

z1

dNm

dz
dz: ð50Þ

Note that the number of mergers depends on the seeding
mechanisms of the massive BH population, as well as on
the “delays” between the mergers of galaxies and the
mergers of the BHs they host [cf. e.g. [39]].
When computing the average number ofmergersNm to be

used to estimate the number of boson-condensateGWevents
from isolated BHs, i.e., when evaluating the number of
resolved events [Eq. (62) below] and the amplitude of the
stochastic background [Eq. (64) below], we consider the
“popIII” model of [39] (a light-seed scenario with delays).
Choosing a different seed model would not alter our
conclusions. However, when considering the constraints
that can be placed on the boson mass by direct observations
of BH coalescences by LISA, we consider all three models
presented in [39] (“popIII”, “Q3” and “Q3nod”). These
models correspond respectively to light seeds with delays
between a galaxy merger and the corresponding binary BH
merger; heavy seeds with delays; and heavy seeds with
no delays; and they are chosen to bracket the theoretical
uncertainties on the astrophysics of BH seed formation and
BH delays.

C. Accretion

Clearly, accretion is competitive with the superradiant
extraction of angular momentum from the BH [18], so it is
important to quantify its effect. We estimate the accretion
time scale via the Salpeter time,

tS ¼ 4.5 × 108 yr
η

fEddð1 − ηÞ ; ð51Þ

where fEdd is the Eddington ratio for mass accretion, and
the thin-disk radiative efficiency η is a function of the spin
related to the specific energy EISCO at the innermost stable
circular orbit [93]:

η ¼ 1 − EISCO; ð52Þ

EISCO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

3rISCO

s
; ð53Þ

rISCO ¼ 3þ Z2 −
χ

jχj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
; ð54Þ

Z1 ¼ 1þ ð1 − χ2Þ1=3½ð1þ χÞ1=3 þ ð1 − χÞ1=3�; ð55Þ

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3χ2 þ Z2

1

q
: ð56Þ

For the Eddington ratio fEdd we consider three models:
(C.1) We use the results of our semianalytic model to

construct probability distribution functions for fEdd
at different redshifts and BH masses.

(C.2) We adopt a simple model in which fEdd ¼ 1 for 10%
of the massive BHs, and fEdd ¼ 0 for the remaining
ones. (The choice of 10% is a reasonable estimate
for the duty cycle of active galactic nuclei [94,95]).

(C.3) Finally, we consider a very pessimistic model in
which all BHs have fEdd ¼ 1. Although unrealistic,
this models maximizes the effects of accretion,
and therefore it yields the most conservative lower
bound for the superradiant instability time scale.

IV. STELLAR MASS BLACK HOLE
POPULATION MODELS

We now turn to a description of stellar-mass BHs,
which are of interest for LIGO. Here we have to model
(A) extragalactic BHs, which turn out to dominate the
stochastic background of GWs from ultralight bosons, and
(B) Galactic BHs, which (as pointed out in [19,20]) are
dominant in terms of resolvable signals.

A. Extragalactic BHs

In the standard scenario, stellar-mass BHs are the end
products of the evolution of massive (M ≳ 20 M⊙) stars.
They form either via direct collapse of the star or via a
supernova explosion followed by fallback of matter (failed
supernova). This process depends on various parameters,
such as stellar metallicity, rotation and interactions with a
companion if the star belongs to a binary system [96–99]. In
particular, themetallicity of the star determines the strength of
stellar winds and can thus have a significant impact on the
mass of the stellar core prior to collapse [100,101]. In
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addition, BHs can grow hierarchically through multiple
mergers that occur in dense stellar clusters [73,74,102,
103]. This process is expected to leave an imprint on the
distribution in the mass-spin plane: while BHs grow in mass
via mergers their spins converge to values around ∼0.7 with
little or no support below ∼0.5 [73–75].
In this work we consider only BH formation from core

collapse of massive stars. We use the analytic fits for the
BH mass as a function of initial stellar mass and metallicity
from [104], embedded in the semianalytic galaxy evolution
model from [105]. In particular, the latter model describes
the production of metals by stars [106] and the evolution of
the metallicity of the interstellar medium, which is inherited
by the stars that form there. The extragalactic BH formation
rate as a function of mass and redshift reads

d _neg
dM

¼
Z

dM⋆ψ ½t − τðM⋆Þ�ϕðM⋆Þδ½M⋆ − g−1ðMÞ�;

ð57Þ
where τðM⋆Þ is the lifetime of a star withmassM⋆,ϕðM⋆Þ
is the stellar initial mass function, ψðtÞ denotes the cosmic
star formation rate (SFR) density and δ is theDirac delta.We
use the fit to the cosmic SFRdescribed in [107], calibrated to
observations [108,109]. We adopt a Salpeter initial mass
function ϕðM⋆Þ ∝ M⋆−2.35 [110] in the mass rangeM⋆ ∈
½0.1–100�M⊙ and use the stellar lifetimes from [111]. The
initial stellar mass M⋆ and BH mass M are related by the
function M ¼ gðM⋆Þ, which can be (implicitly) redshift-
dependent (through its dependence on stellar metallicity),
and which we take from the “delayed” model of [104].

B. Galactic BHs

Resolvable signals are expected to be dominated by
Galactic stellar-mass BHs [19]. We estimate the present-
day mass function of these BHs as

dNMW

dM
¼

Z
dt

SFRðzÞ
M⋆

dp
dM⋆

 dM
dM⋆

−1; ð58Þ

where NMW denotes the number of BHs in the Galaxy,
dp=dM⋆ is the normalized Salpeter initial mass function
(i.e., the probability of forming a star with mass between
M⋆ and M⋆ þ dM⋆), and SFRðzÞ denotes the SFR of
Milky-Way type galaxies as a function of z [109,112]. The
integration is over all cosmic times till the present epoch.
The (differential) relation between BH mass and initial
stellar mass dM=dM⋆ is taken from the “delayed” model
of [104], and is also a function of redshift via the
metallicity. For the latter, we use the results of [113] to
describe its evolution with cosmic time. We then “spread”
dNMW=dM throughout the Galaxy in order to obtain a
(differential) density dnMW=dM, by assuming that the latter
is everywhere proportional to the (present) stellar density.
To this purpose, we describe the Galaxy by a bulgeþ disk
model, where the bulge follows a Hernquist profile [114]

with mass ∼2 × 1010 M⊙ and scale radius ∼1 kpc [115],
and the disk is described by an exponential profile with
mass ∼6 × 1010 M⊙ and scale radius ∼2 kpc [116].
Since these models (for both Galactic and extragalactic

BHs) do not predict the initial BH spins, we assume a
uniform distribution and explore different ranges (from
optimistic to pessimistic): χ ∈ ½0.8; 1�, [0.5, 1], [0, 1] and
[0, 0.5].

V. EVENT RATES FOR LISA AND LIGO

Having in hand the calculation of the GW signal of
Sec. II and the astrophysical models of Secs. III and IV,
we can now compute event rates for LISA and LIGO.
We consider two separate classes of sources: (A) boson-
condensate GW events which are loud enough to be
individually resolvable, and (B) the stochastic background
of unresolvable sources.

A. Resolvable sources

In the limit in which the (detector-frame) signal duration
Δtð1þ zÞ is small compared to the observation time Tobs,
Δtð1þ zÞ ≪ Tobs, the number of resolvable events is
proportional to the observation time [117]:

N ¼ Tobs

Z
ρ>8

d2 _n
dMdχ

dt
dz

4πD2
cdzdMdχ; ð59Þ

where
dt
dz

¼ 1

H0

ffiffiffiffi
Δ

p ð1þ zÞ ð60Þ

is the derivative of the lookback time with respect to
redshift.
For long-lived sources with detector-frame duration

Δtð1þ zÞ ≫ Tobs, the number of detections does not scale
with the observation time, but rather with the “duty cyle”
Δt=tf, where tf ≡ n= _n is the formation time scale of the
boson condensate. For example, if BHs form a boson
condensate only once in their cosmic history, tf is the
age of the Universe t0 ≈ 13.8 Gyr. This duty cycle has the
same meaning as the duty cycle of active galactic nuclei: it
accounts for the fact that, at any given time, only a fraction of
the BH population will be emitting GWs via boson con-
densates. Because of the ergodic theorem, this fraction is
given by the average time fraction during which a BH emits
GWs via boson condensates. This average time fraction is
indeed the duty cycle Δt=tf. Therefore, the number of
resolved sources when Δtð1þ zÞ ≫ Tobs is simply

N ¼
Z
ρ>8

d2n
dMdχ

Δt
tf

dVc

dz
dzdMdχ

¼
Z
ρ>8

d2 _n
dMdχ

Δt
dVc

dz
dzdMdχ; ð61Þ

where dVc ¼ 4πD2
cdDc.
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Equations (59) and (61) can be merged into a single
expression that remains valid also in the intermediate
regime Δtð1þ zÞ ∼ Tobs. Indeed, the probability that a
signal lasting a time span Δtð1þ zÞ (in the detector
frame) overlaps with an observation of duration Tobs is
simply proportional to the sum of the two durations,
Δtð1þ zÞ þ Tobs. This can be understood in simple geo-
metric terms: for the signal to overlap with the observation
window (which we define, without loss of generality, to
extend from t ¼ 0 to t ¼ Tobs), the signal’s starting time
should fall between t ¼ −Δtð1þ zÞ and t ¼ Tobs, i.e., in a
time interval of length Δtð1þ zÞ þ Tobs. Therefore, we can
estimate the number of observable GW events as

N ¼
Z
ρ>8

d2 _n
dMdχ

�
Tobs

1þ z
þ Δt

�
dVc

dz
dzdMdχ: ð62Þ

Since dDc=dz ¼ ð1þ zÞdt=dz, it can be easily checked
this equation reduces to Eqs. (59) and (61) in the limits
Δtð1þ zÞ ≪ Tobs and Δtð1þ zÞ ≫ Tobs, respectively.
For extragalactic LIGO sources we compute d2 _n=dMdχ

from the astrophysical models of Sec. IVA, while for LISA
and galactic LIGO sources we compute d2n=dMdχ
as described in Secs. III and IV B and then assume
d2 _n=dMdχ ¼ ðd2n=dMdχÞ=t0. This corresponds to
assuming that the boson-condensate formation time
tf ¼ t0 equals the age of the Universe, or that BHs radiate
via boson condensates only once in their lifetime. This
conservative assumption does not affect our results very
significantly. Once a BH-boson system radiates, its spin
decreases to low values, while the mass remains almost
unchanged. For the BH to emit again via boson conden-
sates, its spin must grow again under the effect of accretion
or mergers. In this process, however, the BH mass also
grows rapidly: for example, the simple classic estimates by
Bardeen [118] imply that when a BH spins up from χ ¼ 0

to χ ¼ 1 via accretion, its mass increases by a factor
ffiffiffi
6

p
.

So even if new boson clouds form due to the instability
of higher-m modes, the instability time scales will be
much larger [cf. Eq. (8)] and the GW flux will be highly
suppressed [cf. Ref. [42]].
Our main results for resolvable rates are summarized in

Fig. 6, Fig. 7, Table I and Table II.
In Fig. 6 we focus on optimistic models and we show

how the number of individually resolvable events
depends on the observation time and on the chosen
data-analysis method. More specifically, for LISA we
use the BH mass-spin distribution model (A.1) and
accretion model (C.1), while for LIGO we adopt the
optimistic spin distribution χi ∈ ½0.8; 1�. We bracket
uncertainties around the nominal LISA mission
duration of Tobs ¼ 4 yr [11] by considering single obser-
vations with duration Tobs ¼ ð2; 4; 10Þ yr. We also show
rates for a (presumably more realistic) semicoherent
search with 121 segmenst of Tcoh ¼ 250 hours coherent

integration time5 For Advanced LIGO at design sensi-
tivity, we similarly consider single observations lasting
either Tobs ¼ 2 yr or Tobs ¼ 4 yr, as well as a semi-
coherent search with 121 segments of Tcoh ¼ 250 hours
coherent integration time.
Figure 6 (together with Fig. 3 in [79]) shows that the

number of resolvable events is strongly dependent on the
boson mass and on the astrophysical model.
For LISA, our astrophysical populations contain

mostly BHs in the mass range 104 M⊙ < M < 108 M⊙,
and the sensitivity curve peaks around a frequency corre-
sponding to ms ∼ 10−17 eV [cf. Fig. 1 of [79]]. These
considerations—together with the condition for having
an efficient superradiant instability (namely, Mμ ∼ 0.4 at
large spin)—translate into the range 3 × 10−18 eV≲ms ≲
5 × 10−17 eV for the mass of detectable bosonic particles
in a semicoherent search.
For LIGO, our models predict that most BHs will be in

the mass range 3 M⊙ < M < 50 M⊙, and the most sensi-
tive frequency band corresponds to ms ∼ 3 × 10−13 eV [cf.
Fig. 1 of [79]], translating into the range 2 × 10−13 eV≲
ms ≲ 3 × 10−12 eV for the mass of detectable bosonic
particles.
In order to quantify the “self-confusion” noise due to the

stochastic background produced by BH-boson systems, in
Fig. 6 we also display the number of resolved events that
we would obtain if we omitted the confusion noise from the
stochastic background (cf. Fig. 1 of [79] and Sec. V B).
Neglecting the confusion noise would overestimate the
number of resolvable events in LISA by one or two orders
of magnitude.

FIG. 6. Number of resolved LIGO and LISA events for our
optimistic BH population models as a function of the boson mass
with different observation times Tobs, using both full and semi-
coherent searches. Thick (thin) lines were computed with (with-
out) the confusion noise from the stochastic background.

5The number of resolved events for other choices of number of
segments and coherent integration time can be obtained from
Fig. 7 and expressing the sensitivity depth as D ≈ T1=2

cohN
1=425−1

[cf. Eqs. (35) and (36)].
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The rates computed in Figure 6 refer to our optimistic
astrophysical models. As shown in [79], resolvable event
rates in the most pessimistic models are about one order of
magnitude lower. Nevertheless, it is remarkable that even in
the most pessimistic scenario for direct detection (i.e.,
unfavorable BH mass-spin distributions and semicoherent
search method for the signal), bosonic particles with
ms ∼ 10−17 eV (ms ∼ 10−12 eV) would still produce around
5 (15) direct LISA (LIGO) detections of boson-condensate
GW events.
In Fig. 7 we show how the number of events grows with

the sensitivity depth of the search [82], as defined in
Eq. (36). For LISA the number of events grows roughly
with D3, corresponding to T3=2

obs . This is expected from the
fact that the number of events for sources at ≳30 Mpc
should grow with the sensitive volume, and thus decrease
with ρ−3crit, where ρcrit is the critical SNR for detection [119].
On the other hand, LIGO will be mostly sensitive to

signals within the Galaxy. For a given boson mass and
distance, τGW ∼ h−2 and M ∼ h1=8 [cf. Eqs. (30) and (42)].
Since the Galactic stellar BH population obtained from
Eq. (58) is well fitted by dN=M ∼ e−0.2M, for a fixed
volume the integral in Eq. (61) goes as

N ∼
Z
h>hthr

h−23=8e−0.2h
1=8
dh ∼ h−15=8thr ; ð63Þ

where in the last step we took the leading order of the
integral for small hthr. From Eq. (34) one has hthr ∝ T−1=2

obs

and therefore N ∝ T15=16
obs . This is in agreement with the

scaling that we find.
Assuming the sensitivity depth of the last EINSTEIN@

HOME search D ≈ 35 Hz−1=2 [83] and an optimal boson
mass around ms ∼ 10−12.5 eV, we find that O1 should have
detected 5 resolvable events for the optimistic spin dis-
tribution χ ∈ ½0.8; 1�, and 2 events for a uniform spin

distribution χ ∈ ½0; 1�. As pointed out in [79], these optimal
boson masses may already be ruled out by upper limits
from existing stochastic background searches [79]. On the
other hand, the pessimistic spin distribution χ ∈ ½0; 0.5� is
still consistent with (the lack of) observations of resolvable
BH-boson GW events in O1, though marginally ruled out
by the O1 stochastic background upper limits [79].

TABLE I. Number of resolvable events in the LISA band
computed including the “self-confusion” noise from the stochas-
tic background of BH-boson condensates for different accretion
models. The lower and upper bounds correpond to the pessimistic
and optimistic massive BH population models, respectively. For
the semicoherent search we use 121 segments of Tcoh ¼
250 hours coherent integration time. For the coherent search,
we adopt the nominal mission duration of Tobs ¼ 4 years.

ms½eV� Search method Accretion model Events

10−16 Coherent (C.1) 75–0
Semicoherent 0
Coherent (C.2) 75–0
Semicoherent 0
Coherent (C.3) 75–0
Semicoherent 0

10−17 Coherent (C.1) 1329–1022
Semicoherent 39–5
Coherent (C.2) 3865–1277
Semicoherent 36–4
Coherent (C.3) 5629–1429
Semicoherent 39–5

10−18 Coherent (C.1) 17–1
Semicoherent 0
Coherent (C.2) 18–1
Semicoherent 0
Coherent (C.3) 20–0
Semicoherent 0

FIG. 7. Left: Number of events as a function of the sensitivity depth D [Eq. (36)] for selected boson masses in the LISA band and
accretion model (C.1). The bottom (top) of each shadowed region correspond to the pessimistic (optimistic) model. Right: Same, but
for boson masses in the LIGO band. Here the bottom (top) of each shadowed region correspond to pessimistic (optimistic) spin
distributions.
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Our results for resolvable event rates using different
search techniques, mass/spin and accretion models are
summarized in Tables I and II. For LISA we included
“self-confusion” noise in our rate estimates, and using
different accretion models does not significantly affect our
results. Interestingly, even though the accretion models
(C.2) and (C.3) are more pessimistic than model (C.1), they
predict a slightly larger number of resolvable events for
boson masses in the optimal range around 10−17 eV. This is
because the self-confusion noise is lower for models (C.2)
and (C.3) [cf. Sec. V B], and thus the loss in signal is more
than compensated by the lower total (instrumental and self-
confusion) noise floor.

B. Stochastic background

In addition to individually resolvable sources, a pop-
ulation of massive BH-boson condensates at cosmological
distances can build up a detectable stochastic background.
This possibility is potentially very interesting, given the
spread in BH masses (and, hence, in boson masses that
would yield an instability) characterizing the BH popula-
tion at different redshifts, but to the best of our knowledge it
has not been explored in the existing literature.
The stochastic background can be computed from the

formation rate density per comoving volume _n as [120]

ΩgwðfÞ ¼
f
ρc

Z
ρ<8

dχdMdz
dt
dz

d2 _n
dMdχ

dEs

dfs
; ð64Þ

where ρc ¼ 3H2
0=ð8πGÞ is the critical density of the

Universe, dEs=dfs is the energy spectrum in the source
frame, and f is the detector-frame frequency. Note that the
integral is only over unresolved sources with ρ < 8.
For extragalactic stellar mass BHs (which are sources for

LIGO), we calculate d2 _n=dMdχ based on the model of
Sec. IV, while for LISA sources we use the model of Sec. III
to obtain d2n=dMdχ, and then (as we did for the resolved
sources) we assume d2 _n=dMdχ ¼ð1=t0Þðd2n=dMdχÞ. As

before, this corresponds to the conservative assumption that
formation of boson condensates occurs only once in the
cosmic history of each massive BH.
We compute the energy spectrum as

dEs

dfs
≈ EGWδðfð1þ zÞ − fsÞ; ð65Þ

where we recall that fs is the frequency of the signal in the
source frame, EGW is the total energy radiated by the boson
cloud in GWs during the signal duration Δt, and the Dirac
delta is “spread out” over a frequency window of size
∼max½1=ðΔtð1þ zÞÞ; 1=Tobs� to account for the finite
signal duration and the finite frequency resolution of the
detector. As in the calculation of the rates of resolved
sources, Δt ¼ min ðτGW; t0Þ [cf. Eq. (30)] for LIGO
sources, while we account for mergers and accretion
through Eq. (33) for LISA sources. Moreover, since our
calculations rely on the implicit assumption that the
instability reaches saturation before GWs are emitted,
our estimates of the stochastic background only include
BHs for which the expected number of coalescences during
the instability time scale is Nm < 1, and for which τinst <
Δt (which ensures that the instability time scale is shorter
than the merger and accretion time scales).
The total energy emitted by the boson cloud during the

signal duration Δt can be estimated by integrating the GW
energy flux given by Eq. (28). Using Eq. (29) we have

dEGW

dt
¼ d ~E

dt
M2

S

M2
f

¼ Mmax
S τGW

ðtþ τGWÞ2
; ð66Þ

and by integrating over a time Δt we get

EGW ¼
Z

Δt

0

dt
dEGW

dt
¼ Mmax

S Δt
Δtþ τGW

: ð67Þ

As shown in [79], the order of magnitude of the
stochastic background can be estimated by computing
the mass fraction of an isolated BH that is emitted by
the boson cloud through GWs. This can be defined as

fax ¼
EGW

Mi
; ð68Þ

where we recall that Mi is the initial mass of the BH.
In Fig. 8 we show the average fax, weighted by the BH
population, for our most optimistic models. In the LIGO
and LISA band fax can be order Oð1%Þ, leading to a very
large stochastic background [79].
Note that Eq. (64) cannot be applied to Galactic BHs

which emit in the LIGO band, because it implicitly assumes
that the number density of sources, d2 _n=dMdχ, is homo-
geneous and isotropic. That assumption is clearly invalid
for Galactic BHs [cf. Eq. (58)]. However, in this case
we can simply sum the GW densities produced by the

TABLE II. Number of resolvable events for Advanced LIGO at
design sensitivity. For the semicoherent search we use 121
segments of Tcoh ¼ 250 hours coherent integration time. For
the coherent search, we set Tobs ¼ 2 years. The lower and upper
bounds correspond to the pessimistic (χ ∈ ½0; 0.5�) and optimistic
(χ ∈ ½0.8; 1�) spin distributions, respectively.

ms½eV� Search method Events

10−11.5 Coherent 21–2
Semicoherent 1–0

10−12 Coherent 1837–193
Semicoherent 50–2

10−12.5 Coherent 12556–1429
Semicoherent 205–15
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Galactic BH population at the position of the detector.
These densities are simply given by ρgw ¼ _E=ð4πr2Þ ¼
ð5=4Þπf2sh2 [cf. Eq. (42)], r being the distance from the
source to the detector. (Note that we neglect redshift and
cosmological effects, since those are negligible inside the
Galaxy.) Therefore, theGWenergy density per (logarithmic)
unit of frequency coming from each BH in the Galaxy is
simply dρgw=d ln f ≈ ð5=4Þπf2sh2δðln f − ln fsÞ, where the
Dirac delta is “spread out” over a frequency window of size
∼max½1=Δt; 1=Tobs� to account for the finite duration of the
signal and the finite frequency resolution of the detector.
Therefore, the contribution to the stochastic background
from the population of Galactic BHs can be written as

ΩgwðfÞ ¼
1

ρc

Z
dMdV

dnMW

dM
Δt
t0

dρgw
d ln f

: ð69Þ

Here dV denotes a volume integration over the Galaxy,
andΔt=t0 is again a duty cycle (i.e., we assume that Galactic
BHs emit via boson condensates only once in their cosmic
history).
To compute the SNR for the stochastic background

we use

ρstoch ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tobs

Z
fmax

fmin

df
Ω2

GW

Ω2
sens

s
: ð70Þ

For LISA we have [121]

Ωsens ¼ ShðfÞ
2π2

3H2
0

f3; ð71Þ

while for LIGO [122]

Ωsens ¼
ShðfÞffiffiffi
2

p
ΓIJðfÞ

2π2

3H2
0

f3; ð72Þ

where LIGO’s noise power spectral density ShðfÞ is
assumed to be the same for both Livingston and Hanford,
and ΓIJ is the overlap reduction function as defined in [123].
Notice the 1=

ffiffiffi
2

p
factor in Ωsens for LIGO compared to

LISA, due to the use of data from two detectors instead
of one.
As shown in Fig. 2 of [79], the SNR for this stochastic

signal can be very high. Since the galactic background only
contributes to the full spectrum in a very narrow frequency
window around fs, the contribution of the extragalactic
background to the SNR largely dominates. When comput-
ing the background for LISAwe assumed the semianalytic
accretion model (C.1). Considering the most pessimistic
accretion model (C.3) lowers the maximum SNR by at most
a factor two.

VI. EXCLUDING OR MEASURING BOSON
MASSES THROUGH LISA BLACK HOLE

SPIN MEASUREMENTS

So far we have focused on the direct detection of GWs
from bosonic condensates. However it is also possible to
infer the existence of light bosons in an indirect way.
As shown in Fig. 1, the existence of a light boson would
lead to the absence of BHs with spin above the corre-
sponding superradiant instability window (i.e., there would
be holes in the BH mass-spin “Regge plane” [17]). In this
section we show that LISA measurements of the spins of
merging massive BHs can be used to either rule out bosonic
fields in the mass range ½4.5 × 10−19; 7.1 × 10−13� eV,
or even more excitingly (if fields in the mass range
½10−17; 10−13� eV exist in nature) to measure their mass
with percent accuracy.
In principle we could carry out a similar analysis using

astrophysical models for stellar-mass BH binary mergers
detectable by Advanced LIGO or third-generation Earth-
based detectors. However, spin magnitude measurements
for the components of a merging BH binaries are expected
to be poor (Δχ ∼ 0.3 at best) even with third-generation
detectors [40,41]. In addition, the mass range of BHs
detectable by LIGO or future Earth-based interferometers
overlaps in mass with existing spin estimates from low-
mass x-ray binaries (see [38,124–126] for reviews of
current BH spin estimates). In summary, we focus on
LISA for two main reasons:

(i) LISA allows for percent-level determinations of
massive BH spins (see e.g. Fig. 9 of [39]).

(ii) In comparison with current electromagnetic esti-
mates of massive BH spins, which can be used to
exclude boson masses in the range ½10−20; 10−17� eV
(see e.g. [21,32]), LISA BH spin measurements can
probe lower BH masses; therefore, depending on the
details of massive BH formation models, they can
exclude (or measure) boson masses all the way up
to ms ∼ 7 × 10−13 eV.

FIG. 8. Average fraction of mass of an isolated BH emitted by
the bosonic cloud for the optimistic models.
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One of our main tasks in this context is to determine
whether LISA observations can distinguish between two
models: one where a massive boson exists (depleting the
corresponding instability region in the BH Regge plane)
and a “standard” model where no depletion occurs. This
is a standard Bayesian model selection problem (see e.g.
[127–129] for previous applications of model selection to
LISA observations of massive BH binaries).
We simulate massive BH binary catalogs correspond-

ing to the three astrophysical models described in
Sec. III B (popIII, Q3, Q3-nod) and seven values of ms
in total, one for each decade in the boson mass
range ms ∈ ½10−19; 10−13� eV.
To simulate the loss of mass and angular momentum

for each BH in the catalogs we compute the final angular
momentum Jf and mass Mf according to Eqs. (25) and
(26), with azimuthal number 1 ≤ m ≤ 4 and frequency
given by (8) with l ¼ m and n ¼ 0. Approximating ωR ≈ μ
in Eq. (8) (which is strictly valid ifMμ ≪ 1, but which is a
good approximation even for Mμ of order unity) we get

χf ¼ 4Miμðm −MiμχiÞ
m2

; ð73Þ

Mf ¼
m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 4mMiμχf þ 4M2

i μ
2χiχf

q
2μχf

: ð74Þ

We migrate BHs in the Regge plane if the age of the
Universe tðzÞ at the merger redshift is larger than the
instability time scale (tðzÞ > τinst ¼ 1=ωI) and if the spin
is higher than a threshold χmaxðM;msÞ set by Eq. (25). This
migration causes BHs in the catalog to accumulate along
the critical line χmaxðM;msÞ in the Regge plane. An
example of this accumulation can be seen in Fig. 9.
To compare two models M1 and M2 given a set of

observations (i.e., a data setD), we can use Bayes’ theorem.
The probability of model Mi given the observations is

PðMijDÞ ¼ PðDjMiÞPðMiÞ
PðDÞ ; ð75Þ

where PðMiÞ is the prior on model Mi, PðDjMiÞ is the
likelihood of the data given the model, and PðDÞ is an
overall probability of observing the data D. Given a
likelihood function for each model, we can then compute
the odds ratio between the two models:

OðM1=M2Þ ¼
PðM1jDÞ
PðM2jDÞ ¼

PðDjM1Þ
PðDjM2Þ

PðM1Þ
PðM2Þ

: ð76Þ

Avalue of the odds ratio larger than one favors modelM1,
while a value of the odds ratio lower than one favors model
M2. When PðM1Þ ¼ PðM2Þ the last factor on the right-
hand side simplifies, and the odds ratio is just the ratio of

the likelihood of the data in both models (also known as the
“Bayes factor”).
We construct a likelihood function for BHs in the Regge

plane for two models: one with no ultralight boson, and
one with an ultralight boson of mass ms. To avoid a
possible bias toward high spins in the astrophysical models
(see e.g. [76]) we choose the simplest likelihood function
in the absence of bosons: L0ðM; χÞ ¼ 1. In the presence of
bosons, we set the likelihood Lms

ðM; χÞ to unity if
χ ≤ χmaxðM;msÞ, and we set it to zero otherwise. We
add to this likelihood a Gaussian centered on the threshold
χmaxðM;msÞ with width σχ¼0.05, with a prefactor
1 − χmax in front of it. This factor represents the fraction
of BHs with spins higher than the threshold that have
migrated out of the exclusion region to accumulate on the
threshold line, under the simplifying assumption that they
migrate in the χ direction only (i.e., we neglect the
relatively small variations in the BH mass). In summary,
the likelihoodLms

ðM; χÞ in the presence of a boson of mass
ms is defined by

Lms
ðM; χÞ ¼

8>><
>>:

1; χmaxðM;msÞ ¼ 1

1þ Gðχ; 0.05Þ; χ < χmaxðM;msÞ < 1

Gðχ; 0.05Þ; χmaxðM;msÞ < χ < 1

;

ð77Þ

Gðχ; σÞ ¼ 1 − χmaxffiffiffiffiffiffi
2π

p
σ

exp

�
−
ðχ − χmaxÞ2

2σ2

�
: ð78Þ

FIG. 9. Example of a two-year simulation of massive BHs as
observed by LISA assuming the Q3-nod model in the presence of
a boson of mass ms ¼ 10−16 eV. Each blue circle corresponds to
the mass and spin of one component of an observed BH binary.
The brown line corresponds to the maximum allowed spin
χmaxðM;msÞ for the given boson mass. This curve is shaped
like a sawtooth because different m-harmonics are more impor-
tant for different BH masses. In this particular instance, LISA
measurements from the simulated data would lead to a measured
boson mass 0.88 × 10−16 eV < mm

s < 1.35 × 10−16 eV.
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The prefactor in front of the Gaussian ensures that the
two likelihoods L0ðM; χÞ and Lms

ðM; χÞ have the same
“weight,” in the sense that the integral

R
LMdMdχ is

independent of the model (so the presence or absence of an
ultralight boson have, a priori, the same probability). This
choice for the likelihood functions assures that the com-
putation of the odds ratio is agnostic about the underlying
astrophysical model.
As stated earlier, the spin threshold χmaxðM;msÞ is given

by Eq. (25). In practice this criterion is slightly complicated
by the fact that the range of affected BH masses depends on
the time available for each system to radiate, which in turn
depends on the redshift. For simplicity we compute the spin
limit using a constant instability time scale of 500 Myrs
(approximately the age of the Universe at redshift z ¼ 10),
setting ωR ¼ μ in Eq. (25). The choice of this time scale is
conservative in the sense that the exclusion region is smaller
than it would have been if we had chosen longer time scales.
Indeed, our choice reduces the likelihood discrepancy for
low redshift BHs that will have migrated to the threshold
line, but would not have had the time to do so had they
merged at higher redshifts. For illustration, Fig. 9 shows the
distribution of BH masses and spins for one realization of a
two-year catalog with ms ¼ 10−16 eV, along with the
corresponding spin threshold χmaxðM;msÞ.
We simulate LISA observations of these catalogs using a

Fisher-matrix analysis similar to the study presented in
[39], using the updated LISA noise PSD of [11]. In addition
to instrumental noise, we also include the boson mass-
dependent confusion noise coming from superradiant
BH instabilities shown in Fig. 1 of [79]. For each detectable
binary (where detectability is defined as ρ > 10)6 we
approximate the recovered distribution for each binary
BH component by a bivariate Gaussian centered on
the true values ðM̄i; χ̄iÞ, with spread given by the two-
dimensional inverse of the covariance matrix Γ ¼ Σ−1:

pobsðMi; χiÞ ¼
ffiffiffiffiffiffijΓjp
2π

exp

�
−
1

2
½ΓMiMi

ðMi − M̄iÞ2

þ Γχiχiðχi − χ̄iÞ2

þ 2ΓMiχiðMi − M̄iÞðχi − χ̄iÞ�
�
: ð79Þ

One problem is that GW observations can measure the
reshifted massMz ¼ ð1þ zÞM, rather than the BH mass in
the source frame M. Lensing effects will induce an extra
uncertainty on the distance to the source of typical size
σlensDL

ðzÞ, and through the redshift-distance relationDLðzÞ an
extra uncertainty on the redshift of size σlensz ðzÞ. We include

the effects of lensing by adjusting the observed distribution
pobsðMi; χiÞ along the mass direction. We estimate the
typical extra error on the mass due to lensing as

σlensM ðzÞ
M

¼ σlensz ðzÞ
1þ z

¼ dz
dDL

ðzÞ σ
lens
DL

ðzÞ
1þ z

: ð80Þ

where the luminosity distance error as a function of redshift
can be estimated by the approximate relation [44,130]

σlensDL
ðzÞ ¼ DLðzÞ × 0.066f4½1 − ð1þ zÞ−1=4�g9=5: ð81Þ

At this stage we can compute the likelihood of an
observed BH for each modelM by integrating the product

LðijMÞ ¼
Z

pobsðMi; χiÞLMðMi; χiÞdMidχi; ð82Þ

where the index i labels the observed BH. In the absence of
ultralight bosons we get LðijM0Þ ¼ 1, and in the presence
of bosons we use Monte Carlo methods to compute
LðijmsÞ. In practice we generate a set of random points
in the Regge plane ðMk; χkÞ distributed according to
pobsðMi; χiÞ, with an extra (spin-independent) jump in
the mass direction due to lensing, which we assume to
be Gaussian distributed with zero mean and standard
deviation σlensM ðzÞ. The integral is then approximated by

LðijmsÞ ≈
1

N

YN
k¼1

Lms
ðMk; χkÞ: ð83Þ

The integration with respect to mass and spin in Eq. (82)
tends to suppress the effect on the odds ratio of potential
observations in the exclusion region that would favor high
spins with low confidence. As one can see from Eq. (79), if
the measurement error on the spin is significant, Eq. (82)
will show a significant overlap between the two factors
inside the integral, even if the observed spin is higher than
the threshold.
Using this method we can simulate a set of LISA

observations D and compute its likelihood for modelM as

LðDjMÞ ¼
Y
i

LðijMÞ; ð84Þ

where the product is taken over all components of a binary
observed with SNR ρ > 10. Then, assuming no prior
preference, we compute the odds ratio between a model
with boson mass ms and a model without bosons:

Oðms=M0Þ ¼ LðDjmsÞ: ð85Þ

We simulated observations in the absence of ultralight
bosons and in the presence of an ultralight boson with

6Note that this threshold is slightly different from that used
elsewhere in the paper (ρ ¼ 8, though that was for boson-
condensate sources). Still, the results hardly depend on this
choice, since barely detectable events (ρ ∼ 8–10) have anyhow
very poor spin determinations.
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seven possible values of ms (one for each decade in the
boson mass rangems ∈ ½10−19; 10−13� eV). For each boson
mass and for the model without bosons, we simulated a set
of 21 realizations of the LISA mission considering the three
astrophysical models (popIII, Q3, and Q3-nod) and four
choices for the observation time (6 months, 1 year, 2 years
and 4 years), corresponding to a total of 252 simulations
per model.
In the absence of an ultralight boson, we identify as

excluded the range of masses where the odds ratio O
satifies log½Oðms=M0Þ� < −4.5. This criterion corre-
sponds to rejecting the presence of the given boson mass
at 3-σ confidence level. This requirement to exclude a
boson of a given mass corresponds to a false alarm rate of
∼10% for a four-year mission in the popIII model, and less
than 5% in the other models: the maximum odds ratio
incorrectly favoring the presence of an ultralight boson in
the 84 realizations where we assumed its absence was
logðOmaxÞ ¼ 5.2 for the popIII model, 1.1 for the Q3
model, and 2.8 for the Q3-nod model. In the popIII case, a
maximum odds ratio of 4.5 was exceeded twice. The
median range of boson masses excluded in our simulations
is summarized in Table III and Fig. 10. As expected, in our
light-seed (popIII) model the excluded boson masses are
higher than in the heavy-seed models Q3 and Q3-nod,
because the observed BH masses are generally lower in
light-seed scenarios. The Q3-nod model allows us to set
more stringent bounds than the Q3 model, because the
merger rate is higher when there are no delays between
galaxy mergers and BH mergers. Furthermore, the Q3
model failed to allow for a boson mass exclusion after
six months of observations in 12 of the 21 simulations
due to its low merger rate. For any astrophysical models
among the three we considered, four years of LISA
observations would allow us to exclude boson masses in
the range 4.1 × 10−18 eV to 8 × 10−15 eV.

It is also interesting to address the following question: in
the presence of an ultralight boson, could it be detected?And
if so, what is the accuracywith whichwe could determine its
mass? To answer the first question we identify the mass
range where log½OðmsÞ=Omax� ≥ −4.5, again correspond-
ing to a 3-σ confidence level, and then use the simulated
events to determine the accuracy with which ms can be
determined. Our results are summarized in Table IV. We do
not show results formasses where four years of observations
were not enough to claim a boson detection. In marginal
detections (logðOmaxÞ ≲ 10), only the order of magnitude of
the boson mass could be inferred.
For the light-seed popIII model, boson masses in the

range ½10−16; 10−13� eV could be confidently detected after
four years of observations with measurement errors in ms
of 5–10%. Model Q3-nod allows for the confident detec-
tion of a boson in the mass range ½10−17; 10−14� eV with
mass measurement errors of 5–15%, while the less opti-
mistic model Q3 only allows detections for bosons with
mass in the range ½10−16; 10−15� eV, with mass measure-
ment errors of ∼40%.
We remark that the biases in the recovered boson masses

are sometimes comparable to the corresponding measure-
ment accuracies: in low-mass (high-mass) seed models we
tend to overestimate (underestimate) the boson mass. It is
likely that this bias could be reducedwith better modeling of
the relevant physics—e.g. by evolvingEqs. (24) numerically
for each BH from formation until merger—or with a more
careful choice of the likelihood function, e.g. by taking the
observed redshift of the system into account in the definition
of the threshold line in Eq. (77), i.e., in the likelihood in the
presence of bosons. A more detailed analysis of systematic
and statistical errors in recovering the boson masses is an
interesting topic for future work.

TABLE III. Median minimum and maximum boson mass
excluded by LISA for different BH evolution models (popIII,
Q3, Q3-nod) and observation times Tobs.

Model Tobs [yr] Min [eV] Max [eV]

popIII 0.5 4.7 × 10−17 4.7 × 10−14

1 8.2 × 10−18 8.9 × 10−14

2 6.9 × 10−18 1.3 × 10−13

4 4.5 × 10−18 1.6 × 10−13

Q3 0.5 – –
1 9.4 × 10−18 1.9 × 10−15

2 6.9 × 10−18 7.5 × 10−15

4 4.1 × 10−18 8 × 10−15

Q3-nod 0.5 6.9 × 10−18 3.6 × 10−15

1 4.5 × 10−18 6.7 × 10−15

2 1.8 × 10−18 1 × 10−14

4 1 × 10−18 2.3 × 10−14

FIG. 10. Median minimum and maximum boson mass ex-
cluded by LISA for different observation times Tobs and BH
evolution models (red, solid line: popIII; green, dotted line: Q3;
blue, dashed line: Q3-nod). Due to the reduced merger rate in the
Q3 model, limits on the boson mass could be put in more than
half of the simulations only after one year of observations.
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VII. CONCLUSIONS AND OUTLOOK

In this work and in the companion paper [79] we assess
the detectability of light-boson condensates around BHs
with GW interferometers combining the best available
estimates for GW emission from these systems, state-of-
the-art astrophysical BH population models, and relatively
realistic GW data analysis techniques.
For both Advanced LIGO and LISA, we find that the

most stringent constraints on the boson mass ms should
come from the stochastic background produced by the
superposition of unresolved GW signals from BH-boson
condensate systems. We show that this background should
be detectable by Advanced LIGO for ms ∈ ½2 × 10−13;
10−12� eV, and by LISA for ms∈ ½5×10−19;5×10−16� eV.
We also find that existing constraints on the stochastic
background from Advanced LIGO’s O1 run may already
rule out a range of boson masses in the Advanced LIGO
window. Although the precise constrained regions depend
on the astrophysical model, the order of magnitude of the
stochastic background is robust with respect to astrophysi-
cal uncertainties, as shown in Fig. 2 of [79].
Our results indicate that ∼15–200 resolvable sources

should be detectable by Advanced LIGO for scalar field
masses ms ∼ 3 × 10−13 eV, while LISA should be able
to resolve ∼5–40 sources for ms ∼ 10−17 eV. Moreover,
LISA measurements of BH spins may either determine
ms ∈ ½10−17; 10−13� eV to within 10% accuracy, or rule out
boson masses in the range ms ∈ ½10−18; 1.6 × 10−13� eV.
We anticipate that pulsar-timing arrays [131–135],

though sensitive to the stochastic GW background in the
nHz band, may not set stringent constraints on the masses
of ultralight bosons. The reason lies in the very large
instability and gravitational radiation time scales for
bosons masses in the nHz band and in the paucity of
massive BHs with masses M ≳ 1010 M⊙ [136,137], which
would be required to produce a significant background

from BH-boson condensates. Conversely, an interferometer
like DECIGO [138] would allow one to put constraints on
boson masses ms ∼ 10−14 eV.
Some of our conclusions differ from previous work on

this topic by Arvanitaki et al. [19,20], which neglected the
stochastic background from boson condensates in the LISA
and in the LIGO band, focusing on resolved events. This
had the two-fold effect of (i) missing the strong constraints
(summarized above) from existing and projected stochastic
background limits, and (ii) missing the “self-confusion”
problem, i.e., the fact that the stochastic background itself
is a confusion noise (similar to the familiar white dwarf
confusion noise in the LISA band), impairing the detect-
ability of individual sources.
Another important difference with respect to Arvanitaki

et al. [19,20] lies in our astrophysical models. Refs. [19,20]
focused on Galactic BHs as resolvable LIGO sources. This
is probably the main reason why they overlooked the
presence of a significant stochastic background, which is
mostly produced by extragalactic BHs. Likewise, the lower
LISA event rates found by [19] (in spite of their neglecting
the aforementioned confusion noise from the background)
seem to be due to their simplified (and overly pessimistic)
models for the massive BH population. For example,
Ref. [19] considered the chaotic accretion model of
[139], where BHs with large spins are unlikely. Such
models are either disfavored or ruled out (depending
on the assumed spin distribution) by iron Kα line
data [76].
Finally, our analysis of the statistical error affecting GW

measurements of BH spins in the LISA band and our use
of Bayesian model selection techniques (while far from
realistic) are a step forward with respect to the estimates
of [20], and they lead to one of the most remarkable
conclusions of our work. As shown schematically in Fig. 1,
LISA could either rule out light bosons in the mass range
½4 × 10−18; 10−14� eV, or measure ms with ten percent

TABLE IV. Median measured boson mass mm
s ¼ κms and median maximum log likelihood L ¼ log Omax for

different BH evolution models, observation times Tobs, and “true” boson masses ms.

Tobs [yr]
0.5 1 2 4

Model ms [eV] κ L κ L κ L κ L

popIII 10−16 – 2.9 – 4.1 1.06� 0.25 13 1.07� 0.12 28
10−15 1� 0.4 7.9 1.05� 0.21 14 1.06� 0.11 39 1.08� 0.06 90
10−14 1� 0.6 5.4 1.02� 0.15 12 1.05� 0.1 31 1.06� 0.06 81
10−13 – 0.64 – 1.7 1� 0.15 8.6 1.02� 0.1 26

Q3 10−16 – 0.91 – 3.2 – 4.5 1� 0.4 9.7
10−15 – 0 – 1.9 – 3.6 1� 0.4 6.8

Q3-nod 10−17 – 2.9 1� 0.23 6.5 1.03� 0.19 13 1.02� 0.13 25
10−16 1� 0.4 17 0.99� 0.15 47 1� 0.08 98 0.97� 0.06 200
10−15 1� 0.5 11 0.94� 0.18 28 0.95� 0.1 65 0.98� 0.07 140
10−14 – 1.6 – 4.2 0.98� 0.21 14 0.98� 0.13 27

GRAVITATIONAL WAVE SEARCHES FOR ULTRALIGHT … PHYSICAL REVIEW D 96, 064050 (2017)

064050-21



accuracy if particles in the mass range ½10−17; 10−13� eV
exist in Nature.
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