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We derive a general solution for the most general rotating and twisting locally rotationally symmetric
spacetimes. This is achieved in three steps. First, we decompose the manifold via a 1þ 1þ 2 semitetrad
formalism that yields a set of geometrical and thermodynamic scalars for the spacetime. We then recast the
Einstein field equations in terms of evolution and propagation of these scalars. It is then shown that this
class of spacetimes must possess self-similarity and we use this property to solve for these scalars, thus
obtaining a general solution. This solution has a number of very interesting cosmological or astrophysical
consequences which we discuss in detail.
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I. INTRODUCTION

Locally rotationally symmetric (LRS) spacetimes are
those that possess a continuous isotropy group at each
point, which generally implies the existence of a multiply
transitive isometry group acting on the spacetime manifold
[1,2]. It is well known that isotropies around a point in any
spacetime with a fluid can be a three-dimensional or one-
dimensional subgroup of the full group of isometries; they
necessarily leave the normalized four-velocity of the matter
flow invariant. The 3D case implies isotropy at every
point, yielding the Friedmann-Lemaître-Robertson-Walker
(FLRW) models, while the 1D case corresponds to aniso-
tropic and, in general, spatially inhomogeneous models
[3–5]. These have a preferred spacelike direction ea

orthogonal to the fluid flow four-vector ua: all spatial
directions orthogonal to ea and ua are geometrically
identical.
In the case of a perfect fluid, these spacetimes are split

into three classes as described in Sec. IV, depending on
whether the vorticity componentΩ along the direction ea of
the fluid and the two-dimensional twist ξ of the vector field
ea are zero or not (they cannot both be nonzero in this case).
However, for an imperfect fluid—for example, if there is an
entropy flux—both can be nonzero. In a previous paper [6],
we obtained a set of field equations and integrability
conditions for the imperfect fluid case. We also proved
that the LRS spacetimes with nonzero rotation and spatial
twist must be self-similar. In this paper, we extend that
work by obtaining a general solution to the field equations

for this situation. This is achieved by using the property of
the self-similarity. Also, we show that we may specify an
equation of state for the isotropic pressure at an initial
Cauchy surface for particular applications.
The physical and mathematical importance of the general

solution obtained in this paper are as follows:
(1) First of all, this completes the general solution of all

possible classes of LRS spacetimes that arise from the
classification in terms of rotation and spatial twist.

(2) This solution is extremely important in astrophysical
scenarios, as most realistic stars have nonzero
rotation and nonzero entropic flux in the interior.
For example, the radiative heat flux can be promi-
nently seen for neutron stars, as the core temperature
rapidly drops from 1011–1012 K to 106 K within a
few years [7–9]. Even for main sequence stars, the
radiative heat transfer from core to the convection
zone is always present [10]. Hence, any solution to
the Einstein field equations that incorporates rota-
tion, spatial twist, and heat flux simultaneously
is definitely a better candidate for relativistic de-
scription of a rotating stellar interior.

(3) Similarly, this solution can be used to model a
galactic dynamics [11] where rotation and entropy
flux from the active galactic nucleus plays a very
important role.

(4) This solution dramatically changes the usual notion
of dynamic black hole formation scenarios by the
gravitational collapse of massive stars. As we will
see in this paper, the nature of the final spacetime
singularity crucially depends on the initial data
provided on any initial hypersurface, and the singu-
larity can be timelike, spacelike, or null. In case of
nonspacelike singularities, a Cauchy horizon devel-
ops which violates the cosmic censorship conjecture.
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(5) For the cosmological scenario, on the scales where
rotation, inhomogeneity, and cosmic background
radiation play important roles in the cosmological
dynamics, this solution is a better approximation than
the usual perturbed Friedmann-Lemaître-Robertson-
Walkermodels.Moreover, the scale invariance of this
solution creates an interesting mapping between the
geometrical scalars of the spacetime and massless
scalar fields in a Minkowski background. This map-
pingmay have far-reaching importance in a complete
theory of quantum cosmology.

The paper is organized as follows: In Secs. II and III, the
semitetrad formalism used is introduced in a general form
and the field equations are written in terms of the
geometrical scalars. In Sec. IV, a reduced set of field
equations is obtained with self-similar variables. In Secs. V
and VI, the general solution to the field equations is
obtained for the case of LRS fluids with nonzero rotation
and spatial twist. In Sec. VII, their properties are discussed
for both cosmological and astrophysical scenarios.

II. LRS SPACETIMES IN SEMITETRAD
FORMALISM

Because of the symmetries of LRS spacetimes, a
1þ 1þ 2 semitetrad covariant formalism [13–15] (which
is a natural extension of local 1þ 3 decomposition [12]) is
well suited to describing the geometry, as in this formalism
the field equations become a set of coupled differential
equations in covariantly defined scalar variables. In the
1þ 3 decomposition, with respect to a timelike congru-
ence, the spacetime can be locally decomposed into time
and space parts. Such a timelike congruence can be defined
by the matter flow lines, with the four-velocity defined as

ua ¼ dxa

dτ
; with uaua ¼ −1; ð1Þ

where τ is the proper time along the flow lines. Given the
four-velocity ua, we have unique parallel and orthogonal
projection tensors,

Ua
b ¼ −uaub and hab ¼ gab þ uaub; ð2Þ

where hab is the projection tensor that projects any 4D
vector or tensor onto the local 3-space orthogonal to ua

which has the volume element ϵabc ≔ ηabcdud.
From this, it follows that we have two well-defined

directional derivatives. The vector ua is used to define the
covariant time derivative along the flow lines (denoted by a
dot) for any tensor Sa::bc::d, given by

_Sa::bc::d ¼ ue∇eSa::bc::d: ð3Þ

The tensor hab is used to define the fully orthogonally
projected covariant derivative D for any tensor Sa::bc::d:

DeSa::bc::d ¼ hafhpc…hbghqdhre∇rSf::gp::q; ð4Þ

with total projection on all free indices. In this way, the
covariant derivative of ua can be decomposed as

∇aub ¼ −uaAb þ
1

3
Θhab þ σab þ ϵabcω

c: ð5Þ

Here, Ab ¼ _ub is the acceleration, Θ ¼ Daua represents the
expansion of ua, σab ¼ ðhcðahdbÞ − 1

3
habhcdÞDcud is the

shear tensor that denotes the rate of distortion, and ωc is
the vorticity vector denoting the rotation.
TheWeyl tensor is split relative to ua into the electric and

magnetic Weyl curvature parts as

Eab ¼ Cacbducud and Hab ¼
1

2
ϵadeCde

bcuc: ð6Þ

The energy-momentum tensor of matter can be decom-
posed similarly as

Tab ¼ μuaub þ qaub þ qbua þ phab þ πab; ð7Þ
where p ¼ ð1=3ÞhabTab is the isotropic pressure, μ ¼
Tabuaub is the energy density, qa ¼ qhai ¼ −hcaTcdud is
the three-vector that defines the heat flux, and πab ¼ πhabi
is the anisotropic stress.
Now, in the 1þ 1þ 2 decomposition, we choose a

spacelike vector field ea such that

uaea ¼ 0 and eaea ¼ 1: ð8Þ
The new projection tensor is given by

Na
b ≡ hab − eaeb ¼ gab þ uaub − eaeb: ð9Þ

This spacelike vector now naturally introduces two new
derivatives, which, for any tensor ψa…b

c…d, are

ψ̂a::b
c::d ≡ efDfψa::b

c::d; ð10Þ
δfψa::b

c::d ≡ Na
p…Nb

gNi
c::Nj

dNf
rDrψp::g

i::j: ð11Þ
The derivative (10) along the ea vector field in the surfaces
orthogonal to ua is called the hat derivative, while the
derivative (11) projected onto the sheet is called the δ
derivative. This projection is orthogonal to ua and ea on
every free index.
In the 1þ 1þ 2 splitting, the 4-acceleration, vorticity,

and shear split in this way as

_ua ¼ Aea þAa; ð12Þ

ωa ¼ Ωea þ Ωa; ð13Þ

σab ¼ Σ
�
eaeb −

1

2
Nab

�
þ 2ΣðaebÞ þ Σab: ð14Þ

For the electric and magnetic Weyl tensors, we get
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Eab ¼ E
�
eaeb −

1

2
Nab

�
þ 2EðaebÞ þ Eab; ð15Þ

Hab ¼ H
�
eaeb −

1

2
Nab

�
þ 2HðaebÞ þHab: ð16Þ

Similarly, the fluid variables qa and πab are split as follows:

qa ¼ Qea þQa; ð17Þ

πab ¼ Π
�
eaeb −

1

2
Nab

�
þ 2ΠðaebÞ þ Πab: ð18Þ

By decomposing the covariant derivative of ea in the
directions orthogonal to ua into its irreducible parts, we get

Daeb ¼ eaab þ
1

2
ϕNab þ ξϵab þ ζab: ð19Þ

Here, ϵab ¼ ϵ½ab� is the volume element on the sheet, ϕ
represents the spatial expansion of the sheet, ζab is the
spatial shear, i.e., the distortion of the sheet, aa is its spatial
acceleration (i.e., deviation from a geodesic), and ξ is its
spatial vorticity, i.e., the “twisting” or rotation of the sheet.

III. LRS SPACETIMES AND FIELD EQUATIONS

The basic property of fluid filled LRS spacetimes is that
there exists a unique, preferred spatial direction at every
point, covariantly defined, which creates a local axis of
symmetry. Hence, the 1þ 1þ 2 decomposition described
in the previous section is ideally suited for the study of
these spacetimes, as we can immediately see that, if we
choose the spacelike unit vector ea along the preferred
spatial direction, then by symmetry all of the sheet vectors
and tensors vanish identically:

Aa ¼ Ωa ¼ Σa ¼ Ea ¼ Ha ¼ Qa ¼ Πa ¼ aa ¼ 0; ð20Þ
Σab ¼ Eab ¼ Hab ¼ Πab ¼ ζab ¼ 0: ð21Þ

Thus, the remaining variables are

D1 ≔ fA;Θ;Ω;Σ; E;H; μ; p;Q;Π;ϕ; ξg ð22Þ
¼ Dmatter þDgeometry; ð23Þ

where

Dmatter ≔ fμ; p;Q;Πg ð24Þ
are the matter variables that completely specify the energy-
momentum tensor of the matter. On the other hand,

Dgeometry ≔ fA;Θ;Ω;Σ; E;H;ϕ; ξg ð25Þ

are the geometrical variables. By decomposing the Ricci
identities for ua and ea and the doubly contracted Bianchi

identities, we then get the following field equations for LRS
spacetimes: Evolution:

_ϕ ¼
�
2

3
Θ − Σ

��
A −

1

2
ϕ

�
þ 2ξΩþQ; ð26Þ

_ξ ¼
�
1

2
Σ −

1

3
Θ
�
ξþ

�
A −

1

2
ϕ

�
Ωþ 1

2
H; ð27Þ

_Ω ¼ Aξþ Ω
�
Σ −

2

3
Θ
�
; ð28Þ

_H ¼ −3ξE þ
�
3

2
Σ − Θ

�
Hþ ΩQþ 3

2
ξΠ; ð29Þ

Propagation:

ϕ̂ ¼ −
1

2
ϕ2 þ

�
1

3
Θþ Σ

��
2

3
Θ − Σ

�

þ 2ξ2 −
2

3
ðμþ ΛÞ − E −

1

2
Π; ð30Þ

ξ̂ ¼ −ϕξþ
�
1

3
Θþ Σ

�
Ω; ð31Þ

Σ̂ −
2

3
Θ̂ ¼ −

3

2
ϕΣ − 2ξΩ −Q; ð32Þ

Ω̂ ¼ ðA − ϕÞΩ; ð33Þ

Ê −
1

3
μ̂þ 1

2
Π̂ ¼ −

3

2
ϕ

�
E þ 1

2
Π
�
þ 3ΩH

þ
�
1

2
Σ −

1

3
Θ
�
Q; ð34Þ

Ĥ ¼ −
�
3E þ μþ p −

1

2
Π
�
Ω

−
3

2
ϕH −Qξ; ð35Þ

Propagation/evolution:

Â − _Θ ¼ −ðAþ ϕÞAþ 1

3
Θ2 þ 3

2
Σ2

− 2Ω2 þ 1

2
ðμþ 3p − 2ΛÞ; ð36Þ

_μþ Q̂ ¼ −Θðμþ pÞ − ðϕþ 2AÞQ −
3

2
ΣΠ; ð37Þ

_Qþ p̂þ Π̂ ¼ −
�
3

2
ϕþA

�
Π −

�
4

3
Θþ Σ

�
Q

− ðμþ pÞA; ð38Þ
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_Σ −
2

3
Â ¼ 1

3
ð2A − ϕÞA −

�
2

3
Θþ 1

2
Σ
�
Σ

−
2

3
Ω2 − E þ 1

2
Π; ð39Þ

_E þ 1

2
_Πþ 1

3
Q̂ ¼ þ

�
3

2
Σ − Θ

�
E −

1

2
ðμþ pÞΣ

−
1

2

�
1

3
Θþ 1

2
Σ
�
Πþ 3ξH

þ 1

3

�
1

2
ϕ − 2A

�
Q; ð40Þ

Constraint:

H ¼ 3ξΣ − ð2A − ϕÞΩ: ð41Þ

IV. MOST GENERAL CLASS OF
LRS SPACETIMES

As described in [3], if we consider a perfect fluid form of
matter with Q ¼ Π ¼ 0, then the propagation equations
evolve consistently in time if and only if

Ωξ ¼ 0: ð42Þ

The above relation then naturally divides perfect fluid LRS
spacetimes in three distinct subclasses [2,3]:
(1) LRS class I (Ω ≠ 0; ξ ¼ 0). These are stationary

inhomogeneous rotating solutions.
(2) LRS class II (ξ ¼ 0 ¼ Ω). These are inhomogeneous

orthogonal family of solutions that can be either
static or dynamic. Spherically symmetric solutions
are a subclass of this class.

(3) LRS class III (ξ ≠ 0;Ω ¼ 0). These are homo-
geneous orthogonal models with a spatial twist.

In a recent paper [6], we established the existence of and
found the necessary and sufficient conditions for the
general class of solutions of locally rotationally symmetric
spacetimes that have nonvanishing rotation and spatial twist
simultaneously: that is, for this class of spacetimes, we have
by definition

Ωξ ≠ 0: ð43Þ

By the above, these solutions must be imperfect fluid
models. We also provided a brief algorithm indicating how
to solve the system of field equations with the given
Cauchy data on an initial spacelike Cauchy surface. The
important features of this class of spacetimes are as follows:
(1) The necessary condition for a LRS spacetime to

have nonzero rotation and spatial twist simultane-
ously is the presence of nonzero heat flux Q, which
is bounded from both sides.

(2) In these spacetimes, all scalars Ψ obey the following
consistency relation:

∀Ψ; _ΨΩ ¼ Ψ̂ξ: ð44Þ

This equation can be easily derived by noting
that, for any scalar Ψ in a general LRS spacetime,
we have ∇aΨ ¼ − _Ψua þ Ψ̂ea and ϵab∇a∇bΨ ¼ 0.
Also, Eq. (44), which is required by (43), implies
self-similarity, for it applies to all scalars, and
it is unchanged under the transformation τ → aτ,
ρ → aρ, where τ and ρ are the curve parameters of
the integral curves of u and e, respectively.

(3) The above symmetries generate further constraints,
and hence the total set of constraint equations are
now C≡ fC1; C2; C3; C4g, where

C1 ≔ H ¼ 3ξΣ −
�
2Aþ Ω

ξ

�
Σ −

2

3
Θ
��

Ω; ð45Þ

C2 ≔ ϕ ¼ −
Ω
ξ

�
Σ −

2

3
Θ
�
; ð46Þ

C3 ≔ Q ¼ −
Ω
ξ

1þ ðΩξÞ2
ðμþ pþ ΠÞ; ð47Þ

C4 ≔ E ¼ Ω
ξ
A
�
Σ −

2

3
Θ
�
− Σ2 þ 1

3
ΘΣþ 2

9
Θ2

þ 2ðξ2 −Ω2Þ þ ðΩξÞ2
1þ ðΩξÞ2

ðμþ pþ ΠÞ

−
1

2
Π −

2

3
μ: ð48Þ

It is important to verify that all of these new constraints
evolve consistently in time. This is indeed the case, as these
constraints are derived by taking all of the scalars Ψ ∈ D1

and using Eq. (44) (which is true for all epochs) together
with the field equations. Therefore, the time derivatives of
these new constraints will identically vanish using (44) and
the field equations as we feed the solutions back to the same
system. Therefore, solving for the set of variables

D2 ≔ fA;Θ; ξ;Σ;Ω; μg ð49Þ
will automatically specify the rest,

D3 ≔ fQ;ϕ; E;H; pg; ð50Þ
where we assume an equation of state for p of the form

p ¼ pðμ;Π; QÞ: ð51Þ
We note that the anisotropic pressure Π is not restricted by
the constraints: there is no algebraic equation linking it to
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other thermodynamic variables. Hence, this quantity should
be specified at any initial Cauchy surface separately
(subject to the energy conditions), and it would then evolve
in time via the field equations.

V. THE REDUCED SET OF FIELD EQUATIONS
FOR SELF-SIMILAR VARIABLES

We will now use the property of self-similarity for the
most general class of LRS spacetimes to further reduce the
set of independent field equations. Let us consider the set of
variables

D4 ≔ fA;Θ; ξ;Σ;Ωg ⊂ D2: ð52Þ
Then, from the kinematical equations for LRS spacetimes,

∇aub ¼ −uaebAþ eaeb

�
1

3
Θþ Σ

�
þ Ωεab

þ Nab

�
1

3
Θ −

1

2
Σ
�
; ð53Þ

Daeb ¼
1

2
ϕNab þ ξϵab; ð54Þ

it is clear that, for any element f ∈ D4, we must have

fðτ; ρÞ ¼ afðaτ; aρÞ; ð55Þ
as ua, ea, Nab, and ϵab are dimensionless. Hence, without
any loss of generality, all of these quantities can be
written as

f ≡ f0ðzÞ
ρ

; ð56Þ

where

z ¼ τ

ρ
; ð57Þ

and f0 is dimensionless. Also, from the Einstein field
equations Gab ¼ Tab, we can easily see, as before, that all
elements g ∈ D5, where

D5 ≔ fμ;Πg ¼ D2 −D4; ð58Þ
must satisfy

gðτ; ρÞ ¼ a2gðaτ; aρÞ: ð59Þ
Therefore, these quantities can be generally written as

g≡ g0ðzÞ
ρ2

: ð60Þ

Now the dot and hat derivatives of all these elements can be
written in terms of the dimensionless variable z in the
following way: for f ∈ D4,

_f ¼ f0;z
ρ2

; ð61Þ

f̂ ¼ −
ðf0 þ zf0;zÞ

ρ2
; ð62Þ

and for g ∈ D5,

_g ¼ g0;z
ρ3

; ð63Þ

ĝ ¼ −
ð2g0 þ zg0;zÞ

ρ3
: ð64Þ

Using the above results, the nontrivial field equations
become the following ordinary differential equations:

ϕ0;z ¼
�
2

3
Θ0 − Σ0

��
A0 −

1

2
ϕ0

�
þ 2ξ0Ω0 þQ0; ð65Þ

ξ0;z ¼
�
1

2
Σ0 −

1

3
Θ0

�
ξ0 þ

�
A0 −

1

2
ϕ0

�
Ω0 þ

1

2
H0; ð66Þ

Ω0;z ¼ A0ξ0 þ Ω0

�
Σ0 −

2

3
Θ0

�
; ð67Þ

H0;z ¼ −3ξ0E0 þ
�
3

2
Σ0 − Θ0

�
H0 þ Ω0Q0 þ

3

2
ξ0Π0;

ð68Þ

Σ0;z −
2

3
Θ0;z ¼ −ϕ0A0 þ

2

9
Θ0

2 þ 1

2
Σ0

2 − 2Ω0
2

þ 1

3
μ0 þ p0 −

2

3
Θ0Σ0 − E0 þ

1

2
Π0; ð69Þ

E0;z þ −
1

3
μ0;z þ

1

2
Π0;z ¼ þ

�
3

2
Σ0 − Θ0

�
E0 þ 3ξ0H0

−
1

3
ðμ0 þ p0Þ þ

1

2
Q0ϕ0

−
�
1

6
Θ0 −

1

4
Σ0

�
Π0

−
1

2
½μ0 þ p0�Σ0: ð70Þ

It can be shown that the rest of the field equations become
redundant when the following set of dimensionless
constraints ~C≡ f ~C1; ~C2; ~C3; ~C4g hold, which are easily
derived by using Eqs. (56) and (60) on the set of original
constraints C:

~C1∶ H0 ¼ 3ξ0Σ0 −
�
2A0 þ

Ω0

ξ0

�
Σ0 −

2

3
Θ0

��
Ω0; ð71Þ

~C2∶ ϕ0 ¼ −
Ω0

ξ0

�
Σ0 −

2

3
Θ0

�
; ð72Þ

~C3∶ Q0 ¼ −
Ω0

ξ0

1þ ðΩ0

ξ0
Þ2 ðμ0 þ p0 þ Π0Þ; ð73Þ
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~C4∶ E0 ¼
Ω0

ξ0
A0

�
Σ0−

2

3
Θ0

�
−Σ0

2þ 1

3
Θ0Σ0

þ 2

9
Θ0

2þ 2ðΣ0
2 −Ω0

2Þ

þ
ðΩ0

ξ0
Þ2

1þðΩ0

ξ0
Þ2 ðμ0þp0þΠ0Þ−

1

2
Π0−

2

3
μ0: ð74Þ

VI. GENERAL SOLUTION TO THE
FIELD EQUATIONS

To find the general solution of the reduced set of the field
equations, we note that these equations, along with (44),
generate the constraint set ~C≡ f ~C1; ~C2; ~C3; ~C4g. Hence, the
field equations are encoded in (44) and the set of con-
straints, and it suffices to solve (44) along with the
constraint to obtain a complete solution to the spacetime.
Hence, we use Eqs. (61), (62), (63), and (64) in (44) and
obtain

f0;z
f0

¼ −ξ0
Ω0 þ zξ0

; ð75Þ

g0;z
g0

¼ −2ξ0
Ω0 þ zξ0

: ð76Þ

Now, letting f0 ¼ Ω0, we get

Ω0;z

Ω0

¼ −ξ0
Ω0 þ zξ0

; ð77Þ

and letting f0 ¼ ξ0, we get

ξ0;z
ξ0

¼ −ξ0
Ω0 þ zξ0

: ð78Þ

The above two equations are coupled first order ordinary
differential equations for Ω0 and ξ0, and the general
solution is given by

ξ0ðzÞ ¼ −
1

Azþ B
; ð79Þ

Ω0ðzÞ ¼ −
B

AðAzþ BÞ ; ð80Þ

where A and B are constants of integration. Now, using
these solutions in (75) and (76), we get the following
decoupled equations:

f0;z
f0

¼ −
A

Azþ B
; ð81Þ

g0;z
g0

¼ −
2A

Azþ B
: ð82Þ

The general solutions for the Eqs. (81) and (82) are
given by

f0 ¼
Cf

Azþ B
; ð83Þ

g0 ¼
Cg

ðAzþ BÞ2 : ð84Þ

Here, Cf and Cg are integration constants related to each of
the kinematic and dynamic variables, f0 and g0. Thus, the
set C of arbitrary integration constants that we must specify
to obtain the general solution for the most general LRS
spacetime is given by

C≡ ðA;B;CA; CΘ; CΣ; Cμ; CΠÞ; ð85Þ

where we must have A ≠ 0 and B ≠ 0 for Eq. (43) to be
true. The rest of the variables can then be easily obtained by
using the constraint equations.
For example, using the constraint ~C1 [Eq. (71)], we get

the magnetic part of the Weyl scalar as follows:

H ¼ CH

ðAzþ BÞ2 ; ð86Þ

where we have

CH ¼ −3CΣ þ
�
2CA þ B

A

�
CΣ −

2

3
CΘ

��
B
A
: ð87Þ

Again, using the constraint ~C2 [Eq. (72)], we get

ϕ0 ¼
Cϕ

Azþ B
; Cϕ ¼ −

B
A

�
CΣ −

2

3
CΘ

�
: ð88Þ

The variables Q0 and E0 can similarly be obtained using
Eqs. (73) and (74) subject to the dimensionless algebraic
equation of state p0 ¼ p0ðμ0; Q0;Π0Þ, which must be
provided separately along with the field equations. Once
an equation of state in the form of (51) is given, it is, in
principle, possible to obtain such a dimensionless equation
of state, as all of the elements of Dmatter have the same
symmetries as (59), and hence the dimensionless part can
be extracted from all of them.
Thus, we obtain the solution for all of the scalar variables

of the set D1, which completes the general solution. One
can, in principle, obtain the metric elements from the
definition of these covariant scalars. However, it is impor-
tant to note that all physical properties of the LRS
spacetime can be obtained directly from these covariant
scalars, as all of them have well-defined geometrical and
physical meaning. In the next section, we will discuss some
of the physical properties of these solutions in both
astrophysical and cosmological scenarios.
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VII. COSMOLOGICAL AND ASTROPHYSICAL
PROPERTIES OF THIS GENERAL SOLUTION

This class of solutions has some very interesting proper-
ties for both cosmological and stellar collapse scenarios,
which we list below. We can immediately see that there is a
spacetime singularity along the curve Bρþ Aτ ¼ 0 which
is similar to the cosmological singularity of the FLRW or
Lemaître-Tolman-Bondi universes (or the corresponding
black hole singularities if we take the collapsing branch of
the solutions). Apart from this, there are no other singular
points on the manifold.
(1) The most interesting feature of the singularity in this

class of spacetime is it can be made timelike,
spacelike, or null by choice of the ratio of the
constants A and B. In other words, the ratio of
rotation (Ω) and spatial twist (ξ) at any initial
Cauchy surface completely determines the nature
of the initial (or final) singularity, and this gives a
range of different possibilities.

(ii) For the cosmological scenario, let us consider both A
and B to be greater than zero, In that case, the initial
singularity is along the line Bρþ Aτ ¼ 0. This “big
bang” is no longer instantaneous, and it can be
spacelike, timelike, or null. Thus, the section of the
manifold that depicts the universe is given by

ρ > 0; τ > −ðB=AÞρ: ð89Þ

For an expanding universe with positive energy
density, we must have Θ > 0 and μ > 0, and hence
we must choose the constants:

CΘ > 0; Cμ > 0: ð90Þ

For the cosmological case, we can choose dustlike
matter with

p0 ¼ 0; ð91Þ

CΠ ¼ 0 ⇒ Π0 ¼ 0: ð92Þ

Now we can immediately see that, in this case,
_Θ < 0; _μ < 0. There is no bounce in this cosmology,
as the expansion goes to zero asymptotically. Fur-
thermore, it is interesting to note that, at spacelike
infinity, i0 (where ρ → ∞), timelike infinity iþ
(where τ → ∞), and future null infinity Iþ, all of
the kinematical and dynamical quantities vanish,
making the spacetime asymptotically Minkowski.
Hence, we get a cosmology that is future asymptoti-
cally simple. Fig. 1.

(3) Another interesting case happens when the curves
Bρþ Aτ ¼ const. are null. In this case, the initial
singularity is incoming null. Then, for any observer
on the worldline ρ ¼ 0 (τ > 0), observation along the
past null cone will depict a universe with homo-
geneous density, which contrasts with the fact that, on
a given time slice, the density is inhomogeneous.

(4) A similar picture can be obtained for collapsing
stellar configurations with A < 0 and B > 0. In that
case, the section of the manifold ρ > 0 and τ <
ðB=jAjÞρ depicts a regular collapsing region which is
past asymptotically simple. To get a collapsing
branch of the solution with positive matter density,
we must have Θ < 0 and μ > 0. Hence, we choose

CΘ < 0; Cμ > 0: ð93Þ
Also, here we should specify the equation of state
linking the isotropic pressure to other thermody-
namic variables and, separately, specify the constant

FIG. 1. Penrose diagram of expanding cosmologies which are
future asymptotically simple.

FIG. 2. Penrose diagram of a collapsing stellar structure where
the future singularity is nonspacelike. This leads to the develop-
ment of a Cauchy horizon (CH) in the spacetime.
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CΠ at the initial Cauchy surface subject to the energy
conditions. We can easily check to see that, in this
case, _Θ < 0; _μ > 0. Hence, the collapse continues
till Θ → −∞ and μ → ∞. This is a final singularity
at τ ¼ ðB=jAjÞρ, and we can easily see that this
singularity can be timelike, spacelike, or null, which
will have important consequences in terms of the
cosmic censorship conjecture. Fig. 2.
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