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We consider the effect of scalarization on static and slowly rotating neutron stars for a wide variety of
realistic equations of state, including pure nuclear matter, nuclear matter with hyperons, hybrid nuclear and
quark matter, and pure quark matter. We analyze the onset of scalarization, presenting a universal relation
for the critical coupling parameter versus compactness. We find that the onset and the magnitude of the
scalarization are strongly correlated with the value of the gravitational potential (the metric component gtt)
at the center of the star. We also consider the moment-of-inertia–compactness relations and confirm
universality for the nuclear matter, hyperon and hybrid equations of state.
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I. Introduction

Due to their compactness and high density, neutron stars
represent ideal laboratories to test alternative theories of
gravity [1–3]. At the same time, neutron stars are important
probes to better understand the properties of matter under
extreme conditions. Currently, a large number of equations
of state describing high density matter still seem to be
observationally viable (see, e.g., [4,5]).
Much recent progress in determining the properties of

neutron stars, such as their masses and radii, has been
achieved by exploiting a variety of observational tech-
niques, including, in particular, radio observations of
pulsars and X-ray observations of neutron stars in low-
mass X-ray binaries. Neutron stars represent also a major
focus of the gravitational wave detector Advanced LIGO,
where the detection of neutron star–neutron star and
neutron star–black hole mergers is expected (see, e.g., [6]).
Certainly, most studies of neutron stars have been based

on general relativity (GR). However, it is essential to
study the properties of neutron stars also in currently viable
alternative theories of gravity [3], where scalar-tensor theory
(STT) represents a most prominent example [7–9]. In
particular, STT represents a natural generalization of GR,
where one or more scalar fields are included as additional
mediators of the gravitational force.
In the context of neutron stars in STT, an interesting

phenomenon called spontaneous scalarization (in analogy
to spontaneous magnetization) has been found by Damour
and Esposito-Farèse [10,11]. Here besides the GR solutions
with a vanishing scalar field, new configurations with a
nontrivial scalar field can arise because the scalar field
nonlinearities can intensify the attractive nature of the
scalar field interactions, when there are suitable conditions
within the star.
The phenomenon of spontaneous scalarization can lead

to significant deviations of the basic neutron star properties
from GR as demonstrated for static and slowly rotating
neutron stars in [10–18]. Doneva and collaborators have

extended these investigations to rapidly rotating neutron
stars in STT [19–22], observing that the effect of scalari-
zation is further enhanced. Scalarized neutron stars with a
massive scalar field have also been considered [23–25],
in which case the constraints on the theory are weaker,
allowing, in principle, for strongly scalarized configura-
tions with larger deviations from GR [26,27].
Here we investigate the effect of scalarization on static

and slowly rotating neutron stars for a large number of
realistic equations of state (EOSs). Besides a polytropic
EOS, we consider two pure nuclear matter EOSs, five EOSs
describing nuclear matter with hyperons, four EOSs
describing hybrid matter, i.e., nuclear matter together with
quark matter, and two EOSs for pure quark matter. In
particular, the hyperon and hybrid cases have not been
considered before. We demonstrate that for these 14 rather
different EOSs the onset of scalarization is ruled by a single
parameter of the coupling function of the scalar field. We
then identify a strong correlation of the magnitude of the
scalarization with the metric at the center of the neutron
star, independent of the EOS. Therefore, this correlation
represents an interesting model-independent result.
The search for universal relations, i.e., relations between

various physical properties of the neutron stars, which
depend only a little on the employed EOS (within certain
classes of models), has been much in the focus in recent
years (see, e.g., the reviews [28,29]). A basic ingredient in
these relations is the compactness C of a star, which also
features prominently in the phenomenon of scalarization.
When considering the moment of inertia I, the tidal Love
number λ, and the quadrupole momentQ as functions of the
compactness, one is led to the universal I-Love-Q relations
between these quantities.
Such universal relations appear to be very valuable, for

instance, in order to distinguish neutron stars from quark
stars, or to test general relativity and alternative theories
of gravity, independent of the EOS. In STT the universal
I −Q relations [21] have been studied for rapidly rotating
neutron stars. Likewise, the I − C relations [30,31] have
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already been considered in STT [22], but only for nuclear
and quark matter. Here we extend this study for our whole
set of EOSs, including the hyperon and hybrid EOS classes.
The paper is organized as follows: In Sec. II we set up the

mathematical and physical framework. We recall the STT
action, transform from the Jordan frame to the Einstein
frame, define the scalar coupling functions, and present the
basic equations for slowly rotating neutron stars in STT.
Subsequently, we describe the set of realistic EOSs
employed and briefly address the numerical method. In
Sec. III we present our results, including the scalarized
neutron star models, the analysis of the onset and magni-
tude of the spontaneous scalarization, and the universal
I − C relations. We then summarize our results in Sec. IV.
Some technical details related to the analysis of the onset of
the scalarization are given in the Appendix.

II. THE MODEL

A. Scalar-tensor theory

In four dimensions, the generic action for STT (with a
single scalar field) is given in the Jordan frame by [8,9,11]

S ¼ 1

16πG�

Z
d4x

ffiffiffiffiffiffi
−~g

p
½FðΦÞ ~R − ZðΦÞ~gμν∂μΦ∂νΦ

− 2UðΦÞ� þ Sm½Ψm; ~gμν�; ð1Þ

where G� is the gravitational constant, ~R is the Ricci scalar
with respect the metric ~gμν, and Φ is the scalar field. The
term Sm denotes the contribution of additional matter fields
to the action, which are parametrized into Ψm. Here we
restrict to the case where the scalar field does not couple
directly to these additional matter fields, implying that the
weak equivalence principle is satisfied. The gravitational
part of the action includes the functions FðΦÞ and ZðΦÞ,
and the potential function UðΦÞ. These functions are
subject to physical restrictions, as was shown in [32].
For the study of neutron stars in this theory it is

convenient to change to the Einstein frame. This frame
is related to the Jordan frame by a conformal transformation
of the metric gμν ¼ FðΦÞ~gμν, and a transformation of the
scalar field [8,9,11]. After this transformation the action
becomes

S ¼ 1

16πG�

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2gμν∂μφ∂νφ − 4VðφÞ�

þ Sm½Ψm;A2ðφÞgμν�; ð2Þ

where R is the Ricci scalar with respect to the metric gμν
and φ is the scalar field, both being defined in the Einstein
frame. In addition, we have the following relations between
the Jordan frame functions FðΦÞ and UðΦÞ and the
Einstein frame functions AðφÞ and VðφÞ:

AðφÞ ¼ F−1=2ðΦÞ; 2VðφÞ ¼ UðΦÞF−2ðΦÞ: ð3Þ

Here we restrict to the case with vanishing scalar
potential UðΦÞ ¼ 0 ¼ VðφÞ. In the following we will
use c ¼ G� ¼ 1 units unless otherwise stated.
Variation of the action (2) with respect to the fields in the

Einstein frame leads to the coupled set of field equations.
The Einstein equations read

Rμν −
1

2
gμνR ¼ 2∂μφ∂νφ − gμνgαβ∂αφ∂βφþ 8πTμν; ð4Þ

where Rμν is the Ricci tensor and Tμν is the stress-energy
tensor of the matter content of the action (2). The scalar
field equation is given by

∇μ∇μφ ¼ −4πkðφÞT; ð5Þ

where T ¼ Tμ
μ and kðφÞ ¼ d lnðAðφÞÞ

dφ is the logarithmic
derivative of the coupling function AðφÞ, which determines
the strength of the coupling between the scalar field and
the matter.
We model the neutron star as a perfect fluid in (slow)

uniform rotation. Hence, in the physical Jordan frame the
stress energy–momentum tensor ~Tμν is given by

~Tμν ¼ ð~εþ ~pÞ ~uμ ~uν þ ~p~gμν; ð6Þ

where ~ε, ~p, and ~u denote the energy density, the pressure,
and the four-velocity in the Jordan frame, respectively. In
the Jordan frame we also assume a barotropic equation of
state, i.e., ~ε ¼ ~εð ~pÞ. The nuclear matter quantities ~ε, ~p, and
~u in the Jordan frame are related to those in the Einstein
frame via the conformal factor FðΦÞ and can be found
in [8,9,11].
The coupling function AðφÞ is subject to constraints from

observations, leaving however a large amount of freedom
for its functional choice. In the simple case kðφÞ ¼ κ, with
κ some arbitrary constant, a parametrization of the Brans-
Dicke theory is obtained [7] where A ¼ eκφ. Here we
consider a set of two coupling functions, A1ðφÞ and A2ðφÞ.
The coupling function A1ðφÞ has been investigated widely
before (see, e.g., [8,11,19,22])

A1ðφÞ ¼ e
1
2
βφ2

; k1ðφÞ ¼ βφ: ð7Þ

The coupling function A2ðφÞ has not yet been considered,
and corresponds to

A2ðφÞ ¼
1

coshð ffiffiffiffiffiffi
−β

p
φÞ ;

k2ðφÞ ¼ −
ffiffiffiffiffiffi
−β

p
tanh

� ffiffiffiffiffiffi
−β

p
φ
�
: ð8Þ
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Both coupling functions have been parametrized such that
they possess the same quadratic expansion coefficient.
They differ only in higher order, where the fall-off of
A2ðφÞ is slower. This is in contrast to the coupling function
A3ðφÞ ¼ cos ð ffiffiffiffiffiffi

−β
p

φÞ employed in [10], which exhibits a
faster fall-off. Note that all of these three couplings are
invariant under the transformation φ → −φ.
The strongest observational constraint on the possible

values of the constant β that should be taken into account
comes from the binary pulsar PSR J1738+0333 [33], which
requires

d2 lnðAðφÞÞ
dφ2

����
φ¼0

¼ β ≥ −4.5: ð9Þ

B. Slowly rotating neutron stars
in scalar-tensor theory

In order to describe slowly rotating neutron stars, we
choose the following form of the metric in the Einstein
frame

ds2 ¼ −efðrÞdt2 þ 1

nðrÞ dr
2 þ r2dθ2

þ r2sin2θðdϕþ ξωðrÞdtÞ2; ð10Þ

where the metric functions fðrÞ, nðrÞ, and ωðrÞ depend
only on the radial coordinate r. We introduce ξ as a
perturbation theory parameter that allows us to keep track
of the slow rotation approximation, i.e., all expressions are
to be considered up to Oðξ2Þ.
The inertial dragging ωðrÞ vanishes in the static case.

In the slow rotation approximation the scalar field is not
affected by the rotation since φ ¼ φðrÞ þOðξ2Þ, and hence
it is only a function of the radial coordinate. The same
applies to the energy density ~ε ¼ ~εðrÞ þOðξ2Þ and the
pressure ~p ¼ ~pðrÞ þOðξ2Þ. The four-velocity of the fluid
in the slow rotation approximation is ~u ¼ utð∂t þ ξΩ∂ϕÞ,
where Ω is the angular velocity of the fluid.
With the metric ansatz Eq. (10) and the above defini-

tions, the Einstein field equations in the slow rotation
approximation reduce to a system of ordinary differential
equations (ODEs) that has been presented before in the
literature [10–12,14,15].
Regularity of the configurations at the center of the star

(r ¼ 0) imposes a particular expansion in terms of the
radial coordinate r, which can be found in [16].
The surface of the star is defined as the surface of

constant radius r ¼ R, where the pressure vanishes,
~pjR ¼ 0. The exterior of the star is then given by r > R.
Here the energy density and the pressure vanish:
~pjr>R ¼ ~εjr>R ¼ 0. However, the scalar field does not
vanish outside the star when the star is scalarized. Note

that the physical radius of the star is defined in the Jordan
frame, i.e., Rs ¼ RAðφðRÞÞ.
Since we require the solutions to be asymptotically flat,

the functions exhibit the following behavior close to
infinity [10,12,14–17]:

mðrÞ ¼ M −
1

2

ω2
A

r
−
1

2

ω2
AM
r2

þO

�
1

r3

�
; ð11Þ

fðrÞ ¼ −
2M
r

−
2M2

r2
−
1

3

MðM2 − ω2
AÞ

r3
þO

�
1

r4

�
; ð12Þ

φðrÞ ¼ ωA

r
þMωA

r2
þ 1

6

ωAð8M2 − ω2
AÞ

r3
þO

�
1

r3

�
; ð13Þ

ωðrÞ ¼ 2J
r3

þO

�
1

r5

�
; ð14Þ

where we have defined the functionmðrÞ ¼ ð1 − nðrÞÞr=2.
Note that here we restrict to the case φj∞ ¼ 0.
From the asymptotic behavior of the functions we can

extract a number of physical properties of the stars. For
instance, provided that φj∞ ¼ 0, the physical mass of the
star is simply given by M, and the angular momentum of
the star is given by J. The moment of inertia I is then
calculated as the ratio of the angular momentum and the
angular velocity of the fluid,

I ¼ J=Ω: ð15Þ

In addition, if the scalar field is nontrivial, the neutron star
possesses scalar hair, characterized by the scalar charge ωA.
Although the expansion at the origin and the asymptotic

expansion depend on a number of undetermined parame-
ters, a full solution of the set of coupled equations depends
on fewer parameters. Indeed, once the equation of state
is provided (~ε ¼ ~εð ~pÞ) and the coupling function AðφÞ is
fixed, a solution depends only on two parameters, the mass
M and the angular momentum J. (In first-order perturbation
theory the angular momentum J is proportional to the
angular velocity Ω.) The scalar charge ωA, if present, is
only a function of the mass, and hence can be considered to
represent only secondary scalar hair.

C. Equations of State

As commented on above, in order to integrate the system
of equations we have to provide an equation of state in the
form ~ε ¼ ~εð ~pÞ. Here we consider a large number of realistic
EOSs, obtained from effective models of the nuclear
interactions subject to different assumptions.
In order to compare the effects of exotic matter in the

properties of the configurations, we have studied two EOSs
containing only nuclear matter: SLy [34] and APR4 [35].
For EOSs containing nucleons and hyperons we have
considered the following five cases: BHZBM [36],
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GNH3 [37], H4 [38], and WCS1, WSC2 [39]. For
pure quark matter we use two EOSs: WSPHS1 and
WSPHS2 [40]. For hybrid matter consisting of quarks
and nucleons we consider these four EOSs: ALF2, ALF4
[41], BS4 [42], and WSPHS3 [40].
In addition, for completeness, we also include the results

for a polytropic EOS,

~ε ¼ K
~ρΓ

Γ − 1
þ ~ρ; ~p ¼ K ~ρΓ; Γ ¼ 1þ 1

N
; ð16Þ

where ~ρ is the baryonic mass density, and we have chosen
for the polytropic constant K ¼ 1186.0 and for the adia-
batic index Γ the polytropic index N ¼ 0.7463.
All the EOSs considered possess a maximum mass close

to or larger than 2 M⊙, which is the current maximummass

observed in neutron star candidates (PSR J1614 − 2230
[43] and PSR J0348þ 0432 [44]).

D. Numerical Method

The configurations of slowly rotating neutron stars are
generated numerically by solving the stellar structure
equations with appropriate boundary conditions which
ensure regularity at the center and asymptotic flatness.
For the numerical integration of this coupled set of

ODEs, we use the ODE solver package COLSYS [45]. This
code allows to numerically solve boundary value problems
for systems of nonlinear coupled ODEs, and is equipped
with an adaptive mesh selection procedure.
The solution is required to be regular at the center of the

star, and to approach at infinity the Minkowski metric, with
the scalar field vanishing there [10–12,14,15].
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FIG. 1. Total mass M (in solar masses M⊙) versus the physical radius Rs (in km) of the neutron star models for all EOSs considered:
The first two rows show the five hyperon EOSs (H4, BHZBM, GNH3, WCS1, WCS2) and the polytropic EOS, the last two rows contain
the two nuclear EOSs (SLy, APR4), the two quark EOSs (WSPHS1, WSPHS2), and the four hybrid EOSs (WSPHS3, ALF2, ALF4,
BS4). The solid black lines represent the GR configurations. The dashed red and orange lines represent the scalarized solutions for
A1 ¼ e

1
2
βφ2

with β1 ¼ −4.8 and β2 ¼ −4.5, respectively. The solid blue and purple lines represent the scalarized solutions for A2 ¼
1= coshð ffiffiffiffiffiffi

−β
p

φÞ with the same values of β1 ¼ −4.8 and β2 ¼ −4.5.
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For the numerical integration, it is useful to compactify
space by a transformation of the radial coordinate

yðrÞ ¼ r
rþ R

; ð17Þ

where r ¼ R determines the surface of the star, i.e., the
surface of the star resides at y ¼ 1=2. We integrate the
resulting set of equations in the region y ∈ ½0; 1�. In order
to compute the coordinate radius R, we introduce an
auxiliary differential equation,

dR
dy

¼ 0: ð18Þ

The system of ODEs is then complemented with a further
boundary condition at the surface of the star,

~pj1
2
¼ 0: ð19Þ

The EOSs are implemented using different methods. The
case of the relativistic polytrope is the simplest one, since
the relation ~ε ¼ ~εð ~pÞ is known analytically.
The EOSs corresponding to WCS1, WCS2,

WSPHS1, WSPHS2, WSPHS3, BS4 and BHZBM are
available in table form. Hence for these cases we use a
piecewise monotonic cubic Hermite interpolation of the
data points.
For the equations SLy, APR4, GNH3, H4 and ALF2,

ALF4 we implement in the code the piecewise polytropic
interpolation presented in [46]. In this interpolation differ-
ent regions of the EOS are approximated as specific
polytropes.
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FIG. 2. Scalar field charge ωA versus the total mass M (in solar masses M⊙) of the neutron star models for all EOSs considered: The
first two rows show the five hyperon EOSs (H4, BHZBM, GNH3, WCS1, WCS2) and the polytropic EOS, the last two rows contain the
two nuclear EOSs (SLy, APR4), the two quark EOSs (WSPHS1, WSPHS2), and the four hybrid EOSs (WSPHS3, ALF2, ALF4, BS4).
The solid black lines represent the GR configurations. The dashed red and orange lines represent the scalarized solutions for A1 ¼ e

1
2
βφ2

with β1 ¼ −4.8 and β2 ¼ −4.5, respectively. The solid blue and purple lines represent the scalarized solutions for A2 ¼ 1= coshð ffiffiffiffiffiffi
−β

p
φÞ

with the same values of β1 ¼ −4.8 and β2 ¼ −4.5. Note that the scalar charge can be positive and negative.
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III. RESULTS

In this section we present our results for static and
slowly rotating neutron stars for 14 realistic EOSs in STT,
employing the two coupling functions A1 ¼ e

1
2
βφ2

and
A2 ¼ 1= coshð ffiffiffiffiffiffi

−β
p

φÞ. In particular, we present results
for β1 ¼ −4.8, which already violates the constraint
obtained from pulsar observations [33], and β2 ¼ −4.5,
which is currently the largest negative value of β allowed by
observations.
We note that the GR configurations are also solutions of

the full scalar-tensor theory, since in the case φ ¼ 0, the
equations reduce to Einstein gravity.

A. Neutron star models

We now present our results for the static neutron star
models, showing the total mass M (in solar masses M⊙)
versus the physical radius Rs (in km) in Fig. 1, and the
scalar field charge ωA versus the total mass M (in solar
masses M⊙) in Fig. 2.
In these two figures all 14 EOSs are considered in the

same succession. The first two rows show the five EOSs
containing hyperons and nucleons (H4, BHZBM, GNH3,
WCS1, WCS2) and the polytropic EOS, the last two rows
contain the two nuclear EOSs (SLy, APR4), the two quark

EOSs (WSPHS1, WSPHS2), where we have superimposed
(SLy, WSPHS1) and (APR4, WSPHS2), as well as the four
hybrid EOSs containing quarks and nucleons (WSPHS3,
ALF2, ALF4, BS4).
The scalarized neutron star models have been computed

for the scalar coupling A1 for the coupling constants
β1 ¼ −4.8 (dashed red) and β2 ¼ −4.5 (dashed orange),
and the scalar coupling A2 for the same coupling constants
β1 ¼ −4.8 (solid blue) and β2 ¼ −4.5 (solid purple).
The GR configurations are always included as well (solid
black).
The mass-radius curves in Fig. 1 show a number of

interesting facts. The onset of scalarization depends only on
the value of β, i.e., it is the same for the coupling functions
A1 and A2, and it would also be the same for the coupling
function A3 [10,11]. Thus, it is determined only by the
coefficient of the quadratic term in φ, and the lower the
value of β, the stronger the effect of scalarization is. Since
the coupling functions differ in their higher-order terms,
and A1 decreases faster than A2, the scalarization is stronger
for A1 than for A2. Likewise, it is stronger for A3 than for
A1 [10,11].
From Fig. 1 we see that for the observational limit β2 one

obtains typically scalarized solutions with masses below
the maximum GR mass. The exceptions are WSPHS1,
WSPHS2, and WSPHS3 (quark matter and hybrid matter),
where the maximum mass of the scalarized configurations
is slightly larger than the GR maximum mass.
Note that the hybrid EOS BS4 is a very special case.

In particular, the EOS table for BS4 we have employed
does not contain values for sufficiently high densities, i.e.,
values where the scalarization is expected to vanish again.
Therefore, the scalarized branches here simply stop without
being able to merge again with GR solutions, when the
scalarization vanishes again.
Let us note that the onset of the scalarization is not

strongly correlated with the value of the central density.
While the central density at the onset is of the same order
of magnitude in all cases, it can differ by a factor of two for
the different EOSs. The same is true when the onset of
scalarization is considered versus the central pressure.
Therefore, both quantities are not good indicators of
scalarization. The trace T of the energy-momentum tensor
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FIG. 3. The critical value of the coupling parameter β versus the
compactness C ¼ M=Rs for all EOSs considered (except BS4).
The grey curve is a fit to the function f ¼ c0 þ c1ðM=RÞ−1þ
c4ðM=RÞ−4.

TABLE I. Mean value and coefficient of variation for the maximum value of the scalar field charge ωA, the central
value of the scalar field φ0, and the surface value of the scalar field φs, considering all EOSs except BS4.

A1, β1 A1, β2 A2, β1 A2, β2

E½jωAðmaxÞj� 0.0157 0.00815 0.0130 0.00696
CV 2.28 × 10−2 2.29 × 10−2 2.11 × 10−2 2.21 × 10−2

E½jφ0ðmaxÞj� 0.18138 0.11040 0.15810 0.09593
CV 1.74 × 10−2 2.14 × 10−2 1.75 × 10−2 2.12 × 10−2

E½jφsðmaxÞj� 0.10000 0.05864 0.08620 0.05076
CV 5.60 × 10−2 5.86 × 10−2 5.81 × 10−2 5.94 × 10−2
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is even worse. Here even the sign of T can differ for
different EOSs.
Still, as seen in Fig. 2, where the scalar field charge ωA

is exhibited as a function of the total mass M of the stars,
the general behavior and the maximum value of the scalar
charge are very similar for all EOSs—except for BS4
(where the results suggest that beyond the maximum mass,
the scalarized configurations cannot be trusted). This is
surprising since the EOSs describe physically widely
differing systems, and it calls for further investigation to
be performed in the next subsection. We note that the

symmetry φ → −φ of the equations implies the sym-
metry ωA → −ωA.

B. Onset and magnitude of the scalarization

As noted above, since in the limit of small scalar field φ,
the coupling functions considered are essentially the same
(A1 ∼ A2 ∼ 1þ 1

2
βφ2 þ � � �), the branching configurations,

where scalarization begins and ends, coincide for a given
EOS for the coupling functions AiðφÞ, when the coupling
parameter β has the same value. This holds, in particular,
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FIG. 4. Scalar field charge ωA versus the compactness C ¼ M=Rs (in units of c ¼ G� ¼ 1) of the neutron star models for all EOSs
considered: The five hyperon EOSs (H4, BHZBM, GNH3, WCS1, WCS2), the polytropic EOS, the two nuclear EOSs (SLy, APR4), the
two quark EOSs (WSPHS1, WSPHS2), and the four hybrid EOSs (WSPHS3, ALF2, ALF4, BS4). The coupling function is A1 ¼ e

1
2
βφ2

with β2 ¼ −4.5 in (a) and β1 ¼ −4.8 in (b). Note that the scalar charge can be positive and negative.
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FIG. 5. Scalar field charge ωA (a) and scalar field at the center φ0 (b) versus the metric function gttð0Þ at the center of the neutron star
models for all EOSs considered: The five hyperon EOSs (H4, BHZBM, GNH3, WCS1, WCS2), the polytropic EOS, the two nuclear
EOSs (SLy, APR4), the two quark EOSs (WSPHS1, WSPHS2), and the four hybrid EOSs (WSPHS3, ALF2, ALF4, BS4). The coupling
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with β1 ¼ −4.8 and β2 ¼ −4.5, respectively. The critical values βcr are also indicated. Note that the scalar charge
and the scalar field can be positive and negative.
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also for the critical values βcr, which determine the onset of
scalarization.
In Fig. 3 βcr is shown versus the compactness C ¼ M=Rs

for all EOSs considered, except for BS4. For BS4 the onset
arises at βcr ¼ −4.336 and C ¼ M=Rs ¼ 0.2193, and thus
differs %0.2 in β. For all other EOSs, thus including
nuclear, hyperon, hybrid, and quark matter, the value of βcr
varies only between −4.348 and −4.343, in good agree-
ment with the value of −4.35 given by Harada [12]. It was
also noted by Harada [13] that there exists a relation
between the region of scalarization and the compactness of
the star. As seen in Fig. 3, the onset of scalarization can be
well parametrized by the function of the compactness,

f ¼ c0 þ c1ðM=RÞ−1 þ c4ðM=RÞ−4 ð20Þ

with c0 ¼ −4.17789, c1 ¼ −0.0544455, and c4 ¼
0.000186767, and the reduced χ2 is 4.3 × 10−7. An
efficient method to obtain βcr is discussed in the Appendix.
As seen in Fig. 2, the general behavior of the scalar field

is quite independent of the EOS considered, with the
exception of the EOS BS4. Let us therefore now consider
the mean values E and the corresponding coefficients of
variation (CV) (i.e., the ratio of the standard deviation to the
mean value) of several characteristic properties of the scalar
field, obtained for the full set of EOSs except for BS4. In
particular, we exhibit in Table I for both coupling functions
A1 and A2 and both coupling parameters β1 and β2 the mean
value and the coefficient of variation for the maximum
value of the scalar field charge ωA, the central value of the
scalar field φ0, and the surface value of the scalar field φs.
Clearly, the CV is rather small for all quantities.
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The above analysis indicates again, that there should be
some largely EOS-independent agent responsible for the
magnitude of the scalarization. Let us then again consider
the compactness C and study the dependence of the scalar
field on the compactness, which is the major ingredient
for many universal relations. To that end we exhibit in
Fig. 4 the scalar field charge ωA versus the compactness
C ¼ M=Rs of all neutron star models for all 14 EOSs with
coupling function A1 for β ¼ −4.5 [Fig. 4(a)] and β ¼ −4.8
[Fig. 4(b)].
These figures indeed reveal a certain amount of EOS

independence, showing some clustering in the small C
region for the nuclear, hyperon, and hybrid EOSs.
However, the two quark EOSs are distinctly offset, being
shifted to higher compactness. The figures also show that
the BS4 EOS follows the general trend of the nuclear,
hyperon, and hybrid EOSs only up to a certain compactness
(close to the maximum value of the mass), where it starts to
behave strangely. This possibly indicates that beyond this
certain compactness this EOS may no longer be reliable in
this context.
While compactness is certainly an important ingredient,

it does not fully predict the onset and magnitude of the
scalarization. A much better predictor of the onset and
magnitude of the scalarization is the gravitational potential
at the center of the star as embodied by the metric
component gttð0Þ ¼ −efð0Þ. Note this expression is not
coordinate dependent, since the gauge freedom has been

fixed by specifying the metric in Eq. (10). We have
investigated the dependence of the scalar field charge
ωA, and of the values of the scalar field at the center
φð0Þ and at the surface versus the value of the metric
function gttð0Þ at the center of the star for all EOSs and
both of the coupling functions. This dependence is
demonstrated in Fig. 5, where we show the results for
the coupling function A1. Indeed, there is a strong
universal behavior visible for all EOSs, including the
quark EOSs. Only the BS4 EOS starts to deviate again,
and should possibly no longer be trusted beyond the
maximum mass.

C. Universal I-C relations

We now turn to slowly rotating neutron star models,
obtained in lowest-order perturbation theory. In Fig. 6
we present the moment of inertia I as a function of the
total mass M of the neutron stars. The moment of
inertia represents an important physical property of the
neutron stars, since it can be obtained from timing
observations of pulsars, and thus represents another
observational handle to constrain the EOS of neutron
stars. As seen in Fig. 6, the effect of the scalarization is
to allow for somewhat larger values of the moment of
inertia than in GR.
Let us now address the universality of the moment-of-

inertia–compactness relations, suggested before [30,31],

 0.3

 0.4

 0.5

   

I/
M

R
s2

Sly
APR4
WCS1
WCS2

BHZBM

GNH3
H4

ALF2
ALF4

WSPHS1

WSPHS2
WSPHS3

BS4
polytrope

GR fit

A1, β1
A2, β1

A1, β1 fit
A2, β1 fit

10-4

10-3

10-2

10-1

0.15 0.25 0.35 

|1
-I

/I
fi

t|

M/Rs

(a)

 5

 10

 15

 20

 25

 30

   

I/
M

3

Sly
APR4
WCS1
WCS2

BHZBM

GNH3
H4

ALF2
ALF4

WSPHS1

WSPHS2
WSPHS3

BS4
polytrope

GR fit

A1, β1
A2, β1

A1, β1 fit
A2, β1 fit

10-4

10-3

10-2

10-1

0.15 0.25 0.35 

|1
-I

/I
fi

t|

M/Rs

(b)
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I=ðMR2
sÞ ¼ a0 þ a1

M
Rs

þ a4

�
M
Rs

�
4

; ð21Þ

I=M3 ¼ b1

�
M
Rs

�
−1

þ b2

�
M
Rs

�
−2

þ b3

�
M
Rs

�
−3

þ b4

�
M
Rs

�
−4
: ð22Þ

In STT these I − C relations have been considered by
Staykov et al. [22], employing six purely nuclear EOSs
(SLy [34], APR4 [35], FPS [47], GCP [48], Shen [49,50]
and WFF2 [51]) and two quark EOSs (SQSB40 [52] and
SQSB60 [52]). We here extend their study to our full set of
14 EOSs, which, in particular, include the classes of hyperon
and hybrid EOSs, not studied before in this context.
In Fig. 7 we present the moment of inertia I as a function

of the compactness C, employing the two scalings I=MR2
s

(a) and I=M3 (b) for all 14 EOSs. The figures include the
values for both coupling functions Ai with β1, as well as the
GR values. The symbols in the figures denote the respective
scaled values of I versus C, associated with the various
EOSs. The colors of the symbols mark these values in the
respective theories, i.e., GR (black), STT A1, β1 (red), STT
A2, β1 (blue).
Besides the symbols associated with the various EOSs

for the scaled values of I, the upper panels also show the
fitted universal relations (21) and (22) as solid lines: GR
(grey), STT A1, β1 (orange), STT A2, β1 (cyan). Note that
for the GR case we have included only configurations up to
the maximum mass. We have not included the pure quark
stars (WSPHS1 and WSPHS2) in the fits, since quark
stars exhibit a somewhat different behavior [22]. The lower
panels exhibit the deviations from the fitted values,
j1 − I=Ifitj, which are always below 10%.
We exhibit the fitted coefficients for both universal

relations (21) and (22) in Table II. We find excellent agree-
ment with the results of Staykov et al. [22]. Interestingly, the
inclusion of the hyperon and hybrid EOS classes has little

impact on these universal relations for the nuclear matter.
Only pure quark matter is distinctly different.

IV. CONCLUSIONS

We have investigated the effect of scalarization on
neutron star models with a wide variety of realistic
EOSs, including stars consisting of nucleons (3), of
nucleons and hyperons (5), of nucleons and quarks (4),
and only of quarks (2), thus extending earlier investigations
[10–12,14–16,18–22] by also considering the classes of
hyperon and hybrid stars.
Restricting to static and slowly rotating models, we have

focussed on the discussion of the onset and the magnitude
of the scalarization, searching for its universal features.
Clearly, the compactness of the solutions is a major
component in our understanding of the phenomenon of
scalarization [10,11], and compactness features promi-
nently in various model-independent relations [28,29]. In
particular, we have confirmed and extended the results of
the universal I − C relations [22,30,31].
However, the most striking universal feature found

relates the gravitational potential at the center of the star,
as embodied in gttð0Þ, to the properties of the scalar field.
The scalar charge ωA, the value φ0 of the scalar field at the
center of the star, and the value φs of the scalar field at the
surface of the star are all determined (with only a very small
variance) by gttð0Þ. This holds for all EOSs, including the
quark EOSs. Only the EOS BS4 starts to deviate from this
strong correlation close to the maximal densities, where
it is known. Indeed, the correlation is so strong that this
exceptional deviation of the EOS BS4 suggests that the
calculations are reaching beyond the validity of this EOS,
when the deviations arise.
To support our conclusions, we have considered the

effect of scalarization not only on the widely used expo-
nential coupling function A1 with two values of the
coupling parameter β, but also on an alternative coupling
function A2, based on the hyperbolic cosine. Clearly, the
onset of the scalarization is only determined by β, while the
magnitude of scalarization is also governed by the coupling
function, leading to less scalarization for A2, as expected
according to previous work with a coupling function A3,
based on the cosine [10,11].
Doneva et al. [19–22] have also studied rapidly rotating

neutron stars in STT, investigating, in particular, universal
relations. Whereas the STT results for the universal I − C
relations do not show significant deviations from the GR
results for slow rotation, in the case of rapid rotation major
deviations from GR can occur [22]. The group has also
addressed the effect of a mass term for the scalar field
[23,24]. In both cases the effect of scalarization is
enhanced. It will be interesting to see whether the strong
correlation of the scalarization with the gravitational
potential is retained in the presence of rapid rotation and
for a massive scalar field. We expect that such a strong

TABLE II. Fit parameters for the universal relations
I=ðMR2

sÞ ¼ a0 þ a1uþ a4u4 and I=M3 ¼ b1=uþ b2=u2þ
b3=u3 þ b4=u4, u ¼ M=Rs, including all EOSs except for the
quark EOSs WSPHS1 and WSPHS2.

GR A1, β1 A2, β1

a0 0.232 0.243 0.259
a1 0.684 0.651 0.553
a4 3.813 3.015 4.482
χ2 1.13 × 10−4 0.84 × 10−4 0.78 × 10−4

b1 1.437 2.221 15.115
b2 −0.112 −0.679 −8.453
b3 0.0533 0.185 1.707
b4 −0.00271 −0.0125 −0.110
χ2 0.209 0.0394 0.0337
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correlation could be present for fixed values of the scaled
angular momentum j ¼ J=M2, since j has also served as an
adequate ingredient in other universal relations.
Finally, we would like to mention that we have started to

investigate the presence of this correlation also for scalar-
ized boson stars [53]. Interestingly, for nonrotating boson
stars (with quartic potential) the onset of the scalarization
arises at almost the same value as for neutron stars, i.e., at
β ¼ −4.363 for the boson stars of [53] with Λ ¼ 300.
Moreover, the dependence of the scalar field charge on the
gravitational potential [gttð0Þ] is rather similar to the
neutron star case exhibited here, leading (for fixed β)
basically to increasing concentric curves with increasing
angular momentum.
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APPENDIX: CALCULATION OF THE
BIFURCATION POINTS

1. Perturbative treatment of the bifurcations

Let us consider the case of a small scalar function φ,
i.e., we may neglect terms of order φ2. The differential
equations then reduce to the equations in GR plus a linear
equation for the scalar field,

d
dr

� ffiffiffiffi
N

p
ef=2r2

dφ
dr

�
¼ β4πr2

ef=2ffiffiffiffi
N

p ð~ε − 3 ~pÞφ: ðA1Þ

Using r ¼ R x
1−x and r2 d

dr ¼ Rx2 d
dx, we find

d
dx

� ffiffiffiffi
N

p
ef=2x2

dφ
dx

�
¼ β4πR2

x2

ð1 − xÞ4
ef=2ffiffiffiffi
N

p ð~ε − 3 ~pÞφ:

ðA2Þ

We note that the boundary conditions φjx¼1 ¼ 0 and
dφ
dx jx¼0 ¼ 0 have to be supplemented with an additional
condition to guarantee a nontrivial solution. Since the
ODE is linear, we can choose without loss of generality
φð0Þ ¼ 1.
In the following we derive a simple iteration scheme to

find solutions. For simplicity we write Eq. (A2) in the form

d
dx

�
hðxÞ d

dx
φ

�
¼ −βVðxÞφðxÞ ðA3Þ

with

hðxÞ ¼
ffiffiffiffi
N

p
ef=2x2 and

VðxÞ ¼ −4πR2
x2

ð1 − xÞ4
ef=2ffiffiffiffi
N

p ð~ε − 3 ~pÞ: ðA4Þ

Integration then yields

hðxÞ d
dx

φ ¼ −β
Z

x

0

Vðx0Þφðx0Þdx0; ðA5Þ

where the integration constant has been set to zero to ensure
φ0ð0Þ ¼ 0. A second integration yields

φðxÞ ¼ −β
Z

x

0

1

hðx0Þ
�Z

x0

0

Vðx00Þφðx00Þdx00
�
dx0 þ βc0:

ðA6Þ

The integration constant c0 is determined from the boun-
dary condition φð1Þ ¼ 0, i.e.,

c0 ¼
Z

1

0

1

hðxÞ
�Z

x

0

Vðx0Þφðx0Þdx0
�
dx: ðA7Þ

This leads to

φðxÞ ¼ −β
�Z

x

0

1

hðx0Þ
�Z

x0

0

Vðx00Þφðx00Þdx00
�
dx0

−
Z

1

0

1

hðxÞ
�Z

x

0

Vðx0Þφðx0Þdx0
�
dx

�
: ðA8Þ

Note that this is an implicit equation, since φ appears on the
rhs and the lhs of the equation. Evaluating Eq. (A8) at
x ¼ 0 yields

φð0Þ ¼ β

Z
1

0

1

hðxÞ
�Z

x

0

Vðx0Þφðx0Þdx0
�
dx: ðA9Þ

Since we require φð0Þ ¼ 1, we have to consider β as a
dependent quantity. Solutions of Eq. (A8) exist only for
certain values of β.
The iteration scheme is now given by

φðiþ1ÞðxÞ ¼ −βðiÞ
�Z

x

0

1

hðx0Þ
�Z

x0

0

Vðx00ÞφðiÞðx00Þdx00
�
dx0

−
Z

1

0

1

hðxÞ
�Z

x

0

Vðx0ÞφðiÞðx0Þdx0
�
dx

�
;

βðiÞ ¼
�Z

1

0

1

hðxÞ
�Z

x

0

Vðx0ÞφðiÞðx0Þdx0
�
dx

	
−1
:

ðA10Þ

The iterations converge very fast. Typically, ten steps are
sufficient to determine β up to ten digits.
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This method yields for any neutron star solution in GR
the value of β where the bifurcation of the scalarized
neutron star solutions occurs. If the sequence of neutron
star solutions in GR is characterized by the central pressure
~p0, one obtains βbifð ~p0Þ. The maximum of βbifð ~p0Þ in turn
determines the critical value βcr beyond which no scalar-
ized neutron star solutions exist. The critical βcr then only
depends on the EOS.
To demonstrate this property, we consider (for simplic-

ity) two polytropic EOSs (16) with K ¼ 1186.0 and
Γ ¼ 2.34, βcr ¼ −4.343, and with K ¼ 72.5216 and
Γ ¼ 2.0, βcr ¼ −4.335. Fig. 8 shows βbif as a function
of the central pressure ~p0. The maximal value of βbif
represents the critical value βcr for a given EOS. For the
two EOSs considered, these critical values are indicated by
the horizontal lines.

2. Bifurcation points for realistic EOSs

In order to obtain the bifurcation points for realistic
EOSs using the numerical approach described in Sec. II D,
we implement the following procedure: instead of iterating
the integral relation (A10), we solve the differential
Eq. (A2), but now assuming that β ¼ BðxÞ is a function
of x,

d
dx

� ffiffiffiffi
N

p
ef=2x2

dφ
dx

�

¼ BðxÞ4πR2
x2

ð1 − xÞ4
ef=2ffiffiffiffi
N

p ð~ε − 3 ~pÞφ: ðA11Þ

We thus add the following auxiliary differential equation to
the system:

d
dx

BðxÞ ¼ 0: ðA12Þ

This method is equivalent to the previous one. We
have to supply three boundary conditions, which we
choose to be the same as described in the previous method,
φjx¼1 ¼ 0, dφdx jx¼0 ¼ 0, and φjx¼0 ¼ 1. This is implemented
in COLSYS, together with a routine that interpolates a
previously generated static solution. Static solutions with
500–1000 points give good results. The method converges
fast and works for all EOSs considered. The function BðxÞ
converges to a constant value, which determines the
bifurcation point, BðxÞ ¼ βbif . In principle, βbif depends
on the EOS and the central pressure of the static configu-
ration. This approach is similar to the method used by
Harada in [13] to calculate the bifurcation point using
quasinormal modes, when constraining to the case of the
vanishing imaginary part of the frequencies.
The critical value βcr is calculated as the maximum of

βbif . In Figs. 3 and 9, the critical value βcr is shown as a
function of the compactness and of the trace of the energy-
momentum tensor, i.e., the quantity ~ε − 3 ~p0, respectively.
All realistic EOSs possess very similar values of βcr, which
may be related to the fact that all of them have similar
values of the compactness C ¼ M=R and the gravitational
potential at the center as represented by gttð0Þ.
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