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Relativistic ultracompact objects without an event horizon may be able to form in nature and merge as
binary systems, mimicking the coalescence of ordinary black holes. The postmerger phase of such
processes presents characteristic signatures, which appear as repeated pulses within the emitted
gravitational waveform, i.e., echoes with variable amplitudes and frequencies. Future detections of these
signals can shed new light on the existence of horizonless geometries and provide new information on the
nature of gravity in a genuine strong-field regime. In this work we analyze phenomenological templates
used to characterize echolike structures produced by exotic compact objects, and we investigate for the first
time the ability of current and future interferometers to constrain their parameters. Using different models
with an increasing level of accuracy, we determine the features that can be measured with the largest
precision, and we span the parameter space to find the most favorable configurations to be detected. Our
analysis shows that current detectors may already be able to extract all the parameters of the echoes with
good accuracy, and that multiple interferometers can measure frequencies and damping factors of the
signals at the level of percent.
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I. INTRODUCTION

Gravitational wave (GW) astronomy is nowadays emerg-
ing as a new observational window, able to provide
fundamental insights on some of the most energetic phe-
nomena of our Universe. The amount of incoming data
produced by ground based interferometers also promises to
address questions of fundamental physics with unprec-
edented accuracy. Among all the possible compact sources,
black holes (BH) are probably the most extreme physical
systems, whose existence has been definitively assessed
by the recent LIGO discoveries [1–3]. These detections mark
the dawn of BH spectroscopy and at the same time represent
the first genuine strong-field tests of general relativity [4].
However, some crucial questions regarding the fundamen-

tal nature of BHs still remain to be addressed [5]. As an
example, theoreticalmodels predicting the existence of exotic
compact objects (ECOs) whose compactness approaches the
BH limit have not been completely ruled out. Such bodies
may form in nature as binary systems and merge due to GW
emission. During the coalescence the ECOs leave distinct
signatures within the inspiral part of the signal, which has
already proved to be extremely effective in discriminating
between regular BHs and exotic scenarios [6,7].
After the merger, horizonless compact objects will emit

gravitational radiation until they reach a quiet and sta-
tionary state. During this process, multiple trapped w
modes may be excited, which would be visible within
the GW signal by the appearance of echolike structures,

i.e., repeated pulses with characteristic frequencies and
amplitudes, which differ from the BH quasinormal modes
(QNM) spectrum [8–11,11].
Historically, the idea that QNM may represent a power-

ful tool to distinguish between ultracompact stars and
regular BHs (or less compact bodies) traces back its origin
in some seminal works of the early 1990s [12–17]. A
revised application of this approach has recently been
applied to interpret the LIGO data in terms of new physics
at the level of the BH horizon. This work has drawn a lot
of attention [18,19] and triggered new exciting research
efforts in the field [20–27] (see also [28,29] for some
criticism on the same topic). Future detections with a higher
signal-to-noise ratio, and the final completion of multiple
GW detectors, like VIRGO [30] and KAGRA [31], will
provide more accurate data, possibly leading to assess
whether horizonless compact bodies may exist in astro-
physical environments [32–35].
Several efforts have already been devoted to characterize

the GW emission of exotic objects out of equilibrium
[18,36–40]. If additional structures appear within the
spectrum, our ability to extract the signatures, which
deviates from the standard BH picture, will strongly depend
on the availability of realistic templates to be used in data
searches. In this sense, the recent works by [41,42] provide
the first systematic attempts to construct fully reliable
templates to identify the echoes.
Motivated by these results, in this paper we explore for the

first time the detectability of GW signals emitted by ECOs
formed after binary coalescences. We consider different
phenomenological templates, which are physicallymotivated
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by the analysis of perturbed ultracompact stars and from a
series of recent work on the subject [18,36–38,40–42]. The
scope of this study is twofold: (i) determine the errors on the
waveform’s parameters, whichwould bemeasured by current
and future GW interferometers, and (ii) investigate the
dependence of such detections by the echo’s parameters.
Although the models employed suffer from some limitations,
a complete and fully accurate description of the GW signal is
nowadays not available. Nevertheless, the analysis developed
in this work captures important features of the overall
phenomena. Our results suggest that Advanced LIGO at
design sensitivity would already be able to constrain the
parameters of the echoes with good accuracy, possibly
leading to infer new informationon thenature of theperturbed
compact object.
This paper is organized as follows. In Sec. II we define

the analytical templates used to model the echoes, which
will be used to determine the parameters’ detectability. In
Sec. III we briefly describe the data-analysis procedure
employed, while in Sec. IV we present our numerical
results, analyzing the errors on the gravitational waveforms
for different interferometers. In Sec. V we summarize our
conclusions. Throughout the paper we will use geometrical
units ðG ¼ c ¼ 1Þ.

II. THE ECHO TEMPLATES

In this section we shall describe the GW templates used
to estimate the errors on the echo’s parameters. It is worth
mentioning that some efforts have recently been made in
[18,41,42] to propose analytical models that characterize
the late time waveform of perturbed exotic objects. In this
direction, the main purpose of our paper is to investigate
how pure phenomenological waveforms may constrain the
fundamental features of the pulses produced after the
merger by ultracompact objects with a reflecting surface.
We develop our analysis in a pedagogical way, starting
from the simplest model, up to more sophisticated wave-
forms that may eventually mimic the true GWemission by
a real ECO. For more details on the physics of the echolike
structure we refer the reader to the literature that is
mentioned in the Introduction. All our models are described
by an early ringdown, which represents the fundamental
BH QNM damped oscillation, followed by a series of
repeated echoes. Hereafter we consider three different
templates, defined as follows:

(i) echoI: the waveform is given analytically by hIðtÞ ¼
hQNMðtÞ þ hIðtÞ, where

hQNMðtÞ ¼ Āe−t=τ̄ cosð2πf̄tþ ϕ̄Þ ð1Þ

corresponds to the BH QNM-like oscillation, speci-
fied by amplitude, frequency, phase, and damping
time ðĀ; f̄; ϕ̄; τ̄Þ, while

hIðtÞ ¼
XN−1

n¼0

ð−1Þnþ1Anþ1e
− y2n
2β2

1 cosð2πf1ynÞ ð2Þ

describes theN echoes after the first mode. Note that
in this case we assume the same frequency and shape
ðf1; β1Þ for each pulse, but different values of the
amplitude Anþ1 ¼ A1;…;N . For the sake of simplic-
ity we have chosen the modulating function as a
Gaussian profile, with variance given by β1. This
setup is also in agreement with the analysis devel-
oped in [8] to investigate GW signals produced by
ultracompact stars perturbed by Gaussian pulses. In
the former equation we have also introduced the
auxiliary variable ynðtÞ ¼ ðt − techo − nΔtÞ, where
techo is the time shift between the first mode and the
first echo, whileΔt identifies the time delay between
the successive N − 1 echoes (see Fig. 1).

(ii) echoIIa: the first oscillation corresponds again to
the BH ringdown mode as in echoI, although the
echo sector is improved by introducing a second
frequency f2. The latter takes into account that the
frequencies of the pulses we observe in the spectrum
are related to the trapped modes of the system, which
consist in general of multiple components. The
template is then given by

hII ¼ hQNMðtÞ þ hIIaðt; f1; f2; β1Þ; ð3Þ

where

hIIaðtÞ ¼
1

2

XN−1

n¼0

ð−1Þnþ1Anþ1e
− y2n
2β2

1 ½cosð2πf1ynÞ

þ cosð2πf2yn þ ϕÞ�; ð4Þ

and the phase ϕ determines an offset between the
two terms for t ¼ 0. Equation (4) describes a beat-
like structure, which should mimic as a first approxi-
mation the interference of the trapped modes.

(iii) echoIIb: this further generalizes the previous
approaches by adding a different Gaussian function
for the second mode of the echoes, i.e., hII ¼
hQNMðtÞ þ hIIbðt; f1; f2; β1; β2Þ, with

hIIbðtÞ ¼
1

2

XN−1

n¼0

ð−1Þnþ1Anþ1

�
e
− y2n
2β2

1 cosð2πf1ynÞ

þ e
− y2n
2β2

2 cosð2πf2yn þ ϕÞ
�
: ð5Þ

For all the waveforms we will further assume that
amplitudes A1���N carry a fraction of the QNM com-
ponent Ā. This choice is physically motivated by numerical
results obtained from an updated version of a code for

MASELLI, VÖLKEL, and KOKKOTAS PHYSICAL REVIEW D 96, 064045 (2017)

064045-2



ultracompact constant density stars presented in [8], in
which the ratio between the QNM mode and the first pulse
is roughly equal to Ā=A1 ∼ 1=4, and then decreases as
Ā=AN ∼ 1

4þN for the following N echoes. This assumption
also reduces the number of independent amplitudes to the
overall BH-like factor Ā.
The generalization of the previous templates to more

sophisticated models is straightforward and could include
the following features: (i) add different frequencies and
their interference to characterize each echo; (ii) include the
damping factor of each frequency (although we expect they
would play a subordinate role within the data analysis of
the waveform); and (iii) introduce different functions to
model the shape of the echoes, instead of the Gaussian
profile used in this paper. Such improvements would lead
one to consider a more realistic scenario, which would
ultimately depend on the nature of the ECO’s perturbation.
These extensions will provide a more detailed picture of the
physical mechanism producing the echoes and are under
investigation. However, we believe that the GW templates
presented in this section are already able to capture the most
relevant features of the real process.

III. DATA ANALYSIS PROCEDURE

To compute the errors on the parameters of the echo’s
template, we use a Fisher matrix approach [43–45]. In the
limit of a large signal-to-noise ratio (SNR), the probability
distribution of the parameters θ⃗ for a given set of data d can
be expanded around the true values θ⃗v as

pðθ⃗jdÞ ¼ p0ðθ⃗ÞLðdjθ⃗Þ ¼ p0ðθ⃗Þe−1
2
ð ~hðθ⃗Þ−dj ~hðθ⃗Þ−dÞ

≈ p0ðθ⃗Þe−1
2
ΓαβΔθαΔθβ ; ð6Þ

with p0ðθ⃗Þ being the prior probability on θ⃗, and
Δθα ¼ θα − θαv. The Fisher information matrix Γαβ, which
characterizes the curvature of the likelihood function
Lðdjθ⃗Þ, is expressed in terms of the partial derivatives of
the GW template with respect to the echo parameters,

Γαβ ¼
� ∂ ~h
∂θα

���� ∂
~h

∂θβ
�

θ⃗¼θ⃗v

; ð7Þ

where ð ~aj~cÞ defines the scalar product on the waveform’s
space,

ð ~aj~cÞ ¼ 2

Z
∞

0

~aðfÞ~c⋆ðfÞ þ ~a⋆ðfÞ~cðfÞ
SnðfÞ

df; ð8Þ

SnðfÞ is the noise spectral density of the chosen detector,
and ~hðfÞ is the Fourier transform of the template in the
frequency domain.1 The covariance matrix of the param-
eters is simply given by the inverse of the Fisher, i.e.,
Σαβ ¼ ðΓαβÞ−1, whose diagonal and off-diagonal compo-
nents correspond to the standard deviations and the
correlation coefficients of θ⃗, respectively. Note that, accord-
ing to the Cramer-Rao bound, the uncertainties obtained
through the Fisher matrix represent a lower constraint on
the variance of any unbiased estimator of the parameters.
The scalar product (8) also allows one to define the SNR of
the specific signal, as

ρ2 ¼ ð ~hj ~hÞ ¼ 4

Z
∞

0

j ~hðfÞj2
SnðfÞ

df: ð9Þ

In this paper we consider the detectability of echoes by
current and future generations of detectors, i.e., Advanced
LIGO with the ZERO_DET_high_P anticipated design sensi-
tivity curve [46], the Einstein Telescope (ET) [47], LIGO-
Voyager (VY) [48], Advanced LIGO with squeezing
(LIGO Aþ) [49], and the Cosmic Explorer (CE) with a
wide-band configuration [50]. In the following section we
will quote our results on the specific parameter of the
template θα either in terms of the absolute error σα or its
relative (percentage) value ϵα ¼ σα=θα.

FIG. 1. Sketch of some phenomenological waveforms used in
this work. The center panel also shows the meaning of the two
parameters techo and Δt, which identify the time shift between
different pulses in the template.

1We use the following normalization for the Fourier transform
of the templates:

~hðfÞ ¼
Z

∞

−∞
hðtÞdt; hðtÞ ¼ 1

2π

Z
∞

−∞
~hðfÞdf:

All the waveforms considered yield a full analytical form of ~hðfÞ,
which can easily be computed by means of symbolic manipu-
lation software such as Mathematica.

PARAMETER ESTIMATION OF GRAVITATIONAL WAVE … PHYSICAL REVIEW D 96, 064045 (2017)

064045-3



IV. CONSTRAINTS ON THE
ECHO’S PARAMETERS

In this section we present the results for the different
template of Sec. II, obtained by numerical integration of
Eqs. (7)–(9). For all the models we choose the frequency
and the damping factor of the QNM mode, as those of a
nonrotating object with the same mass of the final BH
formed in the GW150914 event [51], i.e., M ≃ 65 M⊙.
This yields f̄ ≃ 186 Hz and τ̄ ∼ 3.6 × 10−3 s. Moreover,
without loss of generality, we fix the phase of h̄ðtÞ to
ϕ̄ ¼ 0, and the overall amplitude to a prototype value
A ¼ 5 × 10−22, which roughly corresponds to a SNR of the
QNM-like mode only (i.e., neglecting the contribution of
the following echoes) of ρ ∼ 8 with Advanced LIGO. This
value is consistent with the best-fit parameters inferred
from GW150914, O1 configuration [51]. Note that, since A
represents a multiplicative factor of the total signal,
our results can immediately be rescaled to any amplitude
Anew as

Γαβ →
Anew

5 × 10−22
Γαβ ⇒ σα →

5 × 10−22

Anew
σα; ð10Þ

and in the same way for the SNR,

ρ →
Anew

5 × 10−22
ρ: ð11Þ

After the first pulse, repeated echoes are also expected to
occur with a time delay Δt, which depends on the features
of the exotic object [5], namely

Δt ∼ 4Mj log δj; ð12Þ

where δ ≪ 1 represents the shift of the ECO’s effective
surface r0 with respect to a nonrotating BH horizon
located at 2M in the Schwarzschild coordinates,2

i.e. r0 ¼ 2Mð1þ δÞ. From Eq. (12), we can approximate
the potential well where echoes are reflected, with a box-
potential specified by the coordinate width

xc ≃ 2Mj log δj: ð13Þ

Under this assumption, the correspondence between echoes
and trapped modes inside the box allows one to express the

gap between two consecutive modes Δf with frequencies
fboxnþ1 and fboxn as

Δf ≡ fboxnþ1 − fboxn ≃ 1

4Mj log δj : ð14Þ

Then, having fixed the first frequency of each waveform to
the corresponding BH QNM component, we can immedi-
ately derive the values of f1 and f2 used in the echoI and
echoIIa-b templates,

f1 ≃ f̄; f2 ≃ f̄ − Δf: ð15Þ

Note that f2 < f1. It is worthwhile to remark that these
assumptions represent an approximation of the real physi-
cal scenario, in which we expect that f̄ ≠ f1, and Δf takes
a more complex form, which ultimately depends on the
specific ECO considered. However, for the purpose of this
paper, this will not change the outcome of the data-analysis
procedure. Moreover, having fixed the object mass to
M ¼ 65 M⊙, throughout this paper we consider three
values of δ ¼ ð10−10; 10−20; 10−30Þ, which roughly corre-
spond to compact objects with surface corrections at
Micron, Fermi, and Planckian levels, respectively [7].
Finally, the time between the QNM-like mode and the

first echo, techo, could be affected by nonlinearities due to
the merger phase at the end of the coalescence [52], i.e.,
techo ≃ Δt� δt. In the following, for each value ofΔt given
by Eq. (12), we will consider different configurations by
varying the coefficient δt in order to have a maximum
correction of the order 10% on techo.
Before assessing the detectability of each phenomeno-

logical template described in the previous section, it is
instructive to analyze some basic features that are common
to all the waveforms. Figure 2 shows the relative errors ϵα
for the echoI model computed for LIGO, as a function of
the number of echoes included within the template. In this
particular case we assume β1 ¼ 0.003 and δ ¼ 10−10,
which corresponds to techo ¼ Δt≃ 2.95 × 10−2 s. From
the first two panels we can immediately note that the
uncertainty on frequency and damping time of the QNM
component (black dots) is essentially unaffected by N, and
it is therefore independent3 from the template (2). On the
other hand, the errors on ðf1; β1Þ and on the delay times
ðtecho;ΔtÞ reduce as far as the number of pulses grows in
time. For the particular model analyzed here, the uncer-
tainty on both f1 and β1 changes approximately 30%
betweenN ¼ 2 andN ¼ 10. Although these values seem to
converge to the QNM mode value, this decrease saturates
due to the progressive reduction of the echo’s amplitudes.
This feature is also evident looking at the evolution of the

2The coordinate distance is not gauge invariant, and therefore
in general the specific value of δ is not uniquely defined.
However, the difference with respect to the proper distance is
subordinate in our calculations due to the logarithmic dependence
within r0. Note also that the approximations for small δ are only
valid for systems where the reflecting surface is very close to the
BH horizon in the Schwarzschild coordinate. Although constant
density stars can feature a similar structure, the values of δ for
such objects can never be small, due to the Buchdahl limit.

3The correlation coefficients derived from the Fisher matrix
between f̄ (τ̄) and the echo parameters are also very small for all
the configurations.
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overall SNR (right-bottom panel of Fig. 2), which reaches a
nearly constant value of ρ ∼ 9.3 after 12 pulses. This
picture is nearly independent of the range of parameters
used in this work and of the specific echo model adopted.
According to these results, we can safely consider

gravitational waveforms that include 10 pulses after the
QNM oscillation, since larger values of N will not affect
the analysis. This choice will also make our analysis more
robust, since at later times some physical effects may not be
captured by our models (as the interference of multiple
trapped frequencies).

A. echoI

The simplest waveform echoI depends on the follow-
ing set of parameters: θ⃗ ¼ fln Ā; f̄; τ̄; ϕ̄; f1; β1; techo;Δtg,
which lead to an 8 × 8 Fisher matrix. As described before,
we fix the frequency and damping factor of the QNM,
with f1 and the time shift Δt being specified by Eqs. (12)
and (15). However, to explore the space of the param-
eter’s configurations, we vary the shape factor β1 and
techo ¼ Δtþ δt. This will allow one to determine the more
(or less) favorable signals to be detected by GW inter-
ferometers. The width of the echo’s Gaussian function
represents the coefficient that dominantly affects the
shape of the waveform and therefore leads to major
changes in the parameter estimation. Moreover, we will
only discuss the features of the post-QNM modes, since
the errors on f̄ and τ̄ do not vary significantly within
all the configurations, peaking around ϵf̄ ∼ 4% and
ϵτ̄ ∼ 22%–23%, respectively.

Figure 3 shows the uncertainties of the echoI parameters
as a function of β1 computed for Advanced LIGO, for a
specific configuration with techo ≈ Δt and δ ¼ 10−10. We
immediately see from both panels that all relative errors
rapidly decrease as the shape factor grows, with variations
≳40% for ϵf1 and ϵβ1 . Note that the SNR changes between
ρ ∼ 8.9 for β1 ¼ 0.002 to ρ ∼ 10.3 for β ∼ 0.006 with an
overall increase of 15%. It is important to remark that,
although these differences do exist between the various
configurations, all the modes considered yield errors
smaller than a 1 − σ upper bound with ϵα ¼ 1. This is
particularly promising for the measurements of the time
shift parameters (right panel), which can be constrained
with an accuracy better than 1%.
The dependence of σα with respect to techo [which we

vary in our data set as techo ¼ Δtð1� 0.1Þ] is much milder
and leads to nearly constant errors for all the parameters of
the template. This can be appreciated from the contour plots
of Fig. 4, in which curves of fixed accuracy for f1, β1, and
Δt are given by vertical straight lines. Note that the relative
errors on techo (bottom left) change less than 10% within the
parameter space considered, even though the absolute error
remains practically constant.
Although Advanced LIGO (at design sensitivity) seems

already able to set narrow bounds on some of the echo’s
features, it is interesting to investigate how these results
improve as far as we consider next generation detectors.
This is shown in Fig. 5, in which we draw the relative errors
of echoI for different interferometers. All the results
correspond to the best-case scenario, i.e., for β1 ¼ 0.006.
Note also that in general, for fixed β1, the best measure-
ments for each detector will correspond to a different value
of techo (although changing this variable does not yield
significant variations). Looking at the top panel we note
that the errors of the echo’s shape factor decrease to values
of the order of ≤ 1% already with LIGO Aþ, while for the
frequency f1, the same level of accuracy would require at
least the ET. As expected, the recently proposed CE would
lead to detect GW signals with exquisite precision, with

FIG. 2. Relative (percentage) errors on the parameters of the
template echoI as a function of the number of echoes. All the
results are derived for Advance LIGO, assuming δ ¼ 10−10 and
β1 ¼ 0.003. The bottom right panel shows the change of the
signal-to-noise ratio due to the increasing numbers of echoes.

FIG. 3. Relative (percentage) errors on the parameters of the
template echoI computed for Advanced LIGO, as a function
of the width of the Gaussian width β1. Both panels refer to
techo ≈ Δt ≈ 2.95 × 10−2 (δ ¼ 10−10).
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errors being more than an order of magnitude smaller than
values obtained by the current generation of detectors.
Second generation interferometers are also expected to

form a network of ground based detectors, as soon as
Advanced Virgo and KAGRA join the Hanford and
Livingston LIGO sites. A collection of n independent
interferometers will roughly reduce the error by a coef-
ficient 1=

ffiffiffi
n

p
. Looking at Fig. 5 this factor would translate

the network measurements at the same level of LIGO Aþ.
All the results presented so far are derived assuming a

shift of the ECO’s effective surface equal to δ ¼ 10−10,
which (together with the mass) determines the two time-
delay factors of our template. To test alternative scenarios,
we have considered different configurations by varying δ to
10−20 and 10−30, without finding significant deviations
from the data shown in Figs. 3–5. The parameters being
mostly affected, f1 and β1, lead to changes ≲9% and ≲2%,
respectively, while for the other coefficients we observe
variations below 1%. The values of ϵtecho and ϵΔt do actually

change, although the corresponding absolute errors remain
constant. This means that the uncertainties for the new
values of δ can simply be obtained from the previous
results, by rescaling

ϵtecho jδ¼10−20 ¼ ϵtecho jδ¼10−10
techoðδ ¼ 10−10Þ
techoðδ ¼ 10−20Þ ; ð16Þ

and the same for Δt.

B. echoIIa-b

The echoIIa model introduces two extra parameters:
(i) a second frequency within the spectrum, which leads to a
beatlike interference with the first component, and (ii) a
phase offset ϕ between the two echo modes. These extra
parameters further enlarge the space of configurations to a
10 × 10 Fisher matrix. This extension does not alter the
estimate of f̄ and τ̄, whose errors remain unchanged
compared to the values obtained for the previous template.
Moreover, as already described for echoI, all the results are
nearly degenerate with respect to techo, as changes on this
parameter do not lead to sensible variations of the errors.
For this reason we will only focus on the dependence of the
echo’s errors on β1.
The parameter estimation of this toy model template

shows that the results are strongly affected by the choice
of ϕ. In particular, the error distribution finds a minimum
when the echo modes are out of phase with ϕ ¼ −π=2,
while it is maximum when the two components are on
phase, i.e., ϕ ¼ 0. This effect is particularly relevant for
ðf1; f2; β1Þ, as shown in the left panel of Fig. 6 in which we
draw the corresponding relative uncertainties computed for
LIGO, assuming δ ¼ 10−10. As already seen for echoI, all
the errors decrease with the growth of the shape factor, up
to our best model with β1 ¼ 0.006. The two frequencies
yield almost the same accuracy for ϕ ¼ 0, while for out-of-
phase modes the errors on f2 are in general larger and
converge to ϵf1 for β1 ≳ 0.004 only. Figure 6 also shows
that our ability to measure the width of the Gaussian
function strongly depends on the phase of the echoes, as for
ϕ ¼ 0 all of the configurations lead to errors above an
upper bound ϵβ1 ¼ 1. This picture changes dramatically if
ϕ ¼ −π=2, for which the uncertainties on this parameter is
of the same order of magnitude as ðf1; f2Þ, and smaller than
50% for β1 > 0.002. Variations of ϕ are subordinate on
techo and Δt, for which we observe small deviations
between the two cases. The center panel of Fig. 6 shows
that even for this template the two parameters provide the
best measurements, at the level of percent and below.
As expected, even for the most optimistic scenario

(ϕ ¼ −π=2), the results obtained for this model are in
general worse than those derived for the echoI (cf. Fig. 3).
This change is partially due to the larger number of
parameters which, for a given configuration and detector
sensitivity, dilutes the amount of information contained

FIG. 5. Errors on the echoI template for different GW inter-
ferometers. The data refer to the best case scenario with β1 ¼
0.006 (and different values of techo).

FIG. 4. Contour plots in the β1 − techo parameter space for the
relative errors on the echoI parameters. White and black dashed
curves represent configurations with fixed accuracy. The data
refer to Advanced LIGO at design sensitivity.
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within the waveform. In this regard, it is also interesting to
compare how the specific form of the waveform may
influence the SNR of the signal (and the degeneracies
between the parameters). The right panel of Fig. 6 shows
indeed how this quantity changes as a function of β1 for
echoI and echoIIa (and two values of ϕ). The picture leads
to some interesting conclusions. First, we observe that for
all cases considered the second parametrization yields
lower SNR. Moreover, the overall growth is softer, with
an increase of ∼9%–12% (depending on the value of ϕ)
compared to a change of ∼16% for the first template. More
significantly, the values of ρ for ϕ ¼ −π=2 are always
smaller than those for ϕ ¼ 0, which is a rather counterin-
tuitive result, as the errors scale in the opposite direction. In
this case a major role is played by the degeneracy between
the parameters, as shown in Fig. 7 where the correlation
coefficients cαβ ¼ Σαβ=ðσασβÞ between f1 and ðβ1; f2Þ are
plotted. For ϕ ¼ 0 the two components of the echoes (4)

are described exactly by the same functional form, and all
the variables are extremely correlated, as for the two
frequencies for which cf1f2 ≃ −1. Note that in the limit
f1 → f2 we would have 100% degeneracy. Conversely, for
out-of-phase modes with ϕ ¼ −π=2 we have a maximum
break of such degeneracy that allows one to set tighter
constraints on the parameters. Moreover, the values of cf1β
for β ¼ ftecho;Δtg are always close to zero for any choice
of ϕ, which is in line with the results previously described.
Finally, unlike the echoI, the second template is more

sensible to different values of δ. Comparing the results
obtained for δ ¼ 10−30 and δ ¼ 10−10, assuming the
optimal case β1 ¼ 0.006 and ϕ ¼ −π=2, we find that the
absolute errors of ff1; β1; f2; techo;Δtg vary approximately
as ≃f23;−12;−8;−6;−41g%, and therefore a scaling
such as that given by Eq. (16) is no longer valid. These
differences grow dramatically for ϕ ¼ 0.
As the last step we analyze the output of the echoIIb

model, which improves the former description by adding
another shape factor (β2) to the second component of the
pulses, specified by the frequency f2. For the sake of
simplicity, in this case we will fix δ ¼ 10−10 and techo ¼ Δt.
Then, we span the possible configurations within the
β1 × β2 parameter space, also assuming the two phase
shifts considered before, i.e., ϕ ¼ 0 and ϕ ¼ −π=2.
Figure 8 shows the numerical results obtained for the
latter, assuming the LIGO detector.
From the top panels we observe that the relative errors on

ðf1; β1Þ are nearly degenerate with respect to the Gaussian
width of the second component. The opposite occurs if we
look at the behavior of ϵf2 and ϵβ2 in the bottom plots. This
feature is mainly due to the specific form of the template,
such that the diagonal components of the Fisher matrix for
the first mode is independent of the second one and vice
versa. In both cases, however, a sweet spot exists for larger
values of the shape factors that yield the best results. This
clearly confirms the trend observed for the echoI and
echoIIa templates. Note also that the parameter’s accuracy

FIG. 6. (Left and center panels) Same as Fig. 3 but for the parameters of the echoIIa model with phase shift ϕ ¼ 0 and ϕ ¼ −π=2.
(Right panel) Comparison between the SNR of echoI and echoIIa as a function of β1. All the results refer to Advanced LIGO, assuming
techo ≈ Δt, with δ ¼ 10−10.

FIG. 7. Correlation coefficients for the echoIIa template be-
tween f1 and ðβ1; f2Þ, assuming ϕ ¼ 0 (empty dots) and ϕ ¼
−π=2 (empty dots), for LIGO with δ ¼ 10−10 and techo ≈ Δt.
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of both modes is comparable. Only a few configurations,
clustered around β2 ≃ 0.002, lead to errors on f2 and β2
exceeding the upper bound ϵα ¼ 1. The relative uncertain-
ties on the time shifts (not shown in the figure) are in
agreement with the results obtained for the previous
waveforms, with ϵecho ≲ 3% and Δt≲ 1% for all the points
in the β1 × β2 plane.
A phase shift ϕ ¼ 0 between the echo’s components

would, again, reduce our ability to detect frequencies and
shape factors. This is shown in Fig. 9, in which each point
identifies a specific configuration for which the relative
error of a certain parameter is larger than 1, i.e., for which
its measurement is strictly compatible with zero.
This picture rapidly improves for future detectors as

demonstrated in Fig. 10, in which we plot the errors
corresponding to the best configurations, with ϕ ¼ −π=2.
Note that the most accurate results occur when the difference
between the two Gaussian widths is maximum, i.e.,
when ðβ1; β2Þ ¼ ð0.006; 0.002Þ for ϵf1 and ϵβ1 , and when
ðβ1; β2Þ ¼ ð0.002; 0.006Þ for ϵf2 and ϵβ2 . The picture shows,
for example, that LIGO Aþ (which we remind the reader
roughly corresponds to a network of current detectors)

would already constrain frequencies and shape factors
with a relative accuracy around ≪ 10%. A third generation
detector like the Einstein Telescope would be required to
reduce these errors below 1%.

V. CONCLUSIONS

Gravitational wave astronomy is establishing itself as a
new field of research capable of gaining insights on a
genuine strong field gravity regime and answering open
questions of fundamental physics. A key example is given
by the possible existence of horizonless exotic objects
whose compactness approaches the BH limit. Such ECOs
may form in nature and merge within the Hubble time,
mimicking the last stage of coalescence of two ordinary
BHs [6]. In the postmerger phase, these objects would
produce characteristic echoes, which at late time differ
from the standard QNM spectrum, and can in principle be
detected by laser interferometers. Although current GW
data seem to show no statistical evidence of possible
deviations from the standard BH picture, it is expected
that signals with larger SNR will provide new precious
information. For this purpose it is mandatory to construct
GW templates as accurately as possible, which allow one to
capture the dominant features of the process. Recent efforts
have already been done to build fully analytical waveforms
for data analysis strategies [41,42]. In this paper we pursue
a complementary path, trying to address for the first time
the level of accuracy with which current/near future
interferometers will be able to detect the echo’s parameters.
To this aim we have adopted phenomenological templates
depending on a relatively small set of coefficients, which

FIG. 8. Same as Fig. 4 but for the parameters of echoIIb in the
β1 × β2 plane. The phase offset is fixed to ϕ ¼ −π=2.

FIG. 9. Each dot specifies a configurations in the β1 × β2 plane
with ϕ ¼ 0 for which the relative error ϵα > 1.

FIG. 10. Relative errors of the echoIIb model for the best case
scenario with ϕ ¼ −π=2, computed for different interferometers.
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try to mimic the expected true signal with an increasing
degree of realism.
The numerical results obtained for all the considered

models seem to suggest that even current detectors, at
design sensitivity, can provide reliable estimates of all the
parameters. Moreover, the analysis performed for the
templates highlights some common properties, which
can be described as follows:

(i) The SNR and the errors of realistic echo signals are
expected to saturate after a certain number of
repeated reflections, as the amplitude of each pulse
decreases in time.

(ii) The uncertainties on the template’s parameters are
mostly affected by the width of the function that
shapes the echoes. In particular, larger values of this
factor always lead to an increase of the overall SNR
and to a reduction of the errors.

(iii) As far as multiple frequencies are considered, the
phase offset between different components of the
echoes plays a crucial role, and it strongly affects
the degeneracy between the parameters. Modes out
of phase (in phase) lead to minimum (maximum)
errors.

(iv) Best case scenarios for all the models show that the
frequencies and the shape factors of the echoes can
always be measured with an accuracy smaller than
100%. A network of advanced detectors, composed
of the two LIGO, Virgo and KAGRA, would reduce
these values around 10%. Third generation interfer-
ometers, such as the Einstein Telescope, are required
to measure the same quantities at the level of
percent.

(v) The parameters that characterize the time delay
between the BH QNM component and the sub-
sequent echoes are measured with exquisite accu-
racy, with relative errors ≲3% with Advanced LIGO
already. Moreover changes in techo and Δt seem to
slightly affect the other parameters of the waveform.

(vi) Complex templates, in which multiple frequencies
may interfere to produce the echoes, are more
sensible to variations of the parameter δ which

controls the shift between the ECO’s surface with
respect to a Schwarzschild BH horizon.

A summary of the results for the most complex model
can be found in Figs. 8–10.
The data analysis developed in this paper may be

considered as a proof of principle for future developments,
and it suffers from two main limitations. The first obvious
drawback is given by the lack of a semianalytical template
able to fully characterize the GW emission of perturbed
ECOs. The phenomenological models used here represent a
first step in this direction, which provide a reliable
description of the full picture, being still based on limited
numbers of parameters. Note that, unlike standard QNMs,
which are solely determined by the BH mass and spin, the
echo structure is intrinsically more complex as follows:
(i) the trapped modes spectrum crucially depends on the
specific ECO considered, and (ii) the shape of the echoes
can be affected by the specific form of the perturbation. A
second source of uncertainty, connected to the previous
problem, relies on the unique identification of the echo’s
amplitudes. Although the assumptions employed in Sec. II
are physically motivated by well known results [8], our
conclusions still depend on the relative strength of the
pulses and can be considered as an optimistic scenario.
Improvements of the previous points can pursue various

directions. Our current efforts are particularly devoted to
investigate in detail the following aspects: (i) construct
more refined models that approach realistic ultracompact
objects with larger accuracy, possibly taking into account
the interference of multiple trapped modes; (ii) use a fully
Bayesian analysis to perform model selection and assess
the ability of the ground based interferometer to distinguish
between standard BH and echolike signals; and (iii) employ
realistic errors to reconstruct the ECO’s scattering potential
by measurements of the trapped modes, as done in [27].
These extensions are already under investigation.
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