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We investigate the evolution of cosmological perturbations in models of dark energy described by a
timelike unit normalized vector field specified by a general function F ðKÞ, so-called generalized Einstein-
Aether models. First we study the background dynamics of such models via a designer approach in an
attempt to model this theory as dark energy. We find that only one specific form of this designer approach
matches ΛCDM at background order, and we also obtain a differential equation which F ðKÞ must satisfy
for general wCDM cosmologies, where CDM refers to cold dark matter. We also present the equations of
state for perturbations in generalized Einstein-Aether models, which completely parametrize these models
at the level of linear perturbations. A generic feature of modified gravity models is that they introduce new
degrees of freedom. By fully eliminating these we are able to express the gauge invariant entropy
perturbation and the scalar, vector, and tensor anisotropic stresses in terms of the perturbed fluid variables
and metric perturbations only. These can then be used to study the evolution of perturbations in the scalar,
vector, and tensor sectors, and we use these to evolve the Newtonian gravitational potentials.
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I. INTRODUCTION

The nature of dark energy remains one of the biggest
unsolved problems in cosmology. Numerousmodels of dark
energy and modified gravity theories have been constructed
[1] in an attempt to describe cosmological observations
[2–4], with varying degrees of success. Perhaps the simplest
and most successful of these is the cosmological constant
which is remarkably consistent with recent observations
[5,6]. However, other models must be studied in case they
provide amore suitable description or otherwise to rule them
out all together, both theoretically and observationally.With
the advent of surveys such as DES1 [7], Euclid2 [8–10],
LSST3 [11,12], and SKA4 [13–16], observational con-
straints on these models will undoubtedly become tighter.
An obvious way to modify gravity is to introduce a new

field other than the metric and make dark energy a
dynamical component. These models typically introduce
scalar fields and many of these are encompassed by
Horndeski [17,18], the most general scalar-tensor theory
that gives rise to second-order equations of motion. This
class of models include Quintessence [19–21], k-essence
[22,23], Kinetic Gravity Braiding (KGB) [24], fðRÞ gravity
[25–27], and many more. Indeed, it has already been shown
that it is possible to achieve a dark energy fluid with w ¼
−1 exactly in, for example, Quintessence and k-essence

[28], and for so-called “designer fðRÞ” [29]. However,
there is no reason not to consider the new field to be a
vector, and indeed such vector-tensor theories have been
shown to be able to give rise to a period of accelerated
expansion even without potential terms [30–38], and
therefore provide an interesting avenue of research. In this
paper we study so-called Einstein-Aether theories at back-
ground and perturbative order, where the vector field is
constrained to be of timelike unit norm. First studied in
[34], it was shown that the model would in fact slow the
expansion of the Universe [39]. However, more recently,
modifications to this theory have been shown to allow it to
describe dark energy and still be compatible with obser-
vations [36–38]. This is done by introducing noncanonical
kinetic terms parametrized by a free function F ðKÞ, where
K determines the kinetic terms for the vector field. In
principle this could take on any functional form, and in
previous work in this area specific forms were chosen to
work with. However, as with designer fðRÞ, we will choose
a background evolution of the Universe and allow that to
dictate the form of F ðKÞ in a “designer F ðKÞ” model.
At background order, despite the many complex models

of dark energy all of these can be parametrized by
specifying a single function of time, the equation of state
parameter, wde ¼ Pde=ρde. Exactly how wde behaves as a
function of time will of course depend on the theory, but at
this order there is nothing else to measure which will tell us
about the nature of dark energy, provided FRW spacetime
symmetries are respected. At the level of linear perturba-
tions various approaches have been developed in order to
try to parametrize different theories [40–50]. In this paper,
we work with the equation of state for perturbations (EoS)
approach [47–49]. A generic feature of modified gravity
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models is that new degrees of freedom arise at the level of
perturbations. The EoS approach packages the parametri-
zation into the gauge invariant entropy perturbation, Γ, and
anisotropic stress, ΠS, by eliminating these degrees of
freedom in favor of the perturbed fluid variables and metric
perturbations. The perturbed conservation equation,
δð∇μTμ

νÞ ¼ 0, gives two evolution equations for the
density perturbation, δρ, and divergence of the velocity
field, θS. For example, in the synchronous gauge they are
given by

�
δ

1þ w

�0
¼ −k2θS −

1

2
h0 −

3H
1þ w

wΓ; ð1Þ

ð1þ wÞθS0 ¼ Hð1þ wÞ
�
3
dP
dρ

− 1

�
θS þ dP

dρ
δ

þ wΓþ 2

3
wΠS; ð2Þ

where primes denote conformal time differentiation
and H is the conformal Hubble parameter. The metric
perturbations, h and η, are evolved via Einstein’s equation.
However, the forms of ΠS and Γ are not known, and
hence (1) and (2) are not closed. If we can somehow
specify Γ and ΠS as linear functions of the perturbed
fluid variables, metric perturbations, and their derivatives
only, these equations close, i.e. we wish to write Γ ¼
Γðδ; θS; h0; η;…Þ and ΠS ¼ ΠSðδ; θS; h0; η;…Þ, or equiv-
alently in terms of the dark energy (de) and matter (m)
fluid variables, Γ ¼ Γðδde; θSde; δm; θSmÞ and ΠS ¼
ΠSðδde; θSde; δm; θSmÞ. Our approach is to eliminate the
internal degrees of freedom describing the dynamics of
the modified gravity theory, via expressions for δ and θS,
supplemented by the equation of motion for the vector
field. In principle, the equations of motion and hence the
perturbed fluid variables have already been derived in
[36,37], for example, although the equations of state have
not been computed. However, in most of the previous work
the so-called “acceleration” term has not been included,
corresponding to the c4 term in [35]. This term is often
either completely ignored or argued that a transformation of
the coefficients can remove it. However, we discuss later
why this is not true in general and so keep the c4 term in our
subsequent analysis. In particular, we extend on previous

work done by including the c4 term for F ðKÞ theories in
so-called generalized Einstein-Aether, as well as using the
EoS formalism.
Although in this paper we use a specific Lagrangian to

work with, one of the advantages of the EoS approach is
that it allows the computation of cosmological perturba-
tions in a model independent way. In [49] this approach
was applied to generic scalar-tensor theories by specifying
only the field content of the Lagrangian and nothing
specific about its functional form. This approach also
provides a set of modifications that are, in principle, easy
to insert into numerical codes. Equations of state have
already calculated for various different classes of theories,
for example, the elastic dark energy (EDE) [51], which was
shown to be equivalent to Lorentz violating, massive
gravity theories [52]. They have also been calculated for
general scalar-tensor theories [49] and in particular
Quintessence, k-essence, KGB, and Horndeski theories
[18]. In these cases, the degree of freedom to be eliminated
is related to the perturbed scalar field, δφ, and its deriv-
atives. This was also shown to be the case for fðRÞ gravity
and was studied in [53]. In this paper we apply the EoS
approach to generalized Einstein-Aether theories. The
expressions for Γ and ΠS are shown in Table I for some
of these theories, in the synchronous gauge, where fAig are
functions of background quantities and c2s ¼ δP=δρ is the
squared sound speed of scalar perturbations. We do not
provide the expressions in fðRÞ gravity here as they are
quite complicated; however they are presented in [53].
This paper is organized as follows. In Sec. II we present

the model for generalized Einstein-Aether and derive the
equations of motion. We also briefly mention subcases to
this model that have been studied previously. We then study
the theory at linear perturbative order (Sec. III) in the scalar,
vector, and tensor sector and present expressions for the
perturbed fluid variables in both the conformal Newtonian
and synchronous gauges. We then proceed to derive the
gauge invariant equations of state for perturbations
(Sec. IV) by eliminating all the internal degrees of freedom
that arise from introducing the vector field. From these we
also study the evolution of the Newtonian gravitational
potentials. We then conclude in Sec. V and discuss
future steps.
Natural units are used throughout with c ¼ ℏ ¼ 1 and

the metric signature is ð−;þ;þ;þÞ.

TABLE I. Expressions for Γ and ΠS in terms of the dark energy perturbed fluid variables and metric perturbations
for some dark energy models and modified gravity theories, in the synchronous gauge.

Theory Scalar anisotropic stress, wΠS Entropy perturbation, wΓ

Minimally coupled scalar fields 0 ðc2s − dP
dρÞ½δþ 3Hð1þ wÞθS�

KGB 0 A1δþA2θ
S þA3h0 þA4h00

EDE 3
2
ðw − c2s Þ½δ − 3ð1þ wÞη� 0
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II. GENERALIZED EINSTEIN-AETHER
FIELD EQUATIONS

A. Field equations

The Lagrangian for generalized Einstein-Aether is [36]

16πGLA ¼ M2F ðKÞ þ λðgμνAμAν þ 1Þ; ð3Þ

where we introduce the vector field Aμ, which is known as
the Aether field. The scalar K is defined by

K ¼ 1

M2
Kαβ

μν∇αAμ∇βAν ð4Þ

and the rank-4 tensor is defined by

Kαβ
μν ¼ c1gαβgμν þ c2δαμδ

β
ν þ c3δανδ

β
μ þ c4AαAβgμν: ð5Þ

Here, fcig are dimensionless constants, and M has dimen-
sions of mass. The “kinetic tensor”, Kαβ

μν, determines the
derivative squared terms of the Aether field. Similar to
generalization of Quintessence to k-essence, the kinetic
terms have been modified to an arbitrary, dimensionless
function F ðKÞ. An important feature of Einstein-Aether
models is the presence of the Lagrange multiplier λ. This
will constrain the Aether field to have a timelike unit norm.
As we will see, this will also have an effect on the
propagating degrees of freedom at the perturbative level.
The full action that we will study is then

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
Rþ LA

�
þ Sm; ð6Þ

where the action for the matter fields, Sm, does not couple
directly to the Aether field. The equations of motion can
now be obtained by varying (6) with respect to each degree
of freedom i.e. λ, Aμ, and gμν. Variation with respect to λ
yields the constraint gμνAμAν ¼ −1. The equation of
motion for the Aether field, Aμ, is

∇αðFKJαμÞ − c4FKAα∇αAν∇μAν ¼ λAμ; ð7Þ

where we define Jαμ ¼ Kαβ
μν∇βAν and FK ¼ dF

dK, and
variation with respect to the metric gives Einstein’s
equation in the form

Gμν ¼ 8πGTμν þUμν; ð8Þ

where Tμν is the energy-momentum tensor for the matter
fields only. All contributions from the Aether field are
included in Uμν which takes the form

Uαβ ¼ ∇μ½FKðJðαμAβÞ − JμðαAβÞ − JðαβÞAμÞ� þ λAαAβ

þ 1

2
M2Fgαβ þ c1FKð∇μAα∇μAβ −∇αAμ∇βAμÞ

þ c4FKAμAν∇μAα∇νAβ; ð9Þ

where brackets around indices denote symmetrization,
i.e. JðαβÞ ¼ 1

2
ðJαβ þ JβαÞ.

Using (7) to eliminate λ, we find that

Uαβ ¼ ∇μðFK½JðαμAβÞ − JμðαAβÞ − JðαβÞAμ�Þ
þ c1FKð∇μAα∇μAβ −∇αAμ∇βAμÞ
þ c4FKAμAν∇μAα∇νAβ þ ½c4FKAμAν∇μAτ∇νAτ

− Aν∇μðFKJμνÞ�AαAβ þ
1

2
M2Fgαβ: ð10Þ

The first line arises due to the metric variation in the
Christoffel symbols [39,54], the second line comes from
the variation in the c1 and c4 terms of (5), and the third line
is due to the variation of the Lagrange multiplier andffiffiffiffiffiffi−gp

terms.

B. Background dynamics

We will assume a background cosmology described by
the FRW metric,

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð11Þ

and that Aμ ¼ ð1; 0; 0; 0Þ. The reason for this choice of
Aμ is to satisfy the unit norm constraint and to be
compatible with the symmetries of FRW. Taking Uμν to
be the energy momentum tensor of a perfect fluid, then
from U00 and Uij we find that the background energy
density and pressure are

ρA ¼ 3αH2

�
FK −

F
2K

�
; ð12Þ

PA ¼ α

�
3H2

�
F
2K

− FK

�
− _FKH − FK

_H

�
; ð13Þ

where α ¼ c1 þ 3c2 þ c3, overdots denote differentiation
with respect to cosmic time, t, and

K ¼ 3αH2

M2
: ð14Þ

Note that we have absorbed a factor of 8πG into Uμν. We
can also check that PA and ρA satisfy the energy con-
servation equation

_ρA ¼ −3HðρA þ PAÞ; ð15Þ
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as they should by construction of (8). Note that the c4 term
plays no role in the background dynamics.
The time-time component of Einstein’s equation gives

the modified Friedmann equation as

ð1 − αFKÞH2 þ 1

6
FM2 ¼ 8πG

3
ρm: ð16Þ

If we were to demand that the theory is indistinguishable
from a cosmological constant at background order, then
from (16) we obtain the differential equation

K
dF
dK

−
1

2
F ¼ Λ

M2
; ð17Þ

where we have substituted H2 for K via (14). The solution
to this equation is

F ¼ Bð�KÞ1=2 − 2Λ
M2

; ð18Þ

depending on the sign of K and where B is an arbitrary
integration constant. The case of a general power law has
been studied in [36–38] as well as more exotic forms, for
example see [54,55]. Indeed, the functional form of F ðKÞ
must be specified at some point to make observational
predictions. However, since F ðKÞ could in principle be
anything, it would be ideal if the form of F ðKÞ could be
found by specifying more standard parameters describing
the background dynamics e.g. wde, Ωde;0, etc. Since any
new dark energy model will at least have to be compatible
with ΛCDM “globally", it makes sense to demand that
generalized Einstein-Aether must yield a ΛCDM cosmol-
ogy and in turn, this will restrict the form of F ðKÞ. Since
the background evolution of this model will be identical to
ΛCDM, the effects of perturbations will become very
important as it is only the dynamics at the perturbative
level which will be able to distinguish this model from
ΛCDM, where CDM refers to cold dark matter.
Let us now demand that the Aether field energy density

and pressure obey a more general equation of state i.e.
PA ¼ wdeρA, where wde is constant. Since current obser-
vations do not yet sufficiently constrain anything other than
constant wde this is a reasonable assumption to make;
however this may change in the near future. We can rewrite
(13) as

PA ¼ −ρA − αð2KFKK þ FKÞ _H ð19Þ

and so,

ð1þ wdeÞM2

�
KFK −

1

2
F
�

¼ −αð2KFKK þ FKÞ _H;

ð20Þ

where we have written H2 in terms of K. If we can write
_H ¼ _HðKÞ, then (20) will give us a differential equation to
solve for F ðKÞ satisfying a certain value of wde.
We write the Friedmann equation as

�
H
H0

�
2

¼ Ωm;0

a3
þ Ωde;0

a3ð1þwdeÞ ; ð21Þ

where we have defined 8πGρde ¼ ρA, Ωi ¼ 8πG
3H2 ρi, and for

this section only the subscript “m” refers to matter with
Pm ¼ 0. Differentiating this and combining with (21) to
eliminate Ωde;0 gives

1

a3
¼ 1

wdeΩm;0

�
ð1þ wdeÞ

�
H
H0

�
2

þ 2 _H
3H0

2

�
: ð22Þ

We can also use the Raychaudhuri equation, given by

_H þH2 ¼ −
4πG
3

½ρm þ ð1þ 3wdeÞρde�: ð23Þ

Inserting (12) we have that

_H
H0

2
þ
�
H
H0

�
2

¼ −
Ωm;0

2a3
−

M2

6H0
2
ð1þ 3wdeÞ

�
KFK −

1

2
F
�
; ð24Þ

and so using (22) we find that

_HðKÞ ¼ −
M2

2

�
K
α
þ wde

�
KFK −

1

2
F
��

: ð25Þ

Therefore, the differential equation we must solve is then

ð1þ wdeÞð2KFK − F Þ

¼ ð2KFKK þ FKÞ
�
Kþ 1

2
αwdeð2KFK − F Þ

�
: ð26Þ

For wde ¼ −1, then this reduces to

ð2KFKK þ FKÞ
�
K −

1

2
αð2KFK − F Þ

�
¼ 0; ð27Þ

for which there are two branches of solutions,

F ¼ 2

α
KþDð�KÞ1=2; ð28Þ

F ¼ Bð�KÞ1=2 þ C; ð29Þ

again depending on the sign ofK and where B, C andD are
integration constants. If we insert (28) into (16) we find that
the Friedmann equation becomes ρm ¼ 0; and therefore we
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ignore this branch of the solution. For the other branch, we
see that (29) is what we obtained before from demanding
a cosmological constant, which sets C ¼ −2Λ=M2 ¼
−6H2

0ΩΛ;0=M2. Therefore, the only functional form for
F which gives rise to an exact ΛCDM cosmology, at
background order, is (18). More generally, we see that the
initial conditions are related via (12), such that if we specify
that today F ðK0Þ ¼ F 0, then it must be that

FK;0 ¼
Ωde;0

α
þ F 0

2K0

; ð30Þ

where FK;0 ¼ FKðK0Þ and K0 ¼ Kða ¼ 1Þ. Applying
these initial conditions to (29) we find that

F ¼
�
F 0 þ

6H2
0Ωde;0

M2

��
K
K0

�
1=2

−
6H2

0Ωde;0

M2
: ð31Þ

At background order, we appear to have 5 parameters
fwde;Ωde;0;F 0;M; αg which we must specify in order to
compute F . Varying α will vary the domain over which F
varies as a function ofK. It may also seem that α will affect

the functional form of F , as it appears explicitly in (26).
However, note that this is somewhat misleading because
K ∝ α and the explicit dependence of α in (26) is removed
under a rescaling K → K=α. This can also be seen from
(12) and (13), where the factor of α is removed under the
same rescaling. Therefore, α can take on any value for the
purposes of the background evolution, and so we will fix
α ¼ 1 for the rest of this section.
The evolution of F for different fwde;F 0;Mg is

shown in Fig. 1. We will fix Ωde;0 ¼ 0.691 and
H0 ¼ 2.132 × 10−42 hGeV, where h ¼ 0.678 [5]. To study
the effect of varying F 0 we will look to the analytical
solution for wde ¼ −1 in (31), withM ¼ H0. The evolution
of F will be such that it will be driven to F 0 at a ¼ 1, as
shown in Fig. 1. The parameter F 0 is similar to designer
fðRÞ theories where the analogous parameter in [53] was
called B0. We see that in the past F is approximated well
by a pure power law, corresponding to the behavior of
the first term in (31), since this terms dominates in the past.
For F 0 ≫ 6H2

0Ωde;0=M2, this power law behavior persists
into the dark energy dominated era as F → F 0. If F 0 ≲
6H2

0Ωde;0=M2 then for ðK=K0Þ1=2 ≫ 1 the first term still

FIG. 1. Top left panel: Comparison of the evolution of F due to varying F 0. In these models M ¼ H0 and wde ¼ −1 are fixed. Top
right panel: Comparison of the evolution of F due to the variation ofM, as a multiple ofH0. In these models F 0 ¼ 1 and wde ¼ −1 are
fixed. Bottom left panel: Comparison of the evolution of F for varying wde close to −1. In these models F 0 ¼ 1 andM ¼ H0 are fixed.
Bottom right panel: Comparison of the evolution of M2F for varying M2 and F 0, with M2F 0=H2

0 ¼ 1 and wde ¼ −1 fixed.
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dominates in (31), and we still observe the power law
behavior. However, as ðK=K0Þ1=2 → 1 the second term in
(31) becomes comparable to the first and so the power law
behavior is broken as F → F 0, as seen in Fig. 1.
We note that the variation of the mass scale,M, also has a

similar effect to varying F 0, as the behavior of F will
depend on the relative size of F 0 and 6H2

0Ωde;0=M2 from
(31). Similar to α, varying M will also change the domain
ofF . It may seem thatM should not influence the evolution
of F as it does not appear explicitly in (26). However,
similar to α, the M dependence is hidden via K ∝ M−2.
Under a rescaling K → M2K, we see that there is in fact a
M dependence in (26). However, if we instead work with
the combinationM2F , then under the rescaling we find that
(26) becomes independent of M. Indeed, note that F
appears as M2F in the Lagrangian (3) and from (31) we
can write this as

M2F ¼ ðM2F 0 þ 6H2
0Ωde;0Þ

�
K
K0

�
1=2

− 6H2
0Ωde;0: ð32Þ

Hence, we see that any change in M can be offset with a
change in F 0, i.e. M and F 0 are degenerate, as seen in
Fig. 1. As expected, the choice of M does not affect the
functional form of M2F . We will therefore fix M ¼ H0,
corresponding to the approximate mass scale dark energy
begins to dominate, and keep F 0 as a free parameter.
For solutions close to wde ¼ −1, we do not expect to see

large deviations from the analytical solution. Indeed, the
previous discussion about the power law behavior still
holds for solutions with wde sufficiently close to −1, as seen
in Fig. 1. Although unfavored by current observations, dark
energy models with wde ≠ −1 have not been completely
ruled out and so we will allow for this in the subsequent
analysis.
To summarize, for the background evolution we have

3 free parameters fwde;Ωde;0;F 0g to specify, not 5,
since α has no effect on the background evolution, other
than a rescaling of the domain as a function of K, and
M2 is degenerate with F 0. While the background evo-
lution only requires us to specify fwde;Ωde;0;F 0;Mg, as
we will see in Sec. IV, at the level of linear perturbations
the value of α and the other fcig coefficients will be
important.

C. Subclasses to generalized Einstein-Aether

There are a number of interesting subclasses of the
generalized Einstein-Aether model that have been studied
previously which we will mention here.

1. Linear Einstein-Aether

The first is perhaps the most obvious simplification to
this model, other than the absence of the Aether field, and

that is to set F ðKÞ ¼ K, and indeed this is the form of
Einstein-Aether that was originally proposed in [34].
In this case, the equations of motion become

∇τðJτμÞ − c4Aα∇αAν∇μAν ¼ λAμ ð33Þ

and

Uαβ ¼ ∇μðJðαμAβÞ − JμðαAβÞ − JðαβÞAμÞ þ c1ð∇μAα∇μAβ

−∇αAμ∇βAμÞ þ c4AμAν∇μAα∇νAβ

þ ðc4AμAν∇μAτ∇νAτ − Aν∇μJμνÞAαAβ þ
1

2
Kgαβ:

ð34Þ

The energy density and pressure are then

ρA ¼ 3

2
αH2; PA ¼ −

3

2
αH2 − α _H: ð35Þ

For a universe dominated by a fluid species
with equation of state P ¼ wiρ the scale factor is
a ∝ t2=3ð1þwiÞ. We therefore have that

PA

ρA
¼ wde ¼ −1 −

2 _H
3H2

¼ wi; ð36Þ

i.e. the equation of state parameter for Aether field in linear
Einstein-Aether matches that of other fluids present in the
Universe [39]. This behavior prevents linear Einstein-
Aether, F ðKÞ ¼ K, from being a dark energy candidate
and is one of the motivations for its generalization.

2. Generalized Einstein-Aether with c4 = 0

As already mentioned, many previous studies of
Einstein-Aether models set c4 ¼ 0. It is often argued that
this can be done via a redefinition of the coefficients.
However, we will see in the next section that this can only
be achieved after a specific choice of Aμ which has further
consequences at the level of linear perturbations. In this
case, the equations of motion become

∇νðFKJνμÞ ¼ λAμ; ð37Þ

and

Uαβ ¼ ∇μðFK½JðαμAβÞ − JμðαAβÞ − JðαβÞAμÞ�
þ c1FKð∇μAα∇μAβ −∇αAμ∇βAμÞ

− AαAβAν∇μðFKJμνÞ þ
1

2
M2Fgαβ: ð38Þ

3. The khronometric model

The khronometric model [56,57] is a version of Einstein-
Aether where the Aether field is constrained via a
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scalar field, φ, called the khronon. In this case, the field is
defined as

Aμ ¼ −
∂μφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gαβ∂αφ∂βφ
q ; ð39Þ

and so the timelike unit norm constraint is satisfied
automatically. In doing so, the Aether is restricted to be
orthogonal to a set of spacelike surfaces defined by φ. At
background order we assume φ ¼ φðtÞ and so from (39) we
have that Aμ ¼ ð1; 0; 0; 0Þ, which is the same as before.
Therefore, the choice of the khronon definition has no
effect on background dynamics.
The khronometric model was first proposed in [56],

where φ sets a preferred global time coordinate. It was
discussed how this model describes the low energy limit of
the consistent extension of Horava gravity, a quantum
theory of gravity. At low energies, this reduces to a Lorentz-
violating scalar-tensor gravity theory. For more details see
[56–59].
For this choice of the Aether field, the c1, c3 and c4 terms

are no longer independent. The twist vector is defined
as [60]

ωα ¼ εαβμνAβ∇μAν; ð40Þ

where εαβμν is the four-dimensional Levi-Civita symbol,
and ωα ¼ 0 if Aμ is hypersurface orthogonal. If ωα ¼ 0
then

wαwα ¼ 0 ¼ εαβμνε
αγρσAβAγ∇μAν∇ρAσ

¼ −δγρσβμνA
βAγ∇μAν∇ρAσ; ð41Þ

where δγρσβμν is the generalized Kronecker delta. Therefore,

− AγAγ∇ρAσ∇ρAσ − AσAγ∇ρAσ∇γAρ − AρAγ∇ρAσ∇σAγ

þ AγAγ∇ρAσ∇σAρ þ AρAγ∇ρAσ∇γAσ

þ AσAγ∇ρAσ∇ρAγ ¼ 0: ð42Þ

From Aγ∇ρAγ ¼ ∇ρðAγAγÞ − Aγ∇ρAγ , applying the unit
norm constraint gives Aγ∇ρAγ ¼ 0, and so

AρAγ∇ρAσ∇γAσ ¼ ∇ρAσ∇σAρ −∇ρAσ∇ρAσ: ð43Þ

Note that the left-hand side of (43) is the c4 term in (5).
Since the terms on the right-hand side of (43) are related to
the c1 and c3 terms, we are able to absorb c4 into the other
coefficients effectively setting c4 ¼ 0 i.e. c1 → c01 ¼ c1 −
c4 and c3 → c03 ¼ c3 þ c4 giving

Kαβ
μν ¼ c01g

αβgμν þ c2δαμδ
β
ν þ c03δ

α
νδ

β
μ: ð44Þ

We therefore see that it is possible to set c4 ¼ 0, but only if
the choice is made that Aμ is also hypersurface orthogonal.
While this has no effect at background order, we will see
later that differences arise at the level of linear perturbations
for the vector sector. Furthermore, this is not the only
choice we can make as (43) also allows a redefinition which
could remove c1 or c3 instead.

III. LINEAR PERTURBATIONS

We will present results for perturbations in the scalar
sector in both the synchronous and conformal Newtonian
gauge. We perturb the metric as

gμν ¼ ḡμν þ δgμν ¼ a2ðτÞðημν þ hμνÞ; ð45Þ

such that

ds2 ¼ a2ðτÞ½−ð1þ 2ΨÞdτ2 þ ðδij þ hijÞdxidxj�; ð46Þ

where we now work in conformal time, τ. In the synchro-
nous gauge we set Ψ ¼ 0 and decompose hij into [61,62]

hij ¼ k̂ik̂jhþ
�
k̂ik̂j −

1

3
δij

�
6ηþ 2k̂ðiðhV1l̂jÞ þ hV2m̂jÞÞ

þ hþðl̂il̂j − m̂im̂jÞ þ h×ðl̂im̂j − l̂jm̂iÞ;

where the unit vectors fk̂; l̂; m̂g form an orthonormal basis
in k-space. Here, h and η are the scalar perturbations, hV1

and hV2 are the vector perturbations, and hþ and h× are the
tensor perturbations. In the conformal Newtonian gauge we
set hscalarij ¼ −2Φδij, while the vector and tensor perturba-
tions are as before in the synchronous gauge.
We also perturb the Aether field as [38]

Aμ ¼ Āμ þ δAμ ¼ 1

a
ð1þ X; ∂iV þ iBiÞ; ð47Þ

where V is the longitudinal scalar mode and Bi is the
transverse vector mode such that kiBi ¼ 0. The unit norm
constraint demands that X ¼ −Ψ, and so

δAμ ¼ 1

a
ð−Ψ; ∂iV þ iBiÞ: ð48Þ

Hence, we see that the timelike unit norm constraint means
that there is only one scalar degree of freedom, V, along
with a transverse vector mode, Bi. In what follows, we will
suppress overbars to denote background order quantities.
The perturbed energy momentum tensor is given by
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δUαβ ¼ δð∇μ½FKðJðαμAβÞ − JμðαAβÞ − JðαβÞAμÞ�Þ þ c1FKKδKð∇μAα∇μAβ −∇αAμ∇βAμÞ
þ c1FKδð∇μAα∇μAβ −∇αAμ∇βAμÞ þ c4FKKδKAμAν∇μAα∇νAβ þ c4FKδðAμAν∇μAα∇νAβÞ

þ δð½c4FKAμAν∇μAτ∇νAτ − Aν∇μðFKJ
μ
νÞ�AαAβÞ þ

1

2
M2ðFδgαβ þ gαβFKδKÞ: ð49Þ

For a general energy-momentum tensor, Eμν, we can
decompose its perturbations as [61]

δEμ
ν ¼ ðδρþ δPÞuμuν þ δPδμν þ ðρþ PÞðδuμuν

þ δuνuμÞ þ PΠμ
ν; ð50Þ

where uμ ¼ 1
a ð1; 0; 0; 0Þ, δuμ ¼ 1

a ð0; viÞ and Πμ
ν is the

anisotropic stress, with the properties uνΠμ
ν ¼ 0,

Πμ
ν ¼ Πν

μ, and Πμ
μ ¼ 0. Projecting out the perturbed

fluid variables, we find that

δE0
0 ¼ −δρ; ð51Þ

δE0
i ¼ ðρþ PÞvi; ð52Þ

δEi
0 ¼ −ðρþ PÞvi; ð53Þ

δEi
j ¼ PΠi

j þ δPδij: ð54Þ

Similar to hij, we can decompose vi and Πij into scalar,
vector, and tensor parts. They are given by [63]

vi ¼ VSk̂i þ VV1l̂i þ VV2m̂i; ð55Þ

Πij ¼
�
k̂ik̂j −

1

3
δij

�
ΠS þ 2k̂ðiðΠV1 l̂jÞ þ ΠV2m̂jÞÞ

þ Πþðl̂il̂j − m̂im̂jÞ þ Π×ðl̂im̂j − l̂jm̂iÞ; ð56Þ

whereas the transverse vector, Bi, only has vector
modes i.e.

Bi ¼ BV1l̂i þ BV2m̂i: ð57Þ

In a general gauge, the perturbed fluid variables from
(48) in k-space are then

a2δρ ¼ α

�
3FKKδKH2 þ FKH

�
1

2
h0 − k2V − 3HΨ

��
þ c14FKk2ðV 0 þHV þ ΨÞ; ð58Þ

a2δP ¼ αFK

�
HΨ0 þ ð2H0 þH2ÞΨ −

1

6
ðh00 þ 2Hh0Þ þ 1

3
k2ðV 0 þ 2HVÞ

�

− αFKK

��
H0 þ 2H2 þ FKKK

FKK
K0H

�
δK þ δK0H −

1

6
K0ð12HΨþ 2k2V − h0Þ

�
; ð59Þ

a2ðρþ PÞvi ¼ iα

�
ðFKðH2 −H0Þ − FKKK0HÞξi −

1

2
k2Bi

�
þ i

�
3

2
c2 þ c1

�
FKk2Bi

þ ic14½FKðξ00i þ 2Hξ0i þ ðH0 þH2Þξi þ kiΨ0 þHkiΨÞ þ FKKK0ðξ0i þHξi þ kiΨÞ�; ð60Þ

a2PΠi
j ¼ c13

�
FKKK0

�
kikjV −

1

2
hij0

�
þ FKkikjðV 0 þ 2HVÞ − FK

�
1

2
hij00 þHhij0

�

þ 1

6
ðFKKK0ðh0 − 2k2VÞ þ FKðh00 þ 2Hh0Þ − 2FKk2ðV 0 þ 2HVÞÞδij

þ
�
FKHþ 1

2
FKKK0

�
ðkiBj þ kjBiÞ þ 1

2
FKðkiBj0 þ kjBi0 Þ

�
; ð61Þ

where primes denote conformal time differentiation, c13 ¼ c1 þ c3, c14 ¼ c1 − c4, c123 ¼ c1 þ c3 þ c3, and
ξi ¼ kiV þ Bi.
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A. Scalar sector

The scalar components of vi and Πi
j are obtained via VS ¼ k̂ivi and ΠS ¼ 3

2
ðk̂ik̂j − 1

3
δjiÞΠi

j. If we further define
θS ¼ iVS=k ¼ ikivi=k2, then we have that

a2ðρþ PÞθS ¼ α½FKðH0 −H2Þ þ FKKK0H�V
− c14½FKðV 00 þ 2HV 0 þ ðH0 þH2ÞV þ Ψ0 þHΨÞ þ FKKK0ðV 0 þHV þΨÞ�; ð62Þ

2

3
a2PΠS ¼ c13

�
k̂ik̂

j −
1

3
δji

��
FKKK0

�
kikjV −

1

2
h0ij

�
þ FKkikjðV 0 þ 2HVÞ − FK

�
1

2
h00ij þHh0ij

��
: ð63Þ

Note that the expression for ΠS will simplify further once we specify the gauge. We further define the entropy perturbation,
Γ, as

wΓ ¼
�
δP
δρ

−
dP
dρ

�
δ: ð64Þ

It should be noted that whatever gauge we choose to work in, both ΠS and Γ are gauge invariant. The perturbed Aether field
equation of motion is obtained from perturbing (7). Taking the i-component, the k̂i direction will yield the equation of
motion governing the perturbation V, given by

c1

�
V 00 þ 2HV 0 þ ð2H2 þ k2ÞV þΨ0 þ 2HΨ −

1

2
k̂ik̂jhji0

�
þ c2

�
ðk2 þ 3H2 − 3H0ÞV þ 3HΨ −

1

2
h0
�

þ c3

�
ðk2 þH2 −H0ÞV þHΨ −

1

2
k̂ik̂jhji0

�
− c4½V 00 þ 2HV 0 þ ðH0 þH2ÞV þ Ψ0 þHΨ�

−
FKK

FK
ðαδKHþK0½αHV − c14ðV 0 þHV þΨÞ�Þ ¼ 0; ð65Þ

where we have substituted in for λ.

1. Conformal Newtonian gauge

In the conformal Newtonian gauge, where the metric perturbations are parametrized via Ψ and Φ, we have that

a2δρ ¼ ½3FKKδKH2 − FKHðk2V þ 3HΨþ 3Φ0Þ� þ c14FKk2ðV 0 þHV þ ΨÞ; ð66Þ

a2δP ¼ αFK

�
HΨ0 þ ð2H0 þH2ÞΨþΦ00 þ 2HΦ0 þ 1

3
k2ðV 0 þ 2HVÞ

�

− αFKK

��
H0 þ 2H2 þ FKKK

FKK
K0H

�
δK þ δK0H −

1

3
K0ð6HΨþ 3Φ0 þ k2VÞ

�
; ð67Þ

a2ðρþ PÞθS ¼ α½FKðH0 −H2Þ þ FKKK0H�V
− c14½FKðV 00 þ 2HV 0 þ ðH0 þH2ÞV þ Ψ0 þHΨÞ þ FKKK0ðV 0 þHV þΨÞ�; ð68Þ

a2PΠS ¼ c13½FKKK0k2V þ FKk2ðV 0 þ 2HVÞ�: ð69Þ

The perturbed Aether field equation of motion reads

α

�
ðH2 −H0 þ k2ÞV þHΨþΦ0 −

FKK

FK
ðδKHþK0HVÞ

�

þ c14

�
V 00 þ 2HV 0 þ ðH2 þH0ÞV þ Ψ0 þHΨþ FKK

FK
K0ðV 0 þHV þΨÞ

�
− 2c2k2V ¼ 0: ð70Þ
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2. Synchronous gauge

In the synchronous gauge, where hij is decomposed into h and η as in (47), we find that

a2δρ ¼ α

�
3FKKδKH2 þ FKH

�
1

2
h0 − k2V

��
þ c14FKk2ðV 0 þHVÞ ð71Þ

a2δP ¼ 1

3
αFK

�
k2ðV 0 þ 2HVÞ − 1

2
h00 −Hh0

�
− αFKK

��
H0 þ 2H2 þ FKKK

FKK
K0H

�
δK þ δK0H −

1

6
K0ðh0 þ 2k2VÞ

�
;

ð72Þ

a2ðρþ PÞθS ¼ α½FKðH0 −H2Þ þ FKKK0H�V − c14½FKðV 00 þ 2HV 0 þ ðH0 þH2ÞVÞ þ FKKK0ðV 0 þHVÞ�; ð73Þ

a2PΠS ¼ c13

�
FKKK0

�
k2V −

1

2
ðhþ 6ηÞ

�
þ FKk2ðV0 þ 2HVÞ−FK

�
1

2
ðh00 þ 6η00Þ þHðh0 þ 6η0Þ

��
: ð74Þ

The perturbed equation of motion for the Aether field reads

α

�
ðH2 −H0 þ k2ÞV −

1

2
ðh0 þ 4η0Þ − FKK

FK
ðδKHþK0HVÞ

�

þ c14

�
V 00 þ 2HV 0 þ ðH2 þH0Þ þ FKK

FK
K0ðV 0 þHVÞ

�
þ c2ðh0 þ 6η0 − 2k2VÞ ¼ 0: ð75Þ

B. Vector and tensor sectors

In the vector and tensor sectors, the vector and tensor
modes of vi and Πi

j can be computed via VV1 ¼ l̂ivi,
ΠV1 ¼ k̂il̂

jΠi
j, and Πþ ¼ 1

2
ðl̂il̂j − m̂im̂jÞΠi

j. Equivalent
expressions also exist for the V2 modes and Π×. Also,
analogous to θS, we can define θV1 ¼ iVV1=k ¼ il̂ivi=k,
and so we have that

a2ðρþ PÞkθV1 ¼ α½FKðH0 −H2Þ þ FKKK0H�BV1

þ 1

2
ðc3 − c1ÞFKk2BV1 − c14½FKðBV100

þ 2HBV10 þ ðH0 þH2ÞBV1Þ
þ FKKK0ðBV10 þHBV1Þ�; ð76Þ

a2PΠV1 ¼ c13

�
1

2
FKðkBV10 − hV1

00 Þ

þ
�
FKHþ 1

2
FKKK0

�
ðkBV1 − hV1

0 Þ
�
; ð77Þ

a2PΠþ ¼ −c13
�
1

2
FKhþ

00 þ
�
FKHþ 1

2
FKKK0

�
hþ0

�
:

ð78Þ

The time-time and traced ij-components are zero in the
vector and tensor sectors since δρ and δP only have
scalar modes.

The equation of motion for the Aether field in the l̂i

direction is given by

α

�
ðH2 −H0ÞBV1 −

1

2
khV1

0 −
FKK

FK
K0HBV1

�

þ c1k2BV1 þ 3

2
c2khV1

0 þ c14

�
BV100 þ 2HBV10

þ ðH0 þH2ÞBV1 þFKK

FK
K0ðBV10 þHBV1Þ

�
¼ 0: ð79Þ

Note that the two vector and tensor modes are interchange-
able. From here on we will not discriminate between them
and denote them simply as θV , ΠV and ΠT .

C. Vector modes in the khronon

If we restrict ourselves to the case where the Aether field
is defined by the khronon in (39), then we find that

δAμ ¼
a
φ0

�
−∂μδφþ ∂μφ

�
Ψþ δφ0

φ0

��
; ð80Þ

where δφ is the perturbed khronon field. The time compo-
nent is then δA0 ¼ aΨ, which is a consequence of the
timelike unit norm constraint, as in (48). However, if we
calculate the spatial component we find that

δAi ¼ −
a
φ0 ∂iδφ ⇒ Bi ¼ 0; ð81Þ
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i.e. there is no propagating transverse vector mode.
Therefore, if we redefine 1

φ0 ∂iδφ ¼ ∂iV then we obtain
the results from Sec. III. 1. Therefore, the scalar sector for
generalized Einstein-Aether and the khronon are com-
pletely equivalent [57], up to a redefinition of the coef-
ficients discussed previously.

IV. EQUATIONS OF STATE FOR
PERTURBATIONS

A. Scalar sector

We now derive the equations of state, Γ and ΠS;V;T , in
terms of the other perturbation variables by fully eliminat-
ing the internal degrees of freedom introduced by the theory
i.e. V, Bi, and their derivatives. In the scalar sector we do
this via the expressions for δρ and θS. Let us first work in
the conformal Newtonian gauge. Initially it may not seem
possible to eliminate the degrees of freedom as we have that
θS ≡ θSðV; V 0; V 00Þ and δρ≡ δρðV; V 0Þ, i.e. we have three
unknowns and only two equations. However, we can use
the perturbed Aether field equation of motion (70) to
reduce the dimensionality of the problem. Using this to
eliminate V 00 in (68) and gathering terms in V and V 0, we
find that

a2δρ¼c14FKk2V 0−
�
αFK−c14FKþ

6α2FKKH2

a2M2

�
Hk2V

þc14FKk2Ψ−3αH
�
FKþ

6αFKKH2

a2M2

�
ðHΨþΦ0Þ;

ð82Þ

a2ρð1þ wdeÞθS ¼
�
c123FK þ 2α2H2FKK

a2M2

�
k2V

þ α

�
FK þ 6αH2FKK

a2M2

�
ðHΨþΦ0Þ;

ð83Þ

where we have substituted in for K from (14) and

δK ¼ −
2αH
a2M2

ðk2V þ 3HΨþ 3Φ0Þ: ð84Þ

So we see that in fact θS ≡ θSðVÞ. Note that we can already
see the emergence of the gauge invariant combination,
HΨþΦ0, in the 0i-component of Einstein’s equation that
was used in [43–45].
We can then write this system of equations as

a2
�

δρ

ρð1þ wdeÞθS
�

¼ k2
�
A B

0 C

��
V 0

V

�
þ
�
D

E

�
;

ð85Þ

with

A ¼ c14FK; ð86Þ

B ¼
�
c14FK − αFK −

6α2FKKH2

a2M2

�
H; ð87Þ

C ¼
�
c123FK þ 2α2H2FKK

a2M2

�
; ð88Þ

D ¼ c14FKk2Ψ − 3αH
�
FK þ 6αFKKH2

a2M2

�
ðHΨþΦ0Þ;

ð89Þ

E ¼ α

�
FK þ 6αH2FKK

a2M2

�
ðHΨþΦ0Þ: ð90Þ

In [49] the ABC matrix in (85) was dubbed the activation
matrix, as it determines which degrees of freedom are
present, or activated, in the perturbed fluid variables.
Inverting this then yields expressions for V and V 0 in
terms of δρ, θS, the metric perturbations,Ψ andΦ, and their
derivatives. Eliminating for these in ΠS (69), we find that
we can write

wdeΠS ¼ A1δþ A2ð1þ wÞθS þ A3k2Ψþ A4ðHΨþΦ0Þ;
ð91Þ

where

A1 ¼
c13
c14

; ð92Þ

A2 ¼
3c13H

3c123 þ 2αγ2

�
1þ 2ðH0 −H2Þ

H2
γ2 þ

αð1þ 2γ2Þ
c14

�
;

ð93Þ

A3 ¼
2c13γ1

3αH2ð2γ1 − 1Þ ; ð94Þ

A4 ¼
2c13γ1ð1þ 2γ2Þ

Hð2γ1 − 1Þð3c123 þ 2αγ2Þ

×

�
2

�
c13
c14

−
ðH0 −H2Þ

H2
γ2

�
− 1

�
; ð95Þ

and we define the dimensionless functions

γ1 ¼
KFK

F
; γ2 ¼

KFKK

FK
; γ3 ¼

KFKKK
FKK

: ð96Þ

In the parlance of [53], we write (91) in terms of a set of
dimensionless variables given in Table II, where h∥ ¼
hþ 6η, K ¼ k=H, and ϵH ¼ 1 −H0=H2. Note that these
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new variables are gauge invariant except T, which we be
important in the synchronous gauge. From this we can
write (91) as

wdeΠS ¼ cΠΔΔþ cΠΘΘ̂þ cΠXX þ cΠYK2Y; ð97Þ

where

cΠΔ ¼ c13
c14

; ð98Þ

cΠΘ ¼ c13
3c123 þ 2αγ2

�
1 − 2

�
ϵHγ2 þ

c13
c14

��
; ð99Þ

cΠX ¼ 2c13γ1ð1þ 2γ2Þ
ð2γ1 − 1Þð3c123 þ 2αγ2Þ

�
2

�
c13
c14

þ ϵHγ2

�
− 1

�
;

ð100Þ

cΠY ¼ 2c13γ1
3αð1 − 2γ1Þ

: ð101Þ

In a similar fashion, we can eliminate V and V 0 in δP and
hence write the entropy perturbation as

wdeΓ¼cΓΔΔþcΓΘΘ̂þcΓWWþcΓXXþcΓYK2Y; ð102Þ

where

cΓΔ ¼ αð1þ 2γ2Þ
3c14

−
dP
dρ

; ð103Þ

cΓΘ ¼ α

3ð3c123 þ 2αγ2Þ
��

1 −
2c13
c14

�
ð1þ 2γ2Þ

− 6ϵHγ2

�
1þ 2

3
γ3

��
þ dP

dρ
; ð104Þ

cΓW ¼ 2γ1ð1þ 2γ2Þ
3ð2γ1 − 1Þ ; ð105Þ

cΓX ¼ 4αγ1
3ð2γ1 − 1Þð3c123 þ 2αγ2Þ

��
1þ c13

c14

�
ð1þ 2γ2Þ2

þ 3c13
α

�
1þ 2γ2

�
1 − ϵH

�
1þ 2

3
γ3

����
; ð106Þ

cΓY ¼ 2γ1ð1þ 2γ2Þ
9ð1 − 2γ1Þ

: ð107Þ

Note that in (97) and (102) the perturbed fluid variables are
those for the dark energy fluid.
In order to ensure these results are truly gauge invariant,

we must do the same calculation in the synchronous gauge.
However, as mentioned previously, we now have an extra
variable, T, to deal with. Therefore, let us suppose that in
the synchronous gauge we find that

wdeΠS ¼ cΠΔΔþ cΠΘΘ̂þ cΠXX þ cΠYK2Y þ cΠTT;

ð108Þ

wdeΓ¼ cΓΔΔþ cΓΘΘ̂þ cΓWW þ cΓXXþ cΓYK2Y þ cΓTT;

ð109Þ

with cΠT , cΓT ≠ 0. If this was the case, ΠS and Γ would not
be gauge invariant due to the presence of T, and so it must
be that cΠT ¼ cΓT ¼ 0. Note that this was not necessary in
the conformal Newtonian gauge as T ¼ 0 from Table II. We
also require that in both gauges the coefficients are identical
i.e. cCNΠ;Γ ¼ cSyncΠ;Γ , because Δ; Θ̂;W; X, and Y are gauge
invariant. Indeed, doing this calculation in the synchronous
gauge we find that this is the case, and hence (97) and (102)
constitute the gauge invariant equations of state for the
perturbations and are both presented simultaneously in the
conformal Newtonian and synchronous gauges via Table II.
For details of this calculation in the synchronous gauge see
Appendix A.
To ensure that no coefficient diverges we require that α,

c14, γ1, 2γ1 − 1, and 3c123 þ 2αγ2 do not equal zero. If
α ¼ 0 then K ¼ 0, removing the dynamics of Einstein-
Aether completely, and so this must be excluded. As we
will see later, to prevent a diverging sound speed for
perturbations we must have that c14 ≠ 0 from (119). The
solution for γ1 ¼ 0 is constant F , which is just the case of a
cosmological constant with no Einstein-Aether and there-
fore has no perturbations, while setting 2γ1 − 1 ¼ 0 yields
ρm ¼ 0 from the Friedmann equation. The case for dis-
allowing 3c123 þ 2αγ2 ¼ 0 is more subtle. If this was true it
would set the coefficient of k2V in (83) to zero, and hence
the activation matrix would be singular, i.e. we would be
unable to eliminate the degrees of freedom V and V 0 from
our equations using θS. However, we note that this is not a

TABLE II. Combinations of the metric perturbations and
perturbed fluid variables are now written in terms of the
dimensionless variables given in this table, in both the conformal
Newtonian and synchronous gauges.

Variable Conformal newtonian Synchronous

T
h0∥

2HK2 0

W 1
HX0 − ϵHðX þ YÞ 1

HX0 − ϵHðX þ YÞ
X 1

HZ0 þ Y 1
HZ0 þ Y

Y Ψ 1
HT 0 þ ϵHT

Z Φ η − T

Δ δþ 3Hð1þ wÞθS δþ 3Hð1þ wÞθS
Θ̂ 3Hð1þ wÞθS 3Hð1þ wÞθS þ 3ð1þ wÞT
δP̂ δP δPþ P0T
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strict condition and could in principle be true for some
models as there is nothing that physically prevents this. For
the designerF ðKÞ in (31) this is nonzero and so all the cΠ;Γ
coefficients are well behaved.
Additionally, we can eliminate the metric perturbations

in favor of the perturbed fluid variables for matter and dark
energy as done in [18] for the Horndeski theory. This will
allow us to write (97) and (102) as

wdeΠS
de ¼ cΠΔde

Δde þ cΠΘde
Θ̂de þ cΠΔm

Δm

þ cΠΘm
Θ̂m þ cΠΠm

ΠS
m; ð110Þ

wdeΓde ¼ cΓΔde
Δde þ cΓΘde

Θ̂de þ cΓΔm
Δm

þ cΓΘm
Θ̂m þ cΓΓm

Γm; ð111Þ

where we now make explicit distinction between the
perturbed fluid variables for matter and dark energy. In
the notation of Table II, the perturbed Einstein equations
take the form [53]

2W ¼ Ωm

�
3δP̂m

ρm
þ 2wmΠS

m − 3Θ̂m

�

þΩde

�
3δP̂de

ρde
þ 2wdeΠS

de − 3Θ̂de

�
; ð112Þ

2X ¼ ΩmΘ̂m þ ΩdeΘ̂de; ð113Þ

−
2

3
K2Y ¼ ΩmðΔm − 2wmΠS

mÞ þ ΩdeðΔde − 2wdeΠS
deÞ;
ð114Þ

−
2

3
K2Z ¼ ΩmΔm þΩdeΔde: ð115Þ

Substituting for these in (97) yields

ð1 − 3cΠYΩdeÞwdeΠS
de

¼
�
cΠΔ −

3

2
cΠYΩde

�
Δde þ

�
cΠΘ þ 1

2
cΠXΩde

�
Θ̂de

−
3

2
cΠYΩmΔm þ 1

2
cΠXΩmΘ̂m þ 3cΠYΩmwmΠS

m:

ð116Þ

Similarly, the entropy perturbation becomes

�
1−

3

2
cΓWΩde

�
wdeΓde

¼
�
cΓΔþ

3

2
cΓWΩde

dP
dρ

����
de
−
3

2
cΓYΩde

�
Δde

þ3

2
Ωm

�
cΓW

dP
dρ

����
m
−cΓY

�
Δm

þ
�
cΓΘ−

3

2
cΓWΩde

�
1þdP

dρ

����
de

�
þ1

2
cΓXΩde

�
Θ̂de

þ1

2

�
cΓX−3cΓW

�
1þdP

dρ

����
m

��
ΩmΘ̂mþ3

2
cΓWΩmwmΓm:

ð117Þ

Note that (116) and (117) are completely general and not
specific to generalized Einstein-Aether. If for any theory
wdeΠS and wdeΓ can be written as (97) and (102), then (116)
and (117) will also be true automatically.
From these expressions we can derive the sound speed

for scalar perturbations. Starting from the perturbed con-
servation equations, (1) and (2), we can deduce that

δ00 þ � � � þ k2c2sδ ¼ Fðh; η;…Þ: ð118Þ

Therefore, extracting the coefficient of k2δ we find that

c2s ¼
1

c14

�
c123 þ

2

3
αγ2

�
: ð119Þ

In general, the sound speed of scalar perturbations
varies with time due to F . To ensure subluminal propa-
gation and stable growth of perturbations, we require that
0 ≤ 1

c14
ðc123 þ 2

3
αγ2Þ ≤ 1.

From here, we could attempt to obtain constraints on the
fcig coefficients by appealing to the behavior of perturba-
tions in the limit of Minkowski space, as in [64]. However,
as we have directly coupled the evolution of F to aðtÞ via a
designer approach, we argue that no sensible Minkowski
limit exists for this theory once this connection has been
made. For a brief discussion of this see Appendix B. In the
context of the equation of state approach, in the limit of
H → 0 we see that ρ, P → 0 from (12) and (13). Therefore,
the expressions for wdeΠS and wdeΓ cannot be computed
since wdeΠS appears as PΠS from the perturbed energy
momentum tensor (54) and wdeΓ can be written
as wdeρΓ ¼ ðδPδρ − dP

dρÞδρ.

B. Special cases

1. wde = − 1

Consider the case where we have exactly wde ¼ −1,
equivalent to ΛCDM. From Sec. II. 2 we have an analytical
solution given by (31) and in this case the cΠ and cΓ
coefficients reduce to
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cΠΔ ¼ c13
c14

; cΠΘ ¼ 1

2
ð1þ ϵHÞ −

c13
c14

;

cΠX ¼ 0; cΠY ¼ −
c13
3α

�
1þ M2F 0

6Ωde;0H2
0

��
H
H0

�
;

ð120Þ

and also

cΓΔ ¼ −cΓΘ ¼ −
dP
dρ

¼ 1; cΓW ¼ cΓX ¼ cΓY ¼ 0;

ð121Þ
and hence Γ ¼ δ. Here we see that from cΠY , as with the
background evolution, M and F 0 are degenerate.
This case is indistinguishable from ΛCDM at back-

ground order, but at the level of linear perturbations they are
not the same. Therefore, geometrical cosmological tests
such as SNe and BAOs would not be able to observe a
difference between ΛCDM and generalized Einstein-
Aether with wde ¼ −1, whereas probes which are sensitive
to perturbations, such as weak lensing, will be different and
can in principle distinguish between them.
From (31) we note that the ΛCDM limit is when F 0¼

−6H2
0Ωde;0=M2 and so F¼−6H2

0Ωde;0=M2. This case cor-
responds to the cosmological constant in the Friedmann
equation. Indeed, this also is reflected at the level of linear
perturbations since FK ¼ 0, and so all the perturbed fluid
variables and the equation of motion for V in Sec. III are
zero, as in ΛCDM. However, it seems that there is a
discontinuity in taking the limit of F 0 → −6H2

0Ωde;0=M2,
since in this limit the cΠ;Γ coefficients become

cΠΔ ¼ c13
c14

; cΠΘ ¼ 1

2
ð1þ ϵHÞ −

c13
c14

;

cΠX ¼ cΠY ¼ 0 ð122Þ
and

cΓΔ ¼ −cΓΘ ¼ 1; cΓW ¼ cΓX ¼ cΓY ¼ 0; ð123Þ
i.e. ΠS and Γ are nonzero in this limit, but are zero if
F 0 ¼ −6H2

0Ωde;0=M2 exactly. This is a property shared by
fðRÞ models in the limit of B0 → 0.

2. Power law

For a general power law with F ∝ ð�KÞn as studied in
[36–38], the coefficients become

cΠΔ ¼ c13
c14

; ð124Þ

cΠΘ ¼ c13
ð2nþ 1Þα − 6c2

�
1 − 2

�
ϵHðn − 1Þ − c13

c14

��
;

ð125Þ

cΠX ¼ 2nc13
ð2nþ 1Þα − 6c2

�
2c13
c14

− 1þ 2ϵHðn − 1Þ
�
; ð126Þ

cΠY ¼ 2nc13
3αð1 − 2nÞ ; ð127Þ

and

cΓΔ ¼ ð2n − 1Þα
3c14

−
dP
dρ

; ð128Þ

cΓΘ ¼ ð2n − 1Þα
3½ð2nþ 1Þα − 6c2�

�
1 − 2ϵHðn − 1Þ − c13

c14

�
þ dP

dρ
;

ð129Þ

cΓW ¼ 2

3
n; ð130Þ

cΓX ¼ 4n
3½ð2nþ 1Þα − 6c2�

�
αð2n − 1Þðc13 þ c14Þ

c14

þ 3c13

�
1 −

2

3
ϵHðn − 1Þ

��
; ð131Þ

cΓY ¼ −
2

9
n: ð132Þ

Note that cΠY is singular for the case of n ¼ 1
2
. Although

F ∝ ð�KÞ1=2 is also a solution to (26), inserting this into
the Friedmann equation (16) shows that this case corre-
sponds to an absence of dark energy at the level of
background cosmology.

C. Dynamics of linear perturbations in the scalar sector

The dynamics of scalar perturbations can be computed
via the perturbed fluid equations in (1) and (2). We will use
the designer F ðKÞ model via (26). Following the notation
of Table II we rewrite these equations as

_Δ − 3wΔþ gKϵHΘ̂ − 2wΠS ¼ 3ð1þ wÞX; ð133Þ

_̂Θþ 3

�
dP
dρ

− wþ 1

3
ϵH

�
Θ̂ − 3

dP
dρ

Δ − 2wΠS

− 3wΓ ¼ 3ð1þ wÞY; ð134Þ

where gK ¼ 1þ K2

3ϵH
and, for this section only, overdots

denote differentiation with respect to the logarithmic scale
factor, loga. For a cold, pressureless matter fluid with
wm ¼ ΠS

m ¼ Γm ¼ 0 and assuming wde constant, (133) and
(134) yield 4 differential equations for the dark energy and
matter perturbed fluid variables, given by

_Δm þ gKϵHΘ̂m ¼ 3X; ð135Þ
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_̂Θm þ ϵHΘ̂m ¼ 3Y; ð136Þ

_Δde − 3wdeΔde þ gKϵHΘ̂de − 2wdeΠS
de ¼ 3ð1þ wdeÞX;

ð137Þ

_̂Θde þ ϵHΘ̂de − 3wdeΔde − 2wdeΠS
de − 3wdeΓde

¼ 3ð1þ wdeÞY: ð138Þ

With these, the dynamics of the Newtonian gravitational
potential, Z ¼ Φ, can be computed directly from the
perturbed Einstein equation in (114) or via _Z ¼ X − Y
from the definition of Z in Table II. Note that in Table II the
variables and derivatives are in conformal time, not the
scale factor. To solve these equations we will opt to specify
ΠS

de and Γde terms of the perturbed fluid variables for dark
energy and matter, given in (116) and (117). The variables
X and Y are also specified in terms of the perturbed fluid
variables via the perturbed Einstein equations in (112) and
(113). We note that this is not the only way to proceed. For
example, instead of the perturbed fluid variables we could
have opted to work with the metric perturbation variables
W, X, Y, and Z. For more details see [53]. We set the initial
conditions as described in [53]. They are set at z ¼ 100

such that Δde ¼ Θ̂de ¼ 0, ΩmΔm ¼ − 2
3
K2Z, ΩmΘ̂m ¼ 2X,

and X ¼ Y ¼ Z. Since the behavior of the perturbations
will also depend of the specific choice of fcig and not just
α, we will fix c1 ¼ 1, c2 ¼ 1, c3 ¼ 1, and c4 ¼ −3. This
choice is somewhat arbitrary, other than ensuring the
subluminal propagation of the perturbations (119).
We investigate how the ratio of the Newtonian potentials

vary with scale. From Fig. 2, we see that at a ¼ 1, the large
scale behavior of Φ=Ψ is highly dependent on F 0, while
this is less so for wde near −1. We see that Φ=Ψ tends to a
constant in both the large and small K0 regimes. In all cases
the small scale behavior is such that Φ ¼ Ψ, and so this

indicates a vanishing wdeΠS
de for small scales. Note that

K0 ¼ 1 corresponds to a scale of 3.35 × 10−4 hMpc−1.
In the regimeK ≫ 1we find that the fΘ̂ig are negligible,

and so we can write wdeΠS
de ≈ cΠΔde

Δde þ cΠΔm
Δm. From

equations (135) to (138) we compute the second order
differential equations for fΔig, given by

Δ̈m þ ð2 − ϵHÞ _Δm −
3

2
ΩmΔm ¼ 3

2
ΩdeΔde; ð139Þ

Δ̈de þ ð5 − ϵHÞ _Δde þ
2

3
cΠΔde

K2Δde ¼ −
2

3
cΠΔm

K2Δm;

ð140Þ

where we have also used the Einstein equations for X (113)
and Y (114), with wde ¼ −1. Note that in (139) the
secondary source term arising from wdeΠS

de is subdominant
compared to ΩdeΔde, and so we have neglected this. From
(113) and (114), for small scales we have that

Y
Z
¼ 1 −

2ΩdeðcΠΔde
Δde þ cΠΔm

ΔmÞ
ΩdeΔde þΩmΔm

; ð141Þ

where the second term must be negligible from Fig. 2. In
order to explain this, note that from (140) we must have that
the solution tends to the particular solution

cΠΔde
Δde ¼ −cΠΔm

Δm: ð142Þ

Hence, the second term in (141) is always negligible
regardless of what the fcΠΔi

g are. Therefore, a vanishing
anisotropic stress at small scales is a generic feature of these
designer F ðKÞ models.
Using (142) in (139), we find that this becomes the

standard differential equation for the matter overdensity
with Newton’s constant replaced with an effective
Newton’s constant, Geff , given by

FIG. 2. Left panel: The spectrum of Φ=Ψ, or Z=Y, at a ¼ 1 as a function of scale for varying F 0 and wde ¼ −1. Right panel: The
spectrum of Φ=Ψ at a ¼ 1 as a function of scale for a general Einstein-Aether fluid with wde varying around −1 and F 0 ¼ 1.
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Geff

G
¼ 1 −

ΩdecΠΔm

ΩmcΠΔde

; ð143Þ

and the evolution of this is shown in Fig. 3. We see that the
ratio Geff=G is always of order unity but that for our choice

of fcig it decreases to Geff ≈ 0.78G at a ¼ 1, which should
lead to a suppression of structure at late times compared to
ΛCDM. We leave this as a matter for future investigation.
We also observe that increasing wde causesGeff=G to decay
faster at early times, while the opposite is true for
decreasing wde. It is interesting to note that the value of
Geff=G for different wde initially diverge and then converge
again at a ¼ 1. Note that what we have called Geff is
different to that in [37], for example, which is derived from
the modified Poisson equation.
We also investigate the evolution for the Newtonian

potential, Φ, as a function of a and this is shown in Fig. 4.
We see that for a designer F ðKÞ model which mimics a
ΛCDM background the evolution is now sensitive to the
scale, where K0 ¼ k=H0, unlike the case of a cosmological
constant. The amplitude ofΦ grows with respect to ΛCDM
for large scales, while for smaller scales the amplitude is
suppressed. For scalesK0 ≲ 1, we see thatΦ initially grows
before reaching a maximum and then decays due to the
increasing contribution from dark energy. A similar feature
was also observed in [37] for their power law model of F .

FIG. 3. The evolution of the effective Newton’s constant,
Geff=G, is shown for varying wde around −1.

FIG. 4. Top left panel: The evolution of the Newtonian potential, Φ, in ΛCDM (black solid line) and for different scales in a designer
F ðKÞmodel (dashed and dotted lines) for F 0 ¼ 1 and wde ¼ −1. Note that the potential for the ΛCDMmodel is scale independent. For
comparison we also show the evolution of Φ with the presence of a dark energy fluid with wde ¼ −1 and a constant negative squared
sound speed of c2s ¼ −10−2 (red lines), calculated using (144). Top right panel: The evolution of Φ in a generalized Einstein-Aether
universe with varying F 0 for wde ¼ −1 and K0 ¼ 1 fixed. Bottom panel: The evolution ofΦ for a general Einstein-Aether fluid with wde
varying around −1, with F 0 ¼ 1 and K0 ¼ 1 fixed.
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We note that this is very similar to other models which
introduce a new cosmological fluid with a negative squared
sound speed, c2s ¼ δP=δρ. We solve the differential equa-
tion governing the evolution of Φ [65,66]

d2Φ
da2

þ
�
1

H
dH
da

þ 4

a
þ 3

c2s
a

�
dΦ
da

þ
�
2

aH
dH
da

þ 1

a2
ð1þ 3c2s Þ þ

c2sk2

a2H2

�
Φ ¼ 0; ð144Þ

provided there is zero anisotropic stress and so Φ ¼ Ψ. In
models where c2s < 0 we observe the same behavior for Φ
rising to a maximum before decaying, as seen in Fig. 4. In
these models, the initial growth is due to an imaginary c2s
causing an unstable growth of perturbations. However, as
dark energy begins to dominate Φ decays as in ΛCDM.
This feature is enhanced for smaller scales until the effect of
dark energy in unable to overcome the unstable growth of
perturbations and Φ grows exponentially as seen for K0 ¼
100 in Fig. 4. While a fluid with c2s < 0 is unphysical, it is
interesting to note that this feature appears in a designer
F ðKÞ universe without the need for c2s < 0. Indeed, the
fcig coefficients were chosen to avoid this. Moreover, we
see that for designerF ðKÞ the opposite occurs compared to
ΛCDM and that as we go to smaller scales this feature is
suppressed rather than enhanced.

D. Vector and tensor sectors

We can also calculate the equation of state for the vector
sector. In this case, the function we specify is
ΠV ¼ ΠVðθVÞ. Since we only have one function, θV , to
eliminate the vector degree of freedom, BV , it may not seem
possible as θV ≡ θVðBV; BV 0

; BV 00 Þ, as seen from (76).
However, in a similar process to the scalar sector, we
can use the perturbed equation of motion (79) to eliminate
derivatives of BV . In doing so, (76) becomes

a2ρð1þ wdeÞθV ¼ 1

2
c13FKðkBV − hV

0 Þ: ð145Þ

Inserting this into (77), we obtain the equation of state for
perturbations in the vector sector as

wdeΠV
de ¼ ½ð1 − 3wdeÞð1þ wdeÞH�θVde þ ð1þ wdeÞθV 0

de:

ð146Þ

Note that this is exactly the same as the perturbed
conservation equation and is, therefore, a tautology. To
proceed we use the vector Einstein equations, given by

−
1

2a2
hV

0 ¼ 8πGρmð1þ wmÞθVm þ ρdeð1þ wdeÞθVde; ð147Þ
1

6H2
hV

00 þ 1

3H
hV

0 ¼ ΩmwmΠm þΩdewdeΠde: ð148Þ

Differentiating (147) and eliminating for θV
0

de and the metric
perturbations in (146), we find that

wdeΠV
de ¼ Hð1þ wdeÞθVde þ

Ωm

Ωde
½Hð1þ wmÞθVm − wmΠV

m�:

ð149Þ

For the tensor sector, since there are no new tensor
degrees of freedom, ΠT can only be a function of hT and its
derivatives. Therefore, (78) immediately constitutes the
equation of state for tensor perturbations and is given by

3αH2

�
FK −

F
2K

�
wdeΠT

de

¼ −c13
�
FKHþ 1

2
FKKK0

�
hT

0 −
1

2
c13FKhT

00
: ð150Þ

We can, therefore, derive the modification to the propaga-
tion speed of gravitational waves, due to the presence of
the Aether field. Projecting out the tensor mode of the
ij-component of the Einstein equation (8) yields

a2ðl̂il̂j − m̂im̂jÞδGi
j

¼ hT
00 þ 2HhT

0 þ k2hT

¼ a2ðl̂il̂j − m̂im̂jÞδUi
j ¼ 2a2PΠT; ð151Þ

assuming that the matter energy-momentum tensor
contributes zero anisotropic stress. Hence, from (150) we
find that

ð1þ c13FKÞhT 00 þ 2

�
Hþ c13

�
FKHþ 1

2
FKKK0

��

× hT
0 þ k2hT ¼ 0; ð152Þ

and so gravitational waves propagate with speed

c2grav ¼
1

1þ c13FK
: ð153Þ

We see that, in general, the propagation speed of gravi-
tational waves is time dependent via F . This is consistent
with the result in [37]. It is often argued that on the
grounds of causality that we should constrain cgrav ≤ 1, as
was said for the scalar perturbations (119). Indeed, this is
the standard argument that was often made in previous
work, for example see [64] and Appendix B. However, if
gravitational waves were to propagate subluminally we
would expect the existence of gravitational Cherenkov
radiation, of which very stringent constraints have
been placed [67]. See also [36] for a discussion. It was
also noted in [67] that the constraint for cgrav ≥ 1 were
much weaker. Moreover, given that this is already a
Lorentz violating theory it could be argued that
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cgrav ≥ 1 may not be a problem; however we do not
discuss this further.

V. DISCUSSION AND CONCLUSIONS

In this paper the background dynamics of generalized
Einstein-Aether are studied using a designer approach. We
find that only one form of F gives rise to a fluid species
with wde ¼ −1 exactly (18) for a “designer” F ðKÞ model.
However, we see that at the level of linear perturbations this
model is not the same as ΛCDM. We obtain a differential
equation for general values of constant wde (26), which is
solved numerically to see how this model behaves as we
vary the parameters in the theory, shown in Fig. 1. We also
find that the background evolution is independent of the
choice of fcig. For wde ¼ −1 there is an analytical solution
for F given by (31).
We have also provided expressions for the perturbed

fluid variables in generalized Einstein-Aether models, in
the scalar, vector, and tensor sectors. These vector-tensor
theories have noncanonical kinetic terms and are modified
by a free function, F ðKÞ. While some work has been done
on these theories, the c4 term in (5) is often set to zero. It is
often argued that this can be done via a redefinition of the
coefficients, which is true only if the Aether field is
hypersurface orthogonal i.e. as in the khronometric model
(39). A consequence of this is that no transverse vector
mode propagates at the level of linear perturbations. To
keep things more general we keep the c4 term in our
analysis.
The EoS approach to cosmological perturbations pro-

vides a way of parametrizing dark energy models and
modified gravity theories via the gauge invariant entropy
perturbation and anisotropic stresses. This is done by fully
eliminating the internal degrees of freedom introduced by
this theory. In this paper, we have provided expressions for
these in terms of linear functions of the perturbed variables
and metric perturbations, ΠS

de ¼ ΠS
deðΔde; Θ̂de; X; YÞ and

Γde ¼ ΓdeðΔde; Θ̂de;W; X; YÞ, given in (97) and (102).
They have been expressed in an explicitly gauge invariant
form thanks to a new set of notation. Furthermore, via the
Einstein equations, we are also able to specify them
in terms of the perturbed fluid variables for dark energy
and matter only i.e. ΠS

de ¼ ΠS
deðΔde;Δm; Θ̂de; Θ̂m;ΠmÞ and

Γde ¼ ΓdeðΔde;Δm; Θ̂de; Θ̂m;ΓmÞ, given by (116) and
(117). We note that there seems to be a discontinuity in
taking the ΛCDM limit in a designer F ðKÞ model. From
these, we solve for the evolution of the Newtonian
gravitational potentials via the perturbed fluid equations
for varying parameters, shown in Figs. 2 and 4. In a
designer F ðKÞ we find that wdeΠS

de → 0 for K ≫ 1,
independent of the choice of fcig. We also provide
expressions for ΠV;T in the vector and tensor sectors, given
by (149) and (150).

Of course, the motivation for this analysis is to obtain
observables in cosmology and see how they compare to
ΛCDM. We have now provided the necessary expressions
in order to solve the perturbed fluid equations and obtain
spectra. In principle, this should be easy to incorporate into
existing numerical codes. Similar to [47–49], we would like
to explore a broader class of vector-tensor models, without
ever having to specify a specific model. What if we know
nothing about the background Lagrangian other than its
field content? Can anything be said more broadly about
general vector-tensor theories of gravity and their appli-
cation to dark energy? This is similar to work done in [50],
but instead adopting a covariant approach as was done in
[49] for scalar-tensor theories. We leave this as a matter for
future work.
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APPENDIX A: EQUATIONS OF STATE
FOR PERTURBATIONS IN THE

SYNCHRONOUS GAUGE

In the synchronous gauge, we have that

a2δρ ¼ FK

�
c14k2V 0 þ ðc14 − αð1þ 2γ2ÞÞHk2V

þ 1

2
αHð1þ 2γ2Þh0

�
; ðA1Þ

a2ρð1þ wdeÞθS

¼ 1

6
FK½ð2k2V − h0Þð3c123 þ 2αγ2Þ − 12c13η0�; ðA2Þ

where

δK ¼ 2αH
a2M2

�
1

2
h0 − k2V

�
: ðA3Þ

We can then write this system of equations as

a2
�

δρ

ρð1þ wdeÞθS
�

¼ k2
�
A B

0 C

��
V 0

V

�
þ
�
D

E

�
;

ðA4Þ

with

A ¼ c14FK; ðA5Þ

B ¼ ½c14 − αð1þ 2γ2Þ�HFK; ðA6Þ
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C ¼ 1

3
FKð3c123 þ 2αγ2Þ; ðA7Þ

D ¼ 1

2
αHFKð1þ 2γ2Þh0; ðA8Þ

E ¼ −
1

6
FK½ð3c123 þ 2αγ2Þh0 þ 12c13η0�: ðA9Þ

Inverting this will give us expressions for V and V 0 in terms
of δρ, θS, the metric perturbations, h and η, and their
derivatives. Eliminating for these in ΠS (74), we find that
we can write (91) as

wΠS ¼ cΠΔΔþ cΠΘΘ̂þ cΠXX þ cΠYK2Y; ðA10Þ

where the cΠ coefficients are given in (98) to (101). In order
to show this, we use the conservation equation (15) to
find that

3ð1þ wdeÞ ¼ ϵH
2γ1ð1þ 2γ2Þ

2γ1 − 1
ðA11Þ

and replace for this in 3ð1þ wÞT, arising from Θ̂ in
Table II. From this it can be shown that the coefficient
cΠT ¼ 0, as discussed previously.
Similarly, we do the same for the entropy perturbation by

eliminating V and V 0 in δP and hence find that

wΓ ¼ cΓΔΔþ cΓΘΘ̂þ cΓWW þ cΓXX þ cΓYK2Y; ðA12Þ

where the cΓ coefficients are as before in (103) to (107). To
show this, we note that there is a term proportional
to 3ð1þ wdeÞ dPdρ T. As before, we use (A11) to replace
3ð1þ wdeÞ and also compute that

dP
dρ

¼ a2P0

a2ρ0
¼ ϵH

�
2γ2

1þ 2γ2

��
1þ 2

3
γ3

�

þ 2

3
ϵH − 1 −

ϵ0H
3HϵH

: ðA13Þ

After substituting in for these it can be shown that cΓT ¼ 0.
Hence, (97) and (102) constitute the gauge invariant
equations of state for the perturbations.

APPENDIX B: CONSTRAINTS ON
COEFFICIENTS IN MINKOWSKI SPACE

We would like to obtain constraints on the fcig coef-
ficients by studying the behavior of perturbations in
Minkowski space. We largely follow the procedure defined
in [64], extending their results to include c4 ≠ 0. The
Lagrangian which governs the perturbations is obtained by
perturbing the degrees of freedom in the background
Lagrangian to quadratic order. This would then give rise

to linear equations of motion for the perturbations.
Schematically, we are computing L → Lþ δLþ δ2L,
where δ2L denotes the Lagrangian quadratic in perturba-
tions. Again suppressing overbars to denote unperturbed
variables, from (3) we have that

δ2L ¼ M2ðFKKðδKÞ2 þ FKδ
2KÞ þ 2AμδAμδλ; ðB1Þ

since λ ¼ 0 in Minkowski space.
Perturbing the Aether as Aμ→AμþδAμ¼ð1;0;0;0Þþvμ

and assuming the metric to be flat, we can computeM2δ2K
by perturbing the Aether field and expanding out to
quadratic order, to give

M2δ2K ¼ c1∂μvν∂μvν þ c2ð∂μvμÞ2 þ c3∂μvν∂νvμ

þ c4AμAν∂μvρ∂νvρ þ 2δλAμvμ: ðB2Þ

Similarly we can calculate M2δK to be

1

2
M2δK ¼ c1∂μAν∂μvν þ c2∂μAμ∂νvν

þ c3∂μAν∂νvμ þ c4Aμvν∂μAρ∂νAρ

þ c4AμAν∂μAρ∂νvρ: ðB3Þ

From this we see that in Minkowski space δK ¼ 0 since
∂μAν ¼ 0, which will also be true for the unperturbed value
of K. The second order Lagrangian is therefore given by

δ2L¼FK½−c14 _v2þc1∂ivj∂ivjþc2ð∂iviÞ2þc3∂ivj∂jvi�;
ðB4Þ

where _v2 ¼ _vi _vi, and we have used v0 ¼ 0. By analogy to
the cosmological perturbations, we decompose the pertur-
bation into a scalar and vector part,

vi ¼ ∂iV þ iBi ¼ Si þ Ti; ðB5Þ

such that kiTi ¼ 0. Inserting this into (B4), we find that we
can write it as the sum of two uncoupled Lagrangians for
the fields Si and Ti, since any cross terms are zero by the
scalar-vector decomposition of the perturbation. They are
given by

LS ¼ FK½−c14 _S2 þ c1∂iSj∂iSj þ c2ð∂iSiÞ2 þ c3∂iSj∂jSi�;
ðB6Þ

LT ¼ FK½−c14 _T2 þ c1∂iTj∂iTj�: ðB7Þ

Here we see the problem with the Minkowski limit for the
designer model, with F ¼ BðKÞ1=2 þ C. Since K ∝ H2, in
the Minkowski limit where K → 0 we have that FK → ∞,
and hence the second order Lagrangian is not well-defined.
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Constraints can still be obtained for the fcig coefficients,
but not for the designer model. To compare with results
from [64,68] we will set FK ¼ 1.
Hence, the equations of motion from (B6) and (B7) are

then given by

S̈i −
c123
c14

∂j∂jSi ¼ 0; T̈i −
c1
c14

∂j∂jTi ¼ 0; ðB8Þ

where we have used ∂iSj ¼ ∂jSi from the definition in
(B5). Therefore, we see that Si and Ti propagate with sound
speeds c2s ¼ c123

c14
and c2s ¼ c1

c14
respectively. Imposing that the

propagation speeds are less than c and to avoid them being
imaginary, leading to an exponential growth in perturba-
tions, we require

0 ≤
c123
c14

≤ 1 and 0 ≤
c1
c14

≤ 1: ðB9Þ

Also, following the process of [64], considerations of the
quantum Hamiltonian gives an additional constraint of
c14 < 0 to prevent ghosts. Heuristically we can see this
from (B4), as c14 < 0 ensures that the kinetic term is the
correct sign, however see [64] for a full treatment of the
quantization of this theory.

Let us summarize the constraints we have obtained. As in
[64], we can also infer further constraints from those
already obtained, allowing us to get more useful constraints
on the individual coefficients and also combinations of
them that appear frequently. They are shown in Table III
and are also consistent with those obtained in [68].
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