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Cosmological perturbation theory in generalized Einstein-Aether models
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We investigate the evolution of cosmological perturbations in models of dark energy described by a
timelike unit normalized vector field specified by a general function F(K), so-called generalized Einstein-
Aether models. First we study the background dynamics of such models via a designer approach in an
attempt to model this theory as dark energy. We find that only one specific form of this designer approach
matches ACDM at background order, and we also obtain a differential equation which F(K) must satisfy
for general wCDM cosmologies, where CDM refers to cold dark matter. We also present the equations of
state for perturbations in generalized Einstein-Aether models, which completely parametrize these models
at the level of linear perturbations. A generic feature of modified gravity models is that they introduce new
degrees of freedom. By fully eliminating these we are able to express the gauge invariant entropy
perturbation and the scalar, vector, and tensor anisotropic stresses in terms of the perturbed fluid variables
and metric perturbations only. These can then be used to study the evolution of perturbations in the scalar,
vector, and tensor sectors, and we use these to evolve the Newtonian gravitational potentials.
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I. INTRODUCTION

The nature of dark energy remains one of the biggest
unsolved problems in cosmology. Numerous models of dark
energy and modified gravity theories have been constructed
[1] in an attempt to describe cosmological observations
[2—-4], with varying degrees of success. Perhaps the simplest
and most successful of these is the cosmological constant
which is remarkably consistent with recent observations
[5,6]. However, other models must be studied in case they
provide a more suitable description or otherwise to rule them
out all together, both theoretically and observationally. With
the advent of surveys such as DES! [7], Euclid® [8-10],
LSST? [11,12], and SKA* [13-16], observational con-
straints on these models will undoubtedly become tighter.

An obvious way to modify gravity is to introduce a new
field other than the metric and make dark energy a
dynamical component. These models typically introduce
scalar fields and many of these are encompassed by
Horndeski [17,18], the most general scalar-tensor theory
that gives rise to second-order equations of motion. This
class of models include Quintessence [19-21], k-essence
[22,23], Kinetic Gravity Braiding (KGB) [24], f(R) gravity
[25-27], and many more. Indeed, it has already been shown
that it is possible to achieve a dark energy fluid with w =
—1 exactly in, for example, Quintessence and k-essence
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[28], and for so-called “designer f(R)” [29]. However,
there is no reason not to consider the new field to be a
vector, and indeed such vector-tensor theories have been
shown to be able to give rise to a period of accelerated
expansion even without potential terms [30-38], and
therefore provide an interesting avenue of research. In this
paper we study so-called Einstein-Aether theories at back-
ground and perturbative order, where the vector field is
constrained to be of timelike unit norm. First studied in
[34], it was shown that the model would in fact slow the
expansion of the Universe [39]. However, more recently,
modifications to this theory have been shown to allow it to
describe dark energy and still be compatible with obser-
vations [36-38]. This is done by introducing noncanonical
kinetic terms parametrized by a free function F(K), where
KC determines the kinetic terms for the vector field. In
principle this could take on any functional form, and in
previous work in this area specific forms were chosen to
work with. However, as with designer f(R), we will choose
a background evolution of the Universe and allow that to
dictate the form of F(K) in a “designer F(KC)” model.
At background order, despite the many complex models
of dark energy all of these can be parametrized by
specifying a single function of time, the equation of state
parameter, wy, = Pgy./pge- Exactly how wy, behaves as a
function of time will of course depend on the theory, but at
this order there is nothing else to measure which will tell us
about the nature of dark energy, provided FRW spacetime
symmetries are respected. At the level of linear perturba-
tions various approaches have been developed in order to
try to parametrize different theories [40—50]. In this paper,
we work with the equation of state for perturbations (EoS)
approach [47-49]. A generic feature of modified gravity
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Expressions for I and TS in terms of the dark energy perturbed fluid variables and metric perturbations

for some dark energy models and modified gravity theories, in the synchronous gauge.

Theory Scalar anisotropic stress, wIT® Entropy perturbation, wI”
Minimally coupled scalar fields 0 (c2 - ‘j,—ﬁ) [6+3H(1+ w)05]
KGB 0 A8+ A05 + Ash' + Ah"
EDE Iw=c2)[8=3(1+w)n 0

models is that new degrees of freedom arise at the level of
perturbations. The EoS approach packages the parametri-
zation into the gauge invariant entropy perturbation, I", and
anisotropic stress, II°, by eliminating these degrees of
freedom in favor of the perturbed fluid variables and metric
perturbations. The perturbed conservation equation,
8(V,T#,) =0, gives two evolution equations for the
density perturbation, Jp, and divergence of the velocity
field, #5. For example, in the synchronous gauge they are
given by

o \'_ k*6S lh’ r
T+w) — 2 T
, dP dP
(14 w)os :H(1+w)<3——1)03+—5
P
2
+WF+§WHS,

where primes denote conformal time differentiation
and H is the conformal Hubble parameter. The metric
perturbations, 4 and 7, are evolved via Einstein’s equation.
However, the forms of IT° and ' are not known, and
hence (1) and (2) are not closed. If we can somehow
specify I' and II° as linear functions of the perturbed
fluid variables, metric perturbations, and their derivatives
only, these equations close, i.e. we wish to write I' =
(5,05 1,n,...) and TIS =T15(5,05, 1,5, ...), or equiv-
alently in terms of the dark energy (de) and matter (m)
fluid variables, ' = I'(84, 65,, 6, 05) and 115 =
I15(84e, 05 O, 05,). Our approach is to eliminate the
internal degrees of freedom describing the dynamics of
the modified gravity theory, via expressions for & and 65,
supplemented by the equation of motion for the vector
field. In principle, the equations of motion and hence the
perturbed fluid variables have already been derived in
[36,37], for example, although the equations of state have
not been computed. However, in most of the previous work
the so-called “acceleration” term has not been included,
corresponding to the ¢, term in [35]. This term is often
either completely ignored or argued that a transformation of
the coefficients can remove it. However, we discuss later
why this is not true in general and so keep the ¢, term in our
subsequent analysis. In particular, we extend on previous

work done by including the ¢, term for F(K) theories in
so-called generalized Einstein-Aether, as well as using the
EoS formalism.

Although in this paper we use a specific Lagrangian to
work with, one of the advantages of the EoS approach is
that it allows the computation of cosmological perturba-
tions in a model independent way. In [49] this approach
was applied to generic scalar-tensor theories by specifying
only the field content of the Lagrangian and nothing
specific about its functional form. This approach also
provides a set of modifications that are, in principle, easy
to insert into numerical codes. Equations of state have
already calculated for various different classes of theories,
for example, the elastic dark energy (EDE) [51], which was
shown to be equivalent to Lorentz violating, massive
gravity theories [52]. They have also been calculated for
general scalar-tensor theories [49] and in particular
Quintessence, k-essence, KGB, and Horndeski theories
[18]. In these cases, the degree of freedom to be eliminated
is related to the perturbed scalar field, d¢, and its deriv-
atives. This was also shown to be the case for f(R) gravity
and was studied in [53]. In this paper we apply the EoS
approach to generalized Einstein-Aether theories. The
expressions for I' and IT are shown in Table I for some
of these theories, in the synchronous gauge, where {.A; } are
functions of background quantities and ¢ = 6P/dp is the
squared sound speed of scalar perturbations. We do not
provide the expressions in f(R) gravity here as they are
quite complicated; however they are presented in [53].

This paper is organized as follows. In Sec. II we present
the model for generalized Einstein-Aether and derive the
equations of motion. We also briefly mention subcases to
this model that have been studied previously. We then study
the theory at linear perturbative order (Sec. III) in the scalar,
vector, and tensor sector and present expressions for the
perturbed fluid variables in both the conformal Newtonian
and synchronous gauges. We then proceed to derive the
gauge invariant equations of state for perturbations
(Sec. IV) by eliminating all the internal degrees of freedom
that arise from introducing the vector field. From these we
also study the evolution of the Newtonian gravitational
potentials. We then conclude in Sec. V and discuss
future steps.

Natural units are used throughout with ¢ =7 =1 and
the metric signature is (—, +, +, +).
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II. GENERALIZED EINSTEIN-AETHER
FIELD EQUATIONS

A. Field equations
The Lagrangian for generalized Einstein-Aether is [36]

162GLy = M*F(K) + A(g,,A*A” + 1), (3)

where we introduce the vector field A¥, which is known as
the Aether field. The scalar K is defined by

1
,C - WK ﬂﬂyvaAMVﬁA (4)

and the rank-4 tensor is defined by
Ky = ¢1g g + 288, + 3608, + cdAlg,,. (5)

Here, {c;} are dimensionless constants, and M has dimen-
sions of mass. The “kinetic tensor”, K% s determines the
derivative squared terms of the Aether field. Similar to
generalization of Quintessence to k-essence, the kinetic
terms have been modified to an arbitrary, dimensionless
function F(K). An important feature of Einstein-Aether
models is the presence of the Lagrange multiplier A. This
will constrain the Aether field to have a timelike unit norm.
As we will see, this will also have an effect on the
propagating degrees of freedom at the perturbative level.
The full action that we will study is then

1
S: /d4X\/—g(%R+LA> +va (6)

where the action for the matter fields, S,,, does not couple
directly to the Aether field. The equations of motion can
now be obtained by varying (6) with respect to each degree
of freedom i.e. 4, A#, and ¢**. Variation with respect to A
yields the constraint g, A*A” = —1. The equation of
motion for the Aether field, A, is

Vo(FiJ%) = ca FA*V,A'V A, = 1A, (7)

where we define J%, = K%, VA" and Fy :%, and
variation with respect to the metric gives Einstein’s

equation in the form
G, =8zGT,, +U,, (8)

where T, is the energy-momentum tensor for the matter
fields only. All contributions from the Aether field are
included in U,, which takes the form

PHYSICAL REVIEW D 96, 064041 (2017)
Uaﬂ - Vﬂ [fK(J(aﬂAﬂ) - Jﬂ(aAﬂ) - J(aﬂ)A”)] + ﬂAaAﬂ

1
+ EMngaﬂ =+ CIFK(V”A(,V”A/j - VaA/,VﬁA”)
+ C4f}CA”ADV”AavUAﬂ, (9)

where brackets around indices denote symmetrization,
ie. J(a/;‘) = %(Ja/g + J/;a).
Using (7) to eliminate 4, we find that

U{l/)’ = vﬂ (flC [J(aﬂA/)’) - Jﬂ(aA/i) - J(aﬂ)A”])
+ le,C(V”AaV”Aﬁ - V{,AﬂVﬂA”)
+ c4.7-",CA”A”V”AaVUA/,» + [c4.7:,CA”A”V”ATVI,AT

1
— AV (FrJ*,)]AAp +§M2.7-'gaﬂ. (10)

The first line arises due to the metric variation in the
Christoffel symbols [39,54], the second line comes from
the variation in the ¢ and c, terms of (5), and the third line
is due to the variation of the Lagrange multiplier and

\/—g terms.

B. Background dynamics

We will assume a background cosmology described by
the FRW metric,

ds* = —dr* + a(t)?8;;dx'dx, (11)

and that A* = (1,0,0,0). The reason for this choice of
A# is to satisfy the unit norm constraint and to be
compatible with the symmetries of FRW. Taking U, to
be the energy momentum tensor of a perfect fluid, then
from Uy, and U;; we find that the background energy
density and pressure are

f‘
pa = 3aH? (]—',C - %) (12)

Py :o{SHz(%—]—"K) —f',CH—J-“,CH], (13)

where @ = ¢; 4+ 3¢, + ¢3, overdots denote differentiation
with respect to cosmic time, ¢, and

3aH?
K==

(14)
Note that we have absorbed a factor of 8zG into U,,. We
can also check that P, and p, satisfy the energy con-

servation equation

pa = =3H(ps + Py), (15)

064041-3



BATTYE, PACE, and TRINH

as they should by construction of (8). Note that the ¢, term
plays no role in the background dynamics.

The time-time component of Einstein’s equation gives
the modified Friedmann equation as

1 87G
(1~ aF)H + c FM? = ”Tp (16)

If we were to demand that the theory is indistinguishable
from a cosmological constant at background order, then
from (16) we obtain the differential equation

F== (17)

where we have substituted H? for K via (14). The solution
to this equation is

2A
]-':B(iIC)l/Z—W, (18)

depending on the sign of ' and where B is an arbitrary
integration constant. The case of a general power law has
been studied in [36-38] as well as more exotic forms, for
example see [54,55]. Indeed, the functional form of F (k)
must be specified at some point to make observational
predictions. However, since F(K) could in principle be
anything, it would be ideal if the form of F(/C) could be
found by specifying more standard parameters describing
the background dynamics e.g. wye, Q4. €tc. Since any
new dark energy model will at least have to be compatible
with ACDM “globally", it makes sense to demand that
generalized Einstein-Aether must yield a ACDM cosmol-
ogy and in turn, this will restrict the form of F (k). Since
the background evolution of this model will be identical to
ACDM, the effects of perturbations will become very
important as it is only the dynamics at the perturbative
level which will be able to distinguish this model from
ACDM, where CDM refers to cold dark matter.

Let us now demand that the Aether field energy density
and pressure obey a more general equation of state i.e.
P4 = wgepa, Where wy, is constant. Since current obser-
vations do not yet sufficiently constrain anything other than
constant wy, this is a reasonable assumption to make;
however this may change in the near future. We can rewrite
(13) as

Py =—ps—a(2KFyx + F)H (19)
and so,

1 .
(] +Wde)M2(Kf}C—2f> = —O!(Z)Cf;gc+f;c)Ha

(20)
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where we have written H? in terms of K. If we can write
H = H(K), then (20) will give us a differential equation to
solve for F(K) satisfying a certain value of wge.

We write the Friedmann equation as

H\2 Q
- :%*0+
HO a

where we have defined 87Gpge = pa, Q; = 34 p;, and for
this section only the subscript “m” refers to matter with
P, = 0. Differentiating this and combining with (21) to
eliminate Qg o gives

11 {(1+wde)<H>2+2H}. (22)

@ Wgelmo Hy 3H,*

'Q'de.O
et @)

We can also use the Raychaudhuri equation, given by

. 472G
Ht B = == o + (L4 3wadpa). (23)
Inserting (12) we have that

H+ H\2
Hy> ' \H,

Qm.O M2

2613 6H02

1
(1+3Wde)<,Cf]C—§F>, (24)
and so using (22) we find that
. M?[K 1
H(IC)——7|:2+Wde<,C.F}C—§f>:| (25)

Therefore, the differential equation we must solve is then
(1 + Wde)(ZIC]:IC - ]:)

1
= (ZIC]:}C}C + F}C) |:IC + ande(ZK]:}C — .7:):| . (26)
For wy, = —1, then this reduces to
1
Q2KFix + Fx) [IC — Ea(ZIC}'K — .7:)} =0, (27)
for which there are two branches of solutions,
2 1/2
F ==K+ D(£K)"?, (28)
a

F =B(xK)'? +C, (29)

again depending on the sign of K and where B, C and D are
integration constants. If we insert (28) into (16) we find that
the Friedmann equation becomes p,,, = 0; and therefore we
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ignore this branch of the solution. For the other branch, we
see that (29) is what we obtained before from demanding
a cosmological constant, which sets C = —2A/ M?* =
—6H3Q, o/M?. Therefore, the only functional form for
F which gives rise to an exact ACDM cosmology, at
background order, is (18). More generally, we see that the
initial conditions are related via (12), such that if we specify
that today F(Ky) = Fo, then it must be that

Qo Fo

f}C’O a ZKO ’

(30)

where Fico = Fr(Ky) and Ky =K(a =1). Applying
these initial conditions to (29) we find that

M? 1o M2 (31)

7 - (o ) (£S5
Ko

At background order, we appear to have 5 parameters
{We, Qqe.0. Fo. M, a} which we must specify in order to
compute F. Varying a will vary the domain over which F
varies as a function of . It may also seem that « will affect

PHYSICAL REVIEW D 96, 064041 (2017)

the functional form of F, as it appears explicitly in (26).
However, note that this is somewhat misleading because
K « a and the explicit dependence of « in (26) is removed
under a rescaling I — IC/a. This can also be seen from
(12) and (13), where the factor of a is removed under the
same rescaling. Therefore, o can take on any value for the
purposes of the background evolution, and so we will fix
a = 1 for the rest of this section.

The evolution of F for different {wy., Fo, M} is
shown in Fig. 1. We will fix Qg =0.691 and
Hy = 2.132 x 107*? hGeV, where h = 0.678 [5]. To study
the effect of varying F we will look to the analytical
solution for wy, = —1in (31), with M = H,,. The evolution
of F will be such that it will be driven to F at a = 1, as
shown in Fig. 1. The parameter F|, is similar to designer
f(R) theories where the analogous parameter in [53] was
called B,. We see that in the past F is approximated well
by a pure power law, corresponding to the behavior of
the first term in (31), since this terms dominates in the past.
For F( > 6H3Qq. 0/ M?, this power law behavior persists
into the dark energy dominated era as F — Fy. If Fy <

6H3Q4.0/M? then for (K/Ky)!/? > 1 the first term still

: : : : : 10° [ : : : :
10*F e ]
..... ——— M/Hp=0.01
1000 7 T~ s M/Hy=0.1
e T~ M/Ho=1
100 v TR TTSell 4 T~ - M/Hp=10
10° 1
w 10 TR
1 1000 T T ]
0.10
10 1
0'01 1 1 1 1 1 1 1 1
0.01 0.05 0.10 0.50 1 0.01 0.05 0.10 0.50 1
a a
10% ¢ . : : : . . . :
107k i
——— M?=H,, Fy=1
1000 k- sl M?=0.1Hy, Fo=10
1077F oo M?=10H,, F=0.1 E
-81] i
L 100 F 10
10782} 1
10 ¢
107831 i
1k
0.01 005  0.10 0.50 1 1 1000 10° 10°
a K
FIG. 1. Top left panel: Comparison of the evolution of F due to varying F. In these models M = H, and wy, = —1 are fixed. Top
right panel: Comparison of the evolution of F due to the variation of M, as a multiple of H. In these models 7, = 1 and wy, = —1 are

fixed. Bottom left panel: Comparison of the evolution of F for varying wg, close to —1. In these models F, = 1 and M = H|, are fixed.
Bottom right panel: Comparison of the evolution of M>F for varying M? and F,, with M>F,/H3 = 1 and wy, = —1 fixed.

064041-5



BATTYE, PACE, and TRINH

dominates in (31), and we still observe the power law
behavior. However, as (K/Ky)'/> — 1 the second term in
(31) becomes comparable to the first and so the power law
behavior is broken as F — F, as seen in Fig. 1.

‘We note that the variation of the mass scale, M, also has a
similar effect to varying F, as the behavior of F will
depend on the relative size of F and 6HjQq. o/M? from
(31). Similar to a, varying M will also change the domain
of F. It may seem that M should not influence the evolution
of F as it does not appear explicitly in (26). However,
similar to a, the M dependence is hidden via K « M2,
Under a rescaling K — M?K, we see that there is in fact a
M dependence in (26). However, if we instead work with
the combination M2 F, then under the rescaling we find that
(26) becomes independent of M. Indeed, note that F
appears as M>F in the Lagrangian (3) and from (31) we
can write this as

K\ 1/2
M2.7: - <M2.7:0 + 6H%Qde,0) <’C—O) - 6H%Qde,0' (32)

Hence, we see that any change in M can be offset with a
change in F, i.e. M and F, are degenerate, as seen in
Fig. 1. As expected, the choice of M does not affect the
functional form of M?F. We will therefore fix M = H,,
corresponding to the approximate mass scale dark energy
begins to dominate, and keep F as a free parameter.

For solutions close to wy, = —1, we do not expect to see
large deviations from the analytical solution. Indeed, the
previous discussion about the power law behavior still
holds for solutions with wy, sufficiently close to —1, as seen
in Fig. 1. Although unfavored by current observations, dark
energy models with wy, # —1 have not been completely
ruled out and so we will allow for this in the subsequent
analysis.

To summarize, for the background evolution we have
3 free parameters {wg,Qqe0,Fo} to specify, not 5,
since a has no effect on the background evolution, other
than a rescaling of the domain as a function of &, and
M? is degenerate with F,. While the background evo-
lution only requires us to specify {wge, Qye.0, Fo, M}, as
we will see in Sec. IV, at the level of linear perturbations
the value of a and the other {c;} coefficients will be
important.

C. Subclasses to generalized Einstein-Aether

There are a number of interesting subclasses of the
generalized Einstein-Aether model that have been studied
previously which we will mention here.

1. Linear Einstein-Aether

The first is perhaps the most obvious simplification to
this model, other than the absence of the Aether field, and

PHYSICAL REVIEW D 96, 064041 (2017)

that is to set 7 (K) = K, and indeed this is the form of
Einstein-Aether that was originally proposed in [34].
In this case, the equations of motion become

VT(JT”) - c4A"VaA”V”AU =14, (33)
and

Uy =V, (J(a”Aﬂ) =S Apy) — J<a/3)A”) + cl(VﬂAaV*‘Aﬂ
— VoA, VAR + c,APAYY, AV, A

1
+ (C4A”A”V”ATVyAT - AVV”J'MD)AHA/j + EKga/}.
(34)
The energy density and pressure are then

3
PA = _asz

3 .
Py =—>aH? - afl.
5 A S0 a (35)

For a universe dominated by a fluid species
with equation of state P =w;p the scale factor is
a « 1230+%) We therefore have that

P 2H
A wge === =w, (36)
PA 3H

i.e. the equation of state parameter for Aether field in linear
Einstein-Aether matches that of other fluids present in the
Universe [39]. This behavior prevents linear Einstein-
Aether, F(K) = K, from being a dark energy candidate
and is one of the motivations for its generalization.

2. Generalized Einstein-Aether with c4=0

As already mentioned, many previous studies of
Einstein-Aether models set ¢4, = 0. It is often argued that
this can be done via a redefinition of the coefficients.
However, we will see in the next section that this can only
be achieved after a specific choice of A# which has further
consequences at the level of linear perturbations. In this
case, the equations of motion become

V (Fid¥,) = 1A, (37)
and
Ugp = Vu(Frcl (Ap) = " (Ap) = I (ap)A)]
+ 1 Fr(V,A VA, =V, ,A NV AF)
— A AGAN (Ficd*,) + %M%gaﬂ. (38)

3. The khronometric model

The khronometric model [56,57] is a version of Einstein-
Aether where the Aether field is constrained via a
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scalar field, ¢, called the khronon. In this case, the field is
defined as

9
P — (39)

/4 £
\/ =970

and so the timelike unit norm constraint is satisfied
automatically. In doing so, the Aether is restricted to be
orthogonal to a set of spacelike surfaces defined by ¢. At
background order we assume ¢ = ¢(t) and so from (39) we
have that A# = (1,0,0,0), which is the same as before.
Therefore, the choice of the khronon definition has no
effect on background dynamics.

The khronometric model was first proposed in [56],
where ¢ sets a preferred global time coordinate. It was
discussed how this model describes the low energy limit of
the consistent extension of Horava gravity, a quantum
theory of gravity. At low energies, this reduces to a Lorentz-
violating scalar-tensor gravity theory. For more details see
[56-59].

For this choice of the Aether field, the ¢, ¢3 and ¢, terms
are no longer independent. The twist vector is defined
as [60]

Wy = gll/i;wAﬂvﬂAy’ (40)

where €,4,, is the four-dimensional Levi-Civita symbol,
and w, =0 if A* is hypersurface orthogonal. If @, =0
then
W, = 0 = €45, €7 APA, VFAYV A,
= —SZﬁ‘;A/’AyV”A"V/,A,,, (41)
where &7 is the generalized Kronecker delta. Therefore,
- A"AV ,AVPA? — A°A NV A VTA? — APA NV A VAT
+ATAV ,AVAP + APA NV A VTAC
+A’A,V,A,VPAT = 0. (42)
From A, VPA" = VP(A A7) — A’VPA,, applying the unit
norm constraint gives A, VA7 = 0, and so
APANV,ANTA® =V ,ANA? =V A VPA°. (43)

Note that the left-hand side of (43) is the ¢4 term in (5).
Since the terms on the right-hand side of (43) are related to
the ¢, and c; terms, we are able to absorb ¢, into the other
coefficients effectively setting ¢, =0 ie. ¢; = ¢} =¢| —
¢4 and c3 = ¢4 = ¢3 + ¢4 giving

K?,, = c\g?q,, + c,828, + 4628 (44)
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We therefore see that it is possible to set ¢4, = 0, but only if
the choice is made that A* is also hypersurface orthogonal.
While this has no effect at background order, we will see
later that differences arise at the level of linear perturbations
for the vector sector. Furthermore, this is not the only
choice we can make as (43) also allows a redefinition which
could remove c; or c; instead.

III. LINEAR PERTURBATIONS

We will present results for perturbations in the scalar
sector in both the synchronous and conformal Newtonian
gauge. We perturb the metric as

9 = .Z];w + 59/41/ =d? (T) (’7/41/ + h/w)7 (45)
such that
ds* = a®(7)[—(1 + 2¥)d7* + (5;; + h;;)dx'dx/], (46)

where we now work in conformal time, z. In the synchro-
nous gauge we set ¥ = 0 and decompose £;; into [61,62]

~ A ~ A 1 ~ ~

+ ht (11 = dng) + k= (L = 1),
where the unit vectors {k, I, /n} form an orthonormal basis
in k-space. Here, i and # are the scalar perturbations, A
and /"2 are the vector perturbations, and 2+ and h* are the
tensor perturbations. In the conformal Newtonian gauge we
set h?;?alar = —2®¢;;, while the vector and tensor perturba-
tions are as before in the synchronous gauge.

We also perturb the Aether field as [38]

] 1 ~ ~
At = A+ AR =~ (1+X,0'V +1iB),  (47)
a

where V is the longitudinal scalar mode and B' is the
transverse vector mode such that k;B’ = 0. The unit norm
constraint demands that X = =%, and so

1 . )
SAH =~ (=W, 9V +iBY). (48)
a

Hence, we see that the timelike unit norm constraint means
that there is only one scalar degree of freedom, V, along
with a transverse vector mode, B'. In what follows, we will
suppress overbars to denote background order quantities.
The perturbed energy momentum tensor is given by
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5Uaﬂ = 5(VM [fK(J(aﬂAﬁ) - Jﬂ(aAﬁ) - J(a/i)A”)]) + clj’:,C,CélC(VﬂAaV”Aﬁ - V,IAMV/,A”)
+ leKS(V”AaV”Aﬁ — VaA”VﬁA”) + C4f’CK5]CAMAyVMAaVyAﬁ + C4f}c5(A”ADV”AaVyAﬁ)

1
+ 6([C4FICAﬂAyvﬂATVUAT - Abvﬂ (fKJI;)]A(IAﬂ) + §M2 (féga/)’ + ga/i]:lCalC)' (49)

For a general energy-momentum tensor, £,, we can  Similar to A;

s we can decompose v; and II;; into scalar,

j°

decompose its perturbations as [61] vector, and tensor parts. They are given by [63]
SE*, = (6p + 6P)u'u, + 6P8, + (p + P)(6u'u, v = VSk, + VY1 4 V2., (55)
+ du,ut) + PII*, (50)
where w* =1(1,0,0,0), su* =1(0,0") and ITj is the 7 _ IA<~A~—15~ >H5 42k (VT + TV
anisotropic  stress, with the properties u*TI*, =0, Y B g ? 7
I*, =11,#, and I1*, = 0. Projecting out the perturbed (35 _ 5 on (G _JGn
v v H + I (1,1 ) I (L — Limy), 56
fluid variables, we find that (Fily = i) + TV (L = 1) (56)
S Eoo = —p (51) whereas the transverse vector, B;, only has vector
modes i.e.
SE%; = (p + P)u;, (52)
_ B; = B"'l; + B"?n;. (57)
SE'y = —(p + P)v;, (53)
; ; ; In a general gauge, the perturbed fluid variables from
OF'j = PII; + 6P3';. (54) (48) in k-space are then
|
1
a’dp =a [3]—",C,C51CH2 + FiH (E h —k*V — 3H‘I’>} + ey Fick* (VI +HV + ), (58)
1 1
a’*sP = aFy {H‘P’ + (QH +H*)Y - G (W' +2HNW) + gkz(V’ + 2HV)]
/ 2 Frexx ' / 1 / 2 /
KK
2 . 2 / / 1, (3 2
a*(p+ P)v; =ia|(Fr(H —H)—JT/OC’CH)&—EIC Bi| +il5ea+er | FickB

+icu[Fie(&! + 2HE + (H + HAE + kY + HEY) 4+ FrocK! (& 4+ HE + kW), (60)
. . 1 . . 1 . .
LIZPHIJ' — C13 |:]:]CKIC/ (k’kJV - Eh’/) + flcklk/(v/ + 2HV) - .F}C (E hljrr + thj’)
1 .
+g (FrxckC (W = 2k2V) + Fre(h' + 2HI) = 2F ck2(V! + 2HV))6
1 . . 1 . .
+ (J—',CH + 53%/0) (k'B; + k;B") + Ef,g(k’Bj/ + kB )} , (61)

where primes denote conformal time differentiation, cj3 =c¢;+c¢3, cj4 =c¢y—c4, Cip33 =cC; +¢3+c3, and
é:i — le + Bi'
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A. Scalar sector

The scalar components of »; and IT'; are obtained via VS = k'v; and T15 =3 (k&' — 18] )TL;. If we further define
0% =iVS/k = ik'v;/k?, then we have that
a*(p+ P)0° = a[Fic(H — H?) + FicKH]V
—culFr(VM+2HV + (H + HA)V + ¥ + HY) + Fieic K (V' + HV + P)], (62)
2 2 pr1S T3 1 J 1 i 1 1i i / 1 i 1i
§(l PII1 = C13 k,k _§5i f/CICK: kij—Ehj +kakj(V +2HV)—.F/C Eh j+th . (63)

Note that the expression for ITS will simplify further once we specify the gauge. We further define the entropy perturbation,
I', as

6P dP
[=(—-—]é. 4
" <5p dp)5 (64

It should be noted that whatever gauge we choose to work in, both IS and I are gauge invariant. The perturbed Aether field
equation of motion is obtained from perturbing (7). Taking the i-component, the k' direction will yield the equation of
motion governing the perturbation V, given by

fon 1
ci {V” +2HV' + QH? + K*)V + ¥ + 2HY — k'kjhf,} + ¢y {(l& +3H* =3H')V + 3HY — Eh'

1
2
+ ¢3 {(k2 +H?—H)V +HY - ;l%iléjh.fi/} — e[V +2HV + (H + H*)V + ¥ + HY

—?—’f(a&KH%—/C’[aHV—CM(V’+'HV+‘P)D =0, (65)

where we have substituted in for A.

1. Conformal Newtonian gauge

In the conformal Newtonian gauge, where the metric perturbations are parametrized via ¥ and ®, we have that

a*sp = BF c0KH? — FxH(K*V + 3HWY + 30')] + cu Fick* (V! + HV + P), (66)
1
a*SP = aF {H‘P’ + QH + H})Y + @" + 2HD' + §k2(v’ + 27-[\/)]

1
— aFyx KH’ +2H2 + ];IC—,S;C’C/H> 0K + 5K/ — 2 K/(6HY + 30 + kZV)] , (67)

dz(/) + P)QS = (X[f;c(H/ - Hz) + .F}C;CIC/H]V
— eyl Fe(V" 4+ 2HV + (H + HAV + ¥ + HY) + FocK (V' + HV + W), (68)

@*PTIS = ¢3[F i cKKAV + Fick (V! + 2HV)). (69)

The perturbed Aether field equation of motion reads

a[(Hz -H +k)V+HY + @ - % (6SKH + K'HV)
K

+ e [v” +2HV + (HE+H)V + WV + HY + %m(v’ +HV + W) | = 26,k2V =0. (70)
K
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2. Synchronous gauge

In the synchronous gauge, where h;; is decomposed into 4 and 5 as in (47), we find that

1
a25p =a |:3FKK5KH2 + f}CH <§ n— kZV):| + C14ka2(Vl + HV) (71)

1 1 1
a*6P = JaFy {kz(v’ +2HV) =5 h - Hh’} —aFyx KH +2H? + %K’H) OK + 6K'H — <K' (H + 2k2V)] ,

KK
(72)

a*(p + P)0S = a[Fx(H = H?) + FxxK'HV — c 14| Fie (V" + 2HV' + (H' + H*)V) + Fi K (V! +HV)],  (73)

1 1
a’PITS = ¢ 5 [f,CKIC’ (kzv -3 (h+ 6;7)) + Fick? (V! + 2HV)=Fx (E (" +6n")+H(K + 677’))} ) (74)

The perturbed equation of motion for the Aether field reads

K

1
a {(H2 —H RV =2 (4 - % (5KH + IC’HV)}

+ e [V” FO2HV 4+ (H2+H) + MIC’(V’ + HV)] +es(h + 67 =2k2V) = 0. (75)

Fk

B. Vector and tensor sectors

In the vector and tensor sectors, the vector and tensor
modes of v; and IT'; can be computed via V' = T'v,,
" = kT, and TT* =1 (I, — m/)IT;. Equivalent
expressions also exist for the V2 modes and IT*. Also,
analogous to 65, we can define 6V' = iVV!/k = il'v,/k,
and so we have that

a*(p+ P)kOV! = a[F(H' — H?*) + FicK'H|B"!

1 n
+§(C3 —¢1)Fick?BY! = 14| F(BV!
+2HB"" + (H' + H*)B"")

+ FrxcK'(BVY + HBY)], (76)

aZPHVI =cp;3 [éfICU{BVI/ _ hV]/,)
1 /
+ (]-',CH +§FIC/CIC/) (kBV! — V! )}, (77)
1 1" 1 /
CZZPI—IJr = —Ci3 |:2th+ + <fKH+2f;CK’C/>h+:|

(78)

The time-time and traced ij-components are zero in the
vector and tensor sectors since Jdp and OP only have
scalar modes.

The equation of motion for the Aether field in the I’
direction is given by

a [(Hz _ H’)BVI _ lkhvv —]:}C’CIC’HB‘”]

2 Fr

3 ! " !
+C1szV1 +§C2k1’l‘/1 +C14 |:BV1 +2HBV1

+ (H' +H*)B""! +—];C’C IC’(BV‘/+HBV1)] =0. (79)
K

Note that the two vector and tensor modes are interchange-
able. From here on we will not discriminate between them
and denote them simply as 6V, IT" and I17.

C. Vector modes in the khronon

If we restrict ourselves to the case where the Aether field
is defined by the khronon in (39), then we find that

a S/
oA = |:—8ﬂ5(p + 0, (‘P + ?(’f)] . (80)

where ¢ is the perturbed khronon field. The time compo-
nent is then 54, = a¥, which is a consequence of the
timelike unit norm constraint, as in (48). However, if we
calculate the spatial component we find that

5Ai:—§8,~5(p:>3,~:0, (81)
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i.e. there is no propagating transverse vector mode.
Therefore, if we redefine é@i&p = 0,;V then we obtain

the results from Sec. III. 1. Therefore, the scalar sector for
generalized Einstein-Aether and the khronon are com-
pletely equivalent [57], up to a redefinition of the coef-
ficients discussed previously.

IV. EQUATIONS OF STATE FOR
PERTURBATIONS

A. Scalar sector

We now derive the equations of state, I and IT5V7, in

terms of the other perturbation variables by fully eliminat-
ing the internal degrees of freedom introduced by the theory
i.e. V, B, and their derivatives. In the scalar sector we do
this via the expressions for dp and 65. Let us first work in
the conformal Newtonian gauge. Initially it may not seem
possible to eliminate the degrees of freedom as we have that
5 =05(V,V', V") and ép = 8p(V, V'), i.e. we have three
unknowns and only two equations. However, we can use
the perturbed Aether field equation of motion (70) to
reduce the dimensionality of the problem. Using this to
eliminate V" in (68) and gathering terms in V and V', we
find that

6 2]: 2
a25p2C14f]Ck2V/— |:af]C—Cl4f]C +(12])‘C4}C27_[:| ’szV
6aF 2
+ e F k2 —3aH (f,c+"”C’CH> (HY + @),
(82)
202 H*F
Clzp(l + Wde>es = |:6123~7:IC + TZKK} V
6()(7'[ f;(;c
F —_— ¥+ @
+a< kt— )(H + @),
(83)
where we have substituted in for I from (14) and
2aH

So we see that in fact &% = #5(V). Note that we can already
see the emergence of the gauge invariant combination,
HWY + @', in the Oi-component of Einstein’s equation that
was used in [43-45].

We can then write this system of equations as

(o omaor) (0 ) (0)+ (2)

(85)

PHYSICAL REVIEW D 96, 064041 (2017)

with
A=cuFg, (86)
6612.7:}(;;CH2

B = |:Cl4f/C_af-K_W:|H’ (87)

ZGZHZF)CK
C = |:6123~7:IC + _a2M2 :| s (88)

2

= 14 F kW — 3aH (f,c + %) (HY + @),
(89)
6GH2.FKK
= —— ¥+ 9

a(]—';c PERYE )(H +@'). (90)

In [49] the ABC matrix in (85) was dubbed the activation
matrix, as it determines which degrees of freedom are
present, or activated, in the perturbed fluid variables.
Inverting this then yields expressions for V and V' in
terms of 8p, @%, the metric perturbations, ¥ and ®, and their
derivatives. Eliminating for these in ITS (69), we find that
we can write

WaelI5 = A6 + Ay (1 +w)05 + A3k + Ay (HY + @),

(91)
where
€13

A =—, 92
- 92)

3ci3H (H' —H?) a(l+2y,)

3cip3 + 2ay; H Cl4
(93)
2¢1371
Ay=——-BI 94
P 3aHA(2y, - 1) (54)
A, = 2¢i371(1 4 2y»)

H(2y1 = 1)(3ci3 + 2ar2)

and we define the dimensionless functions

KFx ~ KFrx

 KFKK
F ’ }/2 - .FK: — — .

Frk (%6)

V1=

In the parlance of [53], we write (91) in terms of a set of
dimensionless variables given in Table II, where h” =
h+6n, K=k/H, and ey = 1 —H'/H>. Note that these
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TABLE II. Combinations of the metric perturbations and
perturbed fluid variables are now written in terms of the
dimensionless variables given in this table, in both the conformal
Newtonian and synchronous gauges.

Variable =~ Conformal newtonian Synchronous

T L 0

w £X —ey(X+7Y) £X —ey(X+7Y)

X #Z +Y #Z +Y

Y ¥ #T' +eyT

z ) n—T

A 5+ 3H(1 +w)es 5+ 3H(1 +w)os

6 3H(1 +w)oS 3H(1+w)05 +3(1 +w)T
5P 5P SP + P'T

new variables are gauge invariant except 7, which we be
important in the synchronous gauge. From this we can
write (91) as

WdeHS = CHAA + CHG)(:) + CHXx + CnyKZY, (97)

where
A = E—lz’ (98)
1
13 13
= |1=-2 — 1, 99
cne 3ci3 + 2ay, [ <€Hy2 * C14>} 59)

2¢i371 (1 +2y,) { <013 ) ]
iy = 2| —+epy2 | — 1],
™ (271 = 1)(Bcins + 2a72) Ci4 e

(100)

2¢1371

Cry :m (101)

In a similar fashion, we can eliminate V and V' in 6P and
hence write the entropy perturbation as

WdeF:CFAA+CF@®+CFWw+CFXx+Cl—*yKZY, (102)
where
a(l+2y,) dpP
Sl e £ 7 103
ra 3¢ dp (103)
a 2C13
cro=—— |1 —=——|(1 +2
re 3(3(,’123 + 20}’2) |:( Clg )( 72)
2 dP
-6 1+= —_, 104
awrx(1+31)| + 5 (104)
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_27(1+2yy)

=_— 74 1
crw 327, = 1) (105)

day, [( C13> )
Cry = I14+—)(1+4+2y
= 3(27’1 - 1)(30123 + 2072) Ci4 ( 2)

S remfiea{i ) o

2r1(1+2yy)
Cry 9(1 _27/1) . (107)
Note that in (97) and (102) the perturbed fluid variables are
those for the dark energy fluid.

In order to ensure these results are truly gauge invariant,
we must do the same calculation in the synchronous gauge.
However, as mentioned previously, we now have an extra
variable, T, to deal with. Therefore, let us suppose that in
the synchronous gauge we find that

WdeHS = CHAA + Cn@@ + Cl-[xx + CHyKZY + CHTT,
(108)

Wder = CFAA + Cr@(:) + CFWw + Cr‘xX + CryKZY + CFTT,
(109)

with ¢z, cpp # 0. If this was the case, ITS and I" would not
be gauge invariant due to the presence of 7, and so it must
be that ¢y = ¢y = 0. Note that this was not necessary in
the conformal Newtonian gauge as 7 = 0 from Table II. We
also require that in both gauges the coefficients are identical
ie. cﬁNr = cIS-Iy’Iric, because A,©,W,X, and Y are gauge
invariant. Indeed, doing this calculation in the synchronous
gauge we find that this is the case, and hence (97) and (102)
constitute the gauge invariant equations of state for the
perturbations and are both presented simultaneously in the
conformal Newtonian and synchronous gauges via Table II.
For details of this calculation in the synchronous gauge see
Appendix A.

To ensure that no coefficient diverges we require that «,
C4s ¥1> 2y1 — 1, and 3co3 + 2ay, do not equal zero. If
a =0 then K =0, removing the dynamics of Einstein-
Aether completely, and so this must be excluded. As we
will see later, to prevent a diverging sound speed for
perturbations we must have that cy4 # 0 from (119). The
solution for y; = 0 is constant F, which is just the case of a
cosmological constant with no Einstein-Aether and there-
fore has no perturbations, while setting 2y; — 1 = 0 yields
Pm = 0 from the Friedmann equation. The case for dis-
allowing 3c,3 + 2ay, = 0 is more subtle. If this was true it
would set the coefficient of £V in (83) to zero, and hence
the activation matrix would be singular, i.e. we would be
unable to eliminate the degrees of freedom V and V' from
our equations using #°. However, we note that this is not a
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strict condition and could in principle be true for some
models as there is nothing that physically prevents this. For
the designer F(K) in (31) this is nonzero and so all the ¢y -
coefficients are well behaved.

Additionally, we can eliminate the metric perturbations
in favor of the perturbed fluid variables for matter and dark
energy as done in [18] for the Horndeski theory. This will
allow us to write (97) and (102) as

. .
Waellge = cra, Ade + cnio,, Ode + Cria, Am

+ cne, O + o, 115, (110)
Wael'de = cra, Ade + Cl"@de@de + cra, Am
+ Cremém +crr, I'ms (111)

where we now make explicit distinction between the
perturbed fluid variables for matter and dark energy. In
the notation of Table II, the perturbed Einstein equations
take the form [53]

P R
W =Q, (35 m oy, TTS, — 3®m)
Pm
36P,. .
+ Qqe (—d + 2w ITS, — 3®de> , (112)
de

2X = Q,0,, + Q4O4e. (113)

2
_§K2Y = Qm(Am - 2WmHIS;1> + Qde(Ade - 2WdeH§e)’
(114)
2 2
—gK Z: QmAm+QdeAde' (115)

Substituting for these in (97) yields

(1 - 3CHYQde>Wchge

3 1 N
= (CHA ) CHYQde> Age + <CH® + 3 CHXQde) Oge
3

1 A
- E CHYQmAm + 5 CHXQm(am =+ 36‘l'lYgszmr[fgn'

(116)

Similarly, the entropy perturbation becomes

PHYSICAL REVIEW D 96, 064041 (2017)
3
1 —Ecrwgde Wael de

+3 0 dP
=|c —c —
rat5erw dedp

3 dP
+§Qm <Crwdp i - CFY) Ap

3 dP 1 ~
+ [Cr@) _ECFWQde <1 +— > +§Crxgde] Oge
de

dp

3
- 5 CFYQde> Age
de

1 dP
+= |:CFX_3CFW<1 +—

2 dp 2

N 3
>:| Qm®m +fchQmeIﬁm.
(117)

Note that (116) and (117) are completely general and not
specific to generalized Einstein-Aether. If for any theory
waeIT® and wy I can be written as (97) and (102), then (116)
and (117) will also be true automatically.

From these expressions we can derive the sound speed
for scalar perturbations. Starting from the perturbed con-
servation equations, (1) and (2), we can deduce that

Therefore, extracting the coefficient of k25 we find that

, 1 2
g =— | Ci3 +zar2 |
Cl4 3

(119)
In general, the sound speed of scalar perturbations
varies with time due to F. To ensure subluminal propa-
gation and stable growth of perturbations, we require that
0 S CLM(C]23 +%(1]/2) S 1.

From here, we could attempt to obtain constraints on the
{c¢;} coefficients by appealing to the behavior of perturba-
tions in the limit of Minkowski space, as in [64]. However,
as we have directly coupled the evolution of F to a(¢) viaa
designer approach, we argue that no sensible Minkowski
limit exists for this theory once this connection has been
made. For a brief discussion of this see Appendix B. In the
context of the equation of state approach, in the limit of
H — 0 we see that p, P — 0 from (12) and (13). Therefore,
the expressions for wg IT¥ and wg.I" cannot be computed
since wg IT5 appears as PII® from the perturbed energy
momentum tensor (54) and wgI can be written

5P _ dP

as waepl” = (5, —7)0p.

B. Special cases

1. Wie = -1

Consider the case where we have exactly wy, = —1,
equivalent to ACDM. From Sec. II. 2 we have an analytical
solution given by (31) and in this case the ¢ and cr
coefficients reduce to
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€13 1 13
=22 —-(1 -
Cria 1 ‘e 2( +ep) i
C13 sz() H
- 07 - — 5 1 D > |
‘rix ‘ry 3a ( + 6Qde,0H(2) HO
(120)
and also
dP
CFA:_CF®:_d_: ) crw = crx = cry =0,
p

(121)

and hence I' = 6. Here we see that from cpy, as with the
background evolution, M and F, are degenerate.

This case is indistinguishable from ACDM at back-
ground order, but at the level of linear perturbations they are
not the same. Therefore, geometrical cosmological tests
such as SNe and BAOs would not be able to observe a
difference between ACDM and generalized Einstein-
Aether with wy, = —1, whereas probes which are sensitive
to perturbations, such as weak lensing, will be different and
can in principle distinguish between them.

From (31) we note that the ACDM limit is when Fy=
—6H§Q4. 0/M? and so F=—6HQy. o/ M?>. This case cor-
responds to the cosmological constant in the Friedmann
equation. Indeed, this also is reflected at the level of linear
perturbations since F = 0, and so all the perturbed fluid
variables and the equation of motion for V in Sec. III are
zero, as in ACDM. However, it seems that there is a
discontinuity in taking the limit of Fy - —6H3Qy.0/M?,
since in this limit the cp - coefficients become

i3 1 13
=—, = = 1 )
Cma Cly4 cne 2( +en) Ci4
Crix = Cniy — 0 (122)
and
cra = —¢re = 1, crw = crx = cry =0, (123)

i.e. IIS and T are nonzero in this limit, but are zero if
Fo = —6H3Qq.(/M? exactly. This is a property shared by
f(R) models in the limit of By — 0.

2. Power law

For a general power law with F « (£K)" as studied in
[36-38], the coefficients become

A = ?, (124)
14

C13 13
=1 -2 -1)—-—
M= 20+ a—6e, [ (eH(n ) 014)]7

(125)
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21’1613 2013

= -14+2 -1 12
‘nx (2” + 1)(1 - 6C2 Cig + SH(n ) ’ ( 6)
2716'13
= 127
ey 3a(l —2n)’ (127)
and
(2n—1a dP
) i 128
ra 3¢ dp (128)
(2n—1)a ci3]  dP
- 1= 2ey(n—1)-"2| 25
cre 3[(2n + 1)a — 6¢,] en(n—1) Cla * dp’
(129)
crw :gl’l, (130)
P 4n a(2n —1)(ci3 + c14)
7320 4 Na - 6¢,)] Cla
2
+3013<1—3€H(n—1)>}, (131)
2
Cry = —§n. (132)

Note that cqy is singular for the case of n = % Although
F « (£K)!/? is also a solution to (26), inserting this into
the Friedmann equation (16) shows that this case corre-
sponds to an absence of dark energy at the level of
background cosmology.

C. Dynamics of linear perturbations in the scalar sector

The dynamics of scalar perturbations can be computed
via the perturbed fluid equations in (1) and (2). We will use
the designer F(K) model via (26). Following the notation
of Table II we rewrite these equations as

A = 3wA + ggey® — 2wITS = 3(1 +w)X,  (133)
: dP 1 \. .dP
O+3(—-wsey |O6-3——A—2wII

+ <dp w+36H) & w

3wl =3(14+w)Y, (134)

where gx =1+ % and, for this section only, overdots
denote differentiation with respect to the logarithmic scale
factor, loga. For a cold, pressureless matter fluid with
Wy = II3, = I',, = 0 and assuming w,, constant, (133) and
(134) yield 4 differential equations for the dark energy and
matter perturbed fluid variables, given by

Ay + gken®n = 3X, (135)
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FIG. 2. Left panel: The spectrum of ®/W, or Z/Y, at a = 1 as a function of scale for varying F, and wy, = —1. Right panel: The
spectrum of ®/¥ at a = 1 as a function of scale for a general Einstein-Aether fluid with wy, varying around —1 and F = 1.

(136)

Age = 3WgeAge + gkenOqe — 2w, = 3(1 + wye )X,
(137)

Oue + €Oy — 3wy Age — 2waeIT], — 3wgelge

=3(1 +wg)Y. (138)
With these, the dynamics of the Newtonian gravitational
potential, Z = ®, can be computed directly from the
perturbed Einstein equation in (114) or via Z=X-Y
from the definition of Z in Table II. Note that in Table II the
variables and derivatives are in conformal time, not the
scale factor. To solve these equations we will opt to specify
IT3, and [y, terms of the perturbed fluid variables for dark
energy and matter, given in (116) and (117). The variables
X and Y are also specified in terms of the perturbed fluid
variables via the perturbed Einstein equations in (112) and
(113). We note that this is not the only way to proceed. For
example, instead of the perturbed fluid variables we could
have opted to work with the metric perturbation variables
W, X, Y, and Z. For more details see [53]. We set the initial
conditions as described in [53]. They are set at z = 100
such that Ay, = Oy, = 0, Q,A,, = —-2K%Z, Q,,0,, = 2X,
and X =Y = Z. Since the behavior of the perturbations
will also depend of the specific choice of {c;} and not just
a, we will fix ¢y =1, ¢, =1, c3 =1, and ¢4 = —3. This
choice is somewhat arbitrary, other than ensuring the
subluminal propagation of the perturbations (119).

We investigate how the ratio of the Newtonian potentials
vary with scale. From Fig. 2, we see that at a = 1, the large
scale behavior of ®/¥ is highly dependent on F, while
this is less so for wy, near —1. We see that ® /¥ tends to a
constant in both the large and small K, regimes. In all cases
the small scale behavior is such that ® = ¥, and so this

indicates a vanishing wdeng for small scales. Note that
K, = 1 corresponds to a scale of 3.35 x 10~ hMpc~'.

In the regime K >> 1 we find that the {®,} are negligible,
and so we can write wdel'lge N Criag, Ade 1 Cria, Am- From
equations (135) to (138) we compute the second order
differential equations for {A;}, given by

.. . 3 3
Ap + (2 - €H)Am - EQmAm = - Q4Age,

5 (139)

. . 2 » 2 5
Age + (5 —€ep)Age + gCnAdeK Age = —ganmK A,

(140)

where we have also used the Einstein equations for X (113)
and Y (114), with wg, = —1. Note that in (139) the
secondary source term arising from wgIT3, is subdominant
compared to Q4.A4., and so we have neglected this. From
(113) and (114), for small scales we have that

Y - 2Qqe(cria, Ade + Cria, Am)
Z QdeAde + QmAm ’

(141)

where the second term must be negligible from Fig. 2. In
order to explain this, note that from (140) we must have that
the solution tends to the particular solution

CHAdeAde = —CnAmAm- (142)
Hence, the second term in (141) is always negligible
regardless of what the {cyj5 } are. Therefore, a vanishing
anisotropic stress at small scales is a generic feature of these
designer F(K) models.

Using (142) in (139), we find that this becomes the
standard differential equation for the matter overdensity
with Newton’s constant replaced with an effective
Newton’s constant, G, given by
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FIG. 3. The evolution of the effective Newton’s constant,
G/ G, is shown for varying wgy, around —1.
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and the evolution of this is shown in Fig. 3. We see that the
ratio G/ G is always of order unity but that for our choice

(143)
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of {c¢;} it decreases to G+ ~ 0.78G at a = 1, which should
lead to a suppression of structure at late times compared to
ACDM. We leave this as a matter for future investigation.
We also observe that increasing wy, causes G/ G to decay
faster at early times, while the opposite is true for
decreasing wy.. It is interesting to note that the value of
G/ G for different wy, initially diverge and then converge
again at a = 1. Note that what we have called G is
different to that in [37], for example, which is derived from
the modified Poisson equation.

We also investigate the evolution for the Newtonian
potential, @, as a function of a and this is shown in Fig. 4.
We see that for a designer F(K) model which mimics a
ACDM background the evolution is now sensitive to the
scale, where K, = k/H,, unlike the case of a cosmological
constant. The amplitude of ® grows with respect to ACDM
for large scales, while for smaller scales the amplitude is
suppressed. For scales K < 1, we see that @ initially grows
before reaching a maximum and then decays due to the
increasing contribution from dark energy. A similar feature
was also observed in [37] for their power law model of F.

T T T T T 145 F T T ' ]
16 T
1.10 +
14+
12} _1.05]
g &
& )
1.0 =
1.00 +
[ c?=-102 F(K) ’
0.8} o =107 FK Ko
................ Ko=10 — ACDM - 0.95
A R— Ko=100 "
0.01 0.05 0.10 0.50 1 0.01 0.05 0.10 0.50 1
a a
1.04 +
1.02 +
_1.00}
&
© 008
0.96
0.94
0.01 0.05 0.10 0.50 1

a

FIG. 4. Top left panel: The evolution of the Newtonian potential, @, in ACDM (black solid line) and for different scales in a designer
F(K) model (dashed and dotted lines) for 7, = 1 and wy, = —1. Note that the potential for the ACDM model is scale independent. For
comparison we also show the evolution of @ with the presence of a dark energy fluid with wy, = —1 and a constant negative squared
sound speed of ¢ = —1072 (red lines), calculated using (144). Top right panel: The evolution of @ in a generalized Einstein-Aether
universe with varying F, for wge = —1 and Ky = 1 fixed. Bottom panel: The evolution of @ for a general Einstein-Aether fluid with wy,
varying around —1, with 7y =1 and Ky = 1 fixed.
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We note that this is very similar to other models which
introduce a new cosmological fluid with a negative squared
sound speed, ¢Z = 5P/8p. We solve the differential equa-
tion governing the evolution of @ [65,60]

d*® 1LdH 4 _c2\do
— ——t—+3—= ] —
da Hda a a) da
2 dH 1 c2k?
— (143D +=— D=0 144
* [aH da +a2( +3a) +a2H2} - (144)

provided there is zero anisotropic stress and so ® = . In
models where ¢2 < 0 we observe the same behavior for ®
rising to a maximum before decaying, as seen in Fig. 4. In
these models, the initial growth is due to an imaginary c2
causing an unstable growth of perturbations. However, as
dark energy begins to dominate ® decays as in ACDM.
This feature is enhanced for smaller scales until the effect of
dark energy in unable to overcome the unstable growth of
perturbations and @® grows exponentially as seen for K, =
100 in Fig. 4. While a fluid with ¢ < 0 is unphysical, it is
interesting to note that this feature appears in a designer
F(K) universe without the need for ¢ < 0. Indeed, the
{c;} coefficients were chosen to avoid this. Moreover, we
see that for designer F (KC) the opposite occurs compared to
ACDM and that as we go to smaller scales this feature is
suppressed rather than enhanced.

D. Vector and tensor sectors

We can also calculate the equation of state for the vector
sector. In this case, the function we specify is
vV =T11"(#"). Since we only have one function, 6V, to
eliminate the vector degree of freedom, BY, it may not seem
possible as 8" =6Y(BY,BY',B""), as seen from (76).
However, in a similar process to the scalar sector, we
can use the perturbed equation of motion (79) to eliminate
derivatives of BY. In doing so, (76) becomes

1 )
a’p(1 +wy )0 = 5613.7:,((ka —h").  (145)

Inserting this into (77), we obtain the equation of state for
perturbations in the vector sector as

WdeHXe = [(1 - 3Wde)(1 + Wde)H]ec‘i/e + (1 + Wde)egei'
(146)

Note that this is exactly the same as the perturbed
conservation equation and is, therefore, a tautology. To
proceed we use the vector Einstein equations, given by

| QR
—ﬁhv = 82Gpn (1 4wy )0 + pac(1 + wae) 0y, (147)

1 " 1 !
—I’ZV + —I’ZV == QmeHm + QderCHdC‘

6H?" ' 3H (148)
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Differentiating (147) and eliminating for 6’:{; and the metric
perturbations in (146), we find that

i 241+ w)0Y, = winTIY).

WdeH(‘i/e = H(l + Wde)ege + Q
e

(149)

For the tensor sector, since there are no new tensor
degrees of freedom, I17 can only be a function of 4’ and its
derivatives. Therefore, (78) immediately constitutes the
equation of state for tensor perturbations and is given by

f
3aH2 (f/c - R) wdel'Ige

1 a 1 "
= —C13 <.7'—KH+§.FK;CICI>I’ZT —§C13.7:}ChT . (150)

We can, therefore, derive the modification to the propaga-
tion speed of gravitational waves, due to the presence of
the Aether field. Projecting out the tensor mode of the
i j-component of the Einstein equation (8) yields

a* (LU — i;ml)5G}
=h" +2HR" + K*hT

= @ (Ll = i) )sU' = 2a°PITT,  (151)

assuming that the matter energy-momentum tensor
contributes zero anisotropic stress. Hence, from (150) we
find that

" 1
(1 +Cl3flc)/’lT +2|:H+C13 <fKH+§fKK,C/):|

x W + k2h" =0, (152)
and so gravitational waves propagate with speed
S (153)
grav 1+c¢ 13.7: K

We see that, in general, the propagation speed of gravi-
tational waves is time dependent via F. This is consistent
with the result in [37]. It is often argued that on the
grounds of causality that we should constrain c,,, < 1, as
was said for the scalar perturbations (119). Indeed, this is
the standard argument that was often made in previous
work, for example see [64] and Appendix B. However, if
gravitational waves were to propagate subluminally we
would expect the existence of gravitational Cherenkov
radiation, of which very stringent constraints have
been placed [67]. See also [36] for a discussion. It was
also noted in [67] that the constraint for cg,, > 1 were
much weaker. Moreover, given that this is already a
Lorentz violating theory it could be argued that
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Coray = 1 may not be a problem; however we do not
discuss this further.

V. DISCUSSION AND CONCLUSIONS

In this paper the background dynamics of generalized
Einstein-Aether are studied using a designer approach. We
find that only one form of F gives rise to a fluid species
with wy, = —1 exactly (18) for a “designer” F(KX) model.
However, we see that at the level of linear perturbations this
model is not the same as ACDM. We obtain a differential
equation for general values of constant wy, (26), which is
solved numerically to see how this model behaves as we
vary the parameters in the theory, shown in Fig. 1. We also
find that the background evolution is independent of the
choice of {¢;}. For wg, = —1 there is an analytical solution
for F given by (31).

We have also provided expressions for the perturbed
fluid variables in generalized Einstein-Aether models, in
the scalar, vector, and tensor sectors. These vector-tensor
theories have noncanonical kinetic terms and are modified
by a free function, F(K). While some work has been done
on these theories, the ¢, term in (5) is often set to zero. It is
often argued that this can be done via a redefinition of the
coefficients, which is true only if the Aether field is
hypersurface orthogonal i.e. as in the khronometric model
(39). A consequence of this is that no transverse vector
mode propagates at the level of linear perturbations. To
keep things more general we keep the ¢, term in our
analysis.

The EoS approach to cosmological perturbations pro-
vides a way of parametrizing dark energy models and
modified gravity theories via the gauge invariant entropy
perturbation and anisotropic stresses. This is done by fully
eliminating the internal degrees of freedom introduced by
this theory. In this paper, we have provided expressions for
these in terms of linear functions of the perturbed variables
and metric perturbations, ITS, = IT5, (Age, O, X, ¥) and
Fge = Fge(Age Oge, W, X, Y), given in (97) and (102).
They have been expressed in an explicitly gauge invariant
form thanks to a new set of notation. Furthermore, via the
Einstein equations, we are also able to specify them
in terms of the perturbed fluid variables for dark energy
and matter only i.e. [T, = IT5, (Age, Apy, Oe, Opy, I, and
Fye = Dge(Ader Ay Oge, ©,,.T), given by (116) and
(117). We note that there seems to be a discontinuity in
taking the ACDM limit in a designer F(K) model. From
these, we solve for the evolution of the Newtonian
gravitational potentials via the perturbed fluid equations
for varying parameters, shown in Figs. 2 and 4. In a
designer F(K) we find that wy I3, - 0 for K> 1,
independent of the choice of {c¢;}. We also provide
expressions for IT1V-T in the vector and tensor sectors, given
by (149) and (150).
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Of course, the motivation for this analysis is to obtain
observables in cosmology and see how they compare to
ACDM. We have now provided the necessary expressions
in order to solve the perturbed fluid equations and obtain
spectra. In principle, this should be easy to incorporate into
existing numerical codes. Similar to [47-49], we would like
to explore a broader class of vector-tensor models, without
ever having to specify a specific model. What if we know
nothing about the background Lagrangian other than its
field content? Can anything be said more broadly about
general vector-tensor theories of gravity and their appli-
cation to dark energy? This is similar to work done in [50],
but instead adopting a covariant approach as was done in
[49] for scalar-tensor theories. We leave this as a matter for
future work.
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APPENDIX A: EQUATIONS OF STATE

FOR PERTURBATIONS IN THE
SYNCHRONOUS GAUGE

In the synchronous gauge, we have that
a*ép = Fy [014"2‘/' + (c1a = a(l + 2p,) JHK?V
l !/
—I—E(ZH(I + 2l |, (Al)

@p(1 + W)

1
= gj-",c[(2k2V —h")(3cips + 2ay,) — 12¢131],  (A2)

where
20H (1
K="~ (=h—-kV). A
=2t <2 v) (A3)
We can then write this system of equations as
1) A B %4 D
ottt ) (0 ) )+ ()
(1 + wge)0® 0 C Vv E
(A4)
with
A =ciuFk. (AS)
B = [c14 —a(l 4+ 2))|HFk, (A6)
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1
C:ng(3C123 +20{}’2), (A7)
1
D= EaH}",c(l +2r2)H, (A8)
1
E= _6]:16[66123 +2ay,)h' + 12¢131'. (A9)

Inverting this will give us expressions for V and V' in terms
of 8p, 05, the metric perturbations, 4 and #, and their
derivatives. Eliminating for these in ITS (74), we find that
we can write (91) as

WHS = cHAA + Cneé + CHXx + CHyK2Y, (A]O)
where the ¢y coefficients are given in (98) to (101). In order

to show this, we use the conservation equation (15) to
find that

271 (142y,)

3(1 + Wde) = €q 2}/1 1

(A11)
and replace for this in 3(1+w)7, arising from © in
Table II. From this it can be shown that the coefficient
cnr = 0, as discussed previously.

Similarly, we do the same for the entropy perturbation by
eliminating V and V' in 5P and hence find that
WF = CFAA + C[‘@@ + Crww + CrXx + CrszY, (AIZ)

where the ¢ coefficients are as before in (103) to (107). To
show this, we note that there is a term proportional
to 3(1 +wde)f1—£T. As before, we use (All) to replace

3(1 4+ wy.) and also compute that

dP  a’P’ 2y, - 2
—_— = —=c —
dp a*p/ "\1+2p, 373

. (A13)

After substituting in for these it can be shown that cpp = 0.
Hence, (97) and (102) constitute the gauge invariant
equations of state for the perturbations.

APPENDIX B: CONSTRAINTS ON
COEFFICIENTS IN MINKOWSKI SPACE

We would like to obtain constraints on the {c;} coef-
ficients by studying the behavior of perturbations in
Minkowski space. We largely follow the procedure defined
in [64], extending their results to include c4 # 0. The
Lagrangian which governs the perturbations is obtained by
perturbing the degrees of freedom in the background
Lagrangian to quadratic order. This would then give rise
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to linear equations of motion for the perturbations.
Schematically, we are computing £ — L + 6L + 5L,
where °L denotes the Lagrangian quadratic in perturba-
tions. Again suppressing overbars to denote unperturbed
variables, from (3) we have that

8L = M*(Fic(6K)* + Fid*K) + 2A#5A,64,  (B1)
since 4 = 0 in Minkowski space.

Perturbing the Aether as A* —A¥+5A*=(1,0,0,0)+o*
and assuming the metric to be flat, we can compute M25°K

by perturbing the Aether field and expanding out to
quadratic order, to give

M*&K = ¢;0,0"0"v, + c2(0,0")* + ¢30,0" 0, 0"

+ ¢4, AFAY0,0° 0,0, + 260AM . (B2)
Similarly we can calculate M?5K to be
1MZ(SIC =¢0,A"0" 0,A*0,v"
E = Cy U vy + CH u U
+ ¢30,AY0, 0" + c,A*0Y0,AP0,A,
+ c,AHAYD, AP0, v, (B3)

From this we see that in Minkowski space 6/C = 0 since
0,A? = 0, which will also be true for the unperturbed value
of IC. The second order Lagrangian is therefore given by

FL=Frl=c148® +¢10;0/0'v;+¢3(0;v")* +¢30,079;v],
(B4)

where ©? = 7'1;, and we have used 1° = 0. By analogy to
the cosmological perturbations, we decompose the pertur-
bation into a scalar and vector part,
vi=0V+iB =8 +T, (B5)
such that k'T; = 0. Inserting this into (B4), we find that we
can write it as the sum of two uncoupled Lagrangians for
the fields S* and T", since any cross terms are zero by the

scalar-vector decomposition of the perturbation. They are
given by

Lg = Frl—cuS* + ¢,0;870'S; + ¢,(9;5")> + ¢30,5'0,S'),
(B6)

ET = f}c[—cl4T2 +013,T’8’TJ (B7)

Here we see the problem with the Minkowski limit for the
designer model, with 7 = B(K)'/? + C. Since K « H?, in

the Minkowski limit where K — 0 we have that 7 — oo,
and hence the second order Lagrangian is not well-defined.
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Constraints can still be obtained for the {c;} coefficients,
but not for the designer model. To compare with results
from [64,68] we will set Fy = 1.

Hence, the equations of motion from (B6) and (B7) are
then given by

§,-S29ips, =0, T,—-=L9i0,T, =0,

B8
Clq Cla ( )

where we have used 9,S; = 0;S; from the definition in
(B5). Therefore, we see that S; and T'; propagate with sound
speeds ¢ = 2 and ¢ = - respectively. Imposing that the
propagation speeds are less than ¢ and to avoid them being
imaginary, leading to an exponential growth in perturba-
tions, we require

0<SB <1 and 0<L <,

B9
Ci4 Ci4 (B)

Also, following the process of [64], considerations of the
quantum Hamiltonian gives an additional constraint of
c14 < 0 to prevent ghosts. Heuristically we can see this
from (B4), as ¢j4 < 0 ensures that the kinetic term is the
correct sign, however see [64] for a full treatment of the
quantization of this theory.

PHYSICAL REVIEW D 96, 064041 (2017)

TABLE III. Summary of the constraints on the {c;} coeffi-
cients, obtained from Minkowski space and gravitational waves.

Constraints Reason

(a) 0 < % <1 Nontachyonic and subluminal

propagation of scalar modes

Nontachyonic and subluminal

b o<<i
propagation of vector modes

(©) c1320 Subluminal propagation
of gravitational waves

(d) ci4 <0 No ghosts

(€) c123<0 (a) and (d)

) c;<0and ¢y >0 (b) and (d)

(g <0 (c) and (e)

(h) 320 (c) and (f)

@) a<0 (e) and (2)

Let us summarize the constraints we have obtained. As in
[64], we can also infer further constraints from those
already obtained, allowing us to get more useful constraints
on the individual coefficients and also combinations of
them that appear frequently. They are shown in Table III
and are also consistent with those obtained in [68].
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