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The effects of highly relativistic spin-gravity coupling in the Schwarzschild–de Sitter background that
follow from the Mathisson-Papapetrou equations are investigated. The dependence of gravitoelectric and
gravitomagnetic components of gravitational field on the velocity of an observer that is moving in
Schwarzschild–de Sitter’s background is estimated. The action of gravitomagnetic components on a fast
moving spinning particle is considered. Different cases of the highly relativistic circular orbits of a spinning
particle that essentially differ from the corresponding geodesic orbits are described.
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I. INTRODUCTION

According to general relativity, many basic properties of
gravity have been discovered through investigations of test
particle motions in gravitational fields of different massive
sources. The classical results concerningmotions of a simple
particle that follows geodesic lines in Schwarzschild’s and
Kerr’s metrics are presented, for example, in [1,2]. If a test
particle possesses inner rotation/spin, in general its motion
differs fromgeodesic. The equations that describemotions of
a macroscopic spinning particle in gravitational fields were
obtained in [3] and have been rederived later in [4–8] and in
many other papers: now these equations are known as
Mathisson-Papapetrou (MP) or Mathisson-Papapetrou-
Dixon equations. In addition, it was shown that in a certain
sense these equations follow from the general relativistic
Dirac equation as a classical approximation [9].
In the first papers where some partial solutions of the MP

equations were investigated, the Schwarzschild [10,11],
Melvin [12], and Lense-Thirring [13] metrics were taken
into account. The physical effects of the spin-gravity
interaction in Kerr’s spacetime are presented in [14–18]
(fuller bibliographies can be found in [19,20] and in other
papers). In some recent publications the MP equations are
studied for the Schwarzschild–de Sitter spacetime [21–24].
As usual, the effects of the spin-gravity coupling on

spinning particle motion are very small. However, under
certain specific conditions, when the orbital velocity of a
spinning particle relative to a source of the gravitational field
is close to the speed of light, the role of the spin-gravity
coupling becomes much greater. Different types of highly
relativistic motions of a spinning particle in Schwarzschild’s
andKerr’s backgroundwere studied in [25–32]. Itwas shown
that depending on the correlation of signs of the spin and the
particle’s orbital velocity the spin-gravity coupling acts as a
significant repulsive or attractive force.
What is the dependence of the influence of the cosmo-

logical constant on a spinning particle for its different
velocities relative to the Schwarzschild source of the

gravitational field? Answering this question is the purpose
of this paper. Note that now the role of the cosmo-
logical constant is widely considered in cosmology and
astrophysics.
The paper is organized in the following way: Section II is

devoted to the consideration of the gravitoelectric and
gravitomagnetic components of the single gravitational
field in general relativity that can be estimated by an
observer moving in the Schwarzschild–de Sitter back-
ground with arbitrary velocity. In Sec. III we present
necessary information about the MP equations and then
study the spin-gravity coupling in the Schwarzschild–de
Sitter background from the point of view of an observer
comoving with the spinning particle. Different cases of
highly relativistic circular orbits of a spinning particle in
this background that are caused by the strong spin-gravity
repulsion or attraction are in the focus of Sec. IV. We
conclude in Sec. V.

II. GRAVITOELECTRIC AND
GRAVITOMAGNETIC COMPONENTS FROM

THE POINT OF VIEW OF A MOVING
OBSERVER IN THE SCHWARZSCHILD–DE

SITTER BACKGROUND

We use the Schwarzschild–de Sitter metric in the
standard coordinates x1 ¼ r, x2 ¼ θ, x3 ¼ φ, and x4 ¼ t.
Then the nonzero components of the metric tensor gμν are

g11 ¼ −
�
1 −

2M
r

−
Λr2

3

�
−1
; g22 ¼ −r2;

g33 ¼ −r2sin2θ; g44 ¼ 1 −
2M
r

−
Λr2

3
; ð1Þ

where M and Λ > 0 are, respectively, the mass parameter
and the cosmological constant [in this paper we use the
signature of the metric ð−;−;−;þÞ, and the units c ¼ G ¼
1 are chosen].
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To investigate the physical properties of the
Schwarzschild–de Sitter background, it is appropriate to
consider some specific features of the gravitational field,
which is determined by metric (1), from the point of view of
any observer moving relative to a source with the mass M.
For the description of this motion one can use the local
tetrad coordinates that are put in the parentheses below.
According to the general definition, the expressions of the

values EðiÞ
ðkÞ and BðiÞ

ðkÞ are [33]

EðiÞ
ðkÞ ¼ RðiÞð4ÞðkÞð4Þ; ð2Þ

BðiÞ
ðkÞ ¼ −

1

2
RðiÞð4ÞðmÞðnÞεðmÞðnÞðkÞ; ð3Þ

where EðiÞ
ðkÞ and BðiÞ

ðkÞ are the gravitoelectric and gravito-

magnetic components of the gravitational field, respec-
tively [in contrast to Greek indices that run 1, 2, 3, 4, Latin
indices in (2) and (3) run 1, 2, 3].
Let us consider relationships (2) and (3) in the specific

case of the Schwarzschild–de Sitter metric. Without loss of
generality we put that the plane of the observer motion is
θ ¼ π=2. It is convenient to orient the first space axis (1) of
the local basis along the direction that is orthogonal to the
plane determined by the direction of the observer motion
and the radial direction to the massM, and the second space
axis (2) we orient along the direction of this motion. As a
direct result of such a choice of the local basis orientation
wewrite e⃗ð1Þe⃗1 ¼ 0, e⃗ð1Þe⃗3 ¼ 0, e⃗ð2Þe⃗2 ¼ 0, and e⃗ð3Þe⃗2 ¼ 0,
where e⃗ðiÞ and e⃗j are the vectors of the local and global
bases, respectively. Then for the tetrad components λμðνÞ we
have λ1ð1Þ ¼ 0, λ3ð1Þ ¼ 0, λ2ð2Þ ¼ 0, and λ2ð3Þ ¼ 0. Other
tetrad components that are nonzero can be found from the
general relationship between the metric tensor gπρ and λμðνÞ

λπðμÞλρðνÞηðμÞðνÞ ¼ gπρ; ð4Þ

where ηðμÞðνÞ is the Minkowski tensor. It is not difficult to
verify that according to (4) the full set of the nonzero tetrad
components can be presented in the following form:

λ2ð1Þ ¼
ffiffiffiffiffiffiffiffiffiffi
−g22

q
; λ1ð2Þ ¼ u1u4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g44

u4u4 − 1

r
;

λ3ð2Þ ¼ u3u4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g44
u4u4 − 1

r
; λ4ð2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4u4 − 1

g44

s
;

λ1ð3Þ ¼ u3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11g33

u4u4 − 1

s
; λ3ð3Þ ¼ −u1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g33g11

u4u4 − 1

s
;

λ1ð4Þ ¼ u1; λ3ð4Þ ¼ u3; λ4ð4Þ ¼ u4; ð5Þ

where u1 ¼ dr=ds, u3 ¼ dφ=ds, and u4 ¼ dt=ds are the
components of the observer 4-velocity (for the motion in
the plane θ ¼ π=2 we have u2 ¼ 0).
To obtain the nonzero tetrad components of Riemann’s

tensor RðπÞðρÞðσÞðτÞ we use the general relationship

RðπÞðρÞðσÞðτÞ ¼ λαðπÞλ
β
ðρÞλ

γ
ðσÞλ

δ
ðτÞRαβγδ; ð6Þ

where Rαβγδ are the components of the Riemann tensor in
the global coordinates. The components Rαβγδ for metric (1)
can be calculated in the direct manner, and for the sake of
brevity we do not write here the corresponding explicit
expressions. Instead of taking into account relationships (5)

and (6) we write the final nonzero expressions for EðiÞ
ðkÞ and

BðiÞ
ðkÞ according to (2) and (3),

Eð1Þ
ð1Þ ¼

M
r3

−
Λ
3
þ 3M

r3
u2⊥;

Eð2Þ
ð2Þ ¼ −

2M
r3

−
Λ
3
þ 3M

r3
u2⊥

u4u4 − 1
;

Eð2Þ
ð3Þ ¼ Eð3Þ

ð2Þ ¼ −
3M
r3

u∥u⊥u4

u4u4 − 1
;

Eð3Þ
ð3Þ ¼

M
r3

−
Λ
3
−
3M
r3

u2⊥u4u4
u4u4 − 1

; ð7Þ

Bð1Þ
ð2Þ ¼ Bð2Þ

ð1Þ ¼
3Mu∥u⊥

r3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4u4 − 1

p �
1 −

2M
r

−
Λr2

3

�−1=2
;

Bð1Þ
ð3Þ ¼ Bð3Þ

ð1Þ ¼
3Mu2⊥u4

r3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4u4 − 1

p �
1 −

2M
r

−
Λr2

3

�
1=2

; ð8Þ

where u∥ ¼ dr=ds and u⊥ ¼ rdφ=ds are the radial and
tangential components of the observer 4-velocity, and by
the general expression uμuμ ¼ 1 we have

u4u4 − 1 ¼ u2⊥ þ
�
1 −

2M
r

−
Λr2

3

�−1
u2∥: ð9Þ

Relationships (7) and (8) hold true for any arbitrary velocity
of the observer if the condition

1 −
2M
r

−
Λr2

3
> 0; ð10Þ

i.e., g44 > 0, is satisfied.
Similar to the case of Schwarzschild’s background,

which was considered in [34], expressions (7) and (8)
show that the special direction exists in space along which
the components EðiÞ

ðkÞ and BðiÞ
ðkÞ remain finite because in the

case with u⊥ ¼ 0 all components EðiÞ
ðkÞ and B

ðiÞ
ðkÞ are finite for

any u∥. Moreover, then according to (8) all componentsBðiÞ
ðkÞ
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are equal to 0 and this property is similar to the corre-
sponding one in electrodynamics when the usual magnetic
field of the moving electric charge is estimated.
In general, when u⊥ ≠ 0, the components EðiÞ

ðkÞ and BðiÞ
ðkÞ

in (7) and (8) significantly depend on the observer motion.
Note that the corresponding dependence of the gravito-
electric components in Schwarzschild’s field as well as the
gravitomagnetic components caused by a rotating mass (in
the post-Newtonian approximation) were considered in
[34] in the context of the tidal accelerations estimation.
It is convenient to consider expressions (7) and (8) using

the Lorentz factor γ as estimated by an observer which is at
rest relative to the source of the gravitational field. The
value of γ that corresponds to the u∥ and u⊥ is given by the
expression

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð11Þ

where v2 is the second power of the particle’s 3-velocity
relative to the observer. In the case of the diagonal metric,
according to the general expression for the 3-velocity
components vi we have [35]

vi ¼ dxiffiffiffiffiffiffi
g44

p
dt

: ð12Þ

Then for v2 we write

v2 ¼ vivi ¼ γikvivk; ð13Þ

where γik is the 3-space metric tensor, with the following
relationship between γik and gμν for the diagonal metric:
γik ¼ −gik. It follows from (11)–(13) with uμuμ ¼ 1 that

γ ¼
ffiffiffiffiffiffiffiffiffiffi
u4u4

q
: ð14Þ

For our further purposes we write the values of the
components BðiÞ

ðkÞ using the γ factor explicitly. Then by (8)
and (14) we have

Bð1Þ
ð2Þ ¼ Bð2Þ

ð1Þ ¼
3M
r3

u∥u⊥ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p �
1 −

2M
r

−
Λr2

3

�−1=2
; ð15Þ

Bð1Þ
ð3Þ ¼ Bð3Þ

ð1Þ ¼
3M
r3

u2⊥γffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p : ð16Þ

Let us compare the values from (15) and (16) at low and
high velocities. When the velocity is low with u∥ ¼ δ1,
u⊥ ¼ δ2, jδ1j ≪ 1, jδ2j ≪ 1, and γ2 − 1 ¼ Δ2 ≪ 1, where
by (9)

Δ2 ¼
�
1 −

2M
r

−
Λr2

3

�−1
δ21 þ δ22; ð17Þ

it follows from (15) and (16) that

Bð1Þ
ð2Þ ¼ Bð2Þ

ð1Þ ≈
3M
r3

δ1δ2
Δ

�
1 −

2M
r

−
Λr2

3

�−1=2
; ð18Þ

Bð1Þ
ð3Þ ¼ Bð3Þ

ð1Þ ≈
3M
r3

δ22
Δ
: ð19Þ

That is, at low velocity the common term 3M=r3 in the
expressions for the gravitomagnetic components (18)
and (19) is multiplied by corresponding small factors.
Whereas in the highly relativistic region, when γ2 ≫ 1 and
both u2∥ and u2⊥ have order γ2, it follows from (15)
and (16) that

Bð1Þ
ð2Þ ¼ Bð2Þ

ð1Þ ∼
3M
r3

�
1 −

2M
r

−
Λr2

3

�−1=2
γ; ð20Þ

Bð1Þ
ð3Þ ¼ Bð3Þ

ð1Þ ∼
3M
r3

γ2: ð21Þ

When only u2⊥ ≫ 1, with u2∥ ≪ u2⊥, the values from (20) are
proportional to u∥, and the values from (21) are propor-
tional to γ2. In the case when u2∥ ≫ 1 and u2⊥ ≪ u2∥, the
values from (20) and (21) are proportional to u⊥ and u2⊥,
respectively.
Note that in contrast to the dependence on γ of the

magnetic field of a moving electric charge in electrody-
namics, where components of this field are proportional to
γ, some above considered gravitomagnetic components can
be proportional to γ and others to γ2.

III. SPIN-GRAVITY-Λ COUPLING BY
ESTIMATION OF AN OBSERVER COMOVING

WITH THE SPINNING PARTICLE

A. Some general relationships connected
with the MP equations

We take into account the MP equations in the form [3,4]

D
ds

�
muλ þ uμ

DSλμ

ds

�
¼ −

1

2
uπSρσRλ

πρσ; ð22Þ

DSμν

ds
þ uμuσ

DSνσ

ds
− uνuσ

DSμσ

ds
¼ 0; ð23Þ

where uλ ≡ dxλ=ds is the particle’s 4-velocity, Sμν is the
tensor of spin, m and D=ds are the mass and the covariant
derivative along uλ, respectively.
As usual, these equations are considered with some

supplementary condition, and more often than not either the
Mathisson-Pirani condition [3,36]
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Sλνuν ¼ 0 ð24Þ

or the Tulczyjew-Dixon one [5,37]

SλνPν ¼ 0 ð25Þ

are used, where

Pν ¼ muν þ uλ
DSνλ

ds
ð26Þ

is the particle 4-momentum. In both (24) and (25), the
constant of motion of the MP equations is

S20 ¼
1

2
SμνSμν; ð27Þ

where jS0j is the absolute value of spin. The value m in the
left-hand side of Eq. (22) is the constant of motion under
condition (24). The value PμPμ is the constant of motion at
condition (25).
In recent papers [38–40] instead of Eqs. (22) and (23) the

set of equations

m
Duλ

ds
¼ −

1

2
uπSρσRλ

πρσ; ð28Þ

DSμν

ds
¼ 0; ð29Þ

Dm
ds

¼ 0 ð30Þ

is studied, and it means that the new Ohashi-Kyrian-
Semerák supplementary condition is used. This approach
is related to the possibility to exclude the hidden momen-
tum that is determined by the term

uμ
DSλμ

ds

in the MP equations (22) and (23).
Other aspects of the supplementary conditions for the

MP equations are elucidated, for example, in [41,42]. As it
is pointed out in [15], the physical condition for a spinning
test particle

ε≡ jS0j
mr

≪ 1 ð31Þ

must be taken into account.
In many papers where condition (24) is used, the

4-vector of spin sλ is taken into account in the MP
equations, instead of the 4-tensor Sμν, where by definition

sλ ¼
1

2

ffiffiffiffiffiffi
−g

p
ελμνσuμSνσ; ð32Þ

g is the determinant of gμν, and ελμνσ is the Levi-Cività
symbol. Under condition (24) it follows from (23) that

Dsλ

ds
¼ sμ

Duμ

ds
uλ; ð33Þ

and it means that the 4-vector of spin is Fermi transported.
The relationship sλsλ ¼ S20 holds. In addition, in practical
calculations it is convenient to represent the MP equations
through the spin 3-vector Si, which is defined by

Si ¼
1

2

ffiffiffiffiffiffi
−g

p
εiklSkl: ð34Þ

The following relationship holds:

Si ¼ uis4 − u4si: ð35Þ

At condition (24) the three independent equations of set
(23) can be written as

u4 _Si − _u4Si þ 2ð _u½4ui� − uπuρΓ
ρ
π½4ui�ÞSkuk

þ 2SnΓn
π½4ui�u

π ¼ 0; ð36Þ

where a dot denotes the usual differentiation with respect to
the proper time s, and square brackets denote antisymmet-
rization of indices.
In general, the solutions of Eqs. (22) and (23) under

conditions (24) and (25) are different. However, in the post-
Newtonian approximation these solutions coincide with
high accuracy [43], just as in other cases when the spin
effects lead to small corrections to the corresponding
geodesic expressions. Therefore, instead of rigorous MP
Eqs. (22) their linear spin approximation

m
D
ds

uλ ¼ −
1

2
uπSρσRλ

πρσ ð37Þ

is often considered. In this approximation condition (25)
matches with (24).
An important physical consequence follows from

Eq. (37), after their representation in terms of the local
(tetrad) values, which describe the situation when an
observer is comoving with the spinning particle. Then
one can obtain from Eq. (37) the relationships [25,30]

γðiÞð4Þð4Þ ¼ −
sð1Þ
m

RðiÞð4Þð2Þð3Þ; ð38Þ

where γðkÞð1Þð4Þ are the Ricci coefficients of rotation, and
here the first local vector (1) is chosen to be oriented along
the particle’s spin (it means that sð2Þ ¼ 0, sð3Þ ¼ 0, and by
the property of the spin 4-vector for a comoving observer
sð4Þ ¼ 0 [14]).
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It is known that value γðiÞð4Þð4Þ is the dynamical character-
istic of the reference frame, namely, its acceleration. That
is, according to (38) we have

aðiÞ ¼ −
sð1Þ
m

RðiÞð4Þð2Þð3Þ; ð39Þ

where aðiÞ is the 3-acceleration with which the spinning
particle deviates from free geodesic fall as measured by the
comoving observer. Taking (3) into account it is easy to see
that the right-hand side of (39) contains the gravitomag-
netic components.
For comparison, we present the relationship which

follows from the rigorous MP equations (22) under con-
dition (24). Taking into account the condition of the Fermi
transport for the local orthogonal vectors γðiÞðkÞð4Þ ¼ 0, we
write this relationship as [30]

að1Þ ¼ −
sð1Þ
m

Rð1Þð4Þð2Þð3Þ; ð40Þ

að2Þ ¼ −
sð1Þ
m

ðRð2Þð4Þð2Þð3Þ − _að3ÞÞ; ð41Þ

að3Þ ¼ −
sð1Þ
m

ðRð3Þð4Þð2Þð3Þ − _að2ÞÞ; ð42Þ

where a dot denotes the usual derivative with respect to s. In
a particular case of að2Þ ¼ const and að3Þ ¼ const
Eqs. (40)–(42) coincide with Eq. (39). Some corresponding
special examples will be considered below.

B. The acceleration aðiÞ in the Schwarzschild–de
Sitter background

Let us consider (39) in the specific case of spinning
particle motion in the Schwarzschild–de Sitter background,
when the particle’s spin is orthogonal to the plane deter-
mined by the direction of the particle motion and the radial
direction. We choose the same orientation of the space local
axes as in the previous section. Then by (39) we write

aðiÞ ¼ −
sð1Þ
m

Bð1Þ
ðiÞ : ð43Þ

Because Bð1Þ
ðiÞ ¼ 0 [all nonzero components BðiÞ

ðkÞ are written
in (8)], we have að1Þ ¼ 0; i.e., the acceleration is absent in
the direction of the spin orientation. According to (8)
and (43) the nonzero components að2Þ and að3Þ are

að2Þ ¼ −
sð1Þ
m

3Mu∥u⊥
r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4u4 − 1

p �
1 −

2M
r

−
Λr2

3

�−1=2
; ð44Þ

að3Þ ¼ −
sð1Þ
m

3Mu2⊥u4

r3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4u4 − 1

p �
1 −

2M
r

−
Λr2

3

�
1=2

: ð45Þ

For the absolute value of the acceleration ja⃗j, where

ja⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð1Þ þ a2ð2Þ þ a2ð3Þ

q
;

according to (44), (45), and (9) we get

ja⃗j ¼ 3M
r2

jS0j
mr

ju⊥j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2⊥

q
: ð46Þ

In (46) we take into account that jsð1Þj ¼ jS0j (it follows
from the general relationship sðμÞsðμÞ ¼ sμsμ ¼ S20Þ. One
can check that the vector a⃗ is oriented along the radial
direction, because the scalar product of a⃗ and the tangen-
tially directed vector e⃗3 is equal to 0. Indeed,

a⃗ ¼ að2Þe⃗ð2Þ þ að3Þe⃗ð3Þ;

and then

a⃗e⃗3 ¼ ðað2Þe⃗ð2Þ þ að3Þe⃗ð3ÞÞe⃗3 ¼ að2Þλ3ð2Þ þ að3Þλ3ð3Þ

¼ −g33ðað2Þλ3ð2Þ þ að2Þλ3ð2ÞÞ: ð47Þ

Using expressions (5), (44), and (45) we obtain that the
value in the last brackets of (47) is equal to 0.
We also emphasize that the value of acceleration (46)

does not depend on the radial component of the particle
velocity u∥ and depends significantly on its tangential
velocity u⊥. That is, expression (46) shows the essential
difference between the two cases, when 1. u⊥ ≪ 1 (the
weak relativistic motion), and 2. u⊥ ≫ 1 (the highly
relativistic motion). In the first case after (46) we write

ja⃗j ¼ 3M
r2

εδ; ð48Þ

where the small value ε is determined in (31), and
δ≡ ju⊥j ≪ 1. Note that M=r2 is equal to the Newtonian
acceleration of free fall, which is caused by a body with the
mass M. According to (48) the acceleration of a spinning
particle is much less than the Newtonian value M=r2,
whereas in the second case by (46) we have

ja⃗j ¼ 3M
r2

εγ2; ð49Þ

where γ is the Lorentz factor calculated by the tangential
velocity u⊥. Expression (49) shows that for any small value
ε one can choose such high values γ that would lead to
ja⃗j ≫ M=r2.
Note that expression (46) is common for

Schwarzschild’s and the Schwarzschild–de Sitter back-
ground and the role of the Λ can be revealed by consid-
eration of the dependence of u⊥ on Λ for specific spinning
particle motions. Naturally, it is important to study the cases
of motions that can be described in some clear analytic
expressions, if it is possible. For this purpose in the next
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section we consider the circular orbits of a spinning
particle, when u∥ ¼ 0 and u⊥ ≠ 0. In this context we note
that on the circular orbits with u⊥ ¼ const, expression (38)
is rigorous, in contrast to the noncircular orbits when (38) is
within the linear spin approximation. In the following we
will consider rigorous MP equations (22) and (23) under
condition (24).

IV. HIGHLY RELATIVISTIC CIRCULAR ORBITS
OF A SPINNING PARTICLE IN THE

SCHWARZSCHILD–DE SITTER SPACETIME

First, note that by the geodesic equations in metric (2)
circular orbits of a spinless particle the Schwarzschild–
de Sitter spacetime are allowed when its orbital (tangential)
4-velocity u⊥ satisfies the relationship

u2⊥ ¼
�
M
r
−
Λ
3
r2
��

1 −
3M
r

�
−1
: ð50Þ

It follows from (50) that under the condition

M
r
>

Λ
3
r2 ð51Þ

circular orbits exist for r > 3M, similarly as for
Schwarzschild’s spacetime, and the orbit with r ¼ 3M is
the so-called orbit of a photon. The circular orbits
are highly relativistic only at r ¼ 3Mð1þ δÞ, where
0 < δ ≪ 1, i.e., in a small neighborhood of the value
3M. Note that the right-hand side of (50) is also positive
when

M
r
<

Λ
3
r2; r < 3M: ð52Þ

However, it follows from (52) that then g44 < 0; i.e., then
the meaning of the coordinate t is changed.
Now we take into account the MP equations (22)

and (23) with supplementary condition (24) because, in
general, for a correct description of highly relativistic
motions of a spinning particle this condition is more
appropriate than condition (25) [29–31]. (Some points
pertaining to the issue of choosing different supplementary
conditions are discussed below in Sec. IVA.) It is easy to
check by direct calculations that in the case when spin is
orthogonal to the plane θ ¼ π=2 in metric (1), i.e., when
S1 ≡ Sr ¼ 0, S3 ≡ Sφ ¼ 0, and only S2 ≡ Sθ is nonzero,
Eqs. (22)–(24) in this metric have solutions that describe
the circular orbits of a spinning particle in the plane
θ ¼ π=2. According to these solutions, there is the
connection between the nonzero components of the particle
4-velocity u3, u4 and the component of the 3-vector of
spin S2,

− r

�
u3u3 −

�
M
r3

−
Λ
3

�
u4u4

�

×

�
1 −

�
1 −

3M
r

��
1 −

2M
r

−
Λr2

3

�−1
u3

S2
mr

�

¼ 3M
r3

u3
�
1 −

2M
r

−
Λr2

3

�−1 S2
mr

ð53Þ

[relationship (53) follows directly from the first equation
from (22), with λ ¼ 1]. In addition to (53), it is necessary to
take into account the relationship for u3 and u4

−r2u3u3 þ
�
1 −

2M
r

−
Λr2

3

�
u4u4 ¼ 1; ð54Þ

which is a direct consequence of the general relationship
uμuμ ¼ 1. From (53) and (54) we obtain the third order
algebraic equation for u⊥,

u3⊥
�
1 −

3M
r

�
2 S2
mr2

− u2⊥
�
1 −

3M
r

��
1 −

2M
r

−
Λr2

3

�

þ u⊥
S2
mr2

�
M
r

�
2 −

3M
r

�
þ Λr2

3

�
1 −

6M
r

��

þ
�
M
r
−
Λr2

3

��
1 −

2M
r

−
Λr2

3

�
¼ 0; ð55Þ

which determines the dependence of the spinning particle
velocity on r,M, Λ, and S2. Without any loss in generality,
we can put S2 > 0. By the way, the set of equations for the
spin 3-vector (36) becomes much simpler when spin is
orthogonal to the trajectory of motion (Siui ¼ 0),

u4 _Si − _u4Si þ 2SnΓn
π½4ui�u

π ¼ 0: ð56Þ

In our case of particle motions in the equatorial plane of the
Schwarzschild–de Sitter metric with S1 ¼ 0 and S3 ¼ 0 the
single nontrivial equation from (56) with i ¼ 2 can easily
be integrated. As a result, we have

S2 ¼ ru4S0: ð57Þ

A. The case r= 3M

In the particular case, when r ¼ 3M, Eq. (55) becomes
linear for u⊥, and we have

u⊥ ¼ −
3mM2

S2
ð1 − 9ΛM2Þ: ð58Þ

Without any loss in generality, we can put S2 > 0. Then
after (57) using (54) we rewrite (58) in the form
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u⊥ ≈ −
�
1

3
− 3ΛM2

�
1=4 1ffiffiffi

ε
p

�
1 −

ε

4

�
1

3
− 3ΛM2

�
−1=2

�
;

ð59Þ

where ε is determined in (31). It follows from (31) and (59)
that

u2⊥ ≫ 1; ð60Þ

and it means that for the motion on the circular orbit with
r ¼ 3M the spinning particle must possess a highly
relativistic velocity.
There are two points here worth drawing our attention to.

The first one is that the term in the left-hand side of (53),

�
1 −

3M
r

��
1 −

2M
r

−
Λr2

3

�−1
u3

S2
mr

; ð61Þ

is determined just by the term

uμ
DSλμ

ds
ð62Þ

from the left-hand side of (22) and in the right-hand side of
(26). The second one is that for the considered circular orbit
with r ¼ 3M both terms (61) and (62) are equal to 0. They
allow us to make a conclusion that a partial solution (58) of
the MP equations in the Schwarzschild–de Sitter back-
ground that describes the highly relativistic circular orbit
with r ¼ 3M is common under the Mathisson-Pirani,
Tulczyjew-Dixon, and Ohashi-Kyrian-Semerák conditions.
From this point this solution is unique (nevertheless, it
cannot be excluded that the MP equations may have some
other solutions that describe noncircular highly relativistic
orbits and that are the same or close under different
supplementary conditions). With this in mind, it should
also be noted that in order to describe the motion of a
spinning particle correctly any partial solution of the MP
equations that is obtained under some supplementary
condition other than the Mathisson-Pirani one has to be
the same or very close to the corresponding nonhelical
solution of the MP equations under the Mathisson-Pirani
condition (this point is elucidated in [29,30]).
It is appropriate to compare solution (58) with the well-

known circular solutions of the exact MP equations under
condition (24) in the Minkowski spacetime. From Eq. (58)
in the case of M ¼ 0 and Λ ¼ 0 we have

u⊥ ¼ mr2

S2
: ð63Þ

[Circular solution (63) represents a partial case of the
general helical solutions that have Eqs. (22)–(24) in the
Minkowski spacetime.] As it can easily be seen, expres-
sions (58) and (63) have different signs for the fixed sign of

S2. It means that the directions of the rotation according to
(58) and (63) are opposite, and that the circular orbit (58)
cannot be interpreted as the one that is analogous to the
orbits with (63) [Eq. (63) does not follow from Eq. (58)
when M tends to 0 for Λ ¼ 0].

B. The case r < 3M, M
r − Λr2

3 > 0

In this case the cubic Eq. (55) has the single real root,
which is

u⊥ ≈ −
�
3M
r

− 1

�
−1=2

�
1 −

2M
r

−
Λr2

3

�
1=4

×
1ffiffiffi
ε

p ð1þ kεÞ; ð64Þ

where

k¼ c
d
−
1

4

�
1−

3M
r

��
1−

2M
r

−
Λr2

3

�
−1=2

;

c¼−
�
M
r
−
Λr2

3

��
M
r

�
5−12

M
r

�
−
Λr2

3

�
2−3

M
r

��
3

þ
�
M
r

�
2−3

M
r

�
þΛr2

3

�
1−6

M
r

��
2

×

�
M
r

�
4−3

M
r
−18

M2

r2

�

þΛr2

3

�
2−33

M
r
þ72

M2

r2

�
þΛ2r4

3

�
2−3

M
r

��
;

d¼ 54

����1−3M
r

����3
�
M
r
−
Λr2

3

�
3
�
1−

2M
r

−
Λr2

3

�
1=2

; ð65Þ

and these expressions are written for the case when

ε

����1 − 3M
r

����−3 ≪ 1;

i.e., when r is not very close to 3M. Similar to the case with
r ¼ 3M, here the value u⊥ is proportional to 1=

ffiffiffi
ε

p
and

u⊥ < 0 for the chosen positive sign of S2. Note that the case
of highly relativistic circular orbits with r < 3M in
Schwarzschild’s background was under investigation in
[27,29]. It was shown that these orbits exist due to the
strong coupling of spin with the gravitational field and the
force of this coupling acts on a particle as a repulsive one
[29]. (It is known that a spinless particle, which starts in the
tangential direction relative to Schwarzschild’s mass with
any velocity from the position r < 3M, falls on the horizon
surface). The specific feature of the Schwarzschild–de
Sitter background is the property that the constant Λ > 0
describes as the cosmological repulsion. According to (64),
the presence of Λ > 0 in the right-hand side of (64) leads to
a less absolute value of the tangential velocity (and the
corresponding γ factor), which is necessary for the
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realization of the circular orbits with some fixed r < 3M,
than it is necessary in Schwarzschild’s background.
As it is noted above, the case

r < 3M;
M
r
−
Λr2

3
< 0

means that g44 < 0.

C. The case r > 3M, M
r − Λr2

3 > 0

Under these conditions Eq. (55) has three real roots for
u⊥, which can be written as

u⊥ ≈
�
1 −

3M
r

�
−1=2

�
1 −

2M
r

−
Λr2

3

�
1=4

×
1ffiffiffi
ε

p ð1þ kεÞ; ð66Þ

u⊥1;2 ≈�
�
M
r
−
Λ
3
r2
�

1=2
�
1 −

3M
r

�
−1=2

ð1� ϰεÞ; ð67Þ

where the expression for k is the same as in (65) and the
expression for ϰ is

ϰ ¼ 3M
2r

�
1 −

3M
r

�
−1

×

�
1 −

2M
r

−
Λr2

3

��
M
r
−
Λ
3
r2
�

−1=2
: ð68Þ

Concerning Eq. (66) we note that in contrast to expression
(64) the sign of u⊥ in (66) is positive for the positive sign of
S2. In the particular case of Schwarzschild’s background
(Λ ¼ 0), the analogous to (66) expression was considered
in [29], and it was pointed out that the corresponding highly
relativistic circular orbits at r > 3M are caused by the
strong attractive action of the spin-gravity coupling. If
Λ ≠ 0, the second bracket in the right-hand side of Eq. (66)
shows the influence of Λ on the necessary value of u⊥ for
the realization of these orbits.
Relationship (67) describes a simple situation of circular

motions of a spinning particle that are close to the
corresponding geodesic motions [in this context see
Eq. (50)], i.e., when the influence of the particle’s spin
on its orbital velocity u⊥ is weak.

D. The case r > 3M, M
r − Λr2

3 < 0

This case does not have an analogy in Schwarzschild’s
background, and then Eq. (55) has the single real positive
root for u⊥,

u⊥ ≈
�
1 −

3M
r

�
−1=2

�
1 −

2M
r

−
Λr2

3

�
1=4

×
1ffiffiffi
ε

p ð1þ kεÞÞ; ð69Þ

where the expression for k is the same as in (65). The
corresponding circular orbits of a spinning particle exist
because of the attractive action of the spin-gravity coupling.
For comparison note that according to (50) any circular
orbits of a spinless particle are possible at the conditions

r > 3M;
M
r
<

Λr2

3
:

It is important to emphasize that from (59), (64), (66),
and (69) we can see that for corresponding circular orbits of
a spinning particle the absolute values of u⊥ are propor-
tional to 1=

ffiffiffi
ε

p
, and by (31) the relationship u2⊥ ≫ 1 takes

place. Then in this context we point out that according to
(49) the value of the acceleration ja⃗j is of order M=r2.
Now, there are several remarks regarding the possibility

of interpreting the highly relativistic circular solutions that
are described by (59), (64), (66), and (69) as corresponding
to the partial case of helical solutions. First, let us take into
account Eqs. (41) and (42). The general solution of these
equations is

að2ÞðsÞ ¼
S0
M

Z
s

0

�
− _Rð3Þð4Þð2Þð3Þ −

M
S0

Rð2Þð4Þð2Þð3Þ

�

× sin
M
S0

ðs − xÞdxþ að2Þð0Þ cos
M
S0

−
�
að3Þð0Þ þ

S0
M

Rð3Þð4Þð2Þð3Þð0Þ
�
sin

M
S0

s; ð70Þ

að3ÞðsÞ ¼
S0
M

Z
s

0

�
− _Rð2Þð4Þð2Þð3Þ −

M
S0

Rð3Þð4Þð2Þð3Þ

�

× sin
M
S0

ðs − xÞdxþ að3Þð0Þ cos
M
S0

s

þ
�
að2Þð0Þ þ

S0
M

Rð2Þð4Þð2Þð3Þð0Þ
�
sin

M
S0

s; ð71Þ

where að2Þð0Þ and að3Þð0Þ are the corresponding values at
s ¼ 0. In the simple case of the Minkowski spacetime it
follows from (70) and (71) that

að2ÞðsÞ ¼ að2Þð0Þ cos
M
S0

s − að3Þð0Þ sin
M
S0

s; ð72Þ

að3ÞðsÞ ¼ að3Þð0Þ cos
M
S0

sþ að3Þð0Þ sin
M
S0

s: ð73Þ

As it can easily be seen, the expressions for að2ÞðsÞ and
að3ÞðsÞ in (72) and (73) do not contain oscillatory terms if
and only if að2Þð0Þ ¼ 0 and að3Þð0Þ ¼ 0. When one of the
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values að2Þð0Þ and að3Þð0Þ or both of them are nonzero,
Eqs. (72) and (73) describe the known oscillatory solutions.
It gets more interesting when we investigate some special

solutions of the strict MP Eqs. (22) and (23) under
condition (24) in a spacetime with some nonzero curvature.
Indeed, let us suppose that we obtained a partial solution of
these equations in a certain background. Theoretically, after
calculations of comoving tetrad components we can obtain
explicit expressions of Rð2Þð4Þð2Þð3Þ and Rð3Þð4Þð2Þð3Þ as
functions of s. Then by performing corresponding integra-
tion in the right-hand sides of Eqs. (70) and (71) explicit
expressions for að2ÞðsÞ and að3ÞðsÞ can be written. In
Eqs. (70) and (71) að2Þð0Þ and að3Þð0Þ are the constants
of integration, and different numerical values of að2Þð0Þ and
að3Þð0Þ correspond to different types of particle motions,
both oscillatory and nonoscillatory. As a result, because of
the obtained expressions for Eqs. (70) and (71) it is possible
to identify the partial solution of the MP equations under
condition (24) as the one that describes some helical or
nonhelical motion. It is appropriate to illustrate this
procedure with the above considered highly relativistic
circular orbits in Schwarzschild–de Sitter background. For
this purpose we take into account that according to Eqs. (5)
and (6) all components RðπÞðρÞðσÞðτÞ are constant on circular
orbits because in this case u1 ¼ 0, u3 ¼ const, u4 ¼ const,
and r ¼ const (we also note that in this case the relationship
γðiÞðkÞð4Þ ¼ 0 is satisfied). Then the integrals in the right-
hand sides of Eqs. (70) and (71) can be calculated easily,
and we obtain

að2ÞðsÞ ¼ −Rð2Þð4Þð2Þð3Þ
S0
m

�
1 − cos

M
S0

s

�

− Rð3Þð4Þð2Þð3Þ
S0
m

sin
M
S0

s

þ að2Þð0Þ cos
M
S0

s − að3Þð0Þ sin
M
S0

s; ð74Þ

að3ÞðsÞ ¼ −Rð3Þð4Þð2Þð3Þ
S0
m

�
1 − cos

M
S0

s

�

þ Rð2Þð4Þð2Þð3Þ
S0
m

sin
M
S0

s

þ að3Þð0Þ cos
M
S0

sþ að2Þð0Þ sin
M
S0

s: ð75Þ

It follows from Eqs. (74) and (75) that the oscillatory terms
in the right-hand sides of these equations can be excluded if
and only if the values að2Þð0Þ and að3Þð0Þ are

að2Þð0Þ ¼ −
S0
m

Rð2Þð4Þð2Þð3Þ; að3Þð0Þ ¼ −
S0
m

Rð3Þð4Þð2Þð3Þ:

ð76Þ

Note that these values coincide with the constant values of
að2Þ and að3Þ on the circular orbits that were considered
above.
The behavior of a spinning particle in the

Schwarzschild–de Sitter background was investigated in
[21–23] without focusing just on specific cases of highly
relativistic motions. In [21] the stationary equilibrium
condition for a spinning particle located in the
Schwarzschild–de Sitter background was studied using
the MP equations with relationship (24). This condition is

M
r
¼ Λr2

3
;

and then the gravitational attraction is compensated by the
cosmological repulsion. The MP equations with condition
(25) were studied in [22] to find the location of the turning
points when a spinning particle is moving in the equatorial
plane of the Schwarzschild–de Sitter metric. The specific
case with the isofrequency pairing of spinning particles in
the Schwarzschild–de Sitter background was investigated
by the MP equations under condition (25).

V. CONCLUSIONS

The above considered situations with highly relativistic
motions of a spinning particle in the Schwarzschild–de
Sitter background give the new theoretical data concerning
physical effects following from general relativity. At the
same time, it is useful to take into account the correspond-
ing results in the practical high energy physics, astrophys-
ics, and cosmology.
For understanding the physical reason that determines

the specific features of highly relativistic motions of a
spinning particle in the Schwarzschild–de Sitter back-
ground it is important to keep in mind that in the proper
system of reference such a particle feels the strong action of
the gravitomagnetic field, as it is estimated in Secs. II and
III. This action is repulsive or attractive depending on the
correlation between the particle’s spin and orbital velocity:
the corresponding examples are presented in Sec. IV for
highly relativistic circular orbits.
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