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In the context of scalar-tensor theories of gravity we compute the third-order corrected spectral indices in
the slow-roll approximation. The calculation is carried out by employing the Green’s function method for
scalar and tensor perturbations in both the Einstein and Jordan frames. Then, using the interrelations
between the Hubble slow-roll parameters in the two frames we find that the frames are equivalent up to
third order. Since the Hubble slow-roll parameters are related to the potential slow-roll parameters, we
express the observables in terms of the latter which are manifestly invariant. Nevertheless, the same inflaton
excursion leads to different predictions in the two frames since the definition of the number of e-folds
differs. To illustrate this effect we consider a nonminimal inflationary model and find that the difference in
the predictions grows with the nonminimal coupling, and it can actually be larger than the difference
between the first and third order results for the observables. Finally, we demonstrate the effect of various
end-of-inflation conditions on the observables. These effects will become important for the analyses of
inflationary models in view of the improved sensitivity of future experiments.
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I. INTRODUCTION

The theory of cosmic inflation was originally advocated
as a solution to the flatness and horizon problems [1,2] of
the big bang cosmology. When treated quantum mechan-
ically, inflation can also provide a mechanism for the
generation of the perturbations that have resulted in the
anisotropies observed in the cosmic microwave back-
ground [3-6]. It is usually formulated in terms of a single
scalar field, minimally coupled to gravity, whose potential
energy dominates over its kinetic energy for a short
period of time and drives the accelerated expansion of
the Universe. This phase can be most easily achieved if
the scalar potential V(¢) has a relatively flat plateau and the
scalar field can slowly roll down until it reaches the
minimum.

Over the years a vast plethora of inflationary models
have been proposed, originating from diverse physics
frameworks. Recently, the increasing sensitivity of the
experiments, and in particular measurements from the
Planck and BICEP2/Keck Collaborations [7,8], have put
stringent constraints on many of these models. The simplest
models, where a single scalar field is minimally coupled to
gravity, seem to be disfavored.' On the other hand, slightly
more convoluted models such as the Starobinsky model
[10-15], nonminimal Higgs inflation [16-37], or the so-
called a-attractors [38—50] give predictions for the observ-
ables that lie inside the sweet spot of the measurements.
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A common feature of these models is that they can be
formulated in terms of a nonminimal coupling function
F(¢) between the inflaton ¢ and the scalar curvature R.
Such nonminimal coupling is expected to be generated at
the quantum level of the theory even if it is absent in the
classical action [51]. These nonminimally coupled theories
belong to a general class of gravity theories termed scalar-
tensor (ST) theories [52]. Other examples of such theories
include, among others, the f(R) models [53-60], scale-
invariant models [61-80] and nonminimal inflationary
models [14,51,81-941].

Scalar-tensor theories are usually formulated in either the
Jordan frame (JF) or the Einstein frame (EF). In the JF
the Planck mass is a dynamical quantity that depends on the
value of the scalar field, whose self-interactions are
described by a potential. Furthermore, the scalar field is
minimally coupled to the metric, and the matter part of the
action is just the standard one. In the EF the gravitational
action has the standard Einstein-Hilbert form plus a scalar
field described by an effective potential. Moreover, the
scalar appears in the matter sector of the action through the
rescaling factor which multiplies the metric tensor. The two
frames are mathematically equivalent at the classical level®
since one can always switch between them by applying a
conformal transformation of the metric and a field redefi-
nition, collectively referred to as frame transformation.
Nevertheless, the physical equivalence of the frames with
respect to the physical predictions has become a matter of a
long-standing debate [99-118].

“See also [95-98] for considerations on the quantum equiv-
alence of the frames.
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Inflation is usually studied with the help of the so-called
slow-roll parameters which are generally frame-covariant
[89,119-122]. Nevertheless, if we analyze the slow-roll
regimes in the JF and EF using invariant quantities then we
can quickly move between different parametrizations. This
invariant formalism was recently proposed and developed
in [123-127]. In [125] the authors calculated the spectral
indices up to second order in the slow-roll parameters in
both the EF and JF and showed that the two frames are
physically equivalent. Here we extend their results up to
third order in the slow-roll parameters and also examine
how the different definitions for the number of e-folds in
the two frames affect the observables.

This paper is organized as follows: in Sec. II we review
the invariant formalism introduced in [125]. After present-
ing the three principal quantities which are invariant under
a conformal transformation of the metric and a redefinition
of the scalar field, we consider the slow-roll approximation
in the two frames and define the corresponding Hubble
slow-roll parameters (HSRPs). We also define a hierarchy
of potential slow-roll parameters (PSRPs) which are frame
independent. As shown in [127], this formalism proves to
be attractive since many inflationary models can be
classified according to the form of their invariant potentials.
This provides an elegant explanation as to why vastly
different models can produce the same predictions for the
inflationary observables.

In Sec. III we adopt the Green’s function method
considered in [128] and calculate the spectral indices up
to third order in the slow-roll parameters in both the JF and
EF. Then, using the relations between the HSRPs we find
that the two frames are equivalent. Furthermore, since the
HSRPs can be related to the PSRPs, we express the spectral
indices in terms of the PSRPs which are manifestly frame
invariant.

In Sec. IV we consider the nonminimal Coleman-
Weinberg model developed in [73] and compare the
predictions of the third order corrected expressions we
obtained with the most commonly used first order results.
Furthermore, even though the expressions for the observ-
ables that we obtain are frame invariant, the definition of
the number of e-folds is not, and this results to different
predictions. To this end, we examine how the predictions
change if the required 50-60 number of e-folds is taken in
the Einstein or in the Jordan frame. Finally, we examine
how the predicted values for the inflationary observables
are affected by the end-of-inflation condition. The exact
condition for inflation to end is when €5 = 1. The usual
approach is to Taylor approximate this condition with
PSRPs. Most authors use only the first order approximation
eg ~ ey since this is indeed a good approximation for
almost all of the inflationary epoch save for the last few
e-folds before inflation ends when this approximation
breaks down. Since we have obtained the third-order
corrected expressions for the inflationary observables we
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also compare the results against three more end-of-inflation
conditions, namely, the third-order Taylor approximation of
the condition ey = 1 with PSRPs, as well as against the
Padé [1/1] and Padé [2/2] approximants. All of these
considerations prove to be relevant since the differences in
the predictions that we obtain are within the accuracy of
future experiments and may prove instrumental in ruling
out various inflationary models.

In Sec. V we summarize our results and conclude. Useful
formulas are presented in the Appendixes.

II. INVARIANT FORMALISM
AND SLOW-ROLL APPROXIMATION

In this section, we consider the general action of a single
scalar field that describes a wide class of scalar-tensor
gravity theories. By using the frame and parametrization
invariant formalism introduced in [123-127] we write
down the field equations of motion in terms of quantities
that are invariant under conformal rescalings of the metric
and redefinitions of the scalar field.

A. General action

The most general action for scalar-tensor theories has the
form [103]

S= /d“x\/—_g{%A(QJ)R—%B((D)g””(Vﬂdb)(Vl,@) —V(d))}

+Sm[€26(®)g/4w)d’ (21)
where in the first term ¢ is the metric determinant, R
denotes the Ricci scalar associated with the metric g, and
V(@) is the scalar potential. In the second term, S, stands
for the matter part of the action. Furthermore, the four
functions A(®), B(®), V(®) and o(P) are arbitrary
dimensionless functions of the scalar field ® that com-
pletely characterize a model, and we call them model
functions. Throughout, we normalize @ in terms of the
reduced Planck mass, M,/ (87G)'/? = 1.

We assume that the background metric is the flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) with
the space-positive signature

ds* = a*(z7)(—=de® + dx* + dy* + d7?),  (2.2)
where a(7) is the scale factor of the Universe as a function
of the frame-invariant conformal time. By considering a
rescaling of the metric

G = eZ;‘/(@)gﬂb (23)

and a redefinition of the field

O = f(D), (2.4)
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one can easily verify that the action (2.1) is invariant up to a
boundary term, if the model functions transform according
to the following relations:

A(®) = TOA(F()), (2.5)

B(®) = V(') B(f(®)) - 6(7)*A(f(®)) - 67'f" A,

(2.6)
V(D) = e OV(f(®)), (2.7)
5(®) = o(f(®)) + 7(P), (2.8)

where a prime indicates differentiation with respect to the
argument, e.g. ¥ = dj(®)/d® and A’ = dA(P)/dD, and
an overbar denotes quantities which are given in terms of
the conformal metric g, .

Now, using the transformations (2.3)—(2.4) one can fix
two out of the four arbitrary functions {A,B,V,s}.
Different choices for these functions correspond to different
parametrizations. For example, the choice

A=F(9), V=V(¢),

corresponds to the JF in the Boisseau-Esposito-Farese-
Polarski-Starobinski parametrization [129,130], the choice
()
= \P’ B =,
A ¥
corresponds to the JF in the Brans-Dicke-Bergmann-
Wagoner parametrization [131-133], while the choice

B=1, =0, (2.9)

V=V(¥), =0, (2.10)

A=1, B=2, V=V(p), oc=0(p), (2.11)
represents the EF in the canonical parametrization

[131-134].

B. Invariants

Next, we follow [125] and consider three quantities
which are invariant under a conformal rescaling of the
metric and a reparametrization of the scalar field as a result
of the transformation properties (2.5)—(2.8) of the model
functions. These invariants are

eZJ(CD)
Im(CD)EA((D), (2.12)
Iy(®) = %, (2.13)
2\ 1/2
T(®) = / <%> dd.  (2.14)
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The first invariant, Z,,(®), is a quantity that characterizes
the nonminimality of a theory. For constant Z,,(®) the
scalar field is minimally coupled to gravity, and we are
dealing with standard general relativity. On the other hand,
if Z,,(®)#0, then this invariant is a dynamical function
and the scalar field is nonminimally coupled to gravity, as is
the case in the JF. The second invariant, Z,,(®), contains
the self-interactions of the scalar field and plays the role of
an invariant potential. Finally, the third invariant, Z, 4)((13),
measures the volume of the one-dimensional space of the
scalar field and can be interpreted as the invariant propa-
gating scalar degree of freedom.

The transformation properties of the model functions
can also be used to define tensorial invariants, for
example [125]

g;w = A((I))g;w

The above choice is not unique since the tensor (2.15) does
not change its transformation properties if it is multiplied
by a scalar invariant, i.e.,

(2.15)

620'(<I>)

gyu = g;w = Img/w (216)
is also invariant under the transformations (2.3) and (2.4).

In the following, a barred or a hatted variable will
represent the quantity evaluated in the JF or EF, respec-
tively. The relation between the time coordinate, the scale

factor and the Hubble parameter in the two frames is [125]

d 1 d _ »

e A a(t) = ImAt, 217

G- VT a(t) = VIya(l),  (2.17)

_ 1 . 1dInZ

H=——|H+-—"). 2.18
«/Im< LT ) (2.18)

An interesting and appealing feature of the invariant
formalism, which was pointed out in [127], is that infla-
tionary models with very different background physical
motivations can be described by similar invariant potentials
and thus lead to the same predictions for the inflationary
observables. As an example, let us consider induced gravity
inflation [135-141] and Starobinsky inflation [10-15,142].
The former is described by the model functions

A(®) = £02, (2.19)
B(®) = 1, (2.20)
o(®) =0, (2.21)
V(®) = M@ — 1?)2, (2.22)

where £ is the nonminimal coupling and v is the vacuum
expectation value (VEV) of the scalar field © which
induces the Planck mass scale,

064036-3



KARAM, PAPPAS, and TAMVAKIS

1 =& (2.23)

For Starobinsky inflation with f(R) = R + bR? one has
[121]

A(®) = @, (2.24)
B(®) = 0, (2.25)
o(®) =0, (2.26)
V(@) = g (q’z—;l)z. (2.27)

Next, following the recipe of [127] we can obtain the
invariant potentials 7y, for the two models. As a first step,
using (2.14) we calculate the form of the invariant fields

146 (o}
Induced gravity: Z, = ’/%’tln <—> (2.28)
Vo

3
V3o

Starobinsky: Z, = >

(2.29)

Afterwards, inverting the above relations we find ®(Z,)
and then using (2.13) we calculate Z\,(®(Z,)) = Z,(Z,)
and obtain

A AT 2
Induced gravity: 7,(Z,) = 5 (1 _ VT ¢) . (2.30)
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Fig. 1. As a consequence, the two models yield identical
predictions in the strong coupling regime. On the other
hand, in the weak coupling limit induced gravity gives the
same predictions with quadratic inflation [6]. Indeed, when

1 4+ 6&

A _ 2.32
p < T (2.32)

the invariant potential for induced gravity becomes
[40,143]

82
£(1+68)

Note in (2.32) that as £ becomes smaller the allowed range
for the field Z, in which induced gravity and quadratic
inflation produce similar predictions becomes wider. As a
consequence, only for small values of & the field Z, can
produce the required 50-60 number of e-folds. This is why
the induced gravity predictions reach the quadratic inflation
attractor in the small coupling regime.

Ty =MT,2, with M?= (2.33)

C. Slow-roll in the Jordan frame

Let us consider the slow rolling of the inflaton field in the
JF. Taking the functional derivative of the action (2.1) with
respect to the metric and the scalar field in the JF, we can
write down the equations of motion in terms of the
invariants as

- 1 (dZ,\? +HdlnIm 1 /dInZ,\?2 n 17y
| . 3\ dr dr 4\ dr 37,
Starobinsky: Zy(Z) = o (1 - e Vi), (2.31) (2.34)
The forms of the invariant potentials suggest that for large dH 1_dInZ, 1/dInZ,)\2 dzZ ,\2 1d*InZ,,
values of the nonminimal coupling (£ X 1) the shape of the "7 — _EH d7 +Z ( di ) - ( di > +§ a2
induced gravity invariant potential (2.30) coincides with its
Starobinsky counterpart (2.31), a behavior depicted in (2.35)
Induced gravity Starobinsky
0.4
0.3
>
0.2
0.008
0.1
i 0.0 ]
6 8 10 0 2 4 6 8 10

FIG. 1.

The normalized invariant inflationary potentials for induced gravity and Starobinsky models for £ = 2. In the strong coupling

limit the invariant potentials have a similar form and lead to the same predictions, while in the limit (2.32) induced gravity approaches

the quadratic inflation attractor (inset in left plot).
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¢z,
dr

di ~ 27,d7,’

<—3H 44z m) <y (2.36)
dr
where we have neglected the contributions of the matter
part of the action since we assume that the energy density
and pressure of the scalar field dominate during the
inflationary epoch.
The standard HSRPs in the JF have the form [125]

__ _1dH_ dhH (Y -1d’7,
©O=TF e T dma T i) a2 -
(2.37)

Inflation in the JF occurs as long as €, < 1, and slow
rollover happens while €, < 1. In the next section, we will
be concerned with higher order corrections to the infla-
tionary indices. As a result, we will need a series of slow-
roll parameters which, following [125], we take to be

1 (dT,\? [dT, 2
:H_<?) _(dlna)’ (2.38)
_ 1 dko dlnl?() _ -
= 0_ — (= .23
“=Tx, di  dina (=71 + &), (2.39)
1 dKi_dani (240)

SO S FrR A dna

In the JF, it is also useful to consider a second series of
slow-roll parameters involving the invariant Z,, and thus
related to the nonminimal coupling. This series has the
form [125]

. 1dmZ, 1dhZ,

= — M 2.41
"Tom di 2 dlna ’ (2:41)

, 1 dl, dIni
/11 === —_0 - 1 _0, (242)

70 i dlna

- 1 d1; dlni;
P O (2.43)

)f = === = .
HT L, A dina

Now, using the definitions of the slow-roll parameters
(2.37)-(2.43) we can rewrite the system of the field
equations (2.34)—(2.36) as

Ty = H*T,,(3 — &y — 67 + 312). (2.44)
Ko = & — Ao(1 + & — Ao — A1), (2.45)
| dZy, dT, (. _ 1. .-
- Y _—_H—?(3- Ky =2 ). 2.46
=R (3-a+3m-20). @49

In the slow-roll regime we must have [125]
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ol <1, |/, |1, |Al<l, (2.47)

and then the slow-rolling inflaton obeys the following
approximate equations:

_ _dT 1 dT
Iy =~3H*T H—2 —
v Ly, 3H-g 27,,dZ,

(2.48)

D. Slow-roll in the Einstein frame

Analogously to the JF, the field equations in terms of the
invariants in the EF have the form [125]

[ [dZ,\2

B=-|(=L) +1,]. 2.49
dH dZ,\?2

o (E2) 2.50
i () 250
&z, L dZ, 1dZy,

L= 3p—t_ =V 2.51
dr? i 2dZ, (2:51)

The standard slow-roll parameters now are
(%) s
di d? -’
(2.52)

1dd dinA
H>di dlna’

A

€y =

il

and again it will be useful to consider the following series
of slow-roll parameters:

1 (dT,\2  [dT,\2
Ky = = | — = s 253
=g < di ) (d In a) (2:53)
1 dko dlnko
K| = = = =2(-h € s 2.54
M= @~ dma - ATtE) (254)
1 dg; dlnk;
Rint P s (2.55)

“hi di dlna’

With the above definitions, the system (2.49)—(2.51) can be
rewritten as

T, =H*3 %)), (2.56)

k\'O = @‘0, (257)
1dz7, . dZ, 1

—— X =HP(3-¢y+ =k ). 2.58

2dz, U di < €°+2’<‘> (2:58)

The slow-roll conditions are now simply

|Ro| < 1, & < 1, (2.59)
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and the approximate forms of the equations (2.56), (2.58)
become

R L dT 1dT
Ty~3H2,  3H—L~-——-"2 (2.60)
di ~ 24z,

In the next section, we will calculate the inflationary
indices up to third order in the slow-roll parameters in both
the EF and JF and then compare the results. It will prove
useful to relate the EF slow-roll parameters with the JF
ones. This can be done using Eqgs. (2.17), (2.18). We have

R Ko . Ky 22041
= —--m , = = = 5 2.61
STy A Py AR NER S
8y =0 L . (2.62)
1=7p  (1=17)?

E. Invariant potential slow-roll parameters

In the spirit of [144], we also define a hierarchy of slow-
roll parameters in terms of the invariant inflaton potential.
The standard potential slow-roll parameter e, assumes the

form [125]
1 [dZ))\?
€ = — _—
a2 \az,)

while 7y and higher-order parameters can be encoded in

e () () ()
v=\57 P oD )
27 dz (n+1)

12 ¢ dZ,
where "fy is a parameter of order n in the slow-roll

approximation. The first three parameters arising from this
hierarchy are

(2.63)

(2.64)

1 /&7,
- (&2 2.
=5 () (2:65)
1 /dT,)\ (d*T,
Vo413 \dZ, dIf,,
1 d2z d4z
3 v v
D = — . 2.67
Py 81%(&3)(&3,) (2.67)

Note that we have changed the symbols £ and o of [144] in
order to avoid confusion with the nonminimal coupling and
one of the model functions, respectively.

III. HIGHER-ORDER SPECTRAL INDICES

In this section, we compute the tensor and scalar power
spectra up to second-order corrections in the slow-roll
approximation and the corresponding spectral indices in
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both the JF and EF using the invariant slow-roll parameters
of Secs. I C and II D. We present the detailed calculation in
the JF, and only give the final results for the EF since the
calculation follows along the same lines with JF.

A. Jordan frame analysis

The evolution of linear (tensor and scalar) curvature
cosmological perturbations in a flat FLRW background
and in the presence of a scalar inflaton field is governed by
the Mukhanov-Sasaki equation (MSE) [145,146] which
reads [147-153]

dv , 1d%

a2’ (k z d1'2>y =9
where k corresponds to the scale of the Fourier mode k of
the gauge-invariant comoving curvature perturbation R;
[154]. Furthermore, the field v (usually referred to as the
Mukhanov field) is related to R, via v = 7R, where z is a
parametrization-independent quantity that depends on both

the background and the type of perturbations [125]. For
tensor perturbations,

(3.1)

a

= =a, 3.2
RV 32)
while for scalar perturbations
2 a dz, adZ,
= —_— == = 27 ~ . 33
¢ \/ Z,H(1-2) dt fH di (3:3)

Therefore, the evolution equation (3.1) is parametrization-
independent and also has the same functional form for
tensor and scalar perturbations. The two asymptotic sol-
utions for the scalar field v corresponding to the subhorizon
and the superhorizon limit can be written respectively as

1 ikt
b { N
Az as — kr — 0.

as — kT — oo,

(3.4)

The power spectrum for cosmological perturbations is
usually defined by the two-point correlation function for
R in the following way:

(Ri. Ry) = (27)°8° (k — k') Pr (k) (3.5)
where all quantities are calculated at the time when the
mode k crosses the horizon [when k! equals the Hubble
radius (aH)~']. Note that the horizon-crossing condition is
not the same in the two frames. In the EF one has the
condition k = a H while in the JF using (2.17), (2.18) and
(2.41) one should use k = a H(1 — ;) to evaluate quan-
tities at the time of horizon crossing. Now, using the
relation between R; and the Mukhanov field and the
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asymptotic superhorizon limit (3.4) we can rewrite the
power spectrum as

IS .
Pl = (ﬁ) im,

This way the calculation of the spectrum reduces to simply
finding the form of the amplitude of the field v in the
superhorizon limit. The MSE is usually solved in terms of
Hankel functions by treating the slow-roll parameters as
constant during inflation [155]. Since we want to obtain
higher-order results for the power spectra and the spectral
indices we cannot adhere to this assumption. Instead, we
employ the Green’s function method introduced by Stewart
and Gong [128] which is valid to any order’

Now, in order to compute A; one has to solve the MSE
(3.1) which is a second-order differential equation. Thus in
order to uniquely specify the solution for the field v the use
of two boundary conditions is necessary. To this end, one
can use the asymptotic solutions (3.4) as boundary con-
ditions. By introducing the dimensionless variable x = —kz
and redefining the field as y = v/2kv, the asymptotic
solutions become

vz K
- :2_”2|Ak|2-

: (3.6)

{ e as x — oo, (37)
- . .
Y \/ﬁAkz as x = 0.
Also, by assuming the following ansatz for z:
1
z:;f(lnx), (3.8)
we can recast the MSE in the form
d?y 2 1
d_x2+ <1 —P>y:;g(lnx)y, (3.9)
where the function g is defined through
1 df(lnx) d’f(Inx)
| = -3 . 3.10
9(In) f(Inx) [ dinx | d(Inx)? (3.10)

The homogeneous solution with the appropriate asymptotic
behavior at x — oo is

yo(x) = <1 + é) e’

By “appropriate behavior” we mean that (3.11) reduces to
the usual Minkowski modes in the deep subhorizon regime.
Combining (3.9) and (3.7) we can rewrite the MSE as an
integral equation

(3.11)

3See [156-173] for various extensions and applications of this
method and [174—186] for other related methods.
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y(x) = yo(x)
—l—%lw du%g(ln )y (u) [y (u)yo(x) — vi(x)yo(u)]

(3.12)

and seek a perturbative solution to (3.12). We start by
Taylor-expanding xz around x = 1 in the following way:

xz = f(Inx) = i&(lnx)", (3.13)

where the nth order coefficient of the expansion is of the
same order in slow-roll and is given by

d"(xz)

= . 3.14
I d(Inx)" ( )
In terms of the slow-roll parameters
_1\n+1 fy(n+1)
g, = ( 115)1 Hﬁ(ﬂ) ’ (3.15)

we can expand the conformal time up to second order
corrections and thus have the following approximation
[184]:

dr &k _ P
X:—kT:—k E:ﬁ(1+€0+3€6+€0€1). (316)
Then, using the relations
- = Ko AoAy
=y + —— —, 3.17
D=L (-4 G19)
- K2 Aok
2xJ2 40 4y 2% 3.18
ATy R -A T R
- KoK
282 + &oF) X doh + a 0 i X (3.19)
— 4

we can express x in terms of the & and A slow-roll
parameters,

k

x=—z (14 Ay + &g + 329Ky + Kok) + K3 +43).  (3.20)

The second-order power spectrum is then given in terms of
the coefficients f(, f; and f, as [128]

— k2 1 fl 577-'2 f] 2

i /2
+ (—a2 + E) JTO]’ (3.21)
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where a= (2-1n2—y)=0.729637 and y = 0.577216
is the Euler—Mascheroni constant [156]. For tensor
perturbations in the JF we have that up to second order
terms

k s s -
1 =g (1 + A + Ko + 349k
+ Kok + 283 + 12) : (3.22)
k=a H(1-2))
1= —L(—’?O — 3Roo — 2K — Rok1)
H \% Im k=a H(1-1)
(3.23)
11 = e (8 + o) , (3.24)
H Im k=a H(1-2)

where the slow-roll parameters are evaluated at the time of
the horizon crossing. We have also introduced the super-
script “T” to discriminate from the corresponding coef-
ficients of the scalar perturbations which will be denoted by
an “S”.

Substitution of these coefficients into (3.21) results
in the following expression for the second order

corrected tensor power spectrum in the slow-roll
approximation:
(BT, ] o
PT = {W} |:1 —210—*— (2@-2)K0+/1(2)
2
+ (20{2 -2a-5 —l—?)fcg
2
+ (—a2 +2a-2+ E) l'cofq] . (3.25)

The tensor spectral index is defined as the logarithmic
derivative of the power spectrum

_ dIn PT(k)

Ar=—imr (3.26)

and thus the third order JF tensor scalar spectral index is
obtained to be
I7ZT = —21?0 - 212'(2) - 4201?0 + (Za - 2)1?012'1 - 6/_1(2)1?0

+ (4(1 - 2)/_10211?0 - 82012'(2) + (6(1 - 6)/_1072'01?1

— 283 + (6a — 16 + 7°)k3k,

77,'2
+ <—a2 +2a-2+ E) (Rok2 + Kok 1Ky).  (3.27)
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For scalar perturbations in the JF the coefficients f5 are
slightly more complicated than their 7 counterparts and
have the following second order forms:

k 2 dI(/J - B -
fO :? z-_ﬁ 1 +2}.0+K0+410K0
3_ _2 72
+ = Koky + 2K5 + 345 . (3.28)
2 k=a H(1-J,)
k 2dZ, (. K o _ =
f‘lg = _? 1__ dE/) |:K0 + ?1 —|— 2KOK1 + 4KOAO
32 77 -2
—+ 5/101('1 + /10/11 —+ 21('0 ) B (329)
k=a H(1-7,)
k |2 dZ,[&? K|k
S ¢ | %1 = = =2 172
= /=2 |14 2172
k H*\| 1, di [4 A TR T } k=a H(1-7o)
(3.30)

Then the scalar power spectrum in the JF is

S H4 Im b -2 - — —
Py = {(2::)27 < di") ] [1 — 40y + (2a - 2)&y + ak;

2
+ (2(12 - 2(Z - 5 + %) 1?(2) —|— (4 - 4(1)20/?0

_ az 71'2 _ - -
+(—3a)/101?1+(7—1+§>1'<f+6/1(2)+2a/10/11
a7+ Vo + (E 1 ry

o o — — | KoK - — |K1K> |.
12 )70 2 24)7172
(3.31)

Substitution of the latter in the definition of the scalar
spectral index

dlnP
ng=1+ il

Tk (3.32)

results in the following third order expression for the scalar
index in the JF:
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fig =1—2ky— k| —2i3 — 2o, + ak Ky — i Ao — 4icod + (20— 3)i Ko — 25 — 820K3 — 643K + (6 — 17 + n%)k3k,

- P - - - a?
-k A3+ (—2 +T> Kk, — 42501 +2adoA3 + (

7r
224

772 - =
K'IK'% + <—a2 +3a—7+1_ﬂ-2> kok%"’zaﬂoﬂlﬂz

2 24

. o o . 2 2 72
(60— 9)TgRoR, + (da—4)Toh Ro + (@+ DR Aoy + 2adoR %y + (—a—+” )Klfczfc3 + (—a2 +4a—7+1—7;> RoR 1Ry

Finally, with the higher order corrected expressions for the
power spectra for scalar and tensor perturbations in the JF at
our disposal, it is trivial to compute the tensor-to-scalar
ratio,

r= 16]?0 |:1 + 220 - akl + 323 - Za/_lo/_ll
— 77,'2
- 3&101?1 -+ <—a -+ 5-— ?>l_<()l_<1

a* 2\ a? 7r2
B. Einstein frame results

Repeating the same analysis in the EF, we obtain the
tensor power spectrum

72

er

77,'2
+ <—a2 +2a—-2+ E)kofq] ,

~

2
{1 + (20— 2)Ro + (2a2 —2a-5 +%>f<(2)
(3.35)

the tensor spectral index

Ay = —2Ry — 282 + (2 — 2)RoR, — 283
+ (6a — 16 + n2)k3k,
2

20 -2
+<a+a +12

) (RoRT + RoR1Ry),  (3.36)

the scalar power spectrum

~ H4 dI¢ -2 ~ ~
Pg= {2(271)2 ( i > ] [1 + (2a = 2)ky + ak,

(3.37)

( _ )
0
2 2 7 2
+ <%—1+”—)k%+ <a2+a—7+i>f<0f<1

(3.33)

[
the scalar spectral index

7l :1—21/(\'0— —21,(\'(2)+(Xl’{'1k2+(261—3>1,(\'0k1

283+ (6a— 17 + n?)R3R,
71'2 a2 2
) 222 _x
(2o (5o
7 2
+ | —a?+3a-T+— " Rok2
12
& T\, .. ) 17\ . .
+ —74-24 K']K'2K'3+ — +4(X—7+E KoK1K»p,
(3.38)

and finally the tensor-to-scalar ratio
2
7= 1612'0 |:1 - (ll%l + <—(l + 5-— ?>12'01/<\'1

az 71'2 az 71'2
+ <7+ 1 —§> &+ <7—24)K1K2:| (3.39)

Note that the above results have been obtained using the
condition k = a H at the time of horizon crossing.

C. Equivalence of the frames up to third order

It has been reported by the authors of [125] that the EF
and JF spectral indices are equivalent up to second order in
the slow-roll expansion. In this work we have obtained the
third-order corrected expressions for the indices in the two
frames. It is thus intriguing to see whether this equivalence
extends to the third-order expressions also. Expanding the
EF slow-roll parameters (2.61) up to third order in the JF
slow-roll parameters we have

Ry ~ Ry + 2Kodo + 342, (3.40)

Ry + &g + 7142 + 2404, + 442, (3.41)

Q

Ky
I,(\'ll,(\'z ~ 1?11?2 + 212'112'2/_10 + 12'1/_10/_11 + 2202% + 2/_1()/_11/—12,
(3.42)

12'012'112'2 ~ 1?01?112'2, (343)
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Then, plugging (3.40)—(3.43) in the EF expressions for the
indices (3.36)—(3.39) we find

flT - flT, (344)
flS - ;ls, (345)
P=F (3.46)

Therefore, the spectral indices calculated in the EF and JF
coincide. Finally, since the Green’s function method is
valid up to arbitrary order in the slow-roll expansion, we
expect the equivalence between the spectral indices in the
JF and EF to also hold to all orders.

D. Invariant expressions for the
inflationary observables

So far we have obtained the spectral indices and the
tensor-to-scalar ratio in both the EF and JF. We have also
shown that up to third order in the slow-roll expansion the
results in the two frames are equivalent. We can take
advantage of this equivalence and write down expressions

|
22
ny = —2ey + <8a - ?> €} —

PHYSICAL REVIEW D 96, 064036 (2017)

for the inflationary observables only in terms of the
invariant potential and its derivatives. The equivalence
between the two frames allows then one to rewrite the
EF results in terms of the invariant PSRPs and expect these
results to hold in the JF too. In order to express the spectral
indices in terms of the PSRPs defined in (2.63)—(2.67) we
first use the following relations between the EF HSRPs
(2.53)—(2.55) and the ones defined in [144]:

%o = ex, (3.47)
R = =204 + 265, (3.48)
RiRy = de¥, — 6eyny + 205, (3.49)

>
>
(N1 )
_|_
>
2
N)
I

1663, — 22e3ny + 12eunm% + 10e5%,

- 2’7HCH - 2.011- (3.50)
Then, using the third-order Taylor expansions of the
HSRPs in terms of the PSRPs [144], presented in
Appendix A, we obtain the inflationary indices up to third
order in the PSRPs

8 189 996 20 46 n*
(4a—§)€v’1v+< -320? +T(X——+ ﬂ>€v+< —4a’ +4a— -+ )6"”%’

9 3 9 3
1372 8 28 2
+ <28a2 — 440+ 68 — 3ﬂ )6%/77\/ + (—2a2 +§a ——+%>€VCZ, (3.51)
10 2 104 3734 87
ng =1—6ey + 2ny + <24a—?>€%/—(16a+2)€vi7v+§iﬁ/+ <2a+ )CZ <90a —?a—i— 9 2ﬂ >€?/
4 1190 87 742 28 98
+ <9OOc2 tRoat——- 27[ >€v’1v <16a + 12a at == 3” )evn%, - (12a2 +4a+?—4ﬂ2>evcj€

3 3 2 3

8 28 1327\ , 4 , 202 ah\
+ | +za+———— |y +9’7v+ @ +zat+ == |py,

4 2 28
r= 16ev[1 - (4a+§>ev+ <2a+§>nv+ (16 2+?

4 2 2
+<2a2+2a+——”—)rﬁ/+<a +Za+-— ﬂ)é’ﬂ

9 2 3 9

In a given model, once we derive the invariant potential
Zy in terms of the invariant Z,, we can readily obtain the
PSRPs and express the inflationary observables in an
invariant way in terms of Zy, and its derivatives.

IV. NUMBER OF e-FOLDS

In this section, we consider the difference between the
definitions for the number of e-folds in the EF and JF and
study how it affects the values of the observables.
Furthermore, we discuss various approaches for a more

9 12

356 14x° 88 7T’
—l————”)e%, - <14a2+ IO(Z—F——i)GVi’]V

(3.52)

9 3 3 2

(3.53)

[
accurate determination of the value of the inflaton field at
the end of inflation.

A. Einstein vs Jordan

The number of e-folds is usually defined in the EF as

~ A A 1 1 1
dN=Adi=dna=——=dT,=——=dT, =
Ve T Ve NG

(4.1)
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Using (2.17) the number of e-folds in the JF becomes

| 1dInZ
LT g7 @)
Jen 2 dZ,

We see that the definitions for the number of e-folds in the
two frames differ by the invariant factor %dlnIm which
includes the nonminimal coupling in a given theory. Of
course, when the scalar field is minimally coupled to
gravity the two definitions coincide. Therefore, in general,
the same number of e-folds in the two frames will translate
to different values for the invariant Z . This means that we
will get different predictions for the observables depending
on whether we use (4.1) or (4.2). Typically the difference is
small, but still comparable to (if not larger than) the
difference for the observables if one chooses to use the
first, second or third order results for ng and r in terms of
the slow-roll parameters. Furthermore, these types of
differences can play a significant role in the future, with
the advent of more precise measurements [187,188], in
regards to the characterization of an inflationary model as
viable or not.

In order to quantify the aforementioned effects, we will
next consider the nonminimal Coleman-Weinberg model
introduced in [73]. The model functions are

o
dN = dN +7dInZ, = (—

A(®) = £0?, (4.3)
B(®) =1, (4.4)
o(®) =0, (4.5)
V(®) = A* +éﬁi® <1n2—;) o, (4.6)

where the cosmological constant A* was included in order
to realize V(vp) = 0 and g, is the beta function of the
quartic scalar coupling Ag. Furthermore, in this model the
Planck scale is dynamically generated through the VEV of
the scalar field vg,, and we have

1 = &3, (4.7)
Minimization of the potential (4.6) yields
A4
Vo

This means we can eliminate #,  in (4.6) and rewrite the
potential as

V(D) = A4{l + [2111(%) - 1] %} (4.9)
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From the expressions of the model functions (4.3)—(4.6) we
can readily obtain the invariants Z,,, Z) and Z,. The
invariant field takes the form

 fi+e6e, (@
o ()

By inverting the above equation we can express the
invariant Z,, in terms of Z, as

0. /2
Im —e 1+6. r/:,

and also the invariant potential 7, in terms of Z as

2£ —4\ /=T
Iy=A*4 T e — 4.12
4 < \/ 1+ 6¢ »te - (412)

where we used (4.7). From the invariant potential (4.12) we
can calculate the PSRPs (2.63), (2.65)—(2.67) and then the
scalar index ng [c.f. (3.52)] and the tensor-to-scalar ratio r
[c.f. (3.53)] and compare them with the experimental
bounds. Another important observable is the amplitude
of scalar perturbations Ag = (2.14 £ 0.05) x 10™ [189],
which can be used to constrain the value of A (see Fig. 3
in [73]).

Now, depending on whether the field @ rolls down from
values larger or smaller than its VEV, the invariant 7, can
have positive or negative values. Since negative field
inflation produces r z 0.15 [73], which is excluded by
observations [7,8], we will not consider it further. Instead,
we will only focus on positive field inflation which
interpolates between quadratic [6] and linear [190] inflation
depending on the value of the nonminimal coupling . In
the limit £ — 0, the invariant potential is approximated as

(4.10)

(4.11)

IV|5_,0 ~ 16(§A4I¢2, (4.13)
while in the limit £ — oo,
7 2T (4.14)
ViIéE>oo \/g ¢ .

Quadratic inflation is excluded by the Planck and
BICEP2/Keck results [7,8] but linear inflation still lies
within the 2¢ allowed region. In Table I we present our
results for the first and third order scalar index ng and
tensor-to-scalar ratio r for various values of the nonminimal
coupling . For simplicity, we have assumed that inflation
ends at ® = vg, or equivalently pr“d = 0, where the two
frames coincide. Furthermore, we have approximated ey =~
ey in the expressions (4.1) and (4.2). In each case, for every
value of ¢ considered, we have varied Z;/ at horizon

crossing in order to get N = 60 and N = 60. This means
that we obtain a different value for Z, depending on which
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TABLE 1. First and third order results for the observables
of the nonminimal Coleman-Weinberg model considered
in [73] for various values of the nonminimal coupling & and
for N = N = 60. We see that as & grows so does the difference
between the observables, depending on which definition for the
e-folds we use.

ng) n(SIH) ) (1) &
N=60 096702 096712 0.12782 0.12552 105
N=60 096699 096709 0.12792 0.12562 107>
N =60 096935 096956 0.09655 0.09466 103
N=60 096911 0.96933 0.09736  0.09544 1073
N =60 097451 097477 0.06796  0.06675 0.1
N=60 097320 097348 0.07148 0.07013 0.1
N=60 097482 097507 0.06716  0.06597 10
N=60 097276 097305 0.07264 0.07125 10

definition for the e-folds we use. Consequently, the
predictions for ng and r differ. For small £ the difference
between the frames is negligible. However, for larger £ the
difference grows and becomes around 0.002 (or 0.2%) for
ng and 0.005 (or 8%) for r around £ = 10. For large &, such
a difference is actually larger than the difference between
the first and third order results for the observables (0.03%
for ng and 1.9% for r). Both of these types of differences
however should be within the reach of future experiments
such as CORE and LiteBIRD [187,188] which are expected
to measure r with an accuracy of 1073,

Another way to illustrate the disparity between the two
definitions for the e-folds is to examine how the same field
excursion affects the number of e-folds itself. In Fig. 2, for a
wide range of values of £, we calculate the invariant 7 z;lc for

which N = 50 and N = 60. Then, for the same value of 7 P
we calculate the corresponding JF e-folds N and plot the
difference with the EF e-folds N. One can see that, as
expected, the difference asymptotes to zero for & — 0 due to
the vanishing second term in (4.2). On the other hand, as &
grows so does the difference N — N until it reaches a value
of about 4.3 e-folds for N = 50 and 4.7 e-folds for N = 60.
Note that for ¢ = 10 the difference stops growing since the
model has reached the linear inflation attractor. We perceive
the JF definition for the number of e-folds as the funda-
mental one since it is composed of all three invariants
(2.12)—(2.14) and also accommodates the EF definition.

B. Taylor vs Padé

Let us also examine how the end-of-inflation condition
affects the observables. Inflation ends exactly at ey = 1.
Most authors usually adopt the slow-roll approximation
and consider the relation between e and the PSRPs at first
order in the Taylor expansion and solve

(4.15)
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4t — N — 60 e—folds
— N - 50 e—folds

0= . . . . . .
1075 10~ 0.001 0.010 0.100 1 10
3

FIG. 2. The difference between the JF (N) and the EF (V)
number of e-folds as a function of the nonminimal coupling & for
N =60 (top curve) and N = 50 (bottom curve). We see that as I
grows we need more e-folds in the Jordan frame for the same
inflaton field excursion.

in order to obtain the inflaton field value at the end of
inflation. In our case, since we have obtained ng and r at
third order in the PSRPs, it would seem prudent to also
approximate €y in the definition of e-folds with the third
order Taylor expansion and solve

1t 4 2 32 5
e’ =ey —55%/ T3eviv +5€%/ +§€V77%/
10

2
— ey +oeply =1

: 5 (4.16)

in order to obtain 7' ;“d. Nevertheless, even though the third
order Taylor expansion is a very good approximation
around the time of horizon crossing when the slow-roll
parameters are small, the same does not hold near the end of
inflation when e, and 5y become of order one since the
third order expansion actually blows up and thus fails to
accurately describe the entirety of the inflationary epoch.
A more accurate option, as pointed out in [144], is to
consider a Padé approximation for €. The [1/1] Padé
approximant is given by

[1/1] €y

ey l=—n (4.17)
. I +3ey =3y
while the [2/2] approximant has the form
220 _ ey + ey —3evny
" 1+ 8ey —Iny —Jeyny +35 e +ny =547
2 1 35 13 1

+ﬁ€vﬂ%/ _ge%/ﬂv +@€%/’7%/ —QG%/C%/ —§€vﬂ%/-
(4.18)

In Table II we present the results for ng and r for
E=10"%, £=0.1 and N = 50 having employed the four
end-of-inflation conditions for I;“d described above and
the corresponding expressions (4.15)—(4.18) for ey in the
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TABLE II. First and third order results for the observables of
the model [73] for two values of the nonminimal coupling £ and
for N = 50 using the four end-of-inflation conditions described
in the text. We see that the differences are small albeit comparable
to the differences between the first and third order results.

& =50 ) 0 A0 A g
end: € =1 096078 0.96092 0.15238 0.14914 105
end: e/ =1 095979 095994 0.15626 0.15285 10~
end: e}V =1 096032 096047 0.15417 0.15085 107
end: €2 =1 096019 096034 0.15468 0.15134 107
end: e} =1 096955 096991 0.08121 0.07948 0.1
end: e/ =1 096870 0.96908 0.08348 0.08165 0.1
end: ¢ =1 096922 096959 0.08208 0.08031 0.1
end: e/ =1 096909 0.96946 0.08244 0.08066 0.1

e-folds integral. We find that the difference between the
four methods is small for ng but larger for r which has a
greater dependence on €. The largest difference for r
between the methods occurs for small £ since its value is
sizeable (r = 0.15) and a small change in the value of Zfﬁ“d
affects it noticeably. In any case, the differences between
the end-of-inflation methods on ng and r are comparable to
the differences between the first and third order results.

V. SUMMARY AND DISCUSSION

In the first part of this work we briefly reviewed the
frame and reparametrization invariant formalism of scalar-
tensor theories developed in [123-127]. This formalism
proves to be useful for inflation since it allows us to classify
various models based on their invariant potentials.
Therefore, it becomes transparent why theories with very
different physical motivations yield similar predictions for
the inflationary observables.

Motivated by the imminent advancement in the sensi-
tivity of the experiments, we then calculated the tensor and
scalar spectral indices as well as the tensor-to-scalar ratio
up to third order in the HSRPs in both the Einstein and
Jordan frames employing the Green’s function method
introduced in [128]. After this, utilizing the relation
between the HSRPs in the two frames, we showed the
equivalence of the frames. By construction, the Green’s
function method is valid to arbitrary order in the slow-roll
expansion. Therefore, we expect the equivalence to hold up
to any order. In addition, since the HSRPs are related to the
PSRPs, we expressed the spectral indices and the ratio in
terms of the PSRPs which are manifestly invariant.

Nevertheless, since the definition of the number of
e-folds is different in the two frames, this can result to
different predictions for the observables. We demonstrated
this difference by considering the nonminimally coupled
Coleman-Weinberg model examined in [73] and saw that as
the nonminimal coupling grows so does the difference in the
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predictions. Such a difference can in fact be larger the
differences between the first and third order results and will
be detectable by the planned future experiments. We regard
the Jordan frame definition for the number of e-folds (4.2)
as the fundamental one since it can be expressed in terms
of all the principal invariants and also includes the
Einstein definition. Furthermore, we examined how various
end-of-inflation conditions affect the inflationary observ-
ables. We found that the differences between the methods are
comparable to the differences between the first and third
order results.

The above discussion proves that with the advent of
precision experiments, care must be taken when analyzing
a given inflationary model since the underlying methods
and assumptions used may play an instrumental role in
determining the viability of said model.
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APPENDIX A: FROM HUBBLE TO POTENTIAL
SLOW-ROLL PARAMETERS

The HSRPs are related to the PSRPs up to third order in
the Taylor expansion via the following expressions [144]:

2 2 32 3 )
€ = €y =3 €y T3eylly T ey Tgevily
10 2
—?G%”V +§€VC%/, (A1)
8 1 8 1
N =Ny — €y +§€%/ +§'7%/ —3éviy +§C%/ - 12¢},
2 46 17
+ §’7%/ + 16egny —3€v’7%/ - j%ﬁ/
I
+§’1va +§Pi/’ (A2)
2 =% = 3eyny + 3€3 — 20€}, + 26€3ny — Teyny
13 4 1
—?Gvﬁ%/ +§'7v5%/ +§P%/, (A3)
P = py — 3evity; + 18eyny — 15¢j, — ey Ly, (A4)

APPENDIX B: RUNNINGS OF THE
SPECTRAL INDICES

The runnings of the tensor and scalar spectral indices up
to third order in the HSRPs are given in the JF by

dn . - _ 7 =717 K2ic

+ (2a — 2) (ko2 + Kok ) (B1)
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ditg
dInk

= —2RK| — KKy — 6RK Ay — 4RoAoAy — K1 Aol
— 2k iy A — 22041 Ay — 20043 — 63K,
+ (2a - 3)]2'0]2% + (2a - 4);(0]?1]?2

+ (R 5 + R1RoKs), (B2)
while in the EF the runnings have the form
diiy . A2 fAD A A n

= —2RgR| — ORGSR, + (2a—2) (KRS 4+ RoR k1), (B3)

dink
dis _ —2RoR| — R1Ry — 6R2R| + (20 — 3)Rok2
dlnk 0 !

+ (2 — 4)RoR Ry + a(R &3 + R RoR3). (B4)

Again, plugging (3.40)—(3.43) into the EF expressions, one
can see that the expressions for the runnings of the spectral
indices in the two frames coincide. Finally, the runnings of
the spectral indices can be written in terms of the PSRPs as

dn 148
dlnTk =—8¢} +4deyny + (526! _T> ey — (50a—38)eyny
8
+(16(Z—12)€V}7%/+ <4a_§>€V€%/v (BS)
dn 104
dlnsk = —24e} + 16eyny — 203 + (180(1 - T) ey

4 2
- 180a+§ evny + (32a+ 12)eyny,

8 2
+ (24a+4)ey (3 — <2a - §> nyCy — <2a + 5),0%,

(B6)
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APPENDIX C: EQUATION OF MOTION
IN TERMS OF e-FOLDS

We can rewrite the equation of motion for the invariant
74 as a nonlinear second order differential equation with
respect to the number of e-folds. In the Einstein frame we
have

dzf,/, dI(/, dI{p 3 1 dI(/, 2
— +3— - ~ + |1 == ~ 3./ey =0,
dv? AN (dN) [ 3 (dN) } Y

(C1)

while in the Jordan frame the equation of motion can be
brought to the following form:

&7, dT, dI,[ 1dInZ,]"!
_ T
dN* "TdAN TdN | 2 dN
ldzlnIm]

1dInZ, 1 /dInZ,\2 [dZ,\?2
X |—= — + - - — | — _|____2
2 dN 4\ dN dN 2 dN

dInZ,,dZ, 1 /dInZ,\2 dInZ,
= — P 4o (=) -
4\ aN dN

dN dN
1 (dZ,\2
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By numerically solving these equations we can obtain the
invariant field as a function of the number of e-folds in the
two frames. Of course, in the case with minimal coupling

2 — ~ .
we have dl;‘]% m—d ;;1/21'" =0 and N = N, which means that

(C2) reduces to (Cl).
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