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In the context of scalar-tensor theories of gravity we compute the third-order corrected spectral indices in
the slow-roll approximation. The calculation is carried out by employing the Green’s function method for
scalar and tensor perturbations in both the Einstein and Jordan frames. Then, using the interrelations
between the Hubble slow-roll parameters in the two frames we find that the frames are equivalent up to
third order. Since the Hubble slow-roll parameters are related to the potential slow-roll parameters, we
express the observables in terms of the latter which are manifestly invariant. Nevertheless, the same inflaton
excursion leads to different predictions in the two frames since the definition of the number of e-folds
differs. To illustrate this effect we consider a nonminimal inflationary model and find that the difference in
the predictions grows with the nonminimal coupling, and it can actually be larger than the difference
between the first and third order results for the observables. Finally, we demonstrate the effect of various
end-of-inflation conditions on the observables. These effects will become important for the analyses of
inflationary models in view of the improved sensitivity of future experiments.
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I. INTRODUCTION

The theory of cosmic inflation was originally advocated
as a solution to the flatness and horizon problems [1,2] of
the big bang cosmology. When treated quantum mechan-
ically, inflation can also provide a mechanism for the
generation of the perturbations that have resulted in the
anisotropies observed in the cosmic microwave back-
ground [3–6]. It is usually formulated in terms of a single
scalar field, minimally coupled to gravity, whose potential
energy dominates over its kinetic energy for a short
period of time and drives the accelerated expansion of
the Universe. This phase can be most easily achieved if
the scalar potential VðϕÞ has a relatively flat plateau and the
scalar field can slowly roll down until it reaches the
minimum.
Over the years a vast plethora of inflationary models

have been proposed, originating from diverse physics
frameworks. Recently, the increasing sensitivity of the
experiments, and in particular measurements from the
Planck and BICEP2/Keck Collaborations [7,8], have put
stringent constraints on many of these models. The simplest
models, where a single scalar field is minimally coupled to
gravity, seem to be disfavored.1 On the other hand, slightly
more convoluted models such as the Starobinsky model
[10–15], nonminimal Higgs inflation [16–37], or the so-
called α-attractors [38–50] give predictions for the observ-
ables that lie inside the sweet spot of the measurements.

A common feature of these models is that they can be
formulated in terms of a nonminimal coupling function
FðϕÞ between the inflaton ϕ and the scalar curvature R.
Such nonminimal coupling is expected to be generated at
the quantum level of the theory even if it is absent in the
classical action [51]. These nonminimally coupled theories
belong to a general class of gravity theories termed scalar-
tensor (ST) theories [52]. Other examples of such theories
include, among others, the fðRÞ models [53–60], scale-
invariant models [61–80] and nonminimal inflationary
models [14,51,81–94].
Scalar-tensor theories are usually formulated in either the

Jordan frame (JF) or the Einstein frame (EF). In the JF
the Planck mass is a dynamical quantity that depends on the
value of the scalar field, whose self-interactions are
described by a potential. Furthermore, the scalar field is
minimally coupled to the metric, and the matter part of the
action is just the standard one. In the EF the gravitational
action has the standard Einstein-Hilbert form plus a scalar
field described by an effective potential. Moreover, the
scalar appears in the matter sector of the action through the
rescaling factor which multiplies the metric tensor. The two
frames are mathematically equivalent at the classical level2

since one can always switch between them by applying a
conformal transformation of the metric and a field redefi-
nition, collectively referred to as frame transformation.
Nevertheless, the physical equivalence of the frames with
respect to the physical predictions has become a matter of a
long-standing debate [99–118].
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Inflation is usually studied with the help of the so-called
slow-roll parameters which are generally frame-covariant
[89,119–122]. Nevertheless, if we analyze the slow-roll
regimes in the JF and EF using invariant quantities then we
can quickly move between different parametrizations. This
invariant formalism was recently proposed and developed
in [123–127]. In [125] the authors calculated the spectral
indices up to second order in the slow-roll parameters in
both the EF and JF and showed that the two frames are
physically equivalent. Here we extend their results up to
third order in the slow-roll parameters and also examine
how the different definitions for the number of e-folds in
the two frames affect the observables.
This paper is organized as follows: in Sec. II we review

the invariant formalism introduced in [125]. After present-
ing the three principal quantities which are invariant under
a conformal transformation of the metric and a redefinition
of the scalar field, we consider the slow-roll approximation
in the two frames and define the corresponding Hubble
slow-roll parameters (HSRPs). We also define a hierarchy
of potential slow-roll parameters (PSRPs) which are frame
independent. As shown in [127], this formalism proves to
be attractive since many inflationary models can be
classified according to the form of their invariant potentials.
This provides an elegant explanation as to why vastly
different models can produce the same predictions for the
inflationary observables.
In Sec. III we adopt the Green’s function method

considered in [128] and calculate the spectral indices up
to third order in the slow-roll parameters in both the JF and
EF. Then, using the relations between the HSRPs we find
that the two frames are equivalent. Furthermore, since the
HSRPs can be related to the PSRPs, we express the spectral
indices in terms of the PSRPs which are manifestly frame
invariant.
In Sec. IV we consider the nonminimal Coleman-

Weinberg model developed in [73] and compare the
predictions of the third order corrected expressions we
obtained with the most commonly used first order results.
Furthermore, even though the expressions for the observ-
ables that we obtain are frame invariant, the definition of
the number of e-folds is not, and this results to different
predictions. To this end, we examine how the predictions
change if the required 50–60 number of e-folds is taken in
the Einstein or in the Jordan frame. Finally, we examine
how the predicted values for the inflationary observables
are affected by the end-of-inflation condition. The exact
condition for inflation to end is when ϵH ¼ 1. The usual
approach is to Taylor approximate this condition with
PSRPs. Most authors use only the first order approximation
ϵH ≈ ϵV since this is indeed a good approximation for
almost all of the inflationary epoch save for the last few
e-folds before inflation ends when this approximation
breaks down. Since we have obtained the third-order
corrected expressions for the inflationary observables we

also compare the results against three more end-of-inflation
conditions, namely, the third-order Taylor approximation of
the condition ϵH ¼ 1 with PSRPs, as well as against the
Padé [1=1] and Padé [2=2] approximants. All of these
considerations prove to be relevant since the differences in
the predictions that we obtain are within the accuracy of
future experiments and may prove instrumental in ruling
out various inflationary models.
In Sec. V we summarize our results and conclude. Useful

formulas are presented in the Appendixes.

II. INVARIANT FORMALISM
AND SLOW-ROLL APPROXIMATION

In this section, we consider the general action of a single
scalar field that describes a wide class of scalar-tensor
gravity theories. By using the frame and parametrization
invariant formalism introduced in [123–127] we write
down the field equations of motion in terms of quantities
that are invariant under conformal rescalings of the metric
and redefinitions of the scalar field.

A. General action

The most general action for scalar-tensor theories has the
form [103]

S¼
Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
AðΦÞR−1

2
BðΦÞgμνð∇μΦÞð∇νΦÞ−VðΦÞ

�
þSm½e2σðΦÞgμν;χ�; ð2:1Þ

where in the first term g is the metric determinant, R
denotes the Ricci scalar associated with the metric gμν and
VðΦÞ is the scalar potential. In the second term, Sm stands
for the matter part of the action. Furthermore, the four
functions AðΦÞ, BðΦÞ, VðΦÞ and σðΦÞ are arbitrary
dimensionless functions of the scalar field Φ that com-
pletely characterize a model, and we call them model
functions. Throughout, we normalize Φ in terms of the
reduced Planck mass, MP=ð8πGÞ1=2 ≡ 1.
We assume that the background metric is the flat

Friedmann–Lemaître–Robertson–Walker (FLRW) with
the space-positive signature

ds2 ¼ a2ðτÞð−dτ2 þ dx2 þ dy2 þ dz2Þ; ð2:2Þ

where aðτÞ is the scale factor of the Universe as a function
of the frame-invariant conformal time. By considering a
rescaling of the metric

gμν ¼ e2γ̄ðΦ̄Þḡμν ð2:3Þ

and a redefinition of the field

Φ ¼ f̄ðΦ̄Þ; ð2:4Þ
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one can easily verify that the action (2.1) is invariant up to a
boundary term, if the model functions transform according
to the following relations:

ĀðΦ̄Þ ¼ e2γ̄ðΦ̄ÞAðf̄ðΦ̄ÞÞ; ð2:5Þ

B̄ðΦ̄Þ ¼ e2γ̄ðΦ̄Þ½ðf̄0Þ2Bðf̄ðΦ̄ÞÞ − 6ðγ̄0Þ2Aðf̄ðΦ̄ÞÞ − 6γ̄0f̄0A0�;
ð2:6Þ

V̄ðΦ̄Þ ¼ e4γ̄ðΦ̄ÞVðf̄ðΦ̄ÞÞ; ð2:7Þ

σ̄ðΦ̄Þ ¼ σðf̄ðΦ̄ÞÞ þ γ̄ðΦ̄Þ; ð2:8Þ
where a prime indicates differentiation with respect to the
argument, e.g. γ̄0 ≡ dγ̄ðΦ̄Þ=dΦ̄ and A0 ≡ dAðΦÞ=dΦ, and
an overbar denotes quantities which are given in terms of
the conformal metric ḡμν.
Now, using the transformations (2.3)–(2.4) one can fix

two out of the four arbitrary functions fA;B;V; σg.
Different choices for these functions correspond to different
parametrizations. For example, the choice

A¼FðϕÞ; B¼ 1; V ¼ VðϕÞ; σ ¼ 0; ð2:9Þ
corresponds to the JF in the Boisseau-Esposito-Farèse-
Polarski-Starobinski parametrization [129,130], the choice

A¼Ψ; B¼ωðΨÞ
Ψ

; V ¼VðΨÞ; σ¼ 0; ð2:10Þ

corresponds to the JF in the Brans-Dicke-Bergmann-
Wagoner parametrization [131–133], while the choice

A¼ 1; B¼ 2; V ¼ VðφÞ; σ ¼ σðφÞ; ð2:11Þ
represents the EF in the canonical parametrization
[131–134].

B. Invariants

Next, we follow [125] and consider three quantities
which are invariant under a conformal rescaling of the
metric and a reparametrization of the scalar field as a result
of the transformation properties (2.5)–(2.8) of the model
functions. These invariants are

ImðΦÞ≡ e2σðΦÞ

AðΦÞ ; ð2:12Þ

IVðΦÞ≡ VðΦÞ
ðAðΦÞÞ2 ; ð2:13Þ

IϕðΦÞ≡
Z �

2AB þ 3ðA0Þ2
4A2

�
1=2

dΦ: ð2:14Þ

The first invariant, ImðΦÞ, is a quantity that characterizes
the nonminimality of a theory. For constant ImðΦÞ the
scalar field is minimally coupled to gravity, and we are
dealing with standard general relativity. On the other hand,
if I 0

mðΦÞ=≡0, then this invariant is a dynamical function
and the scalar field is nonminimally coupled to gravity, as is
the case in the JF. The second invariant, IVðΦÞ, contains
the self-interactions of the scalar field and plays the role of
an invariant potential. Finally, the third invariant, IϕðΦÞ,
measures the volume of the one-dimensional space of the
scalar field and can be interpreted as the invariant propa-
gating scalar degree of freedom.
The transformation properties of the model functions

can also be used to define tensorial invariants, for
example [125]

ĝμν ≡AðΦÞgμν: ð2:15Þ
The above choice is not unique since the tensor (2.15) does
not change its transformation properties if it is multiplied
by a scalar invariant, i.e.,

ḡμν ≡ e2σðΦÞgμν ¼ Imĝμν ð2:16Þ
is also invariant under the transformations (2.3) and (2.4).
In the following, a barred or a hatted variable will

represent the quantity evaluated in the JF or EF, respec-
tively. The relation between the time coordinate, the scale
factor and the Hubble parameter in the two frames is [125]

d
dt̄

¼ 1ffiffiffiffiffiffi
Im

p d
dt̂
; āðt̄Þ ¼

ffiffiffiffiffiffi
Im

p
âðt̂Þ; ð2:17Þ

H̄ ¼ 1ffiffiffiffiffiffi
Im

p
�
Ĥ þ 1

2

d ln Im

dt̂

�
: ð2:18Þ

An interesting and appealing feature of the invariant
formalism, which was pointed out in [127], is that infla-
tionary models with very different background physical
motivations can be described by similar invariant potentials
and thus lead to the same predictions for the inflationary
observables. As an example, let us consider induced gravity
inflation [135–141] and Starobinsky inflation [10–15,142].
The former is described by the model functions

AðΦÞ ¼ ξΦ2; ð2:19Þ

BðΦÞ ¼ 1; ð2:20Þ

σðΦÞ ¼ 0; ð2:21Þ

VðΦÞ ¼ λðΦ2 − v2Þ2; ð2:22Þ

where ξ is the nonminimal coupling and v is the vacuum
expectation value (VEV) of the scalar field Φ which
induces the Planck mass scale,
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1 ¼ ξv2: ð2:23Þ

For Starobinsky inflation with fðRÞ ¼ Rþ bR2 one has
[121]

AðΦÞ ¼ Φ; ð2:24Þ

BðΦÞ ¼ 0; ð2:25Þ

σðΦÞ ¼ 0; ð2:26Þ

VðΦÞ ¼ b
2

�
Φ − 1

2b

�
2

: ð2:27Þ

Next, following the recipe of [127] we can obtain the
invariant potentials IV for the two models. As a first step,
using (2.14) we calculate the form of the invariant fields

Induced gravity∶ Iϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ξ

2ξ

s
ln

�
Φ
vΦ

�
; ð2:28Þ

Starobinsky∶ Iϕ ¼
ffiffiffi
3

p

2
lnΦ: ð2:29Þ

Afterwards, inverting the above relations we find ΦðIϕÞ
and then using (2.13) we calculate IVðΦðIϕÞÞ ¼ IVðIϕÞ
and obtain

Induced gravity∶ IVðIϕÞ ¼
λ

ξ2

�
1 − e−

ffiffiffiffiffiffi
8ξ

1þ6ξ

p
Iϕ

�2

; ð2:30Þ

Starobinsky∶ IVðIϕÞ ¼
1

8b
ð1 − e−

2ffiffi
3

p IϕÞ2: ð2:31Þ

The forms of the invariant potentials suggest that for large
values of the nonminimal coupling (ξ≳ 1) the shape of the
induced gravity invariant potential (2.30) coincides with its
Starobinsky counterpart (2.31), a behavior depicted in

Fig. 1. As a consequence, the two models yield identical
predictions in the strong coupling regime. On the other
hand, in the weak coupling limit induced gravity gives the
same predictions with quadratic inflation [6]. Indeed, when

Iϕ ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ξ

8ξ

s
; ð2:32Þ

the invariant potential for induced gravity becomes
[40,143]

IV ¼ M2Iϕ
2; with M2 ¼ 8λ

ξð1þ 6ξÞ : ð2:33Þ

Note in (2.32) that as ξ becomes smaller the allowed range
for the field Iϕ in which induced gravity and quadratic
inflation produce similar predictions becomes wider. As a
consequence, only for small values of ξ the field Iϕ can
produce the required 50–60 number of e-folds. This is why
the induced gravity predictions reach the quadratic inflation
attractor in the small coupling regime.

C. Slow-roll in the Jordan frame

Let us consider the slow rolling of the inflaton field in the
JF. Taking the functional derivative of the action (2.1) with
respect to the metric and the scalar field in the JF, we can
write down the equations of motion in terms of the
invariants as

H̄2 ¼ 1

3

�
dIϕ

dt̄

�
2

þ H̄
d ln Im

dt̄
−
1

4

�
d ln Im

dt̄

�
2

þ 1

3

IV

Im
;

ð2:34Þ

dH̄
dt̄

¼−
1

2
H̄
dlnIm

dt̄
þ 1

4

�
dlnIm

dt̄

�
2

−
�
dIϕ

dt̄

�
2

þ 1

2

d2 lnIm

dt̄2
;

ð2:35Þ

FIG. 1. The normalized invariant inflationary potentials for induced gravity and Starobinsky models for ξ ¼ 2. In the strong coupling
limit the invariant potentials have a similar form and lead to the same predictions, while in the limit (2.32) induced gravity approaches
the quadratic inflation attractor (inset in left plot).
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d2Iϕ

dt̄2
¼

�
−3H̄ þ d ln Im

dt̄

�
dIϕ

dt̄
−

1

2Im

dIV

dIϕ
; ð2:36Þ

where we have neglected the contributions of the matter
part of the action since we assume that the energy density
and pressure of the scalar field dominate during the
inflationary epoch.
The standard HSRPs in the JF have the form [125]

ϵ̄0 ≡ −
1

H̄2

dH̄
dt̄

¼ −
d ln H̄
d ln ā

; η̄≡ −
�
H̄
dIϕ

dt̄

�
−1 d2Iϕ

dt̄2
:

ð2:37Þ

Inflation in the JF occurs as long as ϵ̄0 < 1, and slow
rollover happens while ϵ̄0 ≪ 1. In the next section, we will
be concerned with higher order corrections to the infla-
tionary indices. As a result, we will need a series of slow-
roll parameters which, following [125], we take to be

κ̄0 ≡ 1

H̄2

�
dIϕ

dt̄

�
2

¼
�
dIϕ

d ln ā

�
2

; ð2:38Þ

κ̄1 ≡ 1

H̄κ̄0

dκ̄0
dt̄

¼ d ln κ̄0
d ln ā

¼ 2ð−η̄þ ϵ̄0Þ; ð2:39Þ

κ̄iþ1 ≡ 1

H̄κ̄i

dκ̄i
dt̄

¼ d ln κ̄i
d ln ā

: ð2:40Þ

In the JF, it is also useful to consider a second series of
slow-roll parameters involving the invariant Im and thus
related to the nonminimal coupling. This series has the
form [125]

λ̄0 ≡ 1

2H̄
d ln Im

dt̄
¼ 1

2

d ln Im

d ln ā
; ð2:41Þ

λ̄1 ≡ 1

H̄λ̄0

dλ̄0
dt̄

¼ d ln λ̄0
d ln ā

; ð2:42Þ

λ̄iþ1 ≡ 1

H̄λ̄i

dλ̄i
dt̄

¼ d ln λ̄i
d ln ā

: ð2:43Þ

Now, using the definitions of the slow-roll parameters
(2.37)–(2.43) we can rewrite the system of the field
equations (2.34)–(2.36) as

IV ¼ H̄2Imð3 − κ̄0 − 6λ̄0 þ 3λ̄20Þ; ð2:44Þ

κ̄0 ¼ ϵ̄0 − λ̄0ð1þ ϵ̄0 − λ̄0 − λ̄1Þ; ð2:45Þ

−
1

2Im

dIV

dIϕ
¼ H̄

dIϕ

dt̄

�
3 − ϵ̄0 þ

1

2
κ̄1 − 2λ̄0

�
: ð2:46Þ

In the slow-roll regime we must have [125]

jκ̄0j≪ 1; jκ̄1j≪ 1; jλ̄0j≪ 1; jλ̄1j≪ 1; ð2:47Þ

and then the slow-rolling inflaton obeys the following
approximate equations:

IV ≈ 3H̄2Im; 3H̄
dIϕ

dt̄
≈ −

1

2Im

dIV

dIϕ
: ð2:48Þ

D. Slow-roll in the Einstein frame

Analogously to the JF, the field equations in terms of the
invariants in the EF have the form [125]

Ĥ2 ¼ 1

3

	�
dIϕ

dt̂

�
2

þ IV



; ð2:49Þ

dĤ
dt̂

¼ −
�
dIϕ

dt̂

�
2

; ð2:50Þ

d2Iϕ

dt̂2
¼ −3Ĥ

dIϕ

dt̂
−
1

2

dIV

dIϕ
: ð2:51Þ

The standard slow-roll parameters now are

ϵ̂0 ≡ −
1

Ĥ2

dĤ
dt̂

¼ −
d ln Ĥ
d ln â

; η̂≡ −
�
Ĥ
dIϕ

dt̂

�
−1 d2Iϕ

dt̂2
;

ð2:52Þ

and again it will be useful to consider the following series
of slow-roll parameters:

κ̂0 ≡ 1

Ĥ2

�
dIϕ

dt̂

�
2

¼
�
dIϕ

d ln â

�
2

; ð2:53Þ

κ̂1 ≡ 1

Ĥκ̂0

dκ̂0
dt̂

¼ d ln κ̂0
d ln â

¼ 2ð−η̂þ ϵ̂0Þ; ð2:54Þ

κ̂iþ1 ≡ 1

Ĥκ̂i

dκ̂i
dt̂

¼ d ln κ̂i
d ln â

: ð2:55Þ

With the above definitions, the system (2.49)–(2.51) can be
rewritten as

IV ¼ Ĥ2ð3 − κ̂0Þ; ð2:56Þ

κ̂0 ¼ ϵ̂0; ð2:57Þ

−
1

2

dIV

dIϕ
¼ Ĥ

dIϕ

dt̂

�
3 − ϵ̂0 þ

1

2
κ̂1

�
: ð2:58Þ

The slow-roll conditions are now simply

jκ̂0j ≪ 1; jκ̂1j ≪ 1; ð2:59Þ
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and the approximate forms of the equations (2.56), (2.58)
become

IV ≈ 3Ĥ2; 3Ĥ
dIϕ

dt̂
≈ −

1

2

dIV

dIϕ
: ð2:60Þ

In the next section, we will calculate the inflationary
indices up to third order in the slow-roll parameters in both
the EF and JF and then compare the results. It will prove
useful to relate the EF slow-roll parameters with the JF
ones. This can be done using Eqs. (2.17), (2.18). We have

κ̂0 ¼
κ̄0

ð1 − λ̄0Þ2
; κ̂1 ¼

κ̄1
1 − λ̄0

þ 2λ̄0λ̄1
ð1 − λ̄0Þ2

; ð2:61Þ

ϵ̂0 ¼
ϵ̄0 − λ̄0
1 − λ̄0

þ λ̄0λ̄1
ð1 − λ̄0Þ2

: ð2:62Þ

E. Invariant potential slow-roll parameters

In the spirit of [144], we also define a hierarchy of slow-
roll parameters in terms of the invariant inflaton potential.
The standard potential slow-roll parameter ϵV assumes the
form [125]

ϵV ¼ 1

4I2
V

�
dIV

dIϕ

�
2

; ð2:63Þ

while ηV and higher-order parameters can be encoded in

nβV ≡
�

1

2IV

�
n
�
dIV

dIϕ

�
n−1

�
dðnþ1ÞIV

dI ðnþ1Þ
ϕ

�
; ð2:64Þ

where nβV is a parameter of order n in the slow-roll
approximation. The first three parameters arising from this
hierarchy are

ηV ¼ 1

2IV

�
d2IV

dI2
ϕ

�
; ð2:65Þ

ζ2V ¼ 1

4I2
V

�
dIV

dIϕ

��
d3IV

dI3
ϕ

�
; ð2:66Þ

ρ3V ¼ 1

8I3
V

�
d2IV

dI2
ϕ

��
d4IV

dI4
ϕ

�
: ð2:67Þ

Note that we have changed the symbols ξ and σ of [144] in
order to avoid confusion with the nonminimal coupling and
one of the model functions, respectively.

III. HIGHER-ORDER SPECTRAL INDICES

In this section, we compute the tensor and scalar power
spectra up to second-order corrections in the slow-roll
approximation and the corresponding spectral indices in

both the JF and EF using the invariant slow-roll parameters
of Secs. II C and II D. We present the detailed calculation in
the JF, and only give the final results for the EF since the
calculation follows along the same lines with JF.

A. Jordan frame analysis

The evolution of linear (tensor and scalar) curvature
cosmological perturbations in a flat FLRW background
and in the presence of a scalar inflaton field is governed by
the Mukhanov-Sasaki equation (MSE) [145,146] which
reads [147–153]

d2ν
dτ2

þ
�
k2 −

1

z
d2z
dτ2

�
ν ¼ 0; ð3:1Þ

where k corresponds to the scale of the Fourier mode k of
the gauge-invariant comoving curvature perturbation Rk
[154]. Furthermore, the field ν (usually referred to as the
Mukhanov field) is related to Rk via ν≡ zRk, where z is a
parametrization-independent quantity that depends on both
the background and the type of perturbations [125]. For
tensor perturbations,

z ¼ āffiffiffiffiffiffi
Im

p ¼ â; ð3:2Þ

while for scalar perturbations

z ¼
ffiffiffiffiffiffi
2

Im

s
ā

H̄ð1 − λ̄0Þ
dIϕ

dt̄
¼

ffiffiffi
2

p â

Ĥ

dIϕ

dt̂
: ð3:3Þ

Therefore, the evolution equation (3.1) is parametrization-
independent and also has the same functional form for
tensor and scalar perturbations. The two asymptotic sol-
utions for the scalar field ν corresponding to the subhorizon
and the superhorizon limit can be written respectively as

ν →

� 1ffiffiffiffi
2k

p e−ikτ as − kτ → ∞;

Akz as − kτ → 0.
ð3:4Þ

The power spectrum for cosmological perturbations is
usually defined by the two-point correlation function for
Rk in the following way:

hRk;Rk0 i ¼ ð2πÞ2δ3ðk − k0ÞPRðkÞ; ð3:5Þ

where all quantities are calculated at the time when the
mode k crosses the horizon [when k−1 equals the Hubble
radius ðaHÞ−1]. Note that the horizon-crossing condition is
not the same in the two frames. In the EF one has the
condition k ¼ â Ĥ while in the JF using (2.17), (2.18) and
(2.41) one should use k ¼ ā H̄ð1 − λ̄0Þ to evaluate quan-
tities at the time of horizon crossing. Now, using the
relation between Rk and the Mukhanov field and the
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asymptotic superhorizon limit (3.4) we can rewrite the
power spectrum as

PðkÞ ¼
�

k3

2π2

�
lim

−kτ→0

���� νz
����2 ¼ k3

2π2
jAkj2: ð3:6Þ

This way the calculation of the spectrum reduces to simply
finding the form of the amplitude of the field ν in the
superhorizon limit. The MSE is usually solved in terms of
Hankel functions by treating the slow-roll parameters as
constant during inflation [155]. Since we want to obtain
higher-order results for the power spectra and the spectral
indices we cannot adhere to this assumption. Instead, we
employ the Green’s function method introduced by Stewart
and Gong [128] which is valid to any order3

Now, in order to compute Ak one has to solve the MSE
(3.1) which is a second-order differential equation. Thus in
order to uniquely specify the solution for the field ν the use
of two boundary conditions is necessary. To this end, one
can use the asymptotic solutions (3.4) as boundary con-
ditions. By introducing the dimensionless variable x≡ −kτ
and redefining the field as y≡ ffiffiffiffiffi

2k
p

ν, the asymptotic
solutions become

y →

�
e−ix as x → ∞;ffiffiffiffiffi
2k

p
Akz as x → 0.

: ð3:7Þ

Also, by assuming the following ansatz for z:

z ¼ 1

x
fðln xÞ; ð3:8Þ

we can recast the MSE in the form

d2y
dx2

þ
�
1 −

2

x2

�
y ¼ 1

x2
gðln xÞy; ð3:9Þ

where the function g is defined through

gðln xÞ ¼ 1

fðln xÞ
	
−3

dfðln xÞ
d ln x

þ d2fðln xÞ
dðln xÞ2



: ð3:10Þ

The homogeneous solution with the appropriate asymptotic
behavior at x → ∞ is

y0ðxÞ ¼
�
1þ i

x

�
eix: ð3:11Þ

By “appropriate behavior” we mean that (3.11) reduces to
the usual Minkowski modes in the deep subhorizon regime.
Combining (3.9) and (3.7) we can rewrite the MSE as an
integral equation

yðxÞ ¼ y0ðxÞ

þ i
2

Z
∞

x
du

1

u2
gðln uÞyðuÞ½y�0ðuÞy0ðxÞ − y�0ðxÞy0ðuÞ�

ð3:12Þ

and seek a perturbative solution to (3.12). We start by
Taylor-expanding xz around x ¼ 1 in the following way:

xz ¼ fðln xÞ ¼
X∞
n¼0

fn
n!

ðln xÞn; ð3:13Þ

where the nth order coefficient of the expansion is of the
same order in slow-roll and is given by

fn ¼
dnðxzÞ
dðln xÞn : ð3:14Þ

In terms of the slow-roll parameters

ϵ̄n ¼
ð−1Þnþ1

H̄
H̄ðnþ1Þ

H̄ðnÞ ; ð3:15Þ

we can expand the conformal time up to second order
corrections and thus have the following approximation
[184]:

x¼−kτ¼−k
Z

dt̄
ā
¼ k
āH̄

ð1þ ϵ̄0þ 3ϵ̄20þ ϵ̄0ϵ̄1Þ: ð3:16Þ

Then, using the relations

ϵ̄0 ¼ λ̄0 þ
κ̄0

ð1 − λ̄0Þ
−

λ̄0λ̄1
ð1 − λ̄0Þ

; ð3:17Þ

ϵ̄20 ≈ λ̄20 þ
κ̄20

ð1 − λ̄0Þ2
þ 2

λ̄0κ̄0
ð1 − λ̄0Þ

; ð3:18Þ

2ϵ̄20 þ ϵ̄0ϵ̄1 ≈ λ̄0λ̄1 þ
κ̄0κ̄1

ð1 − λ̄0Þ
; ð3:19Þ

we can express x in terms of the κ̄ and λ̄ slow-roll
parameters,

x ¼ k
āH̄

ð1þ λ̄0 þ κ̄0 þ 3λ̄0κ̄0 þ κ̄0κ̄1 þ κ̄20 þ λ̄20Þ: ð3:20Þ

The second-order power spectrum is then given in terms of
the coefficients f0, f1 and f2 as [128]

PðkÞ ¼ k2

ð2πÞ2
1

f20

	
1 − 2α

f1
f0

þ
�
3α2 − 4þ 5π2

12

��
f1
f0

�
2

þ
�
−α2 þ π2

12

�
f2
f0



; ð3:21Þ3See [156–173] for various extensions and applications of this

method and [174–186] for other related methods.
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where α≡ ð2 − ln 2 − γÞ≃ 0.729637 and γ ≃ 0.577216
is the Euler–Mascheroni constant [156]. For tensor
perturbations in the JF we have that up to second order
terms

fT0 ¼ k
H̄

ffiffiffiffiffiffi
Im

p ð1þ λ̄0 þ κ̄0 þ 3λ̄0κ̄0

þ κ̄0κ̄1 þ 2κ̄20 þ λ̄20Þ
����
k¼ā H̄ð1−λ̄0Þ

; ð3:22Þ

fT1 ¼ k
H̄

ffiffiffiffiffiffi
Im

p ð−κ̄0 − 3κ̄0λ̄0 − 2κ̄20 − κ̄0κ̄1Þ
����
k¼ā H̄ð1−λ̄0Þ

;

ð3:23Þ

fT2 ¼ k
H̄

ffiffiffiffiffiffi
Im

p ðκ̄20 þ κ̄0κ̄1Þ
����
k¼ā H̄ð1−λ̄0Þ

; ð3:24Þ

where the slow-roll parameters are evaluated at the time of
the horizon crossing. We have also introduced the super-
script “T” to discriminate from the corresponding coef-
ficients of the scalar perturbations which will be denoted by
an “S”.
Substitution of these coefficients into (3.21) results

in the following expression for the second order
corrected tensor power spectrum in the slow-roll
approximation:

P̄T ¼
	
H̄2Im

ð2πÞ2

	

1 − 2λ̄0 þ ð2α − 2Þκ̄0 þ λ̄20

þ
�
2α2 − 2α − 5þ π2

2

�
κ̄20

þ
�
−α2 þ 2α − 2þ π2

12

�
κ̄0κ̄1



: ð3:25Þ

The tensor spectral index is defined as the logarithmic
derivative of the power spectrum

n̄T ≡ d ln P̄TðkÞ
d ln k

; ð3:26Þ

and thus the third order JF tensor scalar spectral index is
obtained to be

n̄T ¼ −2κ̄0 − 2κ̄20 − 4λ̄0κ̄0 þ ð2α − 2Þκ̄0κ̄1 − 6λ̄20κ̄0

þ ð4α − 2Þλ̄0λ̄1κ̄0 − 8λ̄0κ̄
2
0 þ ð6α − 6Þλ̄0κ̄0κ̄1

− 2κ̄30 þ ð6α − 16þ π2Þκ̄20κ̄1
þ
�
−α2 þ 2α − 2þ π2

12

�
ðκ̄0κ̄21 þ κ̄0κ̄1κ̄2Þ: ð3:27Þ

For scalar perturbations in the JF the coefficients fS are
slightly more complicated than their fT counterparts and
have the following second order forms:

fS0 ¼
k
H̄2

ffiffiffiffiffiffi
2

Im

s
dIϕ

dt̄

	
1þ 2λ̄0 þ κ̄0 þ 4λ̄0κ̄0

þ 3

2
κ̄0κ̄1 þ 2κ̄20 þ 3λ̄20


����
k¼ā H̄ð1−λ̄0Þ

; ð3:28Þ

fS1 ¼ −
k
H̄2

ffiffiffiffiffiffi
2

Im

s
dIϕ

dt̄

	
κ̄0 þ

κ̄1
2
þ 2κ̄0κ̄1 þ 4κ̄0λ̄0

þ 3

2
λ̄0κ̄1 þ λ̄0λ̄1 þ 2κ̄20


����
k¼ā H̄ð1−λ̄0Þ

; ð3:29Þ

fS2 ¼
k
H̄2

ffiffiffiffiffiffi
2

Im

s
dIϕ

dt̄

	
κ̄21
4
þ 2κ̄0κ̄1 þ κ̄20 þ

κ̄1κ̄2
2


����
k¼ā H̄ð1−λ̄0Þ

:

ð3:30Þ

Then the scalar power spectrum in the JF is

P̄S ¼
	

H̄4

ð2πÞ2
Im

2

�
dIϕ

dt̄

�
−2

	

1 − 4λ̄0 þ ð2α − 2Þκ̄0 þ ακ̄1

þ
�
2α2 − 2α − 5þ π2

2

�
κ̄20 þ ð4 − 4αÞλ̄0κ̄0

þ ð−3αÞλ̄0κ̄1 þ
�
α2

2
− 1þ π2

8

�
κ̄21 þ 6λ̄20 þ 2ᾱλ̄0λ̄1

þ
�
α2 þ α − 7þ 7π2

12

�
κ̄0κ̄1 þ

�
−
α2

2
þ π2

24

�
κ̄1κ̄2



:

ð3:31Þ

Substitution of the latter in the definition of the scalar
spectral index

n̄S ≡ 1þ d ln P̄S

d ln k
ð3:32Þ

results in the following third order expression for the scalar
index in the JF:
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n̄S ¼ 1−2κ̄0− κ̄1−2κ̄20−2λ̄0λ̄1þακ̄1κ̄2− κ̄1λ̄0−4κ̄0λ̄0þð2α−3Þκ̄1κ̄0−2κ̄30−8λ̄0κ̄
2
0−6λ̄20κ̄0þð6α−17þπ2Þκ̄20κ̄1

− κ̄1λ̄
2
0þ

�
−2þπ2

4

�
κ̄21κ̄2−4λ̄20λ̄1þ2αλ̄0λ̄

2
1þ

�
−
α2

2
þ π2

24

�
κ̄1κ̄

2
2þ

�
−α2þ3α−7þ7π2

12

�
κ̄0κ̄

2
1þ2αλ̄0λ̄1λ̄2

þð6α−9Þλ̄0κ̄0κ̄1þð4α−4Þλ̄0λ̄1κ̄0þðαþ1Þκ̄1λ̄0λ̄1þ2αλ̄0κ̄1κ̄2þ
�
−
α2

2
þ π2

24

�
κ̄1κ̄2κ̄3þ

�
−α2þ4α−7þ7π2

12

�
κ̄0κ̄1κ̄2:

ð3:33Þ

Finally, with the higher order corrected expressions for the
power spectra for scalar and tensor perturbations in the JF at
our disposal, it is trivial to compute the tensor-to-scalar
ratio,

r̄ ¼ 16κ̄0

	
1þ 2λ̄0 − ακ̄1 þ 3λ̄20 − 2αλ̄0λ̄1

− 3αλ̄0κ̄1 þ
�
−αþ 5 −

π2

2

�
κ̄0κ̄1

þ
�
α2

2
þ 1 −

π2

8

�
κ̄21 þ

�
α2

2
−
π2

24

�
κ̄1κ̄2



: ð3:34Þ

B. Einstein frame results

Repeating the same analysis in the EF, we obtain the
tensor power spectrum

P̂T ¼ Ĥ2

ð2πÞ2
	
1þ ð2α − 2Þκ̂0 þ

�
2α2 − 2α − 5þ π2

2

�
κ̂20

þ
�
−α2 þ 2α − 2þ π2

12

�
κ̂0κ̂1



; ð3:35Þ

the tensor spectral index

n̂T ¼ −2κ̂0 − 2κ̂20 þ ð2α − 2Þκ̂0κ̂1 − 2κ̂30

þ ð6α − 16þ π2Þκ̂20κ̂1
þ
�
−α2 þ 2α − 2þ π2

12

�
ðκ̂0κ̂21 þ κ̂0κ̂1κ̂2Þ; ð3:36Þ

the scalar power spectrum

P̂S ¼
	

Ĥ4

2ð2πÞ2
�
dIϕ

dt̂

�
−2

	

1þ ð2α − 2Þκ̂0 þ ακ̂1

þ
�
2α2 − 2α − 5þ π2

2

�
κ̂20

þ
�
α2

2
− 1þ π2

8

�
κ̂21 þ

�
α2 þ α − 7þ 7π2

12

�
κ̂0κ̂1

þ
�
−
α2

2
þ π2

24

�
κ̂1κ̂2



; ð3:37Þ

the scalar spectral index

n̂S ¼ 1−2κ̂0− κ̂1−2κ̂20þακ̂1κ̂2þð2α−3Þκ̂0κ̂1
−2κ̂30þð6α−17þπ2Þκ̂20κ̂1
þ
�
−2þπ2

4

�
κ̂21κ̂2þ

�
−
α2

2
þ π2

24

�
κ̂1κ̂

2
2

þ
�
−α2þ3α−7þ7π2

12

�
κ̂0κ̂

2
1

þ
�
−
α2

2
þ π2

24

�
κ̂1κ̂2κ̂3þ

�
−α2þ4α−7þ7π2

12

�
κ̂0κ̂1κ̂2;

ð3:38Þ

and finally the tensor-to-scalar ratio

r̂ ¼ 16κ̂0

	
1 − ακ̂1 þ

�
−αþ 5 −

π2

2

�
κ̂0κ̂1

þ
�
α2

2
þ 1 −

π2

8

�
κ̂21 þ

�
α2

2
−
π2

24

�
κ̂1κ̂2



: ð3:39Þ

Note that the above results have been obtained using the
condition k ¼ â Ĥ at the time of horizon crossing.

C. Equivalence of the frames up to third order

It has been reported by the authors of [125] that the EF
and JF spectral indices are equivalent up to second order in
the slow-roll expansion. In this work we have obtained the
third-order corrected expressions for the indices in the two
frames. It is thus intriguing to see whether this equivalence
extends to the third-order expressions also. Expanding the
EF slow-roll parameters (2.61) up to third order in the JF
slow-roll parameters we have

κ̂0 ≈ κ̄0 þ 2κ̄0λ̄0 þ 3κ̄0λ̄
2
0; ð3:40Þ

κ̂1 ≈ κ̄1 þ κ̄1λ̄0 þ κ̄1λ̄
2
0 þ 2λ̄0λ̄1 þ 4λ̄20λ̄1; ð3:41Þ

κ̂1κ̂2 ≈ κ̄1κ̄2 þ 2κ̄1κ̄2λ̄0 þ κ̄1λ̄0λ̄1 þ 2λ̄0λ̄
2
1 þ 2λ̄0λ̄1λ̄2;

ð3:42Þ

κ̂0κ̂1κ̂2 ≈ κ̄0κ̄1κ̄2; κ̂1κ̂2κ̂3 ≈ κ̄1κ̄2κ̄3: ð3:43Þ
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Then, plugging (3.40)–(3.43) in the EF expressions for the
indices (3.36)–(3.39) we find

n̂T ¼ n̄T ; ð3:44Þ
n̂S ¼ n̄S; ð3:45Þ
r̂ ¼ r̄: ð3:46Þ

Therefore, the spectral indices calculated in the EF and JF
coincide. Finally, since the Green’s function method is
valid up to arbitrary order in the slow-roll expansion, we
expect the equivalence between the spectral indices in the
JF and EF to also hold to all orders.

D. Invariant expressions for the
inflationary observables

So far we have obtained the spectral indices and the
tensor-to-scalar ratio in both the EF and JF. We have also
shown that up to third order in the slow-roll expansion the
results in the two frames are equivalent. We can take
advantage of this equivalence and write down expressions

for the inflationary observables only in terms of the
invariant potential and its derivatives. The equivalence
between the two frames allows then one to rewrite the
EF results in terms of the invariant PSRPs and expect these
results to hold in the JF too. In order to express the spectral
indices in terms of the PSRPs defined in (2.63)–(2.67) we
first use the following relations between the EF HSRPs
(2.53)–(2.55) and the ones defined in [144]:

κ̂0 ¼ ϵH; ð3:47Þ
κ̂1 ¼ −2ηH þ 2ϵH; ð3:48Þ

κ̂1κ̂2 ¼ 4ϵ2H − 6ϵHηH þ 2ζ2H; ð3:49Þ

κ̂1κ̂
2
2 þ κ̂1κ̂2κ̂3 ¼ 16ϵ3H − 22ϵ2HηH þ 12ϵHη

2
H þ 10ϵHζ

2
H

− 2ηHζ
2
H − 2ρ3H: ð3:50Þ

Then, using the third-order Taylor expansions of the
HSRPs in terms of the PSRPs [144], presented in
Appendix A, we obtain the inflationary indices up to third
order in the PSRPs

nT ¼ −2ϵV þ
�
8α −

22

3

�
ϵ2V −

�
4α −

8

3

�
ϵVηV þ

�
−32α2 þ 189

3
α −

996

9
þ 20π2

3

�
ϵ3V þ

�
−4α2 þ 4α −

46

9
þ π2

3

�
ϵVη

2
V

þ
�
28α2 − 44αþ 68 −

13π2

3

�
ϵ2VηV þ

�
−2α2 þ 8

3
α −

28

9
þ π2

6

�
ϵVζ

2
V; ð3:51Þ

nS ¼ 1 − 6ϵV þ 2ηV þ
�
24α −

10

3

�
ϵ2V − ð16αþ 2ÞϵVηV þ 2

3
η2V þ

�
2αþ 2

3

�
ζ2V −

�
90α2 −

104

3
αþ 3734

9
−
87π2

2

�
ϵ3V

þ
�
90α2 þ 4

3
αþ 1190

3
−
87π2

2

�
ϵ2VηV −

�
16α2 þ 12αþ 742

9
−
28π2

3

�
ϵVη

2
V −

�
12α2 þ 4αþ 98

3
− 4π2

�
ϵVζ

2
V

þ
�
α2 þ 8

3
αþ 28

3
−
13π2

2

�
ηVζ

2
V þ 4

9
η3V þ

�
α2 þ 2

3
αþ 2

9
−
π2

12

�
ρ3V; ð3:52Þ

r ¼ 16ϵV

	
1 −

�
4αþ 4

3

�
ϵV þ

�
2αþ 2

3

�
ηV þ

�
16α2 þ 28

3
αþ 356

9
−
14π2

3

�
ϵ2V −

�
14α2 þ 10αþ 88

3
−
7π2

2

�
ϵVηV

þ
�
2α2 þ 2αþ 41

9
−
π2

2

�
η2V þ

�
α2 þ 2

3
αþ 2

9
−
π2

12

�
ζ2V



: ð3:53Þ

In a given model, once we derive the invariant potential
IV in terms of the invariant Iϕ, we can readily obtain the
PSRPs and express the inflationary observables in an
invariant way in terms of IV and its derivatives.

IV. NUMBER OF e-FOLDS

In this section, we consider the difference between the
definitions for the number of e-folds in the EF and JF and
study how it affects the values of the observables.
Furthermore, we discuss various approaches for a more

accurate determination of the value of the inflaton field at
the end of inflation.

A. Einstein vs Jordan

The number of e-folds is usually defined in the EF as

dN̂≡ Ĥdt̂¼ dln â¼−
1ffiffiffiffiffi
κ̂0

p dIϕ¼−
1ffiffiffiffiffi
ϵ̂0

p dIϕ ¼−
1ffiffiffiffiffiffi
ϵH

p dIϕ:

ð4:1Þ
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Using (2.17) the number of e-folds in the JF becomes

dN̄ ¼ dN̂ þ 1

2
d ln Im ¼

�
−

1ffiffiffiffiffiffi
ϵH

p þ 1

2

d ln Im

dIϕ

�
dIϕ: ð4:2Þ

We see that the definitions for the number of e-folds in the
two frames differ by the invariant factor 1

2
d ln Im which

includes the nonminimal coupling in a given theory. Of
course, when the scalar field is minimally coupled to
gravity the two definitions coincide. Therefore, in general,
the same number of e-folds in the two frames will translate
to different values for the invariant Iϕ. This means that we
will get different predictions for the observables depending
on whether we use (4.1) or (4.2). Typically the difference is
small, but still comparable to (if not larger than) the
difference for the observables if one chooses to use the
first, second or third order results for nS and r in terms of
the slow-roll parameters. Furthermore, these types of
differences can play a significant role in the future, with
the advent of more precise measurements [187,188], in
regards to the characterization of an inflationary model as
viable or not.
In order to quantify the aforementioned effects, we will

next consider the nonminimal Coleman-Weinberg model
introduced in [73]. The model functions are

AðΦÞ ¼ ξΦ2; ð4:3Þ

BðΦÞ ¼ 1; ð4:4Þ

σðΦÞ ¼ 0; ð4:5Þ

VðΦÞ ¼ Λ4 þ 1

8
βλΦ

�
ln
Φ2

v2Φ
−
1

2

�
Φ4; ð4:6Þ

where the cosmological constant Λ4 was included in order
to realize VðvΦÞ ¼ 0 and βλΦ is the beta function of the
quartic scalar coupling λΦ. Furthermore, in this model the
Planck scale is dynamically generated through the VEVof
the scalar field vΦ, and we have

1 ¼ ξv2Φ: ð4:7Þ

Minimization of the potential (4.6) yields

βλΦ ¼ 16
Λ4

v4Φ
: ð4:8Þ

This means we can eliminate βλΦ in (4.6) and rewrite the
potential as

VðΦÞ ¼ Λ4

�
1þ

	
2 ln

�
Φ2

v2Φ

�
− 1



Φ4

v4Φ

�
: ð4:9Þ

From the expressions of the model functions (4.3)–(4.6) we
can readily obtain the invariants Im, IV and Iϕ. The
invariant field takes the form

Iϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ξ

2ξ

s
ln

�
Φ
vΦ

�
: ð4:10Þ

By inverting the above equation we can express the
invariant Im in terms of Iϕ as

Im ¼ e−2
ffiffiffiffiffiffi
2ξ

1þ6ξ

p
Iϕ ; ð4:11Þ

and also the invariant potential IV in terms of Iϕ as

IV ¼ Λ4

�
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ξ

1þ 6ξ

s
Iϕ þ e−4

ffiffiffiffiffiffi
2ξ

1þ6ξ

p
Iϕ − 1

�
; ð4:12Þ

where we used (4.7). From the invariant potential (4.12) we
can calculate the PSRPs (2.63), (2.65)–(2.67) and then the
scalar index nS [c.f. (3.52)] and the tensor-to-scalar ratio r
[c.f. (3.53)] and compare them with the experimental
bounds. Another important observable is the amplitude
of scalar perturbations AS ¼ ð2.14� 0.05Þ × 10−9 [189],
which can be used to constrain the value of Λ (see Fig. 3
in [73]).
Now, depending on whether the field Φ rolls down from

values larger or smaller than its VEV, the invariant Iϕ can
have positive or negative values. Since negative field
inflation produces r≳ 0.15 [73], which is excluded by
observations [7,8], we will not consider it further. Instead,
we will only focus on positive field inflation which
interpolates between quadratic [6] and linear [190] inflation
depending on the value of the nonminimal coupling ξ. In
the limit ξ → 0, the invariant potential is approximated as

IV jξ→0 ∼ 16ξΛ4Iϕ
2; ð4:13Þ

while in the limit ξ → ∞,

IV jξ→∞ ∼
4ffiffiffi
3

p Λ4Iϕ: ð4:14Þ

Quadratic inflation is excluded by the Planck and
BICEP2/Keck results [7,8] but linear inflation still lies
within the 2σ allowed region. In Table I we present our
results for the first and third order scalar index nS and
tensor-to-scalar ratio r for various values of the nonminimal
coupling ξ. For simplicity, we have assumed that inflation
ends at Φ ¼ vΦ, or equivalently I end

ϕ ¼ 0, where the two
frames coincide. Furthermore, we have approximated ϵH ≈
ϵV in the expressions (4.1) and (4.2). In each case, for every
value of ξ considered, we have varied IHC

ϕ at horizon

crossing in order to get N̂ ¼ 60 and N̄ ¼ 60. This means
that we obtain a different value for Iϕ depending on which
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definition for the e-folds we use. Consequently, the
predictions for nS and r differ. For small ξ the difference
between the frames is negligible. However, for larger ξ the
difference grows and becomes around 0.002 (or 0.2%) for
nS and 0.005 (or 8%) for r around ξ ¼ 10. For large ξ, such
a difference is actually larger than the difference between
the first and third order results for the observables (0.03%
for nS and 1.9% for r). Both of these types of differences
however should be within the reach of future experiments
such as CORE and LiteBIRD [187,188] which are expected
to measure r with an accuracy of 10−3.
Another way to illustrate the disparity between the two

definitions for the e-folds is to examine how the same field
excursion affects the number of e-folds itself. In Fig. 2, for a
wide range of values of ξ, we calculate the invariant IHC

ϕ for

which N̂ ¼ 50 and N̂ ¼ 60. Then, for the same value of Iϕ

we calculate the corresponding JF e-folds N̄ and plot the
difference with the EF e-folds N̂. One can see that, as
expected, the difference asymptotes to zero for ξ → 0 due to
the vanishing second term in (4.2). On the other hand, as ξ
grows so does the difference N̄ − N̂ until it reaches a value
of about 4.3 e-folds for N̂ ¼ 50 and 4.7 e-folds for N̂ ¼ 60.
Note that for ξ≳ 10 the difference stops growing since the
model has reached the linear inflation attractor. We perceive
the JF definition for the number of e-folds as the funda-
mental one since it is composed of all three invariants
(2.12)–(2.14) and also accommodates the EF definition.

B. Taylor vs Padé

Let us also examine how the end-of-inflation condition
affects the observables. Inflation ends exactly at ϵH ¼ 1.
Most authors usually adopt the slow-roll approximation
and consider the relation between ϵH and the PSRPs at first
order in the Taylor expansion and solve

ϵðIÞH ¼ ϵV ¼ 1 ð4:15Þ

in order to obtain the inflaton field value at the end of
inflation. In our case, since we have obtained nS and r at
third order in the PSRPs, it would seem prudent to also
approximate ϵH in the definition of e-folds with the third
order Taylor expansion and solve

ϵðIIIÞH ¼ ϵV −
4

3
ϵ2V þ 2

3
ϵVηV þ 32

9
ϵ3V þ 5

9
ϵVη

2
V

−
10

3
ϵ2VηV þ 2

9
ϵVζ

2
V ¼ 1 ð4:16Þ

in order to obtain I end
ϕ . Nevertheless, even though the third

order Taylor expansion is a very good approximation
around the time of horizon crossing when the slow-roll
parameters are small, the same does not hold near the end of
inflation when ϵV and ηV become of order one since the
third order expansion actually blows up and thus fails to
accurately describe the entirety of the inflationary epoch.
A more accurate option, as pointed out in [144], is to
consider a Padé approximation for ϵH. The ½1=1� Padé
approximant is given by

ϵ½1=1�H ¼ ϵV
1þ 4

3
ϵV − 2

3
ηV

; ð4:17Þ

while the [2=2] approximant has the form

ϵ½2=2�H ¼ ϵV þ 17
4
ϵ2V − 5

3
ϵVηV

1þ 67
12
ϵV − 7

3
ηV − 7

2
ϵVηV þ 35

9
ϵ2V þ η2V − 2

9
ζ2V

þ 2

27
ϵVρ

3
V −

1

54
ϵ3VηV þ

35

108
ϵ2Vη

2
V −

13

54
ϵ2Vζ

2
V −

1

9
ϵVη

3
V:

ð4:18Þ

In Table II we present the results for nS and r for
ξ ¼ 10−5, ξ ¼ 0.1 and N̂ ¼ 50 having employed the four
end-of-inflation conditions for I end

ϕ described above and
the corresponding expressions (4.15)–(4.18) for ϵH in the

FIG. 2. The difference between the JF (N̄) and the EF (N̂)
number of e-folds as a function of the nonminimal coupling ξ for
N̂ ¼ 60 (top curve) and N̂ ¼ 50 (bottom curve). We see that as ξ
grows we need more e-folds in the Jordan frame for the same
inflaton field excursion.

TABLE I. First and third order results for the observables
of the nonminimal Coleman-Weinberg model considered
in [73] for various values of the nonminimal coupling ξ and
for N̂ ¼ N̄ ¼ 60. We see that as ξ grows so does the difference
between the observables, depending on which definition for the
e-folds we use.

nðIÞS nðIIIÞS
rðIÞ rðIIIÞ ξ

N̂ ¼ 60 0.96702 0.96712 0.12782 0.12552 10−5

N̄ ¼ 60 0.96699 0.96709 0.12792 0.12562 10−5

N̂ ¼ 60 0.96935 0.96956 0.09655 0.09466 10−3

N̄ ¼ 60 0.96911 0.96933 0.09736 0.09544 10−3

N̂ ¼ 60 0.97451 0.97477 0.06796 0.06675 0.1
N̄ ¼ 60 0.97320 0.97348 0.07148 0.07013 0.1
N̂ ¼ 60 0.97482 0.97507 0.06716 0.06597 10
N̄ ¼ 60 0.97276 0.97305 0.07264 0.07125 10
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e-folds integral. We find that the difference between the
four methods is small for nS but larger for r which has a
greater dependence on ϵH. The largest difference for r
between the methods occurs for small ξ since its value is
sizeable (r≃ 0.15) and a small change in the value of I end

ϕ

affects it noticeably. In any case, the differences between
the end-of-inflation methods on nS and r are comparable to
the differences between the first and third order results.

V. SUMMARY AND DISCUSSION

In the first part of this work we briefly reviewed the
frame and reparametrization invariant formalism of scalar-
tensor theories developed in [123–127]. This formalism
proves to be useful for inflation since it allows us to classify
various models based on their invariant potentials.
Therefore, it becomes transparent why theories with very
different physical motivations yield similar predictions for
the inflationary observables.
Motivated by the imminent advancement in the sensi-

tivity of the experiments, we then calculated the tensor and
scalar spectral indices as well as the tensor-to-scalar ratio
up to third order in the HSRPs in both the Einstein and
Jordan frames employing the Green’s function method
introduced in [128]. After this, utilizing the relation
between the HSRPs in the two frames, we showed the
equivalence of the frames. By construction, the Green’s
function method is valid to arbitrary order in the slow-roll
expansion. Therefore, we expect the equivalence to hold up
to any order. In addition, since the HSRPs are related to the
PSRPs, we expressed the spectral indices and the ratio in
terms of the PSRPs which are manifestly invariant.
Nevertheless, since the definition of the number of

e-folds is different in the two frames, this can result to
different predictions for the observables. We demonstrated
this difference by considering the nonminimally coupled
Coleman-Weinberg model examined in [73] and saw that as
the nonminimal coupling grows so does the difference in the

predictions. Such a difference can in fact be larger the
differences between the first and third order results and will
be detectable by the planned future experiments.We regard
the Jordan frame definition for the number of e-folds (4.2)
as the fundamental one since it can be expressed in terms
of all the principal invariants and also includes the
Einstein definition. Furthermore, we examined how various
end-of-inflation conditions affect the inflationary observ-
ables.We found that the differences between themethods are
comparable to the differences between the first and third
order results.
The above discussion proves that with the advent of

precision experiments, care must be taken when analyzing
a given inflationary model since the underlying methods
and assumptions used may play an instrumental role in
determining the viability of said model.
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APPENDIX A: FROM HUBBLE TO POTENTIAL
SLOW-ROLL PARAMETERS

The HSRPs are related to the PSRPs up to third order in
the Taylor expansion via the following expressions [144]:

ϵH ¼ ϵV −
4

3
ϵ2V þ 2

3
ϵVηV þ 32

9
ϵ3V þ 5

9
ϵVη

2
V

−
10

3
ϵ2VηV þ 2

9
ϵVζ

2
V; ðA1Þ

ηH ¼ ηV − ϵV þ 8

3
ϵ2V þ 1

3
η2V −

8

3
ϵVηV þ 1

3
ζ2V − 12ϵ3V

þ 2

9
η3V þ 16ϵ2VηV −

46

9
ϵVη

2
V −

17

9
ϵVζ

2
V

þ 2

3
ηVζ

2
V þ 1

9
ρ3V; ðA2Þ

ζ2H ¼ ζ2V − 3ϵVηV þ 3ϵ2V − 20ϵ3V þ 26ϵ2VηV − 7ϵVη
2
V

−
13

3
ϵVζ

2
V þ 4

3
ηVζ

2
V þ 1

3
ρ3V; ðA3Þ

ρ3H ¼ ρ3V − 3ϵVη
2
V þ 18ϵ2VηV − 15ϵ3V − 4ϵVζ

2
V: ðA4Þ

APPENDIX B: RUNNINGS OF THE
SPECTRAL INDICES

The runnings of the tensor and scalar spectral indices up
to third order in the HSRPs are given in the JF by

dn̄T
d ln k

¼ −2κ̄0κ̄1 − 6κ̄0κ̄1λ̄0 − 4κ̄0λ̄0λ̄1 − 6κ̄20κ̄1

þ ð2α − 2Þðκ̄0κ̄21 þ κ̄0κ̄1κ̄1Þ; ðB1Þ

TABLE II. First and third order results for the observables of
the model [73] for two values of the nonminimal coupling ξ and
for N̂ ¼ 50 using the four end-of-inflation conditions described
in the text. We see that the differences are small albeit comparable
to the differences between the first and third order results.

N̂ ¼ 50 nðIÞS nðIIIÞS
rðIÞ rðIIIÞ ξ

end: ϵðIÞH ¼ 1 0.96078 0.96092 0.15238 0.14914 10−5

end: ϵ½1=1�H ¼ 1 0.95979 0.95994 0.15626 0.15285 10−5

end: ϵðIIIÞH ¼ 1 0.96032 0.96047 0.15417 0.15085 10−5

end: ϵ½2=2�H ¼ 1 0.96019 0.96034 0.15468 0.15134 10−5

end: ϵðIÞH ¼ 1 0.96955 0.96991 0.08121 0.07948 0.1

end: ϵ½1=1�H ¼ 1 0.96870 0.96908 0.08348 0.08165 0.1

end: ϵðIIIÞH ¼ 1 0.96922 0.96959 0.08208 0.08031 0.1

end: ϵ½2=2�H ¼ 1 0.96909 0.96946 0.08244 0.08066 0.1
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dn̄S
d ln k

¼ −2κ̄0κ̄1 − κ̄1κ̄2 − 6κ̄0κ̄1λ̄0 − 4κ̄0λ̄0λ̄1 − κ̄1λ̄0λ̄1

− 2κ̄1κ̄2λ̄0 − 2λ̄0λ̄1λ̄2 − 2λ̄0λ̄
2
1 − 6κ̄20κ̄1

þ ð2α − 3Þκ̄0κ̄21 þ ð2α − 4Þκ̄0κ̄1κ̄2
þ αðκ̄1κ̄22 þ κ̄1κ̄2κ̄3Þ; ðB2Þ

while in the EF the runnings have the form

dn̂T
dlnk

¼−2κ̂0κ̂1−6κ̂20κ̂1þð2α−2Þðκ̂0κ̂21þ κ̂0κ̂1κ̂1Þ; ðB3Þ

dn̂S
d ln k

¼ −2κ̂0κ̂1 − κ̂1κ̂2 − 6κ̂20κ̂1 þ ð2α − 3Þκ̂0κ̂21
þ ð2α − 4Þκ̂0κ̂1κ̂2 þ αðκ̂1κ̂22 þ κ̂1κ̂2κ̂3Þ: ðB4Þ

Again, plugging (3.40)–(3.43) into the EF expressions, one
can see that the expressions for the runnings of the spectral
indices in the two frames coincide. Finally, the runnings of
the spectral indices can be written in terms of the PSRPs as

dnT
dlnk

¼−8ϵ2V þ4ϵVηV þ
�
52α−

148

3

�
ϵ3V − ð50α−38Þϵ2VηV

þð16α−12ÞϵVη2V þ
�
4α−

8

3

�
ϵVζ

2
V; ðB5Þ

dnS
d lnk

¼ −24ϵ2V þ 16ϵVηV − 2ζ2V þ
�
180α−

104

3

�
ϵ3V

−
�
180αþ 4

3

�
ϵ2VηV þð32αþ 12ÞϵVη2V

þð24αþ 4ÞϵVζ2V −
�
2α−

8

3

�
ηVζ

2
V −

�
2αþ 2

3

�
ρ3V:

ðB6Þ

APPENDIX C: EQUATION OF MOTION
IN TERMS OF e-FOLDS

We can rewrite the equation of motion for the invariant
Iϕ as a nonlinear second order differential equation with
respect to the number of e-folds. In the Einstein frame we
have

d2Iϕ

dN̂2
þ 3

dIϕ

dN̂
−
�
dIϕ

dN̂

�
3

þ
	
1 −

1

3

�
dIϕ

dN̂

�
2


3

ffiffiffiffiffi
ϵV

p ¼ 0;

ðC1Þ

while in the Jordan frame the equation of motion can be
brought to the following form:

d2Iϕ

dN̄2
þ 3

dIϕ

dN̄
þ dIϕ

dN̄

	
1 −

1

2

d lnIm

dN̄



−1

×

	
−
1

2

d lnIm

dN̄
þ 1

4

�
d lnIm

dN̄

�
2

−
�
dIϕ

dN̄

�
2

þ 1

2

d2 lnIm

dN̄2




−
d lnIm

dN̄

dIϕ

dN̄
þ
	
1þ 1

4

�
d lnIm

dN̄

�
2

−
d lnIm

dN̄

−
1

3

�
dIϕ

dN̄

�
2


3

ffiffiffiffiffi
ϵV

p ¼ 0: ðC2Þ

By numerically solving these equations we can obtain the
invariant field as a function of the number of e-folds in the
two frames. Of course, in the case with minimal coupling

we have d ln Im
dN̄ ¼ d2 ln Im

dN̄2 ¼ 0 and N̄ ¼ N̂, which means that
(C2) reduces to (C1).
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