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Higher mass dimension terms in an effective field theory framework for tests of spacetime symmetries
are studied. Using a post-Newtonian expansion method, we derive the spacetime metric and the equations
of motion for a binary system. This reveals an effective inverse cubic force correction to post-Newtonian
general relativity that depends on the velocity of the bodies in the system. The results are studied in the
context of laboratory and space-based tests including the effects on solar-system ephemeris, laser ranging
observations, and gravimeter tests. This work reveals the coefficient combinations for mass dimension 5
operators controlling CPT violation for gravity that can be measured using analysis from these tests. Other
tests including light propagation can be used to probe these coefficients. Sensitivity estimates are provided
and the results are contrasted with the minimal mass dimension 4 terms in the gravity sector.
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I. INTRODUCTION

So far, general relativity (GR) satisfies all experimental
and observational tests. Nonetheless there remains wide-
spread interest in continuing to test foundational principles
of GR, like the Einstein Equivalence Principle, which
includes local Lorentz symmetry. Furthermore, it is inter-
esting to consider the role in GR of other fundamental
spacetime symmetries that play a vital role in particle
physics, such as the combined Charge, Parity, and Time-
reversal symmetry, or CPT symmetry.
To test CPT and Lorentz symmetry requires a consistent

test framework that allows for violations of this symmetry
in a generic way. Such a framework is provided by the
standard-model extension (SME) [1,2]. The underlying
hypothesis is that spacetime-symmetry breaking is generi-
cally described by the presence of background tensor fields
called the coefficients for Lorentz violation that couple to
known fields. This framework is constructed with effective
field theory, and its action includes GR and the standard
model of particle physics plus a series of terms describing
generic spacetime symmetry breaking for existing fields.
The symmetry-breaking terms are constructed out of all the
possible scalars formed from the background fields coupled
to operators involving known fields describing matter or
gravity. The SME framework has been widely used for
analyzing experimental and observational searches for
Lorentz and CPT violation [3].
For local fields in flat spacetime, a breaking of CPT

symmetry is necessarily accompanied by a breaking
of Lorentz symmetry, as established in the anti-CPT
theorem [4]. Issues involving discrete symmetries in
GR have already been investigated in several works [5].
CPT violation in gravity, stemming from the general

construction of the SME, has been investigated in the
context of gravitational waves but not yet in other tests [6].
Note that the role of CPT symmetry in curved spacetime is
not settled, and we focus in this work primarily on its role in
linearized gravity on a flat background. It is known that
CPT-breaking effects cancel from the Newtonian gravita-
tional potential and therefore do not appear dominantly in
short-range gravity tests [7,8]. We show in this work that
when considering the next order in powers of v=c in a post-
Newtonian expansion of the spacetime metric around a flat
background, terms proportional to the fluid velocity arise
and lead to subtle but potentially measurable effects for
CPT violation.
A great deal of work exists in the literature on the broad

topic of possible spacetime-symmetry violation in nature and
we do not summarize it here. The reader is referred to the
many review articles that exist on the topic, in particular
more recent ones in Refs. [9]. Furthermore, the action-based
approach of the SME presented here is complementary to
and overlaps with other approaches such as metric-based test
frameworks [10] and specific models [11].
This paper is organized as follows. In Sec. II of this

paper, we discuss the Lagrange densities for the gravita-
tional sector of the SME, and derive the field equations.
The post-Newtonian metric is derived and discussed in
Sec. III, along with the associated two-body equations
of motion. The remainder of the paper is devoted to
calculating observables in specific tests in Sec. IV, with
subsections on secular orbit changes, laser ranging tests,
light propagation effects, and Earth laboratory tests. Finally
we summarize the results in Sec. V, including a table of
estimated sensitivities. Throughout the paper we use
natural units where c ¼ ℏ ¼ 1 and we adopt where possible
the conventions of previous works [2,12]. We will also
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make use of abbreviations for multiple partial derivatives so
that, ∂jkl… ¼ ∂j∂k∂l… and we will use parenthesis (brack-
ets) for symmetrization (antisymmetrization) of indices
with a factor of one half.

II. THEORY

The general setting for the SME treatment of spacetime-
symmetry breaking is Riemann-Cartan spacetime, which
includes torsion couplings. One begins with a coordinate
invariant set of scalars in the Lagrange density added to
general relativity and the matter sector of the standard
model. These extra terms break the spacetime symmetries
of local Lorentz symmetry, diffeomorphism symmetry,
and can also break CPT symmetry [2]. The origin of the
symmetry-breaking terms can be explicit or through a
dynamical mechanism such as spontaneous spacetime-
symmetry breaking which may occur in an underlying
theory. While general spacetime settings with torsion and
even nonmetricity have recently been studied [13], in this
work we shall focus on the Riemann spacetime limit with
vanishing torsion.
At present there are two approaches to the gravitational

sector of the SME. The first is a general coordinate
invariant version where the coefficients controlling the
degree of symmetry breaking are assumed to be either
explicit or to have an origin in spontaneous symmetry
breaking. The second version focuses on the weak-field
regime where the spacetime metric can be expanded around
a Minkowski metric as

gμν ¼ ημν þ hμν; ð1Þ

and uses a quadratic Lagrange density as the starting point.
In this case the coefficients are assumed to take their
vacuum values and are coupled to the metric fluctuations
hμν in a way that is consistent with the spontaneous
breaking of Lorentz symmetry. Both of these approaches
overlap in the linearized limit and we shall adopt the latter
since our focus is on weak-field effects.
To start, note that the linearized field equations of general

relativity can be derived from a quadratic (in hμν) Lagrange
density. This takes the form

LGR ¼ −
1

4κ
hμνGμν þ

1

2
hμνðTMÞμν; ð2Þ

where Gμν is the linearized Einstein tensor, we have
included a conventional coupling to the matter stress-
energy tensor ðTMÞμν, and κ ¼ 8πGN .
In the context of quadratic actions and linearized field

equations, the most general Lorentz and CPT-breaking
action consistent with gauge symmetry (linearized diffeo-
morphism symmetry) is known [6,7,12]. The terms in this
expression are organized by the mass dimension of the
operator involving hμν its derivatives, with the Lagrange

density for GR having a mass dimension of 4 in natural
units (or equivalently a length dimension of 4). Coupled to
these operators are the coefficients for Lorentz violation,
which are labeled by the appropriate mass dimension of the
operator. The mass dimension 4 term represents the lowest
order, or minimal, Lorentz-breaking term that can be
written in this series and it takes the form

Lð4Þ ¼ 1

4κ
s̄μκhνλGμνκλ; ð3Þ

where Gμνκλ is the double dual of the linearized Riemann
curvature tensor and the 9 a priori independent coefficients
are contained in the symmetric traceless s̄μν. This term has
been extensively studied and independent measurements
now exist from a variety of tests, both terrestrial and space-
based [3]. The best solar-system limits on the dimension-
less s̄μν coefficients are at the level of 10−8–10−11 from
lunar laser ranging [14], while constraints inferred from
distant cosmic rays reach 10−13–10−14 on these coefficients
[15]. Note that while the s̄μν coefficients affect the
propagation of gravitational waves through the dispersion
relation, the resulting constraints from the observation of
gravitational wave events [16] yield poor sensitivity com-
pared to those obtained by other tests [6]. This result is in
contrast to the higher mass dimension coefficients in the
SME expansion.
While the minimal SME in the gravity sector has been

explored, higher mass dimension terms in the Lagrangian
have only begun to be explored. The next two terms in the
nonminimal SME expansion in the gravity sector can be
written in terms of a covariant action [7], or a quadratic
effective action [6]. For the latter form, the mass dimension
5 operator term appearing in the SME expansion can be
written as

Lð5Þ ¼ −
1

16κ
hμνðqð5ÞÞμρανβσγ∂βRρασγ; ð4Þ

where the coefficients are ðqð5ÞÞμρανβσγ and have dimensions
of inverse mass or length, and Rρασγ is the linearized
Riemann curvature tensor. There is complete antisymmetry
in the first 3 indices and Riemann symmetry in the last four
indices. Using Young tableaux it can be established that
there are 60 independent coefficients. The Lagrangian (4)
breaks CPT symmetry for gravity, which is defined
operationally as resulting from the operator ∂βRρασγ having
an odd number of spacetime indices [2].
It is important to note that the terms present in (4) are

interpreted perturbatively, as small corrections to the
dynamics of hμν from GR. This means that we do not
consider modes in the associated dispersion relation of
higher than the second power in momentum, which
essentially means we are avoiding Ostrogradski instabilities
[17,18]. Note also that the condition on the partial
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derivatives of the coefficients for Lorentz violation, e.g.,
∂λs̄μν ¼ 0, is assumed to hold throughout the analysis in
this work in a suitable Cartesian coordinate system. This
point is discussed in more detail elsewhere [2,12].
Beyond mass dimension 5 are the coefficients for mass

dimension 6 operators. These produce effects in short-
range gravity tests which offer some of the best sensitivity
[19], as well producing effects in gravitational wave
propagation [6]. In this work our focus is on the mass
dimension 4 and 5 coefficients and we leave it as an open
question to determine the additional post-Newtonian
effects of the mass dimension 6 coefficients beyond the
Newtonian limit.
Various models that exist in the literature can be directly

matched to the Lagrange densities above. This includes
vector field models with a potential term driving sponta-
neous breaking of Lorentz and diffeomorphism symmetry
[20]. In particular, some vector models considered in the
literature include additional kinetic terms beyond the
Maxwell one [21]. With certain constraints on these models
they match the form of (3) once the dynamics of the vector
field have been imposed on the effective action [22].
Furthermore, models of spontaneous Lorentz-symmetry
breaking with anti-symmetric and symmetric tensors also
can match the form of (3) [23]. In fact, this is a general
feature of the SME, whereby specific models can be
matched to specific SME coefficients and the existing
limits can then be used to constrain them [24]. As further
examples, matches to the SME exist with noncommutative
geometry and quantum gravity [18,25].
In the gravity sector, the field equations in the linearized

limit, stemming from the combined Lagrange densities (2),
(3), and (4) can be derived by varying with respect to the
metric fluctuations hμν. The result is

Gμν ¼ κðTMÞμν þ s̄κλGμκνλ −
1

4
qραðμνÞβσγ∂βRρασγ; ð5Þ

which can then be used to solve for the post-Newtonian
metric. Note that we have abbreviated the dimensional
superscript ðq5Þ → q to simplify expressions.
The field equations (5) satisfy the conservation laws

associated with the linearized diffeomorphism symmetry
present in the Lagrange densities (2), (3), and (4). This
implies the vanishing divergence of the Lorentz and CPT
breaking terms on the right-hand side, which can be
checked directly. This is consistent with the linearized
Bianchi identities and the conservation of the matter stress-
energy tensor Tμν

M. Since the conservation laws hold, the
origin of the coefficients is then compatible with the case
of spontaneous breaking of Lorentz and diffeomorphism
symmetry [26]. In particular, the imposition of linearized
diffeomorphism symmetry limits the possible forms of
the Lagrange densities above. For example, consider the
construction of a mass dimension 4 term of the form (3)

with the coefficients t̄μνκλ, having the symmetries of the
Weyl tensor. This fails to produce a nonvanishing term that
is not a total derivative, when the constraint of linearized
diffeomorphism symmetry is imposed, as explained in
more detail in Refs. [6,12,27]. Nonetheless, a term of this
type may have consequences in cosmological scenarios
[28], which we do not explore in this work.

III. POST-NEWTONIAN EXPANSION

We adopt standard assumptions for weak-field slow
motion gravity to calculate the relevant post-Newtonian
metric. The perfect fluid stress-energy tensor is assumed for
matter, and the Newtonian potential U dominates as usual
in this approximation method. The field equations (5) are
solved by decomposition into the space and time compo-
nents and using successive corrections in powers of the
small velocity v, which is assumed much less than unity.
These standard methods have been applied to the SME
and the details are explained elsewhere [12,29]. Note also
that some of the terminology used here, like viewing
velocity and acceleration as spatial “vectors”, is only valid
in the post-Newtonian weak-field limit up to a certain
“order” in the expansion parameter v, and care is required
in calculating observables and connecting them to real
measurements.
In the results we record here we shall retain the

post-Newtonian metric corrections up to order v3 or
post-Newtonian order 3 [PNOð3Þ] to certain components
of the metric, and up to PNOð2Þ in other components.
We also include results for the CPT-even mass dimension
4 coefficients s̄μν for comparison to the CPT-odd mass
dimension 5 coefficients q. Our coordinate choice is
consistent with the harmonic gauge to the necessary
post-Newtonian order. To derive the metric, we make
use of the following “superpotentials” [10,30]:

χ ¼ −GN

Z
d3r0ρ0jr⃗ − r⃗ 0j;

χj ¼ GN

Z
d3r0ρ0v0jjr⃗ − r⃗ 0j; ð6Þ

and we solve for the metric to leading order in the
coefficients. In a space and time decomposition, the
components of the metric are given by

g00 ¼ −1þ 2Uð1þ 3s̄00Þ þ s̄jkUjk þ 4s̄0jVj þ Q̂jχj;

g0j ¼ s̄0kðUjk þ δjkUÞ þ 1

2
Q̂jχ þ � � � ;

gjk ¼ δjk½1þ ð2 − s̄00ÞU þ s̄lmUlm� − s̄ljUkl − s̄lkUjl

þ 2s̄00Ujk þ Q̂jkχ; ð7Þ

where Ujk ¼ ∂jkχ þ δjkU and Vj ¼ ð1=2Þ∇2χj. The
results are compactly displayed in terms of the derivative

VELOCITY-DEPENDENT INVERSE CUBIC FORCE AND … PHYSICAL REVIEW D 96, 064035 (2017)

064035-3



operators Q̂j and Q̂jk. These are given in terms of the
underlying coefficients q by

Q̂j ¼ ½q0jk0l0m þ qn0knljm þ qnjknl0m�∂klm;

Q̂jk ¼ ½q0lðjkÞm0n þ qplðjkÞmpn þ δjkq0pl0mpn�∂lmn: ð8Þ

The ellipses in g0j stand for PNOð3Þ terms that are omitted
for space since they are not needed for the analysis in
this work.
The partially symmetrized combinations of coefficients

in (8) occur frequently in what follows so we define
effective coefficients combinations Kjklm and ~Kjklmn as
follows:

Kjklm ¼ −
1

6
ðq0jk0l0m þ qn0knljm þ qnjknl0m þ permsÞ;

~Kjklmn ¼
1

6
ðq0lðjkÞm0n þ qplðjkÞmpn þ δjkq0pl0mpn þ permsÞ;

ð9Þ

where perms indicates all symmetric permutations in the
last three indices klm and lmn, respectively, and we have
lowered the indices with the Minkowski metric ημν. Certain
properties of these coefficient combinations also hold
which are useful to simplify calculations. For example,
for any spatial vectors a⃗, b⃗, and c⃗ the following identities
hold:

Kjklmajakalam ¼ 0;

Kjklmajakblbm ¼ −Kjklmbjbkalam;

Kjklmbjakblbm ¼ −
1

3
Kjklmajbkblbm: ð10Þ

While the post-Newtonian metric contains all nine
coefficients in s̄μν, only a subset of the 60 a priori
independent coefficients qραμνβσγ appear. This implies that
via post-Newtonian tests, not all of the mass dimension 5
coefficients can be probed. Similar results hold for Lorentz-
violating effects on gravitational wave propagation, where
a subset of 16 of these coefficients appear at leading order
[6]. The coefficients appearing in (9) are combinations of
the space and time decomposed irreducible pieces of the
qραμνβσγ coefficients. The combinations Kjklm include the
15 dimensional piece q0jk0l0m, the 10 dimensional piece
q0jklmnp, and the 8 dimensional piece qjklmn0p. However,
due to the symmetry properties of Kjklm and (10), there are
only 15 independent combinations of these irreducible
pieces appearing. Furthermore, only a subset of those will
actually appear for a given experiment or observational
analysis. Similar considerations hold for the ~Kjklmn

combinations.
The equations of motion for self-gravitating bodies can

be derived from the metric components (7) and the standard

fluid equations contained in the conservation law
DμðTMÞμν ¼ 0. This method uses a perfect fluid model
for matter, as done previously for the SME in Refs. [12,29].
While we do not discuss it here, these methods can be
generalized to the case of Lorentz violation in the matter
sector including gravitational effects [31,32].
We restrict attention to the case of two pointlike bodies

with masses ma and mb and positions r⃗a and r⃗b in an
asymptotically inertial coordinate system in which the
coefficients are assumed constant [12]. The relative posi-
tion between the two bodies is r⃗ ¼ r⃗a − r⃗b and n̂ ¼ r⃗=r is a
unit vector pointing in this direction, while the relative
velocity is v⃗ ¼ v⃗a − v⃗b. By suitably integrating the fluid
equations over body a, the acceleration of body a due to
body b is found to be

d2rja
dt2

¼ −
GNmb

r2

��
1þ 3

2
s̄00

�
nj − s̄jknk þ

3

2
s̄klnknlnj

�

þ 2GNmb

r2
ðs̄0jvknk − s̄0kvknjÞ

þ GNmb

r2
s̄0kvlbð2δjðknlÞ − 3δklnj − 3njnknlÞ

þ GNmbvk

r3
ð15nlnmnnn½jKk�lmn

þ 9nlnmK½jk�lm − 9n½jKk�llmnm − 3K½jk�llÞ þ � � �
ð11Þ

The first term proportional to nj is the Newtonian accel-
eration, followed by the acceleration modifications from
the s̄ coefficients. The final terms controlled by the mass
dimension 5 coefficient combinations Kjklm can be viewed,
in the context of the post-Newtonian expansion, as the
result of a nonstatic (velocity dependent) inverse cubic
force between the masses a and b, which is strikingly
different from what occurs in GR and other Lorentz-
breaking terms [7,8].
Also in Eq. (11) the ellipses stand for corrections from

GR and higher terms in a post-Newtonian series. Note that
there are no self-acceleration terms present, which is
consistent with the fact that the SME is based on an action
principle with energy and momentum conservation laws. In
fact, the result (11) can be derived from a post-Newtonian
series of the standard geodesic equation with the metric (7).
The equations for the relative acceleration of two bodies,

which is more closely related to what is actually observable,
are straightforward to compute from (11). In fact the
expression for the relative acceleration of bodies a and
b, aj ¼ d2rj=dt2, can be obtained from the right-hand side
of (11) with the replacement of mb → M ¼ ma þmb, with
the exception of the s̄0j terms. These latter terms contain a
dependence on the Newtonian center of mass velocity via
mav⃗a þmbv⃗b [12].
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It is also useful to write down the effective two-body
classical Lagrangian from which the equations of motion
can be derived. Specifically, for two bodies, a and b, we
have

L ¼ 1

2
ðmav2a þmbv2bÞ

þGNmamb

r

�
1þ 3

2
s̄00 þ

1

2
s̄jknjnk

�

þGNmamb

2r
ð3s̄0jðvja þ vjbÞ þ s̄0jnjðvka þ vkbÞnkÞ

−
3GNmamb

2r2
vjabðKjklmnknlnm − KjkklnlÞ: ð12Þ

One can see from this Lagrangian (or from the acceleration
equations) a distinction between some of the PNOð3Þ
terms proportional to the velocities of the bodies. In the
second line of the Lagrangian, terms depending on the
velocity of the bodies relative to the background s̄0j are
present. In contrast, for the Kjklm terms on the last line,
the velocity dependence is only on the relative velocity of
the two bodies v⃗ ¼ v⃗a − v⃗b. This has implications for the
subtle observability of these coefficients, as is revealed by
looking at specific tests.

IV. TESTS

For the specific tests discussed below, we adopt, where
possible, the standard Sun-centered celestial equatorial frame
coordinates (SCF) in which coefficient measurements are
reported [3,33]. These coordinates are denoted with capital
letters as fT; X; Y; Zg. For convenience, some results are
projected along various unit vectors associated with the
specific test. These unit vectors can then be expressed in
terms of the SCF coordinates for analysis. Also, the reader
is cautioned about the notational changes in the following
discussions where the same symbols may be used to
represent different quantities in different subsections.
We remark in passing that the tests discussed below are

also of interest for the matter-gravity couplings āμ and c̄μν,
and the associated phenomenology is published elsewhere
[31,32,34]. However, the c̄μν coefficients for the electron,
proton, and neutron, while in principle measurable in
gravity tests, are now better constrained from laboratory
and astrophysical tests [3,35].
It should also be emphasized that for the orbital tests

discussed below, we use the point-mass approximation in
Eq. (11) and (12). While this suffices for bodies that are
sufficiently separated, for cases such as near Earth satel-
lites, it may be necessary to include effects from the bodies
spherical inertia that arise in the potentials [12].

A. Secular changes

Using the method of oscillating orbital elements and the
acceleration (11), one can calculate the time derivatives of

six Keplerian orbital elements for a generic binary orbit
[36]. Of primary interest for analysis are five of these
elements: the semi-major axis a, the eccentricity e, the
periastron ω, the inclination with respect to the chosen
reference plane i, and the angle of the ascending node Ω.
After calculating the changes in the elements using the

modified acceleration we then time average the results
over one orbital period, yielding the secular changes. The
formulas for the secular changes in the orbital elements
due to the s̄μν coefficients can be found in Eqs. (168)-(171)
in Ref. [12] and elsewhere [37,38]. We find that the
secular change in the semimajor axis and eccentricity both
vanish for the Kjklm coefficients. This is in contrast to the
coefficients s̄μν, where a contribution to the change in the
shape of the orbit e persists after averaging. However, for
the Kjklm coefficients, the orientation of the orbit changes
via the periastron, inclination, and ascending node angle as
follows:

�
dω
dt

�
¼ −

n2

4ð1− e2Þ3=2 f2K1 þ cot i½cosωK2 þ sinωK3�g;

ð13Þ
�
di
dt

�
¼ n2

4ð1 − e2Þ3=2 ½cosωK3 − sinωK2�; ð14Þ

�
dΩ
dt

�
¼ n2

4ð1 − e2Þ3=2 csc i½cosωK2 þ sinωK3�; ð15Þ

where the combinations K1, K2, and K3 are given by

K1 ¼ 3KPPPQ þ KPQQQ þ 6K½PQ�kk;

K2 ¼ 3KPQQk − 3KPPPk − 4KPkkk − 6KQPQk;

K3 ¼ 6KPPQk þ 4KQkkk − 3KQPPk þ 3KQQQk; ð16Þ

and n is the frequency of the orbit. The subscripts on the
coefficients stand for projections along the three unit
vectors defining the orientation of each orbit: P⃗, Q⃗, and
k⃗ (see Eq. (166) in Ref. [12]).
The results above indicate that three combinations of the

coefficients Kjklm appear in the secular changes of the 3
orbital elements above. The use of multiple orbits, each
with differing orientation, can disentangle the coefficients.
Analyses similar to the study of solar-system ephemeris in
Refs. [38,39] and binary pulsar observations in Ref. [37]
would be of interest. In particular it should be noted that
while the s̄μν coefficients also yield changes in the elements
i, ω, and Ω, the angular dependence of the coefficient
projections for the mass dimension 5 coefficients, such as
KPQQk ¼ KjklmPjQkQlkm, differs. This may be used to
disentangle the Kjklm coefficients from the s̄μν coefficients.
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The possibility also exists to study more extreme orbits.
For example, orbital speeds on the order of 10−3c have
been observed in the stars near the center of our galaxy
where evidence points to the existence of a supermassive
black hole, and this could make an interesting testing
ground for CPT and Lorentz symmetry [40]. This is
particularly noteworthy since the modifications to the force
between two point masses varies as the inverse cube of the
distance for the Kjklm coefficients.

B. Laser ranging

To obtain observable range oscillations for the lunar case
and also Earth satellite case, we expand perturbatively
around a circular orbit using standard methods described in
the literature [10,41]. Implicitly then our approximate
results will be valid for nearly circular elliptical orbits.
The basic circular orbit frequency is ω while the so-called
“anomalistic frequency” is ω0. The latter represents the
frequency of the natural eccentric oscillations around the
circular orbit and the difference in the two frequencies
reflects a perigee precession arising from large Newtonian
perturbations. For the present application, the equation of
motion for the relative position of the satellite and source
body is best expressed in the form

aj ¼ −
GMrj

r3
þ ∇⃗δVðrÞ þ δaj þ � � � ; ð17Þ

where δVðrÞ represent the “central” portion of the pertur-
bative potential (both Newtonian, Lorentz-violating, and
otherwise) which is used in the definition of the circular
orbit frequency ω. Here δaj is the Lorentz-violating
acceleration, obtainable from (11).
We then expand around a circular orbit radius r0 as

r ¼ r0 þ δr and similarly we expand the angular momen-
tum per unit mass h ¼ jr⃗ × v⃗j as h ¼ h0 þ δh and truncate
the result order by order assuming the perturbations are
small. The mean speed of the orbit is v0 ¼ ωr0. The basic
equation for the oscillations in the range δr between
two bodies is given approximately, to second order in
perturbations, by

δ̈rþ ω2
0δr ¼

h02δh
r30

þ ðδhÞ2
r30

þ 3ω2ðδrÞ2
r0

−
6h0δhδr

r40
þ δar;

ð18Þ
where δar ¼ n̂ · δa⃗. The second order terms are kept to
include some near-resonant terms that arise from coupling
Lorentz-violating oscillations with the basic eccentric
oscillation

δre ¼ r0e cosðω0tþ ϕÞ: ð19Þ

The equation (18) is a driven harmonic system and we
can catalog the dominant oscillations controlled by the

coefficients Kjklm. To contrast the results with the minimal
SME we also include the results for the s̄μν coefficients.
Table I lists the amplitudes and frequencies for the
oscillation signal, which is described by the general form

δr ¼
X
n

½An cosðωnT þ ϕnÞ þ Bn sinðωnT þ ϕnÞ�; ð20Þ

where ωn and ϕn are the frequencies and associated phases.
The details on the phases of the oscillations can be found in
Ref. [12]. Also, the coefficients appearing in the amplitudes
are displayed compactly in terms of projections onto an
orbital plane basis fe1; e2; e3g, for example, K1122 ¼
KJKLMeJ1e

K
1 e

L
2 e

M
2 . This basis can be expressed in terms

of the SCF coordinates using the results in Ref. [12], in
particular the satellite orbit figure 4 of that reference.
The oscillations for the near resonance frequencies ω and

2ω − ω0 are absent for the Kjklm coefficients. Furthermore,
as displayed in Ref. [12], the s̄0j coefficients lead to
oscillation also at the Earth’s orbital frequency Ω, while
no such terms arise for the Kjklm coefficients. The latter
result can be traced to the exclusive relative velocity
dependence in (11). Higher harmonics in the frequencies
ω and Ω also exist but are typically suppressed by e or
powers of the factor ω=Ω relative to the ones appearing in
Table I.
While post-fit analysis using Eq. (20) can be performed

[42], a more rigorous analysis includes the equations of
motion (11) directly into the ephemeris code for laser
ranging observations. Such an analysis has been performed
recently for the s̄μν coefficients and has placed the most
stringent solar-system limits on these coefficients using
decades of data from lunar laser ranging [14]. It would be of
definite interest to try to add the modifications for the Kjklm

combinations of the q coefficients into this code and
perform a combined fit with the s̄μν coefficients. As the
table indicates, there is likely to be significant correlation of
the Kjklm coefficients with the s̄μν coefficients. Though it
appears to represent a challenge to disentangle them, a full

TABLE I. Dominant range oscillation frequencies and ampli-
tudes for the lunar and satellite laser ranging scenario. We include
mass dimension 4 coefficients s̄μν and the CPT-violating mass
dimension 5 coefficients Kjklm. The coefficients are projected
onto an orbital plane basis.

Frequency s̄μν Amplitude Kjklm Amplitude

A2ω − 1
12
r0ðs̄11 − s̄22Þ 1

4
v0ð6Kð12Þ33 − 3K1112 þ K1222Þ

B2ω − 1
6
r0s̄12 − 3

4
v0ðK1122 þ K1133 − K2233Þ

A2ω−ω0 − ωer0ðs̄11−s̄22Þ
16ðω−ω0Þ

0

B2ω−ω0 − ωer0 s̄12
8ðω−ω0Þ

0

Aω
ωv0r0 s̄02
ðω−ω0Þ 0

Bω − ωv0r0 s̄01
ðω−ω0Þ

0
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analysis may reveal signals from the Kjklm coefficients that
are distinct from the s̄μν coefficients. Also, since orbits of
differing orientation can help disentangle the coefficients, it
would also be of interest to perform analysis with satellite
orbits [43].

C. Light propagation

Among other precision tests in the solar system is the
observation of the deflection of light around massive
bodies. This can be used to test spacetime symmetry via
the effects of the metric in (7). One particularly useful
relativistic effect is the time delay of light [44]. We present
here the one way coordinate time difference between event
e (emission) and event p (reception). The basic setup for
this problem in any weak-field metric based theory of

gravity is discussed in generality in Ref. [45]. We employ
the quantities defined in Table II for a straight line
trajectory between the emission and reception events:
The coordinate time difference is obtained by integration

of the metric fluctuations projected and evaluated along
the unperturbed straight path, as presented in Eq. (12) of
Ref. [45]:

tp − te ¼ Rþ 1

2

Z
lp

−le
hμνp̄μp̄νdλ: ð21Þ

In this expression, λ is a parameter in the unperturbed
trajectory xj0 ¼ R̂jλþ bj which is inserted into the metric
while p̄0 ¼ 1 and p̄j ¼ R̂j.
After integration with the metric (7), we obtain

tp − te ¼ RþGM

�
2ð1þ s̄00 þ s̄0jR̂

jÞ ln
�
re þ rp þ R

re þ rp − R

�
− ½s̄00 þ s̄0jR̂

j − s̄jkb̂
jb̂k�

�
le
re

þ lp
rp

�

− ½s̄0jbj þ s̄jkR̂
jbk� ðre − rpÞ

rerp
þ TlmnR̂

lR̂mR̂nb2
�
1

r3e
−

1

r3p

�
þ TlmnR̂

lR̂mb̂n
3b
2

�
le
r3e

þ lp
r3p

�

þ TlmnR̂
lb̂mb̂n

3

2

�
1

re
−

1

rp
þ b2

�
1

r3p
−

1

r3e

��
þ TlmnR̂

lτ̂mτ̂n
3

2

�
1

re
−

1

rp

�

þ Tlmnb̂
lb̂mb̂n

3

2b

�
l3e
r3e

þ l3p
r3p

�
þ Tlmnb̂

lτ̂mτ̂n
3

2b

�
le
re

þ lp
rp

�	
; ð22Þ

where Tlmn is given by

Tlmn ¼ KjlmnR̂
j þ ~KjklmnR̂

jR̂k: ð23Þ
Here the unit vector τ̂ is defined by τ̂ ¼ R̂ × b̂.
The results for the s̄μν coefficients were obtained

previously and have been used to constrain the isotropic
coefficient s̄TT at the level of 10−4 from very long baseline
interferometry measurements [46]. While these measure-
ment are not as competitive with other tests for the s̄μν
coefficients, possible future analysis could now include the
mass dimension 5 coefficient combinations contained in
(23). Through the unit vectors R̂ and b̂, the time delay
measured depends on the orientation of the receiver and the
massive body M, which will typically change as a function
of time throughout the observation period. It would be of
interest to perform an analysis to search for the CPT-
violating coefficients using time delay measurements.
Through the metric, light propagation can be affected in

other ways. The standard gravitational redshift, and the
bending of light would be affected by the q coefficients as
well, which could be of interest for other tests [47,48].

D. Earth laboratory tests

Among the more sensitive probes of gravity are labo-
ratory tests on Earth involving measurements of the free fall

of masses near the surface, or gravimeter tests. The
instruments used include superconducting spheres sus-
pended electromagnetically and measurements of the free
fall acceleration via atom interferometry [49,50].
In theEarth laboratory setting, the locallymeasured free fall

acceleration of a test bodywill bemodified by the coefficients
for Lorentz violation. In the case of the mass dimension 4
coefficients s̄μν, thedominant effects areoscillations in the free
fall acceleration at different harmonics of the Earth’s sidereal
frequency ω and the Earth’s orbital frequency Ω. The
amplitudes in terms of the SCF coefficients are tabulated in
Ref. [12]. We record below the main results for the mass
dimension 5 coefficients Kjklm which affect the free fall
motion of masses on the Earth’s surface. Some the results for
the s̄μν coefficients are retained for comparison. Note that for
simplicity we do not include here the effects of the Earth’s
finite size which is known to produce extra significant
acceleration terms involving the Earth’s spherical inertia
[12]. These effects can readily be incorporated by using the
super potentials (6) in the metric (7).
To obtain the local modified acceleration for the Earth

laboratory setting one can proceed from the effective
Lagrangian in (12), treating body a as the test mass and
body b as the source body (Earth). One then expands
around a point on the Earth’s surface (assuming the axes are
oriented with ẑ being the local vertical, ŷ points east, and x̂
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points south). Alternatively, one can use the local metric of
an accelerated and rotating observer in a generic space-time
and proceed by calculating the local acceleration using a
covariant expression, as done in Ref. [12]. The basic signal
one obtains takes the form

δaẑ

aẑ
¼

X
n

½Cn cosðωnT þ ϕnÞ þ Sn sinðωnT þ ϕnÞ�; ð24Þ

where the frequencies are labelled by n, Cn and Sn are the
coefficient-dependent amplitudes and ϕn are the associated
phases. Note that the time T is the SCF time and the phase
is ϕ ¼ ωðT⊕ − TÞ, where T⊕ is defined relative to the
crossing of the local ŷ axis with the Sun-centered frame Y
axis [33]. The amplitudes for the frequencies ω, 2ω, and 3ω
are given by

Cω ¼ −
1

2
sin 2χs̄XZ − 2ωR⊕ sin χs̄TY þ ω

32
½KXXYZð30þ 18 cos 2χÞ þ KYXXZð3 − 27 cos 2χÞ

þ KYYYZð33 − 9 cos 2χÞ þ KYZZZð−28þ 12 cos 2χÞ� sin 2χ;

Sω ¼ −
1

2
sin 2χs̄YZ þ 2ωR⊕ sin χs̄TX þ ω

32
½KXXXZð−33þ 9 cos 2χÞ þ KXYYZð−3þ 27 cos 2χÞ

þ KXZZZð28 − 12 cos 2χÞ − KYXYZð30þ 18 cos 2χÞ� sin 2χ;

C2ω ¼ −
1

4
sin2χðs̄XX − s̄YYÞ þ

3ω

8
½ð3KXXXY − KXYYYÞð3þ cos 2χÞ þ 3ðKXYZZ þ KYXZZÞðcos 2χ − 1Þ�sin2χ;

S2ω ¼ −
1

2
sin2χs̄XY þ 9ω

8
½KXXYYð3þ cos 2χÞ þ ðKXXZZ − KYYZZÞð1 − cos 2χÞ�sin2χ;

C3ω ¼ 9ω

8
ð2KXXYZ þ KYXXZ − KYYYZÞ cos χsin3χ;

S3ω ¼ −
9ω

8
ðKXXXZ − KXYYZ − 2KYXYZÞ cos χsin3χ; ð25Þ

where χ is the experiment colatitude, R⊕ is the Earth’s
radius, and the phases for these frequencies are ϕ, 2ϕ,
and 3ϕ, respectively [12].
Note the appearance of the Earth sidereal rotational

frequency ω which provides a dimensional quantity setting
the scale for the sensitivity to the Kjklm coefficients, which
themselves have dimensions of time or length in natural
units. There is no leading order dependence of the signal
on the Earth’s orbital velocity for the Kjklm coefficients.
Therefore the harmonics that occur for the Kjklm coef-
ficients are simply multiples of the Earth sidereal rotational
frequency, unlike the case of the s̄μν coefficients, for which
the subset s̄0j also appears at harmonics of Earth’s orbital
frequency Ω. This can again be traced to the dependence
on only relative velocity in the Lagrangian (12). One
distinction with the mass dimension 5 coefficients is the
appearance of the frequency 3ω, which provides a way to
disentangle these sets of coefficients. Otherwise, a signal
for CPT violation in gravimeter tests is entangled with the
CPT-even effects of s̄μν. While it appears to be challenging,
it would be of definite interest to search for the qμρανβσγ

coefficients in Earth-laboratory gravimeter tests of all
types [51,52].
Short-range gravity experiments, in which the force

between two laboratory masses is carefully measured as
a function of separation, has been a useful probe of the

SME gravity sector. Results already limiting combinations
of the mass dimension 6 coefficients have been published
[19]. In that case, the Newtonian potential is directly
affected [7]. However, for the coefficients qμρανβσγ , the
contribution to the Newtonian potential vanishes [8]. The
leading order effects for these coefficients arise from terms
dependent on the velocity of the bodies as seen from the
point-mass equations (11). For typical laboratory mass
velocities, this introduces a suppression factor, making
these tests less sensitive than others. However, optimization
may surmount this difficulty and it may be of interest also
to investigate short-range tests. One could proceed, in this
case, by numerically integrating the point-mass acceler-
ation formula over the source and test bodies. Note that a
dependence on the motion of the source and test bodies is
present and this must be accounted for in the integration
process.

V. DISCUSSION AND SUMMARY

In this work, we investigated the gravity sector of the
SME framework in the linearized gravity limit. In particu-
lar, the post-Newtonian phenomenology of the mass
dimension 5 spacetime-symmetry breaking terms was
studied. The basic action is described in Sec. II, where
the mass dimension 5 term is given in Eq. (4) and the
modified field equations are in Eq. (5). The CPT-violating
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effects are controlled by the 60 qμρανβσγ coefficients and the
results in this work were contrasted with the mass dimen-
sion 4 coefficients s̄μν, and other work on mass dimension 6
coefficients and higher-order terms.
While previous studies of these coefficients focused on

limits from recent gravitational wave events [6], we focused
in this work on the merits of weak-field slow motion
gravity tests like those in the solar system or the Earth
laboratory setting. One key result in this work is the post-
Newtonian metric, derived in Sec. III and displayed in
Eq. (7). This result shows the dominant modifications of
GR controlled by the qμρανβσγ coefficients. Also in this
section, the point-mass equations of motion for a binary
system are derived. The result for a body a in the presence
of body b is given in Eq. (11) and displays a nonstatic
inverse cubic distance behavior.
In Sec. IV, we used the results of the previous sections

to study particular solar system tests of gravity, discussing
their merits as sensitive probes of spacetime symmetry
violation in gravity. The main results for orbital tests
include formulas for the secular changes of orbital elements
in Eq. (15) and the dominant range oscillations for lunar
and satellite laser ranging in Eq. (20) and Table I. The
modified time delay formula is presented in Eq. (22), and
the oscillation amplitudes for the locally measured value of
freefall acceleration are contained in Eqs. (25).
To summarize the phenomenology, we include here a

table estimating the benchmark sensitivity for the different
types of tests discussed in this work for measuring
combinations of the qμρανβσγ coefficients, where the units
of these coefficients are taken in kilometers. Most of the
tests discussed in this work depend on the Kjklm combi-
nations of the underlying coefficients in the Lagrange
density, defined in (9). The basic sensitivity levels can
be established from the results derived in this paper, and
those already known for the s̄μν coefficients. For instance,
examination of the equations of motion for two bodies in
(11), comparing the dimensionality of the s̄μν and Kjklm

terms, we can see that they are roughly related by a factor of
velocity v and inverse distance r. Since most tests involve a
kind of cyclical motion, we arrive at the heuristic formula
K ∼ s̄=ω, where ω is a characteristic frequency of the
system under study. This works in most of the cases
considered here, as can be confirmed by examining the
more experiment or test-specific results in the paper (e.g.,
Table I). We can then extract the approximate sensitivity
for the Kjklm coefficients from the known limits on the s̄μν
coefficients. For example, for solar system ephemeris, the
limits on s̄jk coefficients are on the order of 10−10. To find
an estimate for what will be obtained for Kjklm coefficients
we multiply 10−10 by c=ω, where ω is the orbital frequency
of the Earth and c is the speed of light in SI units, thereby
obtaining K ∼ 102 km.
The dependence of the sensitivity on frequency implies

that satellite orbit analysis may result in increased

sensitivity, as indicated in the Table. For short-range gravity
tests we can compare to the level at which the Newtonian
gravitational force can be measured in a given experiment
and the frequency of motion of the masses in the experi-
ment. It is important to note that the sensitivity estimates
provided do not address the issue of disentangling theKjklm
coefficients from the s̄μν coefficients as discussed through-
out this work but merely provides a rough guide for
analysis. Also, while we do not investigate it here, the
class of experiments involving gyroscopic precession, such
as Gravity Probe B, could also be of potential interest for
the Kjklm coefficients [53].
Finally we remark here about the possible sizes of the

coefficients qμρανβσγ discussed in this work. A broad class
of possible effects is described by the SME effective field
theory framework. As a test framework, there are no
specific predictions concerning the sizes of the coefficients.
Nonetheless, since gravity is weak compared to other
forces in nature, this leaves room for violations of space-
time symmetry that are large compared to those in other
sectors, as evidenced by glancing at Table III and compar-
ing to the Planck length 10−35 m. It is clear from this that
symmetry breaking effects that are not “Planck suppressed”
could still have escaped detection. This effect is called

TABLE II. Quantities used for the time delay formula (22). The
reader is referred to Fig. 1 in Ref. [45].

Quantity Definition

r⃗p Spatial coordinate of event p
r⃗e Spatial coordinate of event e
R⃗ r⃗p − r⃗e (unperturbed displacement)

R̂ Unit vector in the direction of R⃗
le −r⃗e · R̂
lp r⃗p · R̂

b⃗ r⃗p − lpR̂ (impact parameter vector)

TABLE III. Estimated sensitivity levels for different tests for
the s̄μν coefficients and the CPT-violating q coefficients. The
combinations Kjklm are defined in Eq. (9). Time delay tests are

sensitive to both the Kjklm coefficients and the ~Kjklmn coefficients
via the combination Tlmn in Eq. (23). The values for s̄JK come
from known limits on the spatial coefficients in the SCF [3]. The
range of values for the laser ranging case is due to the higher
frequency of Earth satellite orbits.

Test s̄JK Kjklm (km)

solar system ephemeris 10−10 102

binary pulsars 10−10 10−1

laser ranging 10−11 10–10−1

gravimeter 10−9 5
short-range gravity 104 104

time delay 10−4 103
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“countershading” and was first pointed out for matter-
gravity couplings [31] but persists also in the higher mass
dimension terms of the nonminimal SME [29]. Although a
more stringent limits exists on one combination of the mass
dimension 5 coefficients at the level of 10−14 m [6], large,
as yet unmeasured, CPT and Lorentz violation could still
persist in nature.

ACKNOWLEDGMENTS

We thank Adrien Bourgoin, Christine Guerlin, Aurélien
Hees, V. A. Kostelecký, Christophe Le Poncin-Lafitte, Jay
Tasson, and an anonymous referee for valuable comments
on the manuscript. This work was supported in part by the
National Science Foundation under Grant No. PHY-
1402890.

[1] D. Colladay and V. A. Kostelecký, Phys. Rev. D 55, 6760
(1997); 58, 116002 (1998).

[2] V. A. Kostelecký, Phys. Rev. D 69, 105009 (2004).
[3] V. A. Kostelecký and N. Russell, arXiv:0801.0287v10.
[4] O.W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002).
[5] E. C. G. Stueckelberg, Phys. Rev. 106, 388 (1957);

R. Jackiw and S.-Y. Pi, Phys. Rev. D 68, 104012 (2003);
S. Alexander and N. Yunes, Phys. Rep. 480, 1 (2009); B.
Altschul and M. Mewes, Phys. Rev. D 84, 083512 (2011).

[6] V. A. Kostelecký and M. Mewes, Phys. Lett. B 757, 510
(2016).

[7] Q. G. Bailey, V. A. Kostelecký, and R. Xu, Phys. Rev. D 91,
022006 (2015).

[8] V. A. Kostelecký and M. Mewes, Phys. Lett. B 766, 137
(2017).

[9] J. Tasson, Rep. Prog. Phys. 77, 062901 (2014); C. M. Will,
Living Rev. Relativ. 17, 4 (2014); A. Hees et al., Universe 2,
4 (2016); J. Tasson, Symmetry 8, 111 (2016).

[10] C. M.Will, Theory and Experiment in Gravitational Physics
(Cambridge University Press, Cambridge, England, 1993).

[11] K. Yagi, D. Blas, N. Yunes, and E. Barausse, Phys. Rev.
Lett. 112, 161101 (2014); N. Yunes, K. Yagi, and F.
Pretorius, Phys. Rev. D 94, 084002 (2016).

[12] Q. G. Bailey and V. A. Kostelecký, Phys. Rev. D 74, 045001
(2006).

[13] V. A. Kostelecký, N. Russell, and J. D. Tasson, Phys. Rev.
Lett. 100, 111102 (2008); R. Lehnert, W. M. Snow, and H.
Yan, Phys. Lett. B 730, 353 (2014); J. Foster, V. Alan
Kostelecký, and R. Xu, Phys. Rev. D 95, 084033 (2017).

[14] A. Bourgoin, A. Hees, S. Bouquillon, C. Le Poncin-Lafitte,
G. Francou, and M.-C. Angonin, Phys. Rev. Lett. 117,
241301 (2016); arXiv:1706.01243; arXiv:1706.06294.

[15] V. A. Kostelecký and J. D. Tasson, Phys. Lett. B 749, 551
(2015).

[16] B. P. Abbott et al. (LIGO Scientific Collaboration, Virgo
Collaboration), Phys. Rev. Lett. 116, 061102 (2016); 116,
241103 (2016); 118, 221101 (2017).

[17] M. V. Ostrogradski, Mem. Acad. Imp. Sci. St.-Petersbourg
4, 385 (1850).

[18] V. A. Kostelecký and M. Mewes, Phys. Rev. D 80, 015020
(2009).

[19] J. C. Long and V. A. Kostelecký, Phys. Rev. D 91, 092003
(2015); C. G. Shao, Y.-J. Tan, W.-H. Tan, S.-Q. Yang, J.
Luo, and M. E. Tobar, Phys. Rev. D 91, 102007 (2015);
C. G. Shao et al., Phys. Rev. Lett. 117, 071102 (2016).

[20] V. A. Kostelecký and S. Samuel, Phys. Rev. D 40, 1886
(1989).

[21] T. Jacobson and D. Mattingly, Phys. Rev. D 64, 024028
(2001).

[22] M. D. Seifert, Phys. Rev. D 79, 124012 (2009).
[23] V. A. Kostelecký and R. Potting, Gen. Relativ. Gravit. 37,

1675 (2005); Phys. Rev. D 79, 065018 (2009); B. Altschul,
Q. G. Bailey, and V. Alan Kostelecký, Phys. Rev. D 81,
065028 (2010); C. A. Hernaski, Phys. Rev. D 94, 105004
(2016).

[24] M. D. Seifert, Phys. Rev. D 81, 065010 (2010).
[25] R. Gambini and J. Pullin, Phys. Rev. D 59, 124021 (1999);

S. M. Carroll, J. A. Harvey, V. Alan Kostelecký, C. D. Lane,
and T. Okamoto, Phys. Rev. Lett. 87, 141601 (2001).

[26] R. Bluhm and V. A. Kostelecký, Phys. Rev. D 71, 065008
(2005); R. Bluhm, S.-H. Fung, and V. A. Kostelecký,
Phys. Rev. D 77, 065020 (2008); R. Bluhm, Phys. Rev. D
91, 065034 (2015).

[27] Y. Bonder, Phys. Rev. D 91, 125002 (2015).
[28] Y. Bonder and G. Leon, arXiv:1704:05894.
[29] Q. G. Bailey, Phys. Rev. D 94, 065029 (2016).
[30] E. Poisson and C. Will, Gravity, (Cambridge University

Press, 2014).
[31] V. A. Kostelecký and J. D. Tasson, Phys. Rev. Lett. 102,

010402 (2009).
[32] V. A. Kostelecký and J. D. Tasson, Phys. Rev. D 83, 016013

(2011).
[33] V. A. Kostelecký and M. Mewes, Phys. Rev. D 66, 056005

(2002); R. Bluhm, V. Alan Kostelecký, C. D. Lane, and
N. Russell, Phys. Rev. D 68, 125008 (2003); Phys. Rev.
Lett. 88, 090801 (2002).

[34] Y. Bonder, Phys. Rev. D 88, 105011 (2013); C. D. Lane,
Phys. Rev. D 94, 025016 (2016).

[35] P. Wolf, F. Chapelet, S. Bize, and A. Clairon, Phys. Rev.
Lett. 96, 060801 (2006); H. Pihan-Le Bars, C. Guerlin,
R.-D. Lasseri, J.-P. Ebran, Q. G. Bailey, S. Bize, E. Khan,
and P. Wolf, Phys. Rev. D 95, 075026 (2017).

[36] W.M. Smart, Celestial Mechanics (Longmans, Green, and
Co., London, 1953); V. A. Brumberg, Essential Relativistic
Celestial Mechanics (Adam Hilger, Bristol, 1991).

[37] L. Shao, Phys. Rev. Lett. 112, 111103 (2014); Phys. Rev. D
90, 122009 (2014).

[38] A. Hees, Q. G. Bailey, C. Le Poncin-Lafitte, A. Bourgoin,
A. Rivoldini, B. Lamine, F. Meynadier, C. Guerlin, and P.
Wolf, Phys. Rev. D 92, 064049 (2015).

QUENTIN G. BAILEY and DANIEL HAVERT PHYSICAL REVIEW D 96, 064035 (2017)

064035-10

https://doi.org/10.1103/PhysRevD.55.6760
https://doi.org/10.1103/PhysRevD.55.6760
https://doi.org/10.1103/PhysRevD.58.116002
https://doi.org/10.1103/PhysRevD.69.105009
http://arXiv.org/abs/0801.0287v10
https://doi.org/10.1103/PhysRevLett.89.231602
https://doi.org/10.1103/PhysRev.106.388
https://doi.org/10.1103/PhysRevD.68.104012
https://doi.org/10.1016/j.physrep.2009.07.002
https://doi.org/10.1103/PhysRevD.84.083512
https://doi.org/10.1016/j.physletb.2016.04.040
https://doi.org/10.1016/j.physletb.2016.04.040
https://doi.org/10.1103/PhysRevD.91.022006
https://doi.org/10.1103/PhysRevD.91.022006
https://doi.org/10.1016/j.physletb.2016.12.062
https://doi.org/10.1016/j.physletb.2016.12.062
https://doi.org/10.1088/0034-4885/77/6/062901
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.3390/sym8110111
https://doi.org/10.1103/PhysRevLett.112.161101
https://doi.org/10.1103/PhysRevLett.112.161101
https://doi.org/10.1103/PhysRevD.94.084002
https://doi.org/10.1103/PhysRevD.74.045001
https://doi.org/10.1103/PhysRevD.74.045001
https://doi.org/10.1103/PhysRevLett.100.111102
https://doi.org/10.1103/PhysRevLett.100.111102
https://doi.org/10.1016/j.physletb.2014.01.063
https://doi.org/10.1103/PhysRevD.95.084033
https://doi.org/10.1103/PhysRevLett.117.241301
https://doi.org/10.1103/PhysRevLett.117.241301
http://arXiv.org/abs/1706.01243
http://arXiv.org/abs/1706.06294
https://doi.org/10.1016/j.physletb.2015.08.060
https://doi.org/10.1016/j.physletb.2015.08.060
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevD.80.015020
https://doi.org/10.1103/PhysRevD.80.015020
https://doi.org/10.1103/PhysRevD.91.092003
https://doi.org/10.1103/PhysRevD.91.092003
https://doi.org/10.1103/PhysRevD.91.102007
https://doi.org/10.1103/PhysRevLett.117.071102
https://doi.org/10.1103/PhysRevD.40.1886
https://doi.org/10.1103/PhysRevD.40.1886
https://doi.org/10.1103/PhysRevD.64.024028
https://doi.org/10.1103/PhysRevD.64.024028
https://doi.org/10.1103/PhysRevD.79.124012
https://doi.org/10.1007/s10714-005-0149-1
https://doi.org/10.1007/s10714-005-0149-1
https://doi.org/10.1103/PhysRevD.79.065018
https://doi.org/10.1103/PhysRevD.81.065028
https://doi.org/10.1103/PhysRevD.81.065028
https://doi.org/10.1103/PhysRevD.94.105004
https://doi.org/10.1103/PhysRevD.94.105004
https://doi.org/10.1103/PhysRevD.81.065010
https://doi.org/10.1103/PhysRevD.59.124021
https://doi.org/10.1103/PhysRevLett.87.141601
https://doi.org/10.1103/PhysRevD.71.065008
https://doi.org/10.1103/PhysRevD.71.065008
https://doi.org/10.1103/PhysRevD.77.065020
https://doi.org/10.1103/PhysRevD.91.065034
https://doi.org/10.1103/PhysRevD.91.065034
https://doi.org/10.1103/PhysRevD.91.125002
http://arXiv.org/abs/1704:05894
https://doi.org/10.1103/PhysRevD.94.065029
https://doi.org/10.1103/PhysRevLett.102.010402
https://doi.org/10.1103/PhysRevLett.102.010402
https://doi.org/10.1103/PhysRevD.83.016013
https://doi.org/10.1103/PhysRevD.83.016013
https://doi.org/10.1103/PhysRevD.66.056005
https://doi.org/10.1103/PhysRevD.66.056005
https://doi.org/10.1103/PhysRevD.68.125008
https://doi.org/10.1103/PhysRevLett.88.090801
https://doi.org/10.1103/PhysRevLett.88.090801
https://doi.org/10.1103/PhysRevD.88.105011
https://doi.org/10.1103/PhysRevD.94.025016
https://doi.org/10.1103/PhysRevLett.96.060801
https://doi.org/10.1103/PhysRevLett.96.060801
https://doi.org/10.1103/PhysRevD.95.075026
https://doi.org/10.1103/PhysRevLett.112.111103
https://doi.org/10.1103/PhysRevD.90.122009
https://doi.org/10.1103/PhysRevD.90.122009
https://doi.org/10.1103/PhysRevD.92.064049


[39] L. Iorio, Classical Quantum Gravity 29, 175007 (2012).
[40] A. M. Ghez, M. Morris, E. E. Becklin, A. Tanner, and

T. Kremenek, Nature (London) 407, 349 (2000); Astrophys.
J. 689, 1044 (2008); A. Hees et al., Phys. Rev. Lett. 118,
211101 (2017); L. Iorio, arXiv:1705.05471.

[41] K. Nordtvedt, Phys. Rev. D 7, 2347 (1973); 43, 3131
(1991); Icarus 114, 51 (1995).

[42] J. B. R. Battat, J. F. Chandler, and C.W. Stubbs, Phys. Rev.
Lett. 99, 241103 (2007).

[43] I. Ciufolini, A. Paolozzi, R. Koenig, E. C. Pavlis, J. Ries,
R. Matzner, V. Gurzadyan, R. Penrose, G. Sindoni, and
C. Paris, Nucl. Phys. B, Proc. Suppl. 243-244, 180 (2013);
Eur. Phys. J. C 76, 120 (2016); L. Iorio, Eur. Phys. J. C 77,
73 (2017).

[44] I. I. Shapiro, Phys. Rev. Lett. 13, 789 (1964).
[45] Q. G. Bailey, Phys. Rev. D 80, 044004 (2009).
[46] C. L. Poncin-Lafitte, A. Hees, and S. Lambert, Phys. Rev. D

94, 125030 (2016).
[47] A. Hees et al., arXiv:1509.06868; arXiv:1301.1658; B.

Altschul et al., Adv. Space Res. 55, 501 (2015); P. Delva,
A. Hees, S. Bertone, E. Richard, and P. Wolf, Classical
Quantum Gravity 32, 232003 (2015); P. Wolf and L.
Blanchet, Classical Quantum Gravity 33, 035012 (2016).

[48] R. Tso and Q. G. Bailey, Phys. Rev. D 84, 085025
(2011).

[49] R. J. Warburton and J. M. Goodkind, Astrophys. J. 208, 881
(1976).

[50] C. J. Borde, Phys. Lett. A 140, 10 (1989); S. Merlet, Q.
Bodart, N. Malossi, A. Landragin, F. Pereira Dos Santos, O.
Gitlein, and L. Timmen, Metrologia 47, L9 (2010); M.
Hauth, C. Freier, V. Schkolnik, A. Senger, M. Schmidt, and
A. Peters, Appl. Phys. B 113, 49 (2013); Z. K. Hu, B.-L.
Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan, Q.-Z.
Zhang, and J. Luo, Phys. Rev. A 88, 043610 (2013); T.
Farah et al., Gyro. Navig. 5, 266 (2014).

[51] H. Müller, S.-w. Chiow, S. Herrmann, S. Chu, and K.-Y.
Chung, Phys. Rev. Lett. 100, 031101 (2008); K.-Y. Chung,
S.-w. Chiow, S. Herrmann, S. Chu, and H. Müller, Phys.
Rev. D 80, 016002 (2009); M. A. Hohensee, S. Chu, A.
Peters, and H. Müller, Phys. Rev. Lett. 106, 151102 (2011);
111, 151102 (2013); C.-G. Shao et al., arXiv:1707.02318.

[52] N. A. Flowers, C. Goodge, and J. D. Tasson, arXiv:
1612.08495.

[53] C. W. F. Everitt et al., Phys. Rev. Lett. 106, 221101 (2011);
Q. G. Bailey, R. D. Everett, and J. M. Overduin, Phys.
Rev. D 88, 102001 (2013).

VELOCITY-DEPENDENT INVERSE CUBIC FORCE AND … PHYSICAL REVIEW D 96, 064035 (2017)

064035-11

https://doi.org/10.1088/0264-9381/29/17/175007
https://doi.org/10.1038/35030032
https://doi.org/10.1086/592738
https://doi.org/10.1086/592738
https://doi.org/10.1103/PhysRevLett.118.211101
https://doi.org/10.1103/PhysRevLett.118.211101
http://arXiv.org/abs/1705.05471
https://doi.org/10.1103/PhysRevD.7.2347
https://doi.org/10.1103/PhysRevD.43.3131
https://doi.org/10.1103/PhysRevD.43.3131
https://doi.org/10.1006/icar.1995.1042
https://doi.org/10.1103/PhysRevLett.99.241103
https://doi.org/10.1103/PhysRevLett.99.241103
https://doi.org/10.1016/j.nuclphysbps.2013.09.005
https://doi.org/10.1140/epjc/s10052-016-3961-8
https://doi.org/10.1140/epjc/s10052-017-4607-1
https://doi.org/10.1140/epjc/s10052-017-4607-1
https://doi.org/10.1103/PhysRevLett.13.789
https://doi.org/10.1103/PhysRevD.80.044004
https://doi.org/10.1103/PhysRevD.94.125030
https://doi.org/10.1103/PhysRevD.94.125030
http://arXiv.org/abs/1509.06868
http://arXiv.org/abs/1301.1658
https://doi.org/10.1016/j.asr.2014.07.014
https://doi.org/10.1088/0264-9381/32/23/232003
https://doi.org/10.1088/0264-9381/32/23/232003
https://doi.org/10.1088/0264-9381/33/3/035012
https://doi.org/10.1103/PhysRevD.84.085025
https://doi.org/10.1103/PhysRevD.84.085025
https://doi.org/10.1086/154675
https://doi.org/10.1086/154675
https://doi.org/10.1016/0375-9601(89)90537-9
https://doi.org/10.1088/0026-1394/47/4/L01
https://doi.org/10.1007/s00340-013-5413-6
https://doi.org/10.1103/PhysRevA.88.043610
https://doi.org/10.1134/S2075108714040051
https://doi.org/10.1103/PhysRevLett.100.031101
https://doi.org/10.1103/PhysRevD.80.016002
https://doi.org/10.1103/PhysRevD.80.016002
https://doi.org/10.1103/PhysRevLett.106.151102
https://doi.org/10.1103/PhysRevLett.111.151102
http://arXiv.org/abs/1707.02318
http://arXiv.org/abs/1612.08495
http://arXiv.org/abs/1612.08495
https://doi.org/10.1103/PhysRevLett.106.221101
https://doi.org/10.1103/PhysRevD.88.102001
https://doi.org/10.1103/PhysRevD.88.102001

