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We apply the full Will-Nordtvedt version of the parametrized post-Newtonian (PPN) formalism to a class
of general relativity extensions that are based on nontrivial renormalization group (RG) effects at large
scales. We focus on a class of models in which the gravitational coupling constant G is correlated with the
Newtonian potential. A previous PPN analysis considered a specific realization of the RG effects, and only
within the Eddington-Robertson-Schiff version of the PPN formalism, which is a less complete and robust
PPN formulation. Here we find stronger, more precise bounds, and with less assumptions. We also consider
the external potential effect (EPE), which is an effect that is intrinsic to this framework and depends on the
system environment (it has some qualitative similarities to the screening mechanisms of modified gravity
theories). We find a single particular RG realization that is not affected by the EPE. Some physical systems
have been pointed out as candidates for measuring the possible RG effects in gravity at large scales; for any
of them the Solar System bounds need to be considered.
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I. INTRODUCTION

The use of general relativity (GR) on the very small
scales of the universe, or on the very large ones, leads to
inconsistencies or to the need for unexpected new features
in the universe. These issues related to GR include
quantum-gravity issues [1–6], the cosmological dark sector
[7–11], inflation [12–15], and perhaps smaller details like
the small scale issues of the standard cosmological model
[16–21]. On the other hand, GR has achieved great success
through several tests, specially at the Solar System scale
[22] (see, however, [23] for some anomalies).
Here we analyze a class of GR extensions that is based

on renormalization group (RG) expectations considering
gravity at large distances. There are different approaches
for extending GR using RG effects, both in the high and the
low energy limits [14,24–43], these also include the asymp-
totic safety approach to quantum gravity [5,39,44,45]. We
consider the RGGR (renormalization group extended gen-
eral relativity) approach [46,47], which extends and gen-
eralizes the proposals of Refs. [28,29,48,49]. One of the
characteristic features of this approach is the use of a
correlation between the RG scale μ and the Newtonian
potential in the context of stationary and weak field systems
(some other proposals use μ ∝ 1=r, which coincides with
the RGGR proposal for point particles, see also Ref. [50]).

Another RGGR feature is the use of a constant infrared
β function1 for the gravitational coupling constant G
(as explained in Ref. [52], for instance). The existence
of a correlation between μ and the Newtonian potential is
here assumed, but this work is not restricted to a specific
form of this correlation, or to a single specific β function.
Some different systems have been considered for evalu-

ating large scale RG effects in gravity, from galaxies to
cosmology. Considering galaxies, previous tests of RGGR
in galaxies have found that the non-Newtonian effects can
act as a kind of effective dark matter if ν̄≳ 10−9 [16,46,53];
otherwise, the effect could still be true but it would have
negligible impact as a kind of dark matter, even for the
smallest galaxies. The dimensionless parameter ν̄ sets the
strength of the RG effects in a given system, and it is such
that ν̄ ¼ 0 corresponds to classical GR.
The Solar System data have always to be considered,

since that information provides some of the clearest and
most precise results on gravity. The first work on RGGR
and the Solar System used the Laplace-Runge-Lenz
(LRL) vector and found jν̄⊙j≲ 10−17 [52]. A second work
evaluated a number of different observations in the Solar
System, to conclude that jν̄⊙j ≲ 10−21 [54]. A third work
used up-to-date data on the LRL vector and the Eddington-
Robertson-Schiff parametrized post-Newtonian (PPN) for-
mulation to find jν̄⊙j≲ 10−16 [55]. The third work express
the best bound on ν̄ at the Solar System up to this paper.
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1A β function of a coupling X is defined by βX ≡ μ∂X=∂μ,
where μ is the RG scale [51]. From the integration of the β
function one finds XðμÞ.
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This bound is softer than the others since the corresponding
paper was the first to notice and consider an effect that
depends on the system environment and it is part of RGGR:
the external potential effect (EPE). Qualitatively, this effect
can be explained as follows, for a nonrelativistic system:
the higher is the value of the Newtonian potential due to
matter outside the system, the lower are the non-Newtonian
effects inside the system. This effect was not imposed as an
additional feature, it was already present in the theory, but it
was neglected in previous Solar System analyses. It has
superficial similarities with the screening mechanisms of
modified gravity [56–59]. It is also important to stress that
all these bounds consider a particular form for the β
function of G, and a particular form for the scale setting.
Although they are natural options, they nonetheless con-
stitute additional hypotheses that will not be necessary to
the main results of this paper.
Here we apply the full Will-Nordtvedt version of the

parametrized post-Newtonian formalism (see [22,60] for a
review) to a class of RG extensions of GR that includes
RGGR as a particular case. The development of the PPN
formalism relied and still relies on many studies, took many
years, and has currently some different bifurcations (e.g.,
[61–70]). Probably the most well known and simplest
version is the Eddington-Robertson-Schiff PPN formu-
lation, which essentially depends on two parameters, γ
and β. These are derived from theory solutions considering
a massive point within a static and spherically symmetric
spacetime (for a review see e.g., [71]). This massive particle
would represent the Sun and test particles would be in place
of the planets or photons. The first parameter can be found
from the measurement of light bending, while the second
from Mercury’s orbit precession. This simpler PPN for-
mulation was applied to RGGR in Ref. [55]. Nonetheless, a
theory whose values of γ and β are compatible with
observations may be incompatible with other experiments.
Also, the use of static spherically symmetric spacetime and
“point” particles are just rough approximations which, in
general, are not irrelevant for post-Newtonian dynamics
[60]. The Will-Nordtvedt version considers more tests, it
depends on ten parameters (nine of them are observatio-
nally constrained), and it is based on fluids, not on particles.
This work is organized as follows: in the next section we

present a review of RGGR that focuses on its main features
that are important for the PPN evaluation. The review
includes the original noncovariant formulation and the
newer covariant version. Section III briefly reviews a
few essential PPN features and applies them to RG
extensions of GR. In Sec. IV the observational bounds
are determined for any case in which G is an analytical
function of the Newtonian potential. The latter section also
considers the EPE and two particular classes of β functions,
one of them being the RGGR case. Our conclusions are
presented in Sec. V. In the Appendixes A and B consid-
erations on the covariant formulation are presented, and it is

shown that the standard Will-Nordtvedt PPN formalism
cannot be applied to the full covariant formulation.

II. LARGE SCALE RG EXTENSIONS
OF CLASSICAL GR

A. A brief review on RGGR and
a larger class of theories

Not all RG extensions of GR at large scales have an
effective action that captures all the dynamical information,
without the need of imposing field equations that are
outside the action. For instance, as classified in Ref. [49],
some consider the RG improved equations (e.g., [42,72–
74]), in which the coupling constants are promoted to
running ones at the level of the field equations. In the case
of RGGR, this promotion is done at the level of the action,
and hence it is a case of RG improved action (see e.g.,
[49,75–79]). Moreover, it has an action that leads to all the
field equations [47]. At the action level, RGGR depends
explicitly on the dimensionless constant ν, which is such
that ν ¼ 0 corresponds to classical GR (i.e., the β function
of the gravitational coupling becomes zero).
According to the RGGR action proposal of Ref. [47],

which extends and generalizes the proposals in
Refs. [37,46,48,49], large scale RG effects can be described
by an effective action which reads (using c ¼ 1),

S ¼
Z �

R − 2Λfμg
16πGðμÞ þ λðμ − fðg; γ;ΨÞÞ

� ffiffiffiffiffiffi
−g

p
d4xþ Sm:

ð1Þ
In the above, S ¼ S½g; γ; μ; λ;Ψ�, Sm ¼ Sm½g;Ψ�, Ψ stands
for any matter fields of any nature, and μ is the RG scale,
whose relation to all the other fields is stated in the action in
a constraintlike way, as imposed by the Lagrange multiplier
λ. The field γαβ is called the reference metric, it only
appears inside f, without derivatives, and its variation at the
action level ensures energy-momentum conservation [47].
The scalars G and Λ depend on the RG scale μ, but in
different ways. Namely, G is a standard function of μ,
which is fixed at the action level. The relation between Λ
and μ is not fixed at the action level, but it can and must be
derived from the field equations; equivalently, this means
that the corresponding β function of Λ is not universal, and
it depends on the matter fields. Examples on how to derive
Λ for different systems can be found in Ref. [47]. This
system-dependent relation between Λ and μ is stressed by
the use of a different notation, namely Λfμg instead of
ΛðμÞ. In essence, this implies that a local analysis of Λ
cannot determine its global behavior, and that Λ is not, in
general, an analytical function of μ.
Before proceeding, a comment on the nature of γαβ and

background independence is in order. The splitting of the
spacetime metric into a background plus quantum correc-
tions is a convenient procedure that is largely used in the
context of unveiling RG effects in gravity. Nonetheless, it is
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expected that the physical phenomena uncovered from this
splitting do not depend on the chosen background, that is,
the RG effects should be background independent [80–83].
Considering the f function as proposed in Ref. [47], see
also Appendix A, the dependence on the reference metric
γαβ is such that, when the metrics coincide, the RG effects
become null and one recovers classical GR.2 Thus, γαβ sets
a background for the RG effects. Formally, the action (1) is
background independent in the sense that there is no
particular geometry that is preferred. On the other hand,
different coices of γαβ at the level of the field equations lead
to different solutions for the spacetime metric. Therefore, in
the sense of the split symmetry, as discussed for instance
in Ref. [80], action (1) is not explicitly background
independent. This does not imply that γαβ is a physically
independent quantity, only that action (1) does not handle
background changes (i.e., changes of γαβ within a fixed
coordinate system). In classical GR, sometimes the boun-
dary conditions are not obvious and one has to use physical
intuition (or large computational efforts) to discover
the proper boundary conditions. In the case of the RG
extended action (1), this problem includes finding the
proper reference metric.3 For systems that are close to
Newtonian, the most natural assumption for γαβ is the
Minkowski metric; in this case the RG effects depend on
the Newtonian potential, and this is the choice assumed in
this work. This choice is relevant for the passage from the
covariant action (1) to the noncovariant RGGR formulation
(further details are in Appendix A and in Refs. [47,55]).
Considering the field equations, from action (1), the

variation with respect to λ yields the scale setting μ ¼ f, the
variation with respect to μ yields a condition betweenG, Λ,
λ which ensures that the matter energy-momentum tensor
satisfies4 ∇αTα

β ∝ λ. The variation with respect to γαβ sets
λ ¼ 0 at the level of the field equations (whenever
∂f=∂γαβ ≠ 0), thus ensuring energy-momentum conserva-
tion (see Ref. [47] for further details). At last, the variation
with respect to the metric yields

Gαβ þ Λgαβ ¼ 8πGTαβ; ð2Þ
where

Gαβ ≡Gαβ þ gαβG□G−1 − G∇α∇βG−1; ð3Þ

□≡ gαβ∇α∇β, and ∇α is the covariant derivative.

If it is possible to neglect the contribution from Λ in the
Solar System up to first post-Newtonian order, which
seems natural since Λ should be a correction to the
cosmological constant Λ0 that appears in classical GR, it
is useful to write Eq. (2) as

Rαβ ¼ G

�
8π

�
Tαβ −

1

2
gαβT

�

þ∇α∇βðG−1Þ þ 1

2
gαβ□ðG−1Þ

�
: ð4Þ

The Λ term was not considered in the previous Solar
System analysis of RGGR [52,54,55]. In Appendix B we
comment on the possible effects of Λ and show that the
Will-Nordtvedt PPN formalism in its standard form cannot
handle the Λ term, in particular because Λ cannot be both
an analytical function and be compatible with asymptotic
flatness.

B. Running gravitational constant and scale setting

For concreteness, it helpful to present an example for the
GðμÞ function. We present below a simple expression for
GðμÞ that some of us used in previous publications, and
which was also derived from different RG approaches,
namely [26,27,48,49,52,85],

GðμÞ ¼ G0

1þ 2ν lnðμ=μ0Þ
; ð5Þ

whereG0 and μ0 are constants such that Gðμ0Þ ¼ G0, and ν
is a small dimensionless constant. GR is recovered with
ν ¼ 0. We present further details on the consequences of
this expression in Sec. IV, but our main results in this work
are not limited to this expression.
From action (1), the relation of the scale μ to other

physical quantities (i.e., the scale setting [50,86]) is a field
equation that comes from the variation of the action with
respect to the Lagrange multiplier λ. Contrary to some other
approaches, the scale setting is not an additional equation
outside the action; it is derived from the action. In Ref. [46],
considering RG expectations within GR at large scales,
some of us proposed that, within stationary weak field
gravitational systems, there should be a function f such
that, in a given reference frame,

μ ¼ fðUÞ: ð6Þ

Our results do not depend on specifying a particular f
function. In the above, U is the negative of the Newtonian
potential5 [60], and it is given by

2More precisely, if in a given neighborhood of a spacetime
point the metrics satisfy gαβ ¼ γαβ, then in that neighborhood
there are no RG effects.

3Actually, the problem is much simpler, since for the proposed
f function one only has to specify a scalar quantity, uαuβγαβ (see
Appendix A).

4Due to the constraint term that depends on both μ and the
matter fields, the diffeomorphism invariance of Sm is not
sufficient to assure that Tμν is conserved [47,84].

5For conciseness, commonly we will call U the Newtonian
potential, without writing “negative” in front of it. We useU since
we are following the notation of Ref. [60] on the PPN parameters
and the potentials.
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Uðt; x⃗Þ ¼ GN

Z
ρðt; x⃗0Þ
jx⃗ − x⃗0j d

3x0; ð7Þ

where GN is the Newtonian gravitational constant (which
may be different from G0). The scale setting (6) is a
development over some previous RG application to gravity
at large scales, in the latter applications the qualitative
relation μ ∝ 1=r was used [37,48], that is, a large value for
the RG scale μ should correspond to small distances r. The
use of the Newtonian potential is in qualitative agreement
with the previous assumption, but it includes a dependence
on the mass distribution and uses the most relevant
potential for systems close to the Newtonian regime, that
is, U.
Since U is not a spacetime scalar, the scale setting (6) is

not covariant. In Refs. [47,55] we proposed a covariant
generalization of the above scale setting, but we leave
further details on the covariant version to Appendix A. As
shown in the latter appendix, the covariant version leads
to the appearance of potentials that are not part of the Will-
Nordtvedt PPN formalism.
In Ref. [55] we used Eq. (5) and presented a natural fðUÞ

function which lead to a metric solution with spherical
symmetry that could be handled through the Eddington-
Robertson-Schiff PPN formalism. Here we will proceed
with more generality, namely wewill simply demand thatG
can be expanded as a function of U as follows:

G−1ðμÞ ¼ G−1ðUÞ ¼ G−1
e þ 2

X∞
n¼1

νnUn: ð8Þ

With this parametrization, GR is recovered with νn ¼ 0. It
will be shown that all the νn terms with n ≥ 3 are not
relevant to the Solar System dynamics up to the first post-
Newtonian order. In Eq. (8) νn are real constants and Ge is
the value of GðUÞ when U ¼ 0. We use the index e in
reference to the external value of G. That is, far from the
Sun, the Newtonian potential of the Solar System should
become close to zero, but the value of G at such distance
may depend on the environment of the Solar System. This
will be further developed in Sec. IV, and the relationship
between Ge and GN is shown in the next section.

III. THE POST-NEWTONIAN APPROXIMATION

In this section we apply the Will-Nordtvedt PPN
formalism [22,60] to a RG extension of GR whose RG
scale μ is correlated with the Newtonian potential. This
formalism uses a perfect fluid as the gravitational source
and describes the metric of a gravitational theory in terms
of ten observable PPN parameters in a theory-independent
way. The main small parameter of the formalism is the
velocity field jv⃗j ¼ v < 1. The metric is expanded about
Minkowski spacetime,

gαβ ¼ ηαβ þ hαβ; ð9Þ

where ηαβ is the Minkowski metric, which is of zeroth order
on v, and hαβ ∼Oðv2Þ, at least. We use the signature
ð−;þ;þ;þÞ.
Up to the first post-Newtonian order, the metric must be

known as follows: g00 to order v4, g0i to order v3, and gij
to order v2 (Latin indices run from 1 to 3). Thus, up to
the required order, the Ricci tensor components can be
expressed as

R00 ¼ −
1

2
∇2h00 −

1

2
ðhkk;00 − 2hk0;k0Þ −

1

4
j∇⃗h00j2

þ 1

2
h00;l

�
hlk;k −

1

2
hkk;jδ

j
l

�
þ 1

2
hklh00;lk; ð10Þ

R0i ¼ −
1

2
ð∇2h0i − hk0;ik þ hkk;0i − hki;k0Þ; ð11Þ

Rij ¼ −
1

2
ð∇2hij − h00;ij þ hkk;ij − hki;kj − hkj;kiÞ: ð12Þ

The commas refer to simple derivatives, ∇2 ≡ ηij∂i∂j, and
it was used that each time derivative increases the post-
Newtonian order by one. Thus, if a quantity X is of order
vn, then X;k ∼OðvnÞ and X;0 ∼Oðvnþ1Þ.
Using Eq. (8) and that U ∼Oðv2Þ for systems not far

from equilibrium, then

∇α∇βðG−1Þ ¼ ðG−1Þ;αβ − Γλ
αβðG−1Þ;λ;

¼ 2ν1ðU;αβ −Γλ
αβU;λ Þ

þ 4ν2ðU;α U;β þUU;αβ Þ þOðv6Þ: ð13Þ

Since the gravitational source is a perfect fluid,

Tμν ¼ ðρþ ρΠþ pÞuμuν þ pgμν; ð14Þ

where Π is the specific energy density, p is the pressure,
and uμ ¼ ðu0; viÞ is the four-velocity of the fluid element,
with

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

1 − h00

s
; ð15Þ

such that uμuμ ¼ −1. The mass density ρ,Π, and p=ρ are of
order v2 [60].
With the expressions above, we compute the metric

components order by order on powers of v.

A. h00 up to order v2 (Newtonian limit)

Up to the required order,

R00 ¼ −
1

2
∇2h00 and T00 ¼ −T ¼ ρ: ð16Þ
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Therefore,

∇2h00 ¼ −8πGeρþ 2Geν1∇2U ð17Þ

and, from Eq. (7),

h00 ¼ 2
Ge

GN

ð1þ GNν1ÞU: ð18Þ

In order to be in agreement with the Newtonian physics,

h00 ¼ 2U; ð19Þ

thus, we must set

Geð1þ GNν1Þ ¼ GN: ð20Þ
The equation above sets the relationship between Ge and
GN . Since this relationship is now clear, henceforth we use

GN ¼ 1: ð21Þ

Thus,

Ge ¼
1

1þ ν1
: ð22Þ

B. hij up to order v2

Imposing the three gauge conditions,

hμi;μ −
1

2
hμμ;i ¼ 2Geν1U;i; ð23Þ

the spatial part of Eq. (4) reduces to

∇2hij ¼ −8πGeρδij − 2Geν1∇2Uδij: ð24Þ

The above equation is easily integrated,

hij ¼ 2

�
1 −

2ν1
1þ ν1

�
Uδij; ð25Þ

where Eq. (22) was used.

C. h0i up to order v3

With a fourth gauge condition,

hμ0;μ −
1

2
hμμ;0 ¼ −

1

2
h00;0 þ 3Geν1U;0 ð26Þ

and from Eq. (4),

∇2h0i þ GeU;0i ¼ 16πGeρvi: ð27Þ

To integrate the above equation, we will use the super-
potential χðt; x⃗Þ [60], which is given by

χðt; x⃗Þ≡
Z

ρðt; x⃗0Þjx⃗ − x⃗0jd3x0: ð28Þ

From the above definition,

∇2χ ¼ −2U and χ;0i ¼ Vi −Wi; ð29Þ

where

Vi ¼
Z

ρðt; x⃗0Þv0i
jx⃗ − x⃗0j d3x0; ∇2Vi ¼ −4πρvi; ð30Þ

and

Wi ¼
Z

ρðt; x⃗0Þv⃗ · ðx⃗ − x⃗0Þðx − x0Þi
jx⃗ − x⃗0j3 d3x0: ð31Þ

Therefore, from Eq. (27) it results that

h0i ¼ −
7Vi

2ð1þ ν1Þ
−

Wi

2ð1þ ν1Þ
: ð32Þ

D. h00 up to order v4

To develop the right-hand side of the dynamical equa-
tion, we need the explicit expression of some components
of the connection. To the required order, those terms are

Γi
00 ¼ −U;i; ð33Þ

Γk
ij ¼

�
1 −

2ν1
1þ ν1

�
ðU;iδ

k
j þU;jδ

k
i − U;kδijÞ: ð34Þ

For the energy-momentum tensor, up to order v4, one finds

T00 −
1

2
g00T ¼ 1

2
ρ

�
1þ 2

�
v2 − U þ Π

2
þ 3p

2ρ

��
; ð35Þ

where the expansion of Eq. (15) was used. By considering
the gauge fixing conditions (23) and (26), introducing the
potentials below [60],

∇2Φ1 ¼ −4πρv2; ∇2Φ2 ¼ −4πρU;

∇2Φ3 ¼ −4πρΠ; ∇2Φ4 ¼ −4πp; ð36Þ

and using the relation

j∇⃗Uj2 ¼ ∇2

�
U2

2
−Φ2

�
; ð37Þ

the dynamical equation can be integrated, leading to
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h00 ¼ 2U − 2

�
1þ ν21 − ν2ð1þ ν1Þ

ð1þ ν1Þ2
�
U2

þ 4Φ1

1þ ν1
þ 2Φ3

1þ ν1
þ 6Φ4

1þ ν1

þ
�
4ð1 − ν1 þ ν21Þ

ð1þ ν1Þ2
−

4ν1
1þ ν1

�
Φ2 þOðv6Þ: ð38Þ

With the above, we conclude the expansion of the RGGR
perturbations as a function of the PPN potentials. In the
next section, we infer the values of the PPN parameters and
compare with the observational values.

IV. THE PPN PARAMETERS AND
THEIR INTERPRETATION

A. General analysis

With the results obtained in the previous section, the
metric up to the first post-Newtonian (1PN) order can be
written as

g00 ¼ −1þ 2U − 2

�
1þ ν21 − ν2ð1þ ν1Þ

ð1þ ν1Þ2
�
U2

þ
�
1 −

ν1
1þ ν1

�
ð4Φ1 þ 2Φ3 þ 6Φ4Þ

þ 4

�
1 −

4ν1 þ ν21
ð1þ ν1Þ2

�
Φ2;

g0i ¼
�
1 −

ν1
1þ ν1

��
−
7Vi

2
−
Wi

2

�
;

gij ¼ δij þ 2

�
1 −

2ν1
1þ ν1

�
Uδij: ð39Þ

To extract the PPN parameters from the above geometric
structure, we compare it to the Will-Nordtvedt generic post-
Newtonian metric [60], namely

g00 ¼ −1þ 2U − 2βU2 þ ð2γ þ 2þ α3 þ ζ1 − 2ξÞΦ1

þ 2ð3γ − 2β þ 1þ ζ2 þ ξÞΦ2 þ 2ð1þ ζ3ÞΦ3

þ 2ð3γ þ 3ζ4 − 2ξÞΦ4 − ðζ1 − 2ξÞA − 2ξΦW;

g0i ¼ −
1

2
ð4γ þ 3þ α1 − α2 þ ζ1 − 2ξÞVi

−
1

2
ð1þ α2 − ζ1 þ 2ξÞWi;

gij ¼ ð1þ 2γUÞδij: ð40Þ

From the coefficients ofU in gij andU2 in g00, one infers
the parameters γ and β as functions of ν1 and ν2. Using the
data from Table I, one finds

jν1j < 1.2 × 10−5; jν2j < 8 × 10−5: ð41Þ

We stress that the above considers only the observational
constraints from γ and β, which are not all the observational
constraints.
Since ν1 and ν2 need to be much smaller than 1, their

relations to the PPN parameters can be expressed from
linear expansions on ν1 and ν2, which reads

γ ¼ 1 − 2ν1;

β ¼ 1 − ν2;

α2 ¼ −ν1;

ζ2 ¼ −2ðν1 þ ν2Þ;
ζ3 ¼ −ζ4 ¼ −ν1;

α1 ¼ α3 ¼ ξ ¼ ζ1 ¼ 0: ð42Þ

Using the relations above and the observational con-
straints of all the PPN parameters, listed in Table I, the
resulting strongest constraints on the parameters ν1 and ν2
are displayed in Table II. One sees that they do not come
from β or γ, but from α2 and ζ2.
There are well-known examples of theories that come

from an action and have α1 and α2 different from zero,
which are related with special frame effects [22,87], but
theories with an action are not expected to yield nonzero
values for any of the ζ’s and α3 if ξ ¼ 0 [88]. On the other
hand, we are not using the full covariant action, which
demands energy-momentum conservation, but rather the
noncovariant approximation. The derived bound from ζ2

TABLE I. Limits on the PPN parameters, considering only the
strongest limits for each parameter [22]. The ζ4 does not have a
direct measurement. These limits apply to the absolute value of
each parameter.

Parameter Limit

γ − 1 2.3 × 10−5

β − 1 8. × 10−5

ξ 4. × 10−9

α1 4. × 10−5

α2 2. × 10−9

α3 4. × 10−20

ζ1 2. × 10−2

ζ2 4. × 10−5

ζ3 1. × 10−8

ζ4 —

TABLE II. Strongest constraints on ν1 and ν2 from all the
observational constraints on the PPN parameters.

Constraint Origin

jν1j < 2 × 10−9 α2 constraint
jν2j < 2 × 10−5 ζ2 constraint
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changes the bound found from the β parameter by a factor 4
[from Eq. (41)]. That is, the noncovariant approximation
works as an order of magnitude approximation, at the 1PN
order, to the covariant version [55]. The situation would be
different in the case that α3 would depend on ν1 or ν2.
Further considerations on the effects from Λ and the full
covariant action are in Appendixes A and B.

B. A constant infrared β function
and the external potential effect

There is a particular expression for GðUÞ that is well
motivated and particularly simple. This expression was
proposed in Ref. [46] and it reads

G−1 ¼ G−1
0

�
1þ 2ν̄ ln

�
U
U0

��
; ð43Þ

where ν̄ is a constant and U0 is a reference potential [the
one that satisfies GðU0Þ ¼ G0]. The above expression uses
the following infrared β function of G [26,27,49,52,85]
(with c ¼ ℏ ¼ 1),

βG−1 ≡ μ
∂G−1ðμÞ

∂μ ¼ 2νM2
Planck ¼ 2νG−1

0 ; ð44Þ

whose integration leads to G−1ðμÞ ¼ G−1
0 ð1þ 2ν ln μ=μ0Þ.

The latter expression is combined with the scale setting
[46,50,55]

μ ¼
�
U
U0

�
α

: ð45Þ

In Eq. (43) we used ν̄≡ να.
The GðUÞ expression from Eq. (43) is not, in

general, compatible with the expansion (8), but it
becomes compatible once the external potential effect is
considered [55].
Since in this picture G depends on the potential U, G

will, in general, depend on both the matter distribution
inside the system under investigation and also the matter
outside it. Following Ref. [55], we write

ρ ¼ ρs þ ρe;

U ¼ Us þ Ue; ð46Þ

where ρs refers to the matter density contribution that is
inside the system under consideration, while ρe refers to
the external mass density. The quantities Us and Ue are
computed from Eq. (7), but with ρ replaced by ρs and ρe,
respectively.
We consider that the scale of the system is much smaller

than the typical scale of the exterior contributions (e.g., the
Solar System inside the Galaxy), such that inside the
system Ue behaves as a constant. Hence, instead of using

the arbitrary U0 scale, it is convenient to use Ue as the
reference potential, as follows6:

G−1 ¼ G−1
e

�
1þ 2ν̄ ln

�
1þ Us

Ue

��
;

¼ G−1
e

�
1þ 2ν̄

Us

Ue
− ν̄

U2
s

U2
e

�
þ � � � ð47Þ

with GðUeÞ ¼ Ge (or, equivalently, GjUs¼0 ¼ Ge) and
Us < Ue. The expression above is compatible with
Eq. (8), with Us in place of U. Hence, we identify

ν1 ¼
ν̄

GeUe
;

ν2 ¼ −
ν̄

2GeU2
e
: ð48Þ

It should be remembered that the expressions above assume
Ue > Us; hence, the limit Ue → 0 is meaningless.
The PPN bound on ν̄ depends on the value ofUe, and it is

such that the largerUe is, the softer the bound on ν̄ is. Since
Ue is a gravitational potential, Ue < 1, and hence the most
conservative bound on ν̄ comes from using Ue ∼ 1, which
reads

jν̄j < 10−9 for Ue ∼ 1: ð49Þ

The minimum structure outside the Solar System that
should be considered is the Milky Way, whose Newtonian
potential at the Solar System position can be estimated to be
about Ue ∼ 10−6 [55]; thus,

jν̄j≲ 10−17 for Ue ∼ 10−6: ð50Þ

Beyond the Milky Way, one should consider the Local
Group contribution to U. Since the Milky Way is already
one of the two most massive galaxies in the Local Group,
the other being Andromeda, the bound will not change
appreciably. Beyond the Local Group is the Virgo super-
cluster, but the Local Group is not gravitationally bound to
it; thus, one starts to enter a domain in which cosmology
becomes important, and hence beyond the validity of the
scale setting (6). Therefore, unless there is some nontrivial
cosmological contribution, Eq. (50) is the most reasonable
bound on ν̄ that can be inferred at the Solar System.
The bound that appears in Eq. (50) is slightly stronger

than the bound from Ref. [55], where it was found that
jν̄j ≲ 10−16 for the same value of the external potential.

6The change on the scale fromU0 toUe actually changesG0 to
Ge and also changes ν̄, such that the product G−1ν is constant.
The relevant change is on the reference potential, the changes on
G and ν are second order on ν. For clarity, we opted not to
introduce an index on ν to label this small change. The exact
expressions can be found in Ref. [55].

WILL-NORDTVEDT PPN FORMALISM APPLIED TO … PHYSICAL REVIEW D 96, 064034 (2017)

064034-7



The reason for the disagreement comes from the fact that
here we use all the Will-Nordtvedt parameters, and the
strongest bound on ν2 is not the one from β, but from ζ2.
These two bounds only differ by a factor 4, but since
8 × 10−5 ∼ 10−4 and 2 × 10−5 ∼ 10−5, the final answer has
an order of magnitude of difference.

C. Infrared β function proportional to μn

and the external potential effect

Although the case of a constant infrared β function is a
natural one, here we consider another simple possibility
that also appears frequently in diverse contexts,

βG−1 ≡ μ
∂G−1ðμÞ

∂μ ¼ νμn; ð51Þ

where n is a dimensionless real constant different from zero
and ν is a constant. Again, ν is used to set the strength of the
RG effects, but for the β function above, ν is a dimensionful
quantity.
After integrating Eq. (51) and using the scale setting7

μ ¼ U, one finds

G−1ðUÞ ¼ G−1
0 þ ν

n
Un: ð52Þ

In the above, G0 is an integration constant. Upon consid-
ering the presence of matter outside the system, U is
divided into Us and Ue (the latter being a constant) and the
G expression can be stated as a function of Us as follows:

G−1 ¼ G−1
0 þ ν

n
ðUs þUeÞn

¼ G−1
e −

ν

n
Un

e þ
ν

n
ðUs þ UeÞn

¼ G−1
e þ νUn−1

e Us þ ν
n − 1

2
Un−2

e U2
s þO

�
U3

s

U3
e

�
;

ð53Þ
where Ge is defined from GðUs ¼ 0Þ ¼ Ge.
From the expansion above and Eq. (8), one identifies

ν1 ¼
1

2
νUn−1

e ; ð54Þ

ν2 ¼ ν
n − 1

4
Un−2

e : ð55Þ

As in the previous subsection, for Ue ∼ 1, the bound comes
from α2 and reads (using c ¼ ℏ ¼ GN ¼ 1),

jνj < 10−9: ð56Þ

If Ue ≪ 1 and n ¼ 1, then the bound above is also valid.

For the case Ue ∼ 10−6 (which corresponds to the
contribution from the Milky Way at the Solar System),
and if n is not close to 1, the bound becomes

jðn − 1Þνj≲ 10−16þ6n: ð57Þ

The above inequality shows that the larger the external
potential Ue is, the softer the bound on ν is, as expected.
This example with G given by Eq. (52) shows that, for

some cases, the EPE does not improve concordance with
GR. Namely, for n ¼ 1 the bound on ν is given by Eq. (56),
which is independent of Ue.

V. CONCLUSIONS

In this work we used, for the first time, the Will-
Nordtvedt PPN formalism to address Solar System bounds
on a class of RG-based proposals that extend GR. This class
is such that the RG scale is a function of the Newtonian
potential, hence in particular it includes the RGGR pro-
posal [46–48]. We also consider the external potential
effect, which is an intrinsic effect of these proposals and
which depends on the environment of the system [55].
In Ref. [55], using a more heuristic approach within the

less rigorous and simpler Eddington-Robertson-Schiff PPN
version, the bound jν̄⊙j≲ 10−16 for RGGR was found.
Here we find a slightly stronger bound for RGGR,8 jν̄⊙j ≲
10−17 (both of these bounds consider the Solar System as
part of the Milky Way, see Sec. IV B). Moreover, the pre-
sent work also addresses bounds for a more general class of
theories, whose relation between G and the Newtonian
potential is given by the expansion (8). The bounds for such
classes are stated in Table II. These bounds should be seen
with care since they, for technical convenience, do not
consider the EPE. Implementations of the EPE, for different
RG extensions, are presented in Secs. IV B and IV C. In
Sec. IV C, we explore relations between G and the
Newtonian potential that are simple considering the RG
motivation, and that do not follow the original RGGR
proposal [46]. In particular, we find a single peculiar case in
which the EPE is irrelevant to the observational bound [the
case n ¼ 1 in Eq. (52)].
Renormalization group extensions of GR at the large

scales, as presented in several works (some of them are
cited in the introduction), constitute a theoretical possibility
which demands to be analyzed. We add that it is in
connection with QFT in curved spacetime and quantum
gravity from the asymptotic safety approach. Also, it leads
to results and a framework that cannot be naturally
achieved by other means. Among the possible phenom-
enological consequences, some works have developed on
the possibility that perhaps such RG modifications of

7One could consider μ ¼ fðUÞ, but for clarity we consider this
simpler case.

8Indeed, as argued in Ref. [55], although the used approach
was not as rigorous as the one employed here, the bounds derived
on [55] should be an order of magnitude estimation.
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classical GR may be related to dark matter–like effects
[28,29,37,46,48,89–91]. The latter line of research has
achieved interesting nontrivial consequences, but there is
not yet an approach sufficiently developed and tested to be
clearly better than the standard dark matter approach. Apart
from such uncertainties, and on whether one should look
for RG effects associated with dark matter or to other
effects, the constraints from the Solar System commonly
depend on less hypotheses than larger scale phenomena and
are commonly of higher precision; hence, they should
always be taken into consideration.
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APPENDIX A: COVARIANT SCALE SETTING
AND NEW PN POTENTIALS

Here we consider the covariant extension as proposed in
Refs. [47,55]. Considering the latter references, the scale
setting (6) has a covariant extension given by

μ ¼ fðΨÞ; ðA1Þ

with

Ψ≡ hαβuαuβ: ðA2Þ

In the above, uα is the fluid four-velocity defined in (14),
hαβ ≡ gαβ − γαβ, and γαβ is the reference metric, for which
we use the Minkowski metric. Hence, the hαβ that appears
in Eq. (A1) is the same that appears in Eq. (9).
We expand G−1 as a power series on Ψ, similarly to

Eq. (8),

G−1 ¼ G−1
f þ

X∞
n¼1

σnΨn: ðA3Þ

In the above, Gf is the value ofG whenΨ ¼ 0 [it needs not
coincide with Ge from Eq. (8)]. We use σn in place of νn to
avoid confusion, since these quantities are, in general,
different. Rewriting the field equation (4) up to the first
post-Newtonian order, it results in

Rαβ ¼ Gfð1 −Gfσ1ΨÞ½8π
�
Tαβ −

T
2
gαβ

�
þ σ1∇α∇βΨþ σ2∇α∇βΨ2

þ 1

2
gαβσ1□Ψþ 1

2
gαβσ2□Ψ2�: ðA4Þ

Using Eq. (15), Ψ is expanded as follows:

Ψ ¼ h00 þ h200 þ h00v2 þ 2h0ivi þ hijvivj þOðv6Þ:
ðA5Þ

The relation between Gf and GN is found from the
Poisson equation ∇2h00 ¼ −8πGNρ at the Newtonian
order, which implies

Gf ¼ GN

1þ σ1GN

: ðA6Þ

In the following, we use GN ¼ 1. The relation above is
similar to Eq. (20), but we stress that νn and σn are
associated with different expansions; therefore, their values
will, in general, be different as well.
Before expressing the metric solution up to the 1PN

order, first we solve Eq. (A4) for h00 and hij up to order v2,
and h0i to order v3. In this case, it is sufficient to consider
Ψ ≈ h00. The procedure is the same one as in Sec. III, and it
yields

h00 ¼ 2U þOðv4Þ; ðA7Þ

hij ¼ 2

�
1 −

2σ1
1þ σ1

�
Uδij þOðv4Þ; ðA8Þ

h0i ¼ −
1

1þ σ1

�
7

2
Vi þ

1

2
Wi

�
þOðv5Þ: ðA9Þ

Nowwe proceed to obtain h00 up to v4 order. In this case,
the fourth-order terms that appear in Eq. (A5) do contribute.
The resulting expression for h00 reads

h00 ¼ 2U − 2

�
1 −

σ1 þ 2σ2ð1þ σ1Þ
1þ σ1

�
U2

þ 4Φ1 þ 4

�
1 −

3σ1
1þ σ1

�
Φ2 þ 2Φ3 þ 6Φ4

þ 2σ1Uv2 − 7σ1Vivi − σ1Wivi þOðv6Þ: ðA10Þ

The standard Will-Nordtvedt PPN formalism [22,60]
does not include the last three terms in Eq. (A10). The
above is not the only field equation of the covariant
formulation, and neither it is complete, since the Λ term
was not considered (see Appendix B). Nonetheless, it is
sufficient to show that new potentials will appear. In
conclusion, the PPN analysis of the covariant extension
of the scale setting (6), as proposed in [47,55], demands an
extension of the formalism, including the potentials above,
which is beyond the purpose of this work. Theories that are
not covered by the PPN formalism are not rare in the
literature [92,93].
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APPENDIX B: Λ AND VIOLATION OF
ASYMPTOTIC FLATNESS OR ANALYTICITY

In this appendix it is shown that the Λ term either
violates asymptotic flatness or it cannot be expressed as an
analytical function, which are necessary conditions for the
application of the PPN formalism. We also comment on the
possible physical impact of Λ in the Solar System.
The Λ term includes a Λ0 constant, which reduces to the

cosmological constant of GR if ν ¼ 0, and RG corrections
that depend on the RG scale μ and on powers of ν. The
constant Λ0 in GR necessarily leads to nonasymptotically
flat spacetimes; hence, it is not considered in standard PPN
Solar System analysis. This is also physically reasonable
since, up to first post-Newtonian order, considering its
value as inferred from the cosmological observations, it has
negligible impact on the Solar System dynamics [94].
Therefore, as a starting point on the Λ contribution analysis
up to 1 PN, we consider

Λ0 ¼ 0: ðB1Þ

According to Ref. [47], in any region without matter
(i.e., Tμν ¼ 0), writing Λ and G as Λ ¼ Λ0 þOðνÞ and
G ¼ G0 þOðνÞ, then

Λ ¼ Λ0G0G−1 þOðν2Þ: ðB2Þ

Consequently, in vacuum and using Λ0 ¼ 0, one finds
Λ ¼ 0þOðν2Þ.
From the above, one concludes that, within the approxi-

mation that the Solar System is composed of point particles
representing the Sun and the planets, Λ should not have a
relevant role up to the 1 PN order. This is in accordance, in
particular, with the Laplace-Runge-Lenz vector approach
of Refs. [52,55].
On the other hand, the Will-Nordtvedt PPN approach

uses a fluid instead of point particles. This change from
particles to fluid may lead to different answers depending
on the theory [60]; for instance, it may change the value of
β appreciably.
As commented in Sec. II, the Λ expression as a function

of μ should be derived from the field equations, and hence it
is not universal (say, in vacuum, inside a star or in
cosmology Λ may have different dependences on μ).
Nonetheless, for a fixed system, the Solar System, Λ
should be a fixed function of μ. Using the scale setting
(6) and expanding Λ similarly to what was done for G in
Eq. (8), let

Λ ¼ Λ0 þ
X∞
n¼1

ΛnUn: ðB3Þ

The hypothesis in the above is that although Λ is not, in
general, an analytical function, perhaps it can be approxi-
mated by one in the Solar System and up to 1 PN order.

We will show that this hypothesis cannot be true in an
asymptotically flat spacetime.
With Λ, the field equations (4) become

Rμν ¼ G

�
8π

�
Tμν −

1

2
gμνT

�

þ∇μ∇νðG−1Þ þ 1

2
gμν□ðG−1Þ

�
þ Λgμν: ðB4Þ

To proceed with the PPN analysis, one needs to find the
metric solution up to order v4. As a first step, the equation
for the zeroth order on v contribution leads to Eq. (B1), as
expected. The next step is to compute the Newtonian limit,
which means evaluate h00 up to order v2. Thus, using
GN ¼ 1,

h00 ¼ 2U − Λ1χ; ðB5Þ

which extends Eq. (18). The potential χ is defined
in Eq. (28).
According the PPN formalism, the weak field expansion

is about the Minkowski metric, but χ is a potential that
diverges at infinity and there is no gauge freedom to remove
it; therefore,

Λ1 ¼ 0: ðB6Þ

With the above result, any contribution fromΛ to the metric
may appear only at the v4 order or higher.
Since the Λ contribution to the field equations is simply

an additional term that depends on no derivatives, its
contribution to the metric can be easily obtained following
the same steps used to derive Eq. (38), leading to, up to the
terms of order v4,

h00 ¼ 2U − 2

�
1þ ν21 − ν2ð1þ ν1Þ

ð1þ ν1Þ2
�
U2

þ 4Φ1

1þ ν1
þ 2Φ3

1þ ν1
þ 6Φ4

1þ ν1

þ
�
4ð1 − ν1 þ ν21Þ

ð1þ ν1Þ2
−

4ν1
1þ ν1

�
Φ2 þ 2Λ2ℵ; ðB7Þ

where ℵ is a new post-Newtonian potential defined as

ℵ ¼ −
1

4π

Z
U02

jx − x0j d
3x0: ðB8Þ

The other metric components are the same as in Eq. (39).
For large distances from the system, U should decay

linearly with the distance, and therefore ℵ diverges loga-
rithmically, implying that

Λ2 ¼ 0; ðB9Þ
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to preserve asymptotic flatness. With the above, the con-
tribution from Λ is completely eliminated up to the
1PN order.
In conclusion, the Λ term cannot be considered

within the standard form of the Will-Nordtvedt PPN
formalism. We have not proved that its contribution is
dynamically negligible, and hence by not considering it
one may be inserting violations of energy-momentum
conservation that are relevant at 1PN order within the

fluid description. However, considering the point par-
ticle case, in which Λ becomes zero everywhere, it is
unlikely that its inclusion can change the derived
bounds by orders of magnitude. For instance, in the
case that a full inclusion of Λ in the dynamics can lead
to ζ2 ¼ 0, the bound on ν2 in Table II will change, but
hardly by an order of magnitude, in particular since the
constraint on β is rather close to the constraint that
comes from ζ2.
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