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The merger of colliding black holes (BHs) should lead to the production of ringdown or quasinormal
modes (QNMs), which may very well be sensitive to the state of the interior. We put this idea to the test with
a recent proposal that the interior of a BH consists of a bound state of highly excited, long, closed,
interacting strings; figuratively, a collapsed polymer. We show, using scalar perturbations for simplicity,
that such BHs do indeed have a distinct signature in their QNM spectrum: A new class of modes whose
frequencies are parametrically lower than the lowest-frequency mode of a classical BH and whose damping
times are parametrically longer. The reason for the appearance of the new modes is that our model contains
another scale, the string length, which is parametrically larger than the Planck length. This distinction
between the collapsed-polymer model and general-relativistic BHs could be made with gravitational-wave
observations and offers a means for potentially measuring the strength of the coupling in string theory.
For example, GW150914 already allows us to probe the strength of the string coupling near the regime
which is predicted by the unification of the gravitational and gauge-theory couplings. We also derive
bounds on the amplitude of the collapsed-polymer QNMs that can be placed by current and future
gravitational-wave observations.
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I. INTRODUCTION AND SUMMARY OF RESULTS

The narrative of classical general relativity (GR) is that
the interior of a Schwarzschild black hole (BH) is a region
of empty space surrounding a classically singular center.
Recently, this picture was understood to be in contradiction
with the laws of quantum mechanics and thus revealed as
misleading. The modern alternative scenario is that the
interior does not exist and spacetime comes to an abrupt
end at the BH horizon—either physically as in the fuzzball
model of BHs [1–4] (also [5] and, more recently, [6]) or
effectively as a “firewall” of high-energy particles sur-
rounding the horizon [7] (also [8–10]). This scenario
suggests that at least the near-horizon state (and perhaps
the whole interior) has to deviate substantially from the
vacuum; a situation that differs greatly from the expect-
ations of GR. The degree of deviation is still under debate.
Here, we will be adopting a model of a Schwarzschild

BH for which the interior is not mostly empty, in stark
contrast to the GR case. The BH interior rather contains a
particular state of matter: a nonclassical, bound state of
long, closed, highly excited, interacting strings; in essence,
a collapsed polymer [11]. A more figurative way of
describing the bound state might be as a “quantum star”

consisting of hot fundamental strings in the Hagedorn
phase or simply as a “string ball.” A more detailed account
of this collapsed-polymer model is provided in the
Appendix, see Appendix A 1. The polymer’s outer surface
acts just like a classical BH horizon in the limit ℏ → 0; that
is, the interior and exterior are causally disconnected in that
enclosed matter had no opportunity to escape from the
interior. However, this is only approximately true once
quantum effects have been “turned on” [12].
We have argued elsewhere that the low occupation

numbers of the Hawking radiation along with the
assumption of a unitary theory necessitates a strongly
nonclassical state of matter within the BH interior
[13–15]. Given such a state, a geometric mean-field
description in terms of a metric and other spacetime fields
is no longer feasible. But then, faced with the absence of an
effective description of the geometry, what can one actually
say about the interior of a Schwarzschild BH and its
influence on the exterior? We will eventually show that
the composition of the interior does indeed become relevant
in the context of BH mergers.
Some of our results are expected to hold in general for

BH-like objects. For us, “BH-like objects” represents a
collective name for exotic spacetimes containing ultra-
compact objects that can mimic some of the basic proper-
ties of a BH as viewed by an external observer but without
conforming to the picture from GR (mostly empty space
with a dense, singular core). These objects include, for
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example, wormholes, gravastars, firewalls, fuzzballs, grav-
iton condensates, boson stars, neutron stars with a certain
equation of state or an anisotropic pressure and, of course,
collapsed polymers. Some of the objects, such as boson
stars, do not possess an essential property of BHs: a horizon
(even an effective one), meaning a bounded region of
spacetime from which matter cannot escape classically.
But, as far as we are aware, any known form of matter

cannot support such Schwarzschild-sized objects without
collapsing under the influence of gravity [16,17]. This is
because all known interactions of standard matter are
weaker than gravity under these circumstances. Only
highly excited string matter seems to be capable of
supporting compact enough objects with the properties
of a BH and yet not collapse any further. This is the impetus
for our current focus on the polymer model; nevertheless, a
companion paper [18] considers a more general class of
(rotating) BH-like objects.
Our objective is to show how gravitational waves (GWs)

can be used as a means for distinguishing the collapsed-
polymer model from classical BHs and from other BH-like
objects. An observable signal of GWs can be produced
from the merger of two colliding BHs. Such an event
proceeds in three stages: the inspiral (or premerger), merger
and postmerger (or ringdown) stages. In the last of these,
the newly formed BHwill settle down by emitting ringdown
modes—also known as quasinormal modes (QNMs)—
which are physically realized in the form of GWs. Note,
however, that our analysis uses scalar perturbations for
simplicity.
It would be difficult to use the early part of the inspiral

stage to discriminate various BH-like models because its
binary components are adequately described by point par-
ticles. On the other hand, one could, in principle, use the tidal
information which is encoded in the later part of the inspiral
stage to probe BH-like objects [19–23]. More dominant
effects in terms of post-Newtonian order counting for the
purpose of probing exotic compact objects include the
quadrupole moment [24] and tidal heating at the horizon
[25]. But the merger phase is complicated by its highly
nonlinear evolution. Moreover, we currently lack merger
simulations of binary BH-like objects (except for boson stars
[26,27]) that would enable us to probe the merger stage for
these exotic spacetimes. Fortunately, the postmerger stage
can provide us with an excellent opportunity for detecting
QNMs, thanks to the recent advances in GW observations
and the promise for future detections [28–31]. A discussion
on QNMs can be found in Appendix A 2.

A. Previous work on constraining exotic
spacetimes from GW150914

Let us recall here the analysis of the famous merger event
GW150914 by the LIGO and Virgo collaborations [28],
as well as an associated analysis which constrains possible
exotic spacetimes [31–34].

It is generally fair to say that the constraints, in cases for
which they apply, are currently weak. The statistical
significance in the detection of the merger comes mostly
from the premerger and merger phases, whereas that of the
ringdown phase is not so useful. What little is known about
the ringdown phase is, however, consistent with GR. But
this by itself does not have a strong discriminating power
among the predictions of GR and various BH-like candi-
dates because, as discussed in Appendix A 2, a sufficiently
compact object should be able to produce modes that
closely resemble the predominant modes of GR.
Given that the LIGO and Virgo collaborations did not

report the presence of a secondary ringdown mode, Yunes
and collaborators [34] have placed interesting bounds on
the intrinsic dissipation, ringdown frequency fRD and
damping frequency fdamp of applicable BH-like objects.
However, the region of small frequency—our region of
interest—was not covered by their analysis.

B. Summary of results

Wewill show in what follows that the collapsed-polymer
model predicts a novel class of low-frequency, long-lived
modes. The frequencies of this class are parametrically
lower than the GR scale c=RS (the inverse of the
“Schwarzschild time”) by a factor of the string coupling
gs; that is, ωR ∼ gsc=RS, and the damping times are longer
than RS=c by a factor of the square of the string coupling,
τdamp ∼ 1=g2sRS=c. The estimate from the quadrupole for-
mula implies (albeit with less certainty) that the expected
strain of the emitted GWs is smaller by a factor of ðg2sÞ2
than the strain of the conventional GR modes.
The string coupling is small but, in many string theories

and models, it is not “very small.” For instance, in string
theory, if one requires the unification of the gravitational
and gauge-theory couplings, the expectation is g2s=4π ¼
1=25 or g2s ≃ 1=2 [35]. One can just as easily imagine other
scenarios in which g2s ∼ 1=100 or even smaller, but it is not
related to any of the extremely small parameters of the BH
such as 1=SBH (SBH is the BH entropy). Therefore, the
value of g2s could easily fall somewhere between 1=2 and
1=100. Thus, there is the tantalizing possibility that a mode
is detected whose frequency is lower than those of the GR
modes, and whose delay in emission time is long enough to
be definitive but still short enough to be observationally
relevant to future experiments. In this way, there is a
characteristic signature for the polymer model that would
distinguish it from classical BHs, as well as from some
other proposed models (see below).
It is of no coincidence that the string coupling gs

determines the new time (or length) scales. This is a natural
outcome for the collapsed-polymer model because it
formally introduces the fundamental string length ls, which
then represents a new scale from the perspective of an
external observer. Conversely, a hypothetical internal
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observer would view the Planck length lP as the new scale.
The string coupling g2s ¼ ðlP=lsÞd−1 would then be the sole
parameter that could maintain the democracy between the
two points of view. In four spacetime dimensions, this is
simply the small ratio g2s ¼ ðlP=lsÞ2 < 1. The string cou-
pling can then be viewed as the polymer’s “dimensionless
ℏ” g2s ∼ ℏGN=l2s .
When it comes to theories of modified gravity like

massive gravity, the frequencies of the new modes tend to
be larger and the damping times tend to be smaller than
their counterparts in GR (e.g., [36]), contrary to what is
found here. (Although our basic trends do happen to agree
with the quasibound-state modes of these same massive-
gravity models, e.g., [37].) Nevertheless, a parametrically
longer damping time was also found by the authors of [38]
(see also [39–42]) in a related context. Their model is based
on the modes being trapped in the inner light ring of a
wormhole spacetime, and it is meant to be representative of
all BH-like models which are not in possession of a
classical BH horizon.
Their enhancement factor for the damping time (with

respect to the longest-lived GR mode) scales with a certain
power of a log of the ratio between the separation of the
wormhole throat from Rs and Rs [43]. Since the exponent is
much larger than unity, the scaling effectively follows a
power law. On the other hand, our collapsed-polymer
model introduces a new length scale ls and includes an
outer surface that acts just like a classical BH horizon when
the dimensionless ℏ limits to zero, g2s → 0 [12]. Yet, we
find a power law enhancement in the damping time, similar
to the findings in [38,43].
Based on how the QNM amplitudes, frequencies and

damping times scale with respect to gs for the polymer
model, we are able to use data from GW150914 to derive
bounds on the string coupling. This current observation
already allows us to probe the string coupling scale in a
regime which is close to that predicted by the unification of
the gravitational and gauge-theory couplings. Since the g4s
scaling in the amplitude is somewhat uncertain, we also
derive bounds on the amplitude of the polymer QNMs
without assuming such a scaling. We also discuss how the
bounds will improve once Advanced LIGO (aLIGO)
achieves its design sensitivity.
A couple of final notes: First, since our motivation is to

learn about actual astrophysical BHs, we will consider three
large, spacelike dimensions (d ¼ 3) in mind. Nonetheless,
our expectation is that the basic conclusions will persist for
any d > 3.
Second, we are limiting considerations to Schwarzschild

BHs, even though rotating Kerr BHs are more realistic.
Nevertheless, as long as a Kerr BH is not too close to
extremality, the effects of its rotation on the QNM spectrum
of interest should be limited to just subdominant corrections.
Third, a recent complementary paper [18] (which does

consider rotating BHs) discusses how a certain class of

fluid modes, the Rossby or r-modes, can be used to
distinguish classical BHs from any BH-like object that is
capable of supporting fluid waves. The proposal there does
not, however, discriminate between different BH-like
objects.

C. Organization

The rest of the paper is organized as follows: In Sec. II,
the Klein-Gordon equation for scalar perturbations is
considered, from which the QNM spectrum of collapsed
polymers is derived. We go on to explain which modes are
the most feasible in terms of GW ringdown observations
and emphasize how the amplitude, frequency and damping
time of such modes scale with respect to gs. Next, in
Sec. III, we derive both existing and projected bounds on
the polymer QNMs with current and future GW observa-
tions. Our results are summarized in Sec. IV, followed by an
Appendix which contains some background material on the
collapsed-polymer model and QNMs.
Before proceeding, we would like to briefly clarify what

the collapsed-polymer model is and what it is not. The
model arose out of an attempt to reconcile what is known
about BHs, their associated paradoxes and the principles of
quantum gravity. This led us to conclude that the BH
interior is described by a state that must be strongly
nonclassical [14]—so much so that it evades a description
in terms of semiclassical geometry and, consequently, lacks
a metric, field equations, action principle, etc.1 If this
picture seems far fetched, Hawking (among others) has
advocated that any description of the interior which is
consistent with external observations is as good as any
other [44]. The polymer model has so far passed all such
tests [11,12], whereas this paper is premised on looking for
a new prediction that could be subjected to experimental
verification.

II. NEW QUASINORMAL MODES OF THE
COLLAPSED-POLYMER MODEL

In general, an ultracompact, relativistic object will
produce two classes of QNMs when perturbed: fluid modes
and spacetime modes (see Sec. A 2 for further discussion).
But not so for a classical BH: Because of its strictly opaque
horizon and lack of interior matter, only the latter class is of
any relevance. Now, as shown in [12], the outer surface of a
polymer BH behaves like a real BH horizon for all practical
purposes. In the strict classical limit of ℏ ¼ 0—which for
the polymer BH is equivalent to setting g2s ¼ 0—the
interior matter has no chance of escaping. The polymer
BH should then, to very good approximation, agree with
classical GR as far as the QNM spectrum of the spacetime

1We also concluded that the interior has the same equation of
state as a hot bath of long, closed strings [11]. Moreover, either of
these properties seems to imply the other.
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modes is concerned. So our objective is clear: To calculate
and then interpret the spectrum for the fluid modes when
the object’s interior is described by the collapsed-polymer
model with a nonvanishing g2s .
This condition of g2s > 0 is pivotal to “stuff” being able

to leak out of the polymer BH in spite of its effective
horizon. If the strings are indeed interacting, there is no
reason that smaller strings cannot break off from the long
loops and then escape if they are close enough to the outer
surface to avoid subsequent interactions. This process,
being a perturbative quantum effect, is of course sup-
pressed. One of the goals of this section is to determine the
degree of this suppression, which can be calculated using
Einstein’s quadrupole formula and knowledge about the
mode frequencies.
Our formal analysis begins with an appropriate form of

the Klein-Gordon equation for the perturbation away from
equilibrium of some physical quantity, such as the string
entropy density, string energy density and so on. A further
condition is that the perturbations can couple to the
spacetime fields in the exterior region. Here, it will be
sufficient to consider the Klein-Gordon equation for a
massless scalar perturbation. Incorporating a nonvanishing
angular momentum and/or spin would only complicate the
practical calculations without affecting the conclusions at
a qualitative level. We are not including any (possible)
corrections to the Klein-Gordon equation due to the effects
of string interactions, as these would necessarily scale as g2s
and thus represent subleading corrections to the d’Alembert
operator and induce only small corrections to the solutions.
Furthermore, we are effectively adopting an approximation
that is akin to a Cowling approximation (i.e., perturbations
of the spacetime metric are assumed to be irrelevant to the
fluid modes) [45]. It is, however, argued in the second half
of the Appendix that this approximation is a consequence
of the model in question rather than a freely made choice.

A. Wave equation and solutions

It should be kept in mind that the “job” of the polymer is
to imitate a Schwarzschild BH. It must then be a spherically
symmetric distribution of (stringy) matter with an outer-
most (gyration) radius of r ¼ RS.
The model-dependent input is the index of refraction

nðr⃗Þ ¼ c=vsoundðr⃗Þ or, equivalently, the speed of sound
vsoundðr⃗Þ for the relevant medium. (We now set c ¼ 1
except when needed for clarity.) Given our assumption of
spherical symmetry, the equation for the perturbation
Φðt; rÞ becomes

1

r2
∂2½r2Φðt; rÞ�

∂r2 − ½nðrÞ�2 ∂
2Φðt; rÞ
∂t2 ¼ 0: ð1Þ

Let us reemphasize that Φ is meant to represent the
perturbation of a physical quantity (like the entropy
density) and that a scalar field has been adopted to simplify

the presentation. Equation (1) is the Klein-Gordon equation
for flat space such that the coordinates ðt; rÞ are fiducial
flat-space coordinates; essentially, labels for the constituent
string bits. This choice is unavoidable in the polymer model
but, more generally, it is a consequence of the state of the
BH interior having to be strongly nonclassical if one insists
on unitary evolution [13–15]. The meaning of nonclassi-
cality in this context is that the interior defies a semi-
classical geometrical description. One can evade this
predicament by adopting the viewpoint that gravity is an
emergent inertial force in flat space rather than a manifes-
tation of the curvature of spacetime. This is allowed by
virtue of Einstein’s equivalence principle.
Let us make one further simplifying assumption that nðrÞ

is constant within the polymer. This may seem to be a rather
severe simplification, but it follows from the premise that
matter should be distributed uniformly throughout the
interior of the polymer [11]. This, in turn, follows from
the saturation of certain holographic entropy bounds every-
where inside the polymer [14] which, itself, follows from
an argument that the saturation of entropy bounds is a
signal of nonclassicality [46]. Now, with this additional
assumption, the solutions to Eq. (1) can be expressed as
spherical waves,

Φðt; rÞ ¼ Co
e−iωðt−nrÞ

r
þ Ci

e−iωðtþnrÞ

r
; r ≤ RS; ð2Þ

where Co;i are complex constants. Notice that the above
solution contains both ingoing and outgoing waves. The
latter is a consequence of “quantum leakage,” allowing
modes to escape outside of the (effective) horizon.
Applying the usual boundary conditions for a standard

QNM setup (which are itemized in Sec. A 2), we know that
Ci ¼ −Co because of the constraint Φ ¼ 0 at r ¼ 0. We
also know that Φ must be matched at the outer surface to
the external solution ~Φ, which is that of a purely outgoing
wave,

~Φðt; rÞ ¼ Ce
e−iωðt−rÞ

r
; r ≥ RS; ð3Þ

where n ¼ 1 has been used for the external vacuum to
reflect the fact that massless fields should dominate the
outward propagating wave and the Schwarzschild exterior
has been ignored because it makes no sense to adopt the
emergent-gravity picture on one side of the surface and not
on the other for the purpose of matching the two solutions.
In any event, this distinction is inconsequential to the
subsequent analysis because the properties of interest
(the frequencies and damping times) are determined only
by the contents and geometry of the interior region (see,
e.g., [47]). In effect, the exterior is effectively traced out of
the calculation as far as the QNM spectrum is concerned;
see Sec. A 2 for further explanation. Hence, in spite of the
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qualifier of r ≥ RS in the previous equation, this solution is
only strictly true at r ¼ RS. The actual outgoing wave
~Φðt; r > RSÞ can be described, from an external point of
view, as a superposition of spacetime fields. However, the
detailed nature of this superposition is not needed for the
problem at hand.
We then need to match the solutions (2) and (3) at the

surface r ¼ RS. Since the amplitudes of the solutions are
unknown and the time derivatives must match if the
solutions already match, this process amounts to the sole
condition

∂rf
f

����
r¼RS

¼ ∂r
~f
~f

����
r¼RS

; ð4Þ

where Φðt; rÞ ¼ e−iωtfðrÞ=r and similarly for ~f.
With the redefinition ω0 ¼ nω, the above matching

condition translates into n ¼ i tan ðω0RSÞ, which is solved
by [48]

ω0
m ¼ mπ

2RS
−

i
2RS

ln

�
nþ 1

n − 1

�
; ð5Þ

where m is any odd integer.
The physical frequencies are then given by

ωm ¼ mπ

2RSn
−

i
2RSn

ln

�
nþ 1

n − 1

�
; ð6Þ

with m ¼ 1; 3; 5;… and it should be kept in mind that 1=n
is essentially a dimensionless ℏ (this will become evident
later). Let us reemphasize that this fluid contribution to the
QNM spectrum of the collapsed-polymer BH is in addition
to the usual spacetime contribution from the BHs of
classical GR.
We will encounter two important classes of fluid QNMs;

one for which n ∼ 1 (i.e., vsound ∼ c) and another for which
n ≫ 1 (vsound ≪ c). For the n ∼ 1 case, Eq. (6) becomes

ωm ≃ mπ

2RS
−

i
2RS

ln

�
2

n − 1

�
: ð7Þ

The logarithm in the imaginary part diverges, which is a
sign of some problem for this case in the matching of the
internal and external solutions. Indeed, going back to the
solutions and substituting n ¼ 1, one can see that it is not
possible to satisfy the boundary conditions at r ¼ 0 and
r ¼ RS simultaneously. As a result, the emission of waves
for this class of modes is suppressed. Another way to see
this is to take the above expression seriously; then the
amplitude of the wave is suppressed according to
limn→1ðn − 1Þt=2RS . This suppression does appear to be a
general property of relativistic fluid modes, especially

relativistic pressure modes, as this phenomenon has also
been found in other models [38,39,49–54].
When n ≫ 1—which is expected for some of the modes,

see below—the imaginary part of the frequency now scales
with 1=n2. This can be shown by expanding the logarithm
in terms of 1=n to obtain

ωm ¼ mπ

2RSn
− i

�
1

RSn2
þO

�
1

n4

��
: ð8Þ

The conclusion is that the subrelativistic modes can
couple to the outer spacetime, leaking out at a rate that is
determined by ωI ∝ v2sound=c

2. Since the leakage has a
quantum origin, we may also view v2sound=c

2 as the
polymer’s dimensionless ℏ (see below). The amplitude
of the leaking modes is, however, similar in magnitude to
their amplitude inside the horizon, jCej2 ≃ jCoj2, as a
complete matching process reveals. The above conclusion
applies to any partially open, spherically symmetric, very
massive system with a uniform index of refraction. The
only remaining issue is to identify the velocity of sound for
the various subrelativistic modes.

B. Sound velocities in the collapsed polymer

For the collapsed-polymer model, one encounters a
number of different mode classes according to the poly-
mer’s (or string theory’s) hierarchy of parameters. How this
comes about is the next topic of discussion.
In general terms, each fluid mode can be attributed to a

particular restoring force which can act on a deformed
element of fluid. As such, the sound velocity of a mode is
determined by

ðv2soundÞI ¼
KI

ρ
; ð9Þ

where ρ is the energy density and KI is the elastic modulus
corresponding to modes of type I. Different types include
pressure modes, bending modes, shear modes, fracture
modes, etc. The moduli KI have dimensions of energy
density and scale as KI ∼

fI=A
ΔL=L ¼ fIL

AΔL, where fI=A is
the corresponding force per unit area and ΔL=L is the
fractional deformation.
Let us recall that a force can be obtained from the

derivative of a free energy F with respect to some geometric
quantity having a dimension of length. It follows that each
modulus KI can be interpreted as a correction to the free
energy per unit volume ΔFI=V. In other words,

KI ¼
ΔFI

V
; ð10Þ

and then

ðv2soundÞI ¼
ΔFI

Vρ
¼ ΔFI

E
; ð11Þ
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where E is the energy any ΔFI should be regarded as
non-negative.
Let us now apply Eq. (11) to the collapsed-polymer

model. Like most any physical quantity in a string theory,
the contributions to the polymer’s free energy can be sorted
out as an expansion in both the Regge slope α0 and the
string coupling g2s except that, in the language of the
polymer model, ϵ ¼ ls=RS inherits the role of α0.2

Importantly, the condition ϵ ≪ g2s ≪ 1 is required for the
self-consistency of the polymer model [11]. [For a more
sophisticated explanation of how all this works, see
Sec. A 1 and Eqs. (A8) and (A9) in particular.]
Identifying each order in the expansion as the correction

due to a different mode, we can write the leading correction
to the “tree-level” free energy F0 ∼MBH (MBH is the
polymer/BH mass) as ΔF1 ∼ g2sF0. Then ΔF2 ∼ ϵF0,
ΔF3 ∼ g4sF0 and so on. Each of the corrections, including
the zeroth-order term, can be expected to correspond to
some independent class of modes; some examples are
discussed below.
The speed of sound in the stringy interior can be read off

of Eq. (11) for any of the modes. For instance, since
F0 ≈MBH ¼ E, the corresponding mode is a relativistic
wave, vsound ¼ 1. The pressure (p) modes, which are
associated with volume deformations of the interior, are
an example of relativistic waves. This conclusion is based
on the observation that p ¼ ρ for a highly excited state of
closed strings; this is a well-known result [55] and also
follows from Eq. (A7) in the Appendix. Consequently, the
bulk modulus for the polymer is KB ¼ ρ dp

dρ ¼ ρ, from

which ðv2soundÞB ¼ KB=ρ ¼ 1 follows. To sum up, the
pressure modes and their analogues are based on lead-
ing-order changes to the effective free energy and have a
speed of sound of vsound ¼ 1. As argued earlier, such
relativistic modes effectively decouple from the outer
region of spacetime and cannot be used to probe the inner
structure of the BH.
A more interesting class of modes is that for which the

free-energy correction scales as ΔF1 ∼ g2sF0; these being
the leading-order nonrelativistic modes. For this class,
v2sound ¼ g2sc2 and the frequency of emitted GWs then
scales as ω ∼ vsound=RS ∼ gsc=RS, whereas the damping
time due to mode leakage to the outside scales as τdamp ∼
ð1=g2sÞðRS=cÞ as follows from Eq. (8). Here, one can see
explicitly that g2s ¼ v2sound=c

2; and so both of our estimates
for the dimensionless ℏ coincide, with one coming from
first principles (see Sec. II. B) and another by estimating the
amount of leakage from the horizon (see Sec. II. A).
By counting powers of the coupling g2s and powers of the

number of string “bits” N (N ¼ SBH ∼MBH=ϵ) in the free-
energy correction ΔF1 ∼ g2sNϵ, one can attribute this class
of modes to the splitting and subsequent rejoining

interactions of single loops of strings. The reasoning behind
this claim is that each splitting has a free energy “cost” of
g2s , as does each subsequent rejoining. Meanwhile, the
single factor of N implies that only a single string loop can
be involved in any one interaction (as the typical length of a
string loop is of order N in string units [56,57]). A physical
example from this class is a fracture mode, whereby a
“cracklike” defect propagates in the stringy material due to
the continual splitting and rejoining of strings.
Other, higher-order classes of modes are less interesting

because they are associated with extremely nonrelativistic
speeds of sounds (recall that ϵ ≪ g2s), rendering the
frequencies too slow to be relevant in any realistic situation.
Nevertheless, it is still interesting to ask about the physical
meaning of these classes. For example, those associated
with ΔF ∼ ϵ2F0 would include bending modes. This is
because the (free) energy “cost” for bending scales as the
spacetime curvature, ΔFbend ∼ F0=R2

S ∼ F0ϵ
2. In a sense,

these modes also decouple from the exterior but for a
different reason than the pressure modes.
All classes of modes are also subject to intrinsic

dissipation. To estimate the strength of this dissipation,
we will assume that it is caused by the shear viscosity η.
This is because we have a good understanding of the
scaling properties of the shear viscosity for the collapsed-
polymer model in particular and for BH-like objects in
general. Let us start here with an appropriate expression for
the rate of intrinsic dissipation 1=~τ [58],

1

~τ
¼ ðl − 1Þð2lþ 1Þ

Z
RS

0

drr2lη

�Z
RS

0

drρr2lþ2

�
−1
;

ð12Þ

where l is the angular momentum of the mode.
In the case of the polymer model—for which the stringy

matter saturates the so-called KSS bound [59] throughout
the interior [12]—the relevant expressions are ρ ¼
1=ðg2sr2Þ and η ¼ s=ð4πÞ ¼ 1=ð4πg2srÞ [11], where s is
the entropy density. Substituting these into Eq. (12), we
then have

1

~τ
¼ ðl − 1Þð2lþ 1Þ

Z
RS

0

dr
1

4π
r2l−1

�Z
RS

0

drr2l
�

−1

¼ 1

4π

ðl − 1Þð2lþ 1Þ2
2l

c
RS

: ð13Þ

Restricting to the choice l ¼ 2, as is most relevant to GW
production, we finally obtain

1

~τ
¼ 25

16π

c
RS

: ð14Þ

The result in Eq. (14) applies to relativistic modes. For
nonrelativistic modes, the ratio η=ρ scales with ðvsound=cÞ2.2We subsequently work in ls ¼ 1 string units.
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This behavior can be understood by starting with the
diffusion equation for viscous flow—for which η=ρ serves
as the diffusion coefficient—and then making the sound
velocity equal to c with the rescaling r → ðvsound=cÞr.
It then follows that

1

~τ
¼ 25

16π

v2sound
c2

c
RS

ð15Þ

or, for the fracture modes in particular,

~τ ¼ 2
1

g2s

RS

c
≃ 2τdamp: ð16Þ

So the time scale for intrinsic dissipation is comparable to
that of damping.
To summarize, the relativistic modes are “unaware” of

the existence of any new physical scale, whereas the
fracture modes and their analogues would present a tell-
tale distinction. This contrast can be attributed to the
introduction of the string-coupling scale—the ratio
lP=ls—as its inclusion modifies the spectrum of the fracture
modes in a substantial way. The implication is that the
QNM spectrum of a collapsed polymer has a definitive and
potentially observable signature.

C. Estimate of gravitational-wave emission
from polymer black holes

The goal of this subsection is to estimate the relative
amplitudes of the emitted GWs and then compare the
fracture-mode amplitudes with those due to the spacetime
modes. The quadrupole formula can be used to obtain the
desired ratio of amplitudes since we know about the
respective energies and frequencies of the emitted waves.
It should be emphasized that the amplitudes, as estimated
here, are much less certain than the frequencies and
damping times.
Let us first recall that the (free) energy of a fracture mode

scales as Efrac ∼ g2sF0 ∼ g2sMBH, whereas the energy in a
GW corresponding to a spacetime mode scales as
Est ∼MBH. The ratio of energies then scales as

Efrac

Est
∼ g2s ; ð17Þ

where Est can be estimated via observations; for example,
in GW150914, GWs carried away about 5% of the total
mass of the merging BHs. Let us also recall that the ratio
of their squared frequencies scales in the same way,
ω2
frac=ω

2
st ≃ g2s .

Now, using the quadrupole formula to estimate the GW
strain amplitude h, one finds that the relative amplitudes of
the emitted GWs scale according to

hfrac
hst

≃ Efrac

Est

ω2
frac

ω2
st

≃ ðg2sÞ2; ð18Þ

where Q ∼ ER2
S has been used to estimate the fraction of

the quadrupole moment that contributes to the GW pro-
duction for each mode. The parameter gs is expected to be
small, but not extremely small, as explained previously.
If the string coupling is indeed not too small, one can

anticipate some spectacular observational consequences.
For concreteness, let us set g2s ¼ 1=10 and choose the other
parameters to be those ofGW150914—meaning anobserved
ringdown of f ¼ 251 Hz and a damping time (in addition to
the standard ringdown time 1=2πf ≃ 0.6 ms) of τ ¼ 4 ms
[31]. The new class of GWs is reduced in amplitude by a
factor of about 1=100 in comparison to those already
observed but oscillates with frequencies about 3 times lower,
ω ∼ 2πð251 HzÞ=3 ∼ 500 Hz, and has damping timeswhich
last about 10 times longer, τ ∼ 40 ms. Because of their
lengthier ringdown time, the sensitivity for detection of the
new class of GWs, as estimated by h=

ffiffiffiffiffiffi
Hz

p
, is enhanced by a

factor of ffiffiffiffiffiffiffiffiffiffi
τdamp

p ∼ gs.
3 This means that the sensitivity for

detection has decreased by “only” a factor of g3s , rather than
the factor g4s as estimated above. Such a g3s scaling in
the signal-to-noise ratio (SNR) will be confirmed in the
following section.

III. BOUNDS ON POLYMER MODES FROM
GRAVITATIONAL-WAVE OBSERVATIONS

We will start off in this section by using the events
GW150914 and GW151226 to derive current bounds on
the polymer modes. Following this, future projected
bounds that are based on the aLIGO design sensitivity
will also be derived. A subscript of p or BH is used to
distinguish between properties of the polymer modes and
classical BH modes respectively.

A. Gravitational-wave spectrum and
signal-to-noise ratio

Let us begin here by representing the polymer QNMs as
damped, sinusoidal waveforms,

hðtÞ ¼ Ape−ðt−tpÞ=τp sin½2πfpðt − tpÞ − ϕp�Θðt − tpÞ;
ð19Þ

where Θ is the Heaviside step function, A is a QNM
amplitude, f is a QNM frequency and τ is a QNM damping
time. Also, tp is the time delay of the polymer QNM
relative to that of a typical GR mode and ϕp is a constant
phase. The time delay tp ∼ 1=ωp ∼ 1=gsωBH ∼ τBH=gs
ensures that these and the classical GR modes will not
be superimposed to any significant degree, although this

3This enhancement follows from two competing effects: The
opportunity for signal detection increasing linearly with time
versus the noise increasing only as

ffiffi
t

p
. Here, the relevant time

scale is the ringdown time.
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detectability may deteriorate if one includes the fundamen-
tal mode due to possible degeneracies among parameters.
The Fourier transform of the above equation works out
to be

~hðfÞ¼e2πiftpApτp
2f2pQp cosϕp − fpðfp − 2ifQpÞ sinϕp

f2p − 4iffpQp þ 4ðf2p − f2ÞQ2
p

;

ð20Þ

with Qp ≡ πfpτp. The above expression reduces to

Eq. (2.2) of [60] when tp ¼ 0. Notice as well that j ~hj does
not depend on tp.
To assist in estimating Ap, we will use Ap ∼ g4sABH

[cf. Eq. (18)] and thus require the amplitude of the QNMs
from a classical BH [61],

ABH ¼ MBH

r
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ϵrd

MBHQBHfBH

s
; ð21Þ

where r is the distance to the source, F is a function that
depends on the source location, ϵrd is the ringdown
efficiency and QBH ≡ πfBHτBH. The fitting formula for
fBH and QBH of a BH forming in the aftermath of a binary
coalescence of BHs is given in [61]. Here, we are setting the
spins of the initial BHs to zero for simplicity. The efficiency
is roughly given by ϵrd ≈ 0.44q2 for nonspinning BH
binaries [62], where q≡m1m2=ðm1 þm2Þ2 is the sym-
metric mass ratio of a binary with individual masses m1

and m2.
Let us now estimate the SNR of collapsed polymers by

using [63]

SNR2 ¼ 4

Z
fmax

fmin

j ~hðfÞj2
SnðfÞ

df; ð22Þ

where fmin and fmax are the minimum and maximum
frequency—for which we choose the values fmin ¼ 10 Hz,
fmax ¼ 3000 Hz unless otherwise stated—whereas Sn is
the detector’s noise spectral density. The density Sn for the
aLIGO O1 run is given by [64] and the fit can be found in
Appendix C of [34], while that for aLIGO’s design
sensitivity with the zero-detuned, high-power configuration
is given in [65].
Figure 1 compares the noise spectral density to the

polymer QNM spectrum for various values of g2s , with the
other parameters chosen to be consistent with GW150914
(m1 ¼ 35.7 M⊙, m2 ¼ 29.1 M⊙, r ¼ 410 Mpc, fBH ¼
251 Hz, τBH ¼ 4 ms [28,31]). We have used the scaling
relations Ap ∼ g4sABH, fp ∼ gsfBH, τp ∼ τBH=g2s as moti-
vated in the previous section and set ϕp ¼ 0 for simplicity.
The value of F in Eq. (21) is chosen by requiring that
the SNR equals 7 for the case of a classical BH with
GW150914 parameters [34,66] [and with fmin ¼ 222 Hz in

Eq. (22), which corresponds to the frequency where the
spectrum peaks [34]]. We have plotted 2j ~hj ffiffiffi

f
p

instead of
j ~hj for the signal spectrum so that the ratio between the
signal and noise in Fig. 1 goes roughly as the SNR
[cf. Eq. (22)]. Notice that the spectrum’s amplitude and
width both grow larger as one increases g2s .

B. Current and future bounds with
gravitational-wave observations

Continuing with the same setup as in the previous
subsection, we will next use GW observations to derive
bounds on the polymer modes. It will initially be assumed
that the QNM amplitude scales with g4s as explained in
Sec. II C; however, this assumption will be relaxed later on.

1. Bounds assuming the g4s amplitude scaling

The top panel of Fig. 2 presents the SNR for the QNMs
of a collapsed polymer with GW150914 parameters. We
have used two aLIGO detectors (corresponding to Hanford
and Livingston) with the O1 run. For g2s ∼ 1, the SNR scales
with g3s as discussed at the end of Sec. II C. This scaling is
valid for a white-noise background; however, as g2s
becomes smaller, there is an extra suppression due to the
frequency dependence of the noise curve. Namely, as one
lowers g2s , the QNM frequency fp becomes smaller and
enters a range where the detectors are less sensitive
(see Fig. 1).
The bottom panel of Fig. 2 depicts the SNR for the case

of a collapsed polymer with GW151226 parameters. The
value of F in Eq. (21) is now chosen by requiring that the
SNR equals unity for a classical BH with GW151226
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FIG. 1. QNM spectrum of putative polymer modes for
GW150914 with various g2s , as well as noise spectral density
against frequency. For g2s ¼ 1, the QNM amplitude, frequency
and damping time for the polymer modes are the same as those of
a classical BH. The ratio between the signal and noise roughly
corresponds to the SNR. The spectrum is detectable if this ratio is
above the threshold ð∼5Þ.
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parameters. The predicted fBH for this source is ∼790 Hz,
which is higher than the corresponding frequency in the
previous case (251 Hz for GW150914). Consequently, as
g2s becomes smaller, fp is actually entering the region
where the detector is most sensitive. Meaning that the
scaling of the SNR with gs is shallower than g3s .
Let us now derive an upper bound on g2s by using the

knowledge that the LIGO-Virgo collaboration did not
report the presence of an additional ringdown signal on
top of the dominant BH signal.4 This means that we can
derive bounds on the polymer modes under the assumption
that the observed data is consistent with gravitational
waveforms from binary BH mergers in classical GR. It
then follows that the SNR for the polymer modes has to be
smaller than the threshold value. For example, if the
threshold is 5 [68,69]—as indicated by the horizontal,
black, dot-dashed line in the top panel of Fig. 2—one can
use GW150914 to roughly bound g2s such that g2s ≲ 0.65 (the
upper limit beingwhere the red, solid curve crosses the black,
dot-dashed line). This upper bound is intriguingly close to the
point where g2s corresponds to the unification of the gravi-
tational and gauge coupling constants, g2s ¼ 4π=25 ∼ 0.5.
It is also interesting to consider the future prospects for

constraining g2s with GW observations. Figure 3 displays

the projected upper bound on g2s given aLIGO’s design
sensitivity (again using the two interferometers at Hanford
and Livingston) and assuming that aLIGO does not find
the collapsed polymer signal. In other words, such an upper
bound is equivalent to the minimum g2s for which aLIGO
would be able to detect such a signal. We have, for
concreteness, used the sky-averaged value of F in
Eq. (21), assumed that the initial binary contains equal-
mass BHs at various distances r apart and adopted a
threshold SNR of 5. As evident from the figure, one can
constrain g2s ≲ 4π=25 for a total mass of 45 M⊙ or larger
when r ¼ 410 Mpc. Given that SNR ∝ g3s=r and that g2s is
determined by the SNR being equal to its threshold value,
one finds that such an upper bound on g2s is proportional to
r2=3. We have checked that this analytic scaling in distance
agrees with the displayed results in Fig. 3.
The bounds on g2s will further increase as (i) the number

of interferometers increases, (ii) the detector sensitivity
improves and (iii) one is able to combine signals from
multiple sources. We stress that the upper bounds presented
here are not robust and should be understood as only rough
estimates.

2. Bounds without assuming the g4s amplitude scaling

Since the gs scaling in Ap is the most uncertain among
Ap, fp and τp, it is perhaps more appropriate to place a
bound on the relative amplitude γ ≡ Ap=ABH without
assuming the scaling Ap ∼ ABHg4s . Let us first work out
a simple scaling relation for the upper bound on γ. We start
with SNR ∝ Ap

ffiffiffiffiffi
τp

p ∝ γABH=gs and then, like before,
require this SNR be equal to its threshold value. On this
basis, one finds that the upper bound on γ scales linearly
with gs.
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FIG. 2. Top: SNR of the putative QNM of a collapsed polymer
for GW150914 as a function of g2s (red, solid). The SNR scales
with g3s (blue, dashed) for g2s ∼ 1 as explained in Sec. II C. The
SNR threshold of 5 (black, dot-dashed) allows us to constrain g2s
as g2s ≲ 0.65. As the detector sensitivity increases, one will be
able to probe g2s for the unification of the gravitational and gauge
theory couplings (green dot). Bottom: Same as the top panel but
for GW151226.
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FIG. 3. Projected upper bound on g2s as a function of the total
mass of an equal-mass BH binary at various distances apart using
aLIGO’s design sensitivity. 410 Mpc corresponds to the distance
for GW150914 [28]. The horizontal line represents g2s ¼ 4π=25.
The upper bound on g2s scales with r2=3.

4References [40,41] reported the presence of “echoes” on top
of the primary ringdown signal. This claim is apparently still in
debate [67] as the result has not yet been confirmed by other
groups.
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The thinner red, solid curve in Fig. 4 shows the upper
bound on γ from GW150914 with the threshold SNR of 5.
These results roughly agree with the linear scaling in gs, as
motivated above, when g2s ∼ 1 (cf. the uppermost dashed,
blue line). The slight deviation from the linear scaling in
this regime can be attributed to a small frequency depend-
ence in Sn around f ¼ fp. On the other hand, the curve
strongly deviates away from the linear scaling when
g2s ≪ 1. This is because the spectrum falls out of the
detector’s frequency band as one decreases g2s . The
GW150914 observation sets γ ≲ 0.38 for g2s ¼ 4π=25.
But, if γ ¼ g4s (see the black, dot-dashed line) as predicted
in Sec. II C, then the SNR of the polymer modes for
GW150914 becomes smaller than the threshold already
when g2s ≲ 0.65—in agreement with the top panel of Fig. 2.
The thicker red, solid curve in Fig. 4 depicts the

projected bound on γ when using the noise curve for
aLIGO’s design sensitivity. One should first observe that
the linear-in-gs scaling near g2s ∼ 1 is a better fit than that
found for aLIGO’s O1 run because the noise curve is flatter
for the future design sensitivity (see Fig. 1). Second, the
upper bound on γ decreases by a factor of∼2 at g2s ¼ 4π=25
in comparison to the current bound from GW150914.

IV. CONCLUSION

We have discussed how the interior structure of BHs, as
described by the collapsed-polymer model, affects the
spectrum of QNMs. Our main result is the identification
of several new classes of QNMs, in addition to the classical

GRmodeswhich are a common feature of all BH-like objects
with an effective horizon or a light ring [38,39,70–72].
We found subrelativistic modes whose sound velocity is
vsound ≃ gsc; these being associatedwith the self-interactions
of the strings. Additionally, there are many other classes of
exceptionally slowmodes that are induced byweak restoring
forces; for instance, one such class describes bending modes
with a sound velocity of vsound ≃ cls=RS.
We have also discussed how the new classes of QNMs

could affect the emission of GWs from BHs. The emission
due to relativistic modes is suppressed to such an extent that
they essentially decouple from the outer spacetime—in
agreement with previous studies in the literature on fluid
modes in ultracompact objects. The various classes of
exceptionally slow modes are irrelevant because their low
frequencies necessitate prohibitively long observation
times. Fortunately, the emission due to the leading-order
subrelativistic modes was shown to lead to an interesting
observable signature: A characteristic ringdown by the
emission of low-frequency GWs which follow the conven-
tional emissions after a relatively brief but distinguishable
time delay. The amplitude of this new class of GWs is lower
than the amplitude of the usual BH GWs by a factor ðg2sÞ2.
Our main conclusion is that observations of GWs from

colliding BHs provide a means for differentiating the
collapsed-polymer model from the BHs of classical GR.
These distinctions—the lower frequencies and time delay—
are determined mainly by the string coupling, which itself
depends on the ratio of the Planck scale to the string scale and
is also the dimensionless ℏ for the polymer. Remarkably, we
found that GW150914 places an upper bound on g2s that is
close to 4π=25, and such a bound will only become stronger
as the detector sensitivity improves.
One may still wonder how the fluid modes appear to

evade the BH horizon as seen from an external, asymptotic
observer’s perspective. After all, a horizon must be there as
far as this observer is concerned, regardless of whether it is
a classical BH or merely a BH-like object with an effective
horizon. This is an important question in its own right and
will be addressed in a separate discussion [73].
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APPENDIX: A BRIEF REVIEW
ON BACKGROUND

1. The collapsed polymer

The polymer model assumes that the BH interior consists
of a hot bath of closed, interacting strings in a finite volume.
The properties of such a system are explained in [56,57]
(also see [11,12]).
Let us start here by considering a free, highly excited,

closed string of length L in an infinite space. In this case,
the string occupies a region whose linear size R is given by
the random-walk scale, R ∼ ls

ffiffiffiffiffiffiffiffiffi
L=ls

p
. One can regard N ¼

L=ls as the total number of “string bits” in the state, and so
R ∼ ls

ffiffiffiffi
N

p
. The situation, however, changes when strings

interact, which they do by splitting and joining. Such
interactions induce an effective attraction that causes the
strings to occupy a smaller region in space, leading to a
smaller value of R [74,75]. Since the only relevant scales
are ls and lP and the strings do not “know” about the latter,
one expects that R ∼ lsNν for some ν which could be
different than 1=2. The resulting picture is a finite-sized,
bound state of strings that is dominated by about lnN long
loops [56,57].
The parameter N also measures the entropy of the string

state and, since N ∼ ðR=lsÞ1=ν, the entropy will not, in
general, be extensive. An area law, as in the case of BHs,
implies that ν ¼ 1=ðd − 1Þ with d being the number of
spatial dimensions. A scaling relation with entropy in terms
of R is also described by the Flory-Huggins theory of
polymers [76].5 This theory is reexamined in [79] and
reviewed in, for instance, [80]. The parameter ν is called the
Flory exponent and the temperature at which the polymer
becomes tensionless is known as the Flory temperature.
The linear size R is referred to as the gyration radius of the
polymer and N represents the total number of monomers
within the polymer chain(s). For our case of attractive
interactions, the gyration radius is smaller than ls

ffiffiffiffi
N

p
and

the system is then identifiable as a “collapsed polymer”.
The theory of collapsed polymers has been adopted to

show that the bound state of highly excited strings can be
described by a quadratic (effective) free energy [11].
In string (ls ¼ 1) units, this free energy F takes the form

−
�

F
THag

�
strings

¼ ϵN −
1

2

g2s
V
N2; ðA1Þ

where gs is the string coupling, V ∼ Rd is the occupied
volume, THag is the Hagedorn temperature and we disregard
anorder-one numerical factor so thatTHag ¼ 1 in string units.
The parameter ϵ is an effective, dimensionless temperature
which measures the deviation of the actual temperature T

from the Hagedorn value, ϵ ¼ ðT − THagÞ=THag. The equi-
librium solution of the theory, which is obtained by mini-
mizing the free energywith respect toN, enforces the relation

N
V

¼ ϵ

g2s
: ðA2Þ

The collapsed-polymer scaling relations agree with those
of a BH when the parameters of the polymer theory—N, ϵ
and g2s—are related to those of the BH—the Schwarzschild
radius RS, energyMBH and entropy SBH—in a specific way
[11]. In particular,6

RS ¼
ls
ϵ
; ðA3Þ

meaning that the Hawking temperature is

THaw ¼ ϵ: ðA4Þ

Additionally, the BH entropy is

SBH ¼ N ¼ V
ϵ

g2s
¼

�
RS

lp

�
d−1

; ðA5Þ

where lP is the Planck length, the second equality follows
from Eq. (A2) and the last one from g2s ¼ ðlP=lsÞd−1 as well
as R ¼ RS ¼ 1=ϵ. Also, the total energy of the bound state
is found to be in agreement with that of the BH [cf.
Eq. (A7) for the density ρ],

Ebound ¼ V
ϵ2

g2s
¼ 1

lP

�
RS

lP

�
d−2

¼ ϵN ¼ MBH: ðA6Þ

It is worth noting that the pressure p is equal to the
energy density ρ for a highly excited state of closed strings
[55]. This equality also follows directly from the free
energy (A1), both at and away from equilibrium. Using
standard thermodynamics, one finds that the equilibrium
values are

p ¼ ρ ¼ ϵ2

g2s
: ðA7Þ

This pressure is not to be confused with the (effective)
tension, σ ¼ ∂F

∂L, which vanishes at equilibrium by virtue
of L ¼ lsN.
For self-consistency, the string-theory parameters must

obey the following relations [11]: ϵ ≪ g2s ≪ 1 and
g2sN ¼ Vϵ ≫ 1. Together, these ensure that the BH is large
in string units, the coupling is small but finite and the

5See the books by De Gennes [77], and Doi and Edwards [78]
as well.

6Here and for the remainder, the string length ls, fundamental
constants and order-unity numerical factors will only be made
explicit when needed for clarity.
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higher-order interaction terms in the free energy in Eq. (A1)
are suppressed. The higher-order terms can come from
α0 ∼ l2s corrections, additional loop corrections or their
combination. Because the former is controlled by the
Regge slope α0 ∝ ϵ2, we know that the equilibrium form
of the corrected free energy looks schematically like

F ∼ ϵN½1þ a1g2s þ a2g4s þ � � �� × ½1þ b1ϵþ b2ϵ2 þ � � ��;
ðA8Þ

where the odd powers of ϵ are shorthand for powers of
g2sN=V and originate from loop corrections (the even
powers of ϵ could be of either type), whereas the explicit
powers of g2s are from string self-interactions. The above
hierarchy tells us that the next-to-leading term in the
expansion has a suppression factor of g2s ,

F ∼ ϵN þ g2sϵN þ � � � : ðA9Þ

When the scaling of the various parameters is appropri-
ately fixed, the bound state appears from the outside to be
indistinguishable from a BH. Since this collapsed-polymer
model so immaculately replicates the properties of a
classical BH (and also those of a semiclassical BH
[12]), one might wonder if there is still some property
that allows one to distinguish the two descriptions. As
shown in the main text, this question can be answered
affirmatively by comparing the QNM spectrum of the
collapsed-polymer model with the conventional one for
the BHs of GR.

2. Quasinormal modes

Just like in the main text, we are limiting considerations
to Schwarzschild BHs, even though rotating Kerr BHs are
more realistic.
As is now well known (but see [51,52,81] for reviews), a

perturbed BH will settle down to its equilibrium state by
“ringing” at characteristic complex frequencies which are
determined by only a handful of parameters. Since a
Schwarzschild BH has only one characteristic scale, the
frequencies are determined solely by the horizon radius RS
or, equivalently, the surface gravity κ ¼ 1=ð2RSÞ. For both
tensor and scalar perturbations, the real parts are of order κ
for all modes with low angular momentum l ∼ 1 (other-
wise, the frequencies increase, roughly in proportion to l),
ωR ≡ Reω ∼ κ, whereas the imaginary parts of the frequen-
cies (or the inverses of the damping times) are, to a good
approximation, half-integer multiples of the surface gravity,
ωI ≡ Imω ≈ ðm − 1=2Þκ with m ¼ 1; 2; 3;…. To be clear,
this spectrum has only been established rigorously in the
large-m or eikonal limit [82], although a WKB approxi-
mation attains roughly the same form at smallm [83], as do
various numerical studies [51,84].

As shown in the main text, the appearance of a new scale
in the polymer model is marked in a specific way in both
the real and imaginary parts of the QNM spectrum. It
follows that GW frequencies could provide a clear obser-
vational distinction between our model and classical BHs.
Two distinct notions of QNMs exist: the “standard” one

that is used, for example, in the description of quantum-
optics and condensed-matter systems (see, e.g., [47,85])
and there is also the BH notion of QNMs. First, let us
discuss the standard case. Here, one is considering an open
system that supports waves; for instance, a dielectric or an
optical cavity, as either provides a partially reflecting outer
surface. Such a system will lose energy to its environment,
giving rise to damped (complex-frequency) waves. To
determine the QNM spectrum, one is instructed to impose
(1) totally reflecting boundary conditions at the center of
the system and (2) the condition of purely outgoing waves
in the external environment and then, by continuity, the
same condition at the outer surface of the system. In effect,
the exterior region is traced out of the problem. It is there
only for conceptual reasons and plays no essential role from
a computational perspective.
The BH notion of QNMs (see, e.g., [51,52]) is different.

For a BH spacetime, the problem can be set up like a
scattering experiment, which is common in the high-energy
literature (e.g., [86]). In this case, one is considering modes
that initially came in from infinity and then were either
reflected from or transmitted through the Schwarzschild
potential barrier (at a radius of about 3=2RS). The QNMs
can be identified as poles in the scattering amplitude, which
is essentially a Fourier transform of the scattering potential.
The boundary conditions are those of outgoing waves at
spatial infinity and ingoing at the BH horizon. Such a
choice of conditions suggests that it is now the interior
which is, in effect, traced out, as it always is for an external
observer in a BH spacetime. The setup for the BH QNMs
is then, in some sense, the mirror image of the standard
description.
The simple model of Kokkotas and Schutz [87] demon-

strates how these two perspectives can both be accommo-
dated. Those authors describe the interior of some radiating
system as a finite string. This string is then coupled by a
massless spring to a second, semi-infinite string representing
the exterior spacetime. The finite stringwill generally support
two independent classes of modes; one of which is coupled
weakly to the exterior and another one, coupled much more
strongly. Based on the discussion in [87], one might expect
that themodes of the former and latter classes are analogous to
modes from the standard and BH perspectives, respectively.
This expectation has indeed been verified by studies on
ultracompact neutron stars and other (hypothetical) ultra-
compact, relativistic stars (e.g., [49,50,53,88,89]7). In these

7Many more references can be found in the review articles
[51,52].
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treatments, one finds that the f- and p-modes (meaning
fundamental and pressuremodes) are among those associated
with the stellar fluid, whereas the so-called w-modes have
more resemblance with perturbations in the curvature of
spacetime. The separation of the fluid modes from the
spacetime modes is known as either the Cowling or inverse
Cowling approximation [45,49].
One uses the Cowling approximation when perturbations

of the spacetime metric can be neglected. In this case, the
strength of the coupling of the fluid modes to the emitted
GWs—which in turn determines the amplitude of these
emitted waves—can be estimated by way of the celebrated
quadrupole formula, which treats the background space-
time as fixed and (essentially) flat [90]. In particular,
h ∝ d2Q=dt2, where h is the wave amplitude and Q is
the quadrupole moment of the energy density.
The spectrum ofQNMs of a BH-like object should be able

to at least mimic the predominant modes from the spectrum
of its classical GR counterpart. The physical reason for this
is that the associated ringdown process depends primarily on
the spacetime outside of the ultracompact object, whichmust
be indistinguishable from the exterior spacetime of a BH in
GR. (The boundary conditions at the outer surface, which
vary frommodel tomodel, are also of relevance.)However, if
the interior of a BH-like object does contain some matter,
then one would expect, as discussed above, some additional
(fluid) modes to be excited. Classically, the fluid modes
cannot couple to the spacetime modes in the presence of a
horizon. However, quantum mechanically, fluid modes
would be expected to couple to the spacetime modes by
way of “quantum leakage” and then propagate outside of the
(would-be) horizon.
Just like for the modes of relativistic stars, the real part of

the frequency of a QN fluid mode should be determined by

the speed of sound of the interior matter. This velocity is
necessarily less than but possibly saturating the speed of
light c. For any BH-like object, the spatial scale of the
interior is the Schwarzschild radius RS; otherwise, the
object is not sufficiently compact. It is then a generic result
that the oscillatory frequency of a mode from this class is
bounded from above, ωR ≤ c=RS. In addition, a time delay
of order 1=ωR in the excitation of a mode can be expected.
This is because a waiting time of at least one period is
needed for this interior mode to affect the spectrum of
QNMs outside of the BH and, therefore, the spectrum of the
emitted GWs.
As for the damping time—the inverse of the imaginary

part of the frequency τdamp ¼ 1=ωI—the situation is less
conclusive. On general grounds, one might expect the
damping time of a fluid mode to be longer than those of the
spacetime modes [88]. To understand why, let us recall the
quadrupole formula, which says that the coupling to gravity
of such modes is proportional to ω2

R. Then, since ωR <
c=RS is generically true, their coupling must be weaker
than it is for the relativistic spacetime modes. On the other
hand, the intrinsic dissipation in the fluid could be strong,
reducing the damping time.
In our model, the damping time of the matter modes is

parametrically larger than 1=ωR, which can be attributed, in
part, to the (normalized) intrinsic dissipation being very
weak. Because of the weak coupling of these modes to
gravity, the emission of GWs will take place over an even
longer time scale and thus be a similarly weak source of
dissipation. A longer damping time is consistent with the
expectations of Cardoso et al. [38]. The same authors
also stressed the importance of long-time observations in
identifying deviations from GR.
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