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Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial fðRÞ
gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in
polynomial fðRÞ gravity, are not null as they are in general relativity. The implication is that
electromagnetic and gravitational causality separate into distinct notions in modified gravity, which
may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities
occur, when the quadratic coefficient a2 of the Taylor expansion of fðRÞ is negative, while the exact,
nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic
solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated
geometric properties. We show that the solutions exist in fðRÞ theories that are consistent with Solar
System and pulsar timing experiments.
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I. INTRODUCTION

When a field develops a localized perturbation, infor-
mation about the disturbance is communicated at some
finite speed to the surrounding universe. Gravitational
waves (GWs) act as the energy and information transport
mechanism for time-varying gravitational fields [1–3].
Within the theory of general relativity (GR), GWs propa-
gate in the linearized regime outside the near zone in
even the most compact relativistic sources (e.g. [4,5]).
Linearization schemes are convenient because tools such as
multipole expansions exist for calculating amplitudes and
polarizations straightforwardly given a model of the source
[6–8]. At least within GR, it is well known that the phase
speed of GWs is precisely the speed of light1 in both the
linear and nonlinear theories [9,10]. The waves propagate
along null hypersurfaces in vacuum and thus the notions
of (Maxwellian) electromagnetic and general relativistic
causality coincide.
Fundamental inconsistencies between quantum field the-

ories and GR suggest that a quantum theory of gravity will
modify the geometry-matter relations of GR [11]. Within
bosonic string theories, for example, the quantization of
the Polyakov action introduces scalar potentials (graviton-
dilaton couplings) into theEinstein actionwhichmodifies the
gravitational dynamics [12,13]. Transforming into the Jordan
frame shows that these dilaton-tensor theories behave like
higher-order curvature theories [such as the fðRÞ theories

considered in this paper; see below], and that GR correction
terms are large when the curvatures are large [14,15].
Classically speaking, therefore, GWs in string-inspired or
other gravity theories may propagate differently to their GR
counterparts in the vicinity of strong sources or elsewhere
[16,17]. In particular, the wave fronts may trace out hyper-
surfaces, which are not null, indicating that notions of
causality may differ between electromagnetic and gravita-
tional events in modified theories of gravity. Theories with
massive gravitons, for example, predict that the wave fronts
are frequency dependent, propagate slower than light, and
trace out timelike hypersurfaces [18]. A modification of
the phase speed represents the simplest kind of topological
adjustment that can occur in the causal structure [19]. Other,
exotic kinds of topological structures can also occur in wave
fronts in fðRÞ gravity. For example, there exist choices of f
such that the gravitational past and future of some event can
have a nonempty intersection, thereby violating chronology
protection [20,21].
The linearized fðRÞ theory predicts an exact dispersion

relation forGWs [22].However, dispersion relations in linear
and nonlinear theories can have very different physical
characters. Consider a scalar field theory whose equation
of motion reads

0 ¼ ϕ;tt − ∇2ϕþ V 0ðϕÞ; ð1Þ

with scalar field ϕ and potential function V. Linearization of
Eq. (1) returns either the Klein-Gordon or massless wave
equation depending on the coefficient of the linear term in
V 0ðϕÞ. Both the Klein-Gordon and massless wave equations
admit propagating solutions with fixed propagation speeds
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(e.g. [23]). However, depending on the form of V, the
nonlinear dispersion relation can be modified by self-
interaction [24]. For example, there exist choices of V such
that Eq. (1) admits solitonlike solutions with arbitrary phase
speeds (such as V ∝ ϕ3), while other choices of V preserve
theKlein-Gordon character of the dispersion relation (such as
V ∝ cosϕ) [25–28]. Given the well-studied equivalence
between fðRÞ and scalar-tensor theories of gravity, it is
reasonable to expect a similar phenomenon to occur in fðRÞ
gravity depending on the particulars of the function f [14].
Hence, one must be careful when drawing conclusions about
nonlinear GWs from analysis of the corresponding linearized
field equations [29,30]. This phenomenon is related to the
Vainshtein mechanism [31].
The purpose of this short paper is to demonstrate, by

explicit construction, some topological properties of non-
linear GWs in fðRÞ theories of gravity. We show that the
predictions offered by the linear and nonlinear theories may
differ significantly. In Sec. II we define some general notions
of causality that are used throughout the paper. In Sec. III we
present the fðRÞ field equations and recall some results
concerning phase speeds of GWs in the linear theory. In
Sec. IV we show, by constructing two exact solutions, that
these relations may fail to describe the propagation speed of
nonlinear GWs, that exotic topological properties can occur
in the GW front defining the causal structure, and that the
theories considered are consistent with Solar System and
pulsar timing constraints. However, the analytic solutions
exhibit certain artificial properties, which are likely to be
avoided in more general, numerical solutions, a topic for
future work. Some brief, additional discussion regarding
fðRÞ theories and causality is presented in Sec. V.

II. CAUSALITY IN MODIFIED GRAVITY

In any physical theory where information propagates at a
finite speed, a notion of causality emerges. Given an event
E1, a second event E2 is causally connected through
electromagnetic signals to E1 provided that it lies within
the null cone originating at E1. The same two events are
causally connected gravitationally, if there exists a curve
joining E1 and E2 that is contained within the domain of
dependence, defined by the hypersurface traced out by the
GW fronts emanating from E1 (see e.g. Hawking and Ellis
[10] for formal definitions). In vacuum GR, the domain of
dependence coincides exactly with the null cone for any
event, and an unambiguous notion of causality emerges. The
domain of dependence, however, depends on the structure of
the field equations (since it depends on the properties of
GWs) and need not coincide with the null cones in modified
gravity. Throughout this work we use the phrase “causal” to
refer to gravitational causality unless otherwise stated.
Consider a universe where GW fronts propagate isotropi-

cally with phase speed v in vacuum, and suppose some
perturbation event occurs at P. Figure 1 illustrates three
kinds of causal connection that can occur in such a

universe. The domain of events which could be influenced
by (influence) P is known as the future (past) domain of
dependence and is denoted by DþðPÞ [D−ðPÞ]. The set
DðPÞ ¼ DþðPÞ∪D−ðPÞ represents the causal domain of
the event P. For v < c, there exist observers in Lorentz-
boosted frames who see the wave travel at nonzero speeds
less than c. The domain DþðPÞ [D−ðPÞ] extends to future
(past) timelike infinity iþ (i−). In such a universe, events
exist that are electromagnetically but not gravitationally
connected, i.e. events which lie within the null cone
originating at P but not in DðPÞ. For v ¼ c, gravitational
events are seen at the same time as electromagnetic ones by
all observers, and the domain DþðPÞ [D−ðPÞ] extends to
future (past) null infinity J þ (J −). This is the case in
vacuum GR. If GWs are superluminal with speeds v > c,
boosted-frame observers exist who see the waves travel at
arbitrarily high speeds, the domains D�ðPÞ extend to
spacelike infinity i0, and events exist that are gravitationally
but not electromagnetically connected. See e.g. Refs. [25,32]
for a discussion on physical consequences.
Figure 2 represents the causal domain of the event P in a

universe where GW fronts no longer trace out two cones
(future and past) joined at P but rather some other
topological surface; i.e. GW propagation is not isotropic.
Note that in this particular illustration we have that
DþðPÞ∩D−ðPÞ ¼ ∅. There is no reason to assume a priori

FIG. 1. Cross section of the causal domains for an event P for a
universe where GWs propagate at speed v. The shaded blue region
represents the causal domain of P, when GWs are subluminal
ðv < cÞ. For v < c, the domainDðPÞ ¼ DþðPÞ∪D−ðPÞ is strictly
contained within the null cone (v ¼ c) represented by the union of
the red region,which extends to future (past) null infinityJ þ ðJ −Þ,
and the blue region, which extends to future (past) timelike infinity
iþ ði−Þ. The causal domain for superluminal GWs ðv > cÞ is
represented by the union of the gray, red, and blue regions and
extends to spacelike infinity i0. Note that, although drawn as
conical structures here for simplicity, the global shape of DðPÞ
will be warped by the metric coefficients in general (see
Sec. 12.6 of [33]).
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that this holds for general theories of gravity; i.e. closed
timelike curves can exist in DþðPÞ∩D−ðPÞ in general.2

Below we show that, in fðRÞ gravity, both of the
situations depicted in Figs. 1 and 2 may occur for nonlinear
GWs.

III. LINEAR WAVES

A. Field equations

In an fðRÞ theory of gravity, the Ricci scalar R is
replaced by an arbitrary function of this quantity, fðRÞ, in
the Einstein-Hilbert action. The vacuum field equations
read (e.g. [14])

0 ¼ f0ðRÞRμν −
fðRÞ
2

gμν þ ðgμν□ −∇μ∇νÞf0ðRÞ; ð2Þ

where Rμν ¼ Rα
μαν is the Ricci tensor, gμν is the metric

tensor, and □ ¼ ∇μ∇μ symbolizes the d’Alembert
operator.

B. Linear theory

Following Berry and Gair [22] we consider f to be an
analytic function about R ¼ 0 so that it can be expressed as
a power series:

fðRÞ ¼ a0 þ a1Rþ a2
2!

R2 þ a3
3!

R3 þ � � � ; ð3Þ

where the ai are the Maclaurin coefficients [11,14]. We set
a0 ¼ 0 to expand about a Minkowski background, though
some of the results carry over to other backgrounds as well,
e.g. (anti–)de Sitter. Perturbing the metric according to

gμν ¼ ημν þ hμν; ð4Þ
we find (2) reduces to

0 ¼ □h̄μν ð5Þ
to linear order. We introduce the trace-reversed potential

h̄μν ¼ a1

�
hμν −

1

2
hσρησρημν

�
− a2Rð1Þημν; ð6Þ

enforce the generalized de Donder gauge ∇μh̄μν ¼ 0, and
write the linearized Ricci scalar [to order OðhÞ] as Rð1Þ.
Equation (5) implies the existence of two tensor polariza-
tion modes for general fðRÞ theories [22], just like in GR.
The trace of (2) shows that the linearized Ricci scalar

satisfies a Klein-Gordon equation of the form

0 ¼ 3a2□Rð1Þ − a1Rð1Þ; ð7Þ
indicating that there is also a propagating scalar mode
for a2 ≠ 0 (massive for a1 ≠ 0) in addition to the two
tensor modes of GR [34]. An important feature, for our
purposes, is that Eq. (7) predicts the existence of scalar
modes with group velocity3 ða2 ≠ 0Þ

cg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − a1ð3a2Þ−1

p
ω

; ð8Þ

whereω is thewave frequency [22,23]. As such, the velocity
of a linear GW in fðRÞ gravity is uniquely determined by the
value of the coefficients a2 and a1 given (3). In particular,
expression (8) demands a1a2 > 0 to ensure cg < 1, so that
tachyonic instabilities are avoided [37,38].

IV. EXACT SOLUTIONS

In this section we construct three explicit examples of
nonlinear wave solutions to (2). In Sec. IVA, we present a
class of solutions which admit an arbitrary phase speed
independent of the value of a2, the situation depicted in
Fig. 1. We also derive a class of generalized Peres waves
which propagate anisotropically in Sec. IV B, the situation
depicted in Fig. 2. In both cases, we work with the function

fðRÞ ¼ Rþ a2
2!

R2 þ a3
3!

R3 þ ak
Γðkþ 1ÞR

k; ð9Þ

FIG. 2. Cross section of the causal domain for an eventPwithin
a universe where GW fronts propagate anisotropically and
subluminally. The domain DðPÞ ¼ DþðPÞ∪D−ðPÞ has some
nontrivial topological structure; i.e ∂DðPÞ is complicated. In this
particular example, DðPÞ is completely confined within the null
cone, and as such extends to future (past) timelike infinity iþ (i−).

2This scenario can also occur in GR for universes filled with
exotic matter, e.g. the Gödel solution [1]. In this work we
consider vacuum spacetimes only.

3Note that there is a misplaced minus sign in Eq. (30) in
Ref. [22]; Berry and Gair’s no-tachyon condition should read
ϒ2 < 0 to be consistent with the usual Starobinsky ½f0ðRÞ > 0�
and Dolgov-Kawasaki ½f00ðRÞ ≥ 0� conditions [35,36].
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where ΓðξÞ ¼ R
∞
0 dττξ−1e−τ is the usual gamma function, k

is an integer greater than 3, and at least two of the a2, a3,
and ak are nonzero.
Functions of the form (9) have been considered in the

literature as geometric models of dark energy (e.g. [39]).
In this context, the parameters appearing in (9) have been
constrained through Solar System experiments [40], super-
nova Ia luminosity distance data [41], and stochastic gravi-
tational wave background limits [42]. While in dark energy
models one typically sets 0 ≤ k < 1, the Maclaurin expan-
sion (3) does not exist for k in this range, since f0ð0Þ diverges
and feeds into Eq. (2). Hence, we consider k to be a positive
integer here. In fact the exact solutions presented below exist
formally for all realk (thoughnot for anyak), so somemodels
may admit tachyonic gravitational waves, even when the
theory cannot be linearized about a Minkowski background.
A discussion of astrophysical constraints on theories of the
form (9) is presented in Sec. IV C.

A. Arbitrary phase speed

We construct an exact solution that is cylindrically
symmetric. Such solutions can be described by the
Jordan-Ehlers-Kompaneets line element in Weyl coordi-
nates ðt; ρ;ϕ; zÞ [43]:

ds2 ¼ e−2ψ ½e2γð−dt2 þ dρ2Þ þ ρ2dϕ2� þ e2ψdz2; ð10Þ

where ψ and γ are functions of t and ρ [1,29]. In GR,
vacuum GW solutions, represented by (10) or otherwise,
must necessarily have unit propagation speed (see Theorem
8.8 of [33]). Many exact, cylindrical GW solutions are
known [44–47]. While noncylindrical GWs exist (e.g. in
Ref. [48] or any multipole with nonzero azimuthal wave
number; see also below), cylindrical GWs suffice to
demonstrate the points considered here.
Consider the metric (10) for the choices

ψ ¼ 0 ð11Þ

and

γ ¼ 1

2
ln fAð1 − v2Þcsch½δþ ωðt − vρÞ�2g; ð12Þ

where cschðξÞ ¼ 2=ðeξ − e−ξÞ is the hyperbolic cosecant
function (which is singular at ξ ¼ 0), ω represents a
frequency, A ≠ 0 is an amplitude factor,4 δ represents a
phase shift, and v ≠ 1 is a phase velocity. In the zero-
frequency limit ω → 0 we recover the Minkowski space-
time. It can be verified by direct computation that the
metric given through (11) and (12) is a solution to (2) for f
given by (9), provided that (i) the wave satisfies an

amplitude-frequency relation, as for any nonlinear wave
[49], of the form ða3 ≠ 0Þ

ω2

A
¼ α − 3a2ðk − 2Þ

4a3ðk − 3Þ ; ð13Þ

and (ii) the coefficient ak is given by

ak ¼
2k−2Γðkþ 1Þ½α − 3a2ðk − 2Þ�−k

a2−k3 ðk − 3Þ3−k
× ½4a3αðk − 3Þ − 3a22αðk − 2Þ
þ 9a32ðk − 2Þ2 − 12a2a3ðk − 3Þð2k − 3Þ�; ð14Þ

where

α ¼ ½9a22ðk − 2Þ2 − 24a3ðk − 3Þðk − 1Þ�1=2: ð15Þ

The parameter v, which takes any value except unity,5 is
the phase speed of the solitonic GW described by (11)–
(14). Therefore, tachyonic GWs may exist regardless of the
sign or value of a2, contrary to the prediction (8) from the
linear theory outlined in Sec III B. Furthermore, the metric
is discontinuous for δ ¼ 0 in Weyl coordinates along the
curve t ¼ vρ. The causal domain for an event occurring at
the origin, which emits GWs described by (11) and (12), is
represented by Fig. 1 except that the case v ¼ c is not
permitted. In particular, both sub- and superluminal non-
linear modes exist regardless of the value of a2. To the
authors’ knowledge, the metric given by (11) and (12) is
reported here for the first time.
It should be noted that for an arbitrary value of k, the

solution given by (11) and (12) only exists in the special
case, where ak is given by (14). There is no reason a priori
to favor or disfavor theories that satisfy (14). The main
purpose of the solution is to demonstrate that the linear
criterion a2 > 0 does not guarantee the absence of
tachyonic GWs. Incidentally, we show in Sec. IV C that
the constraint (14) is consistent with various astrophysical
tests for a variety of values of a2.
As a side remark, in GR, it is well known that the

gravitational collapse of stars with mass beyond the
Tolman-Oppenheimer-Volkoff limit strips away informa-
tion concerning the collapsing stellar remnant due to the
no-hair theorems [51,52]. Information is removed by the
formation of horizons, which causally separate regions
within the spacetime [53]. In fðRÞ theories of the form (9),
which permit the existence of superluminal GWs, it is
possible that gravitational information can leak beyond the
electromagnetic event horizons, which traditionally define
black hole boundaries [54] (cf. [55]).

4Note that for v > 1 ðv < 1Þ we require A < 0 ðA > 0Þ to
ensure that the metric (10) has a Lorentzian signature.

5The metric given by (11) and (12) is genuinely singular for
v ¼ 1 since the Kretschmann invariant K ¼ RμναβRμναβ diverges
there [50].
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B. Anisotropic propagation

We show that arbitrary domains of dependence exist in
theories of the form (9) by considering a class of GWs that
are not cylindrically symmetric. We consider a class of
generalized Peres waves, which are described by the line
element [56],

ds2 ¼ UðρÞð−dt2 þ dz2 þ dρ2 þ ρ2dϕ2Þ
þ 2λðρ;ϕ; zþ tÞðdtþ dzÞ2 ð16Þ

in Weyl coordinates for some functions U and λ. In GR, the
Peres waves (16) are defined with U ¼ 1 and represent a
subclass of the well-studied pp waves [1]. A Peres wave
represents a GW whose source is electromagnetic in origin.
A perturbation of the Faraday tensor in some region of
spacetime defines initial conditions, which induce GWs of
the form (16) [57].
In GR, the Einstein equations reduce to the requirement

that λ be harmonic in ρ and ϕ, i.e.

0 ¼ λ;ρρ þ ρ−1λ;ρ þ ρ−2λ;ϕϕ: ð17Þ

However, for certain special choices of ak andU, the metric
(16) is an exact solution to the field equations (2) for any
function λ. Explicitly, we find that the metric (16) is a
solution to (2) for

UðρÞ ¼ A
ω2ρ2

; ð18Þ

A
ω2

¼ αþ 3a2ðk − 2Þ
2ðk − 1Þ ; ð19Þ

and

ak ¼
23−2k31−kΓðkþ 1Þðα − 3a2Þ½αþ 3a2ðk − 2Þ�k−2

ð1 − kÞk−1ðk − 3Þ ;

ð20Þ

where A and ω are constants, the parameter α is defined
through (15), a2 and a3 are arbitrary, and the function λ is
arbitrary. To the authors’ knowledge, the metric given by
(16) with (18)–(20) is reported here for the first time.

The domain of dependence associated with a generalized
Peres wave is arbitrary, because the function λ is arbitrary.
Consider, for example, the case

λ¼
�
expf−A½ðtþ zÞ2−uðρÞ2�−1g for ðtþ zÞ2 >uðρÞ2;
0 otherwise;

ð21Þ
for some function u and amplitude A > 0. For z ¼ 0, the
function λ tends to zero along the curve t2 ¼ uðρÞ2. Hence
the metric (16) continuously tends to the (conformal)
Minkowski spacetime outside this domain but may have
discontinuous derivatives along this boundary [58,59].
Hence the causal domain for an event occurring at the
origin is defined as the region uðρÞ2 ≤ ðtþ zÞ2, which is
arbitrary since u is arbitrary. This situation is represented by
Fig. 2, where we have ∂D�ðOÞ ¼ fðt; ρÞ∶uðρÞ ¼ �jtjg for
z ¼ 0. Choices of u exist that yield DþðOÞ∩D−ðOÞ ≠ ∅,
indicating that the notions of past and future can become
conflated when generalized Peres waves with general λ are
permitted.

C. Astrophysical constraints

In this section we review briefly, for completeness,
astrophysical constraints on polynomial fðRÞ theories
given by (9). To this end we introduce the parameterized
post-Newtonian (PPN) Eddington parameters γPPN and
βPPN, which may be written as [60,61]

γPPN − 1 ¼ −
f00ðRÞ2

f0ðRÞ þ 2f00ðRÞ ð22Þ

and

βPPN − 1 ¼ f0ðRÞf00ðRÞ
8f0ðRÞ þ 12f00ðRÞ2

dγPPN

dR
; ð23Þ

in a general fðRÞ theory.
Table I presents a summary of data collected from recent

Solar System and pulsar timing experiments when inter-
preted as constraints on the parameters γPPN and βPPN

[62–66]. The PPN parameters (22) and (23) are evaluated at
the measured value of the background scalar curvature R0,
which is determined through the Friedmann-Lemaître-
Robertson-Walker relationship R0 ¼ 12c−2H2

0, where H0

is the Hubble constant [67]. We assume that the Hubble
radius takes the value cH−1

0 ¼ 4.0 × 103 Mpc.

TABLE I. Selected Solar System and pulsar timing constraints on the PPN Eddington parameters γPPN and βPPN.

Experiment Constraint Reference

Precession of Mercury −3.0 × 10−3 < 2γPPN − βPPN − 1 < 3.0 × 10−3 [62]
Lunar laser ranging (Nordtvedt effect) −1.7 × 10−3 < 4βPPN − γPPN − 3 < 0.3 × 10−3 [63]
Very long baseline interferometry −4.0 × 10−4 < γPPN − 1 < 4.0 × 10−4 [64]
Cassini tracking −0.2 × 10−5 < γPPN − 1 < 4.4 × 10−5 [65]
Timing of PSR B1913þ 16 βPPN − 1 < 1.1 × ðγPPN − 1Þ [66]
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Using the experimental bounds on the parameters γPPN

and βPPN described in Table I, one can place constraints on
the parameters a2, a3, and ak appearing in the function (9)
and consequently constrain the set of allowed amplitude-
frequency relationships (13). We focus on the case pre-
sented in Sec. IVA, where we assume that the parameter ak
is given by (14). In Fig. 3 we present values of ω2=A and
a2, which share the same units of length squared, consistent
with the data presented in Table I, for the illustrative choice
k ¼ 9. Figure 3 demonstrates that tachyonic GWs with
amplitude-frequency relation ω2=A ¼ μ for some μ are
permitted within astrophysically constrained fðRÞ theories
given by (9) provided that a2 takes a value within the
shaded region. In particular, theories for which the linear
theory does (does not) predict tachyons according to (8) are
shown in the blue (red) region.

V. DISCUSSION

In this paper we study the causal properties of some
nonlinear GWs in vacuum fðRÞ theories of gravity. It is
found that the causal domains admit certain exotic features.
The phase speeds of the waves can also be arbitrary for a
wide range of functions fðRÞ, a result which does not hold
in the linear regime [22]. The results suggest that the notion
of causality is sensitive to the particulars of the modified
theory of gravity under investigation [54]. For example, we
show that the restrictions on fðRÞ derived previously to
avoid the existence of linear superluminal GW modes
[22,37,38] must be augmented to avoid the existence of
such modes in the nonlinear regime. We emphasize that it is
unclear whether the exact, nonlinear solutions discussed
here can actually be emitted by a realistic source with a

time-dependent quadrupole moment (cf. the discussion in
Ref. [68]). A full investigation of causality in this context
relies on solving the initial boundary-value problem for a
particular experiment, something falling outside the scope
of this work.
Can the ideas in this paper be tested observationally?

In principle, yes, although any astrophysical tests are likely
to be confounded by systematic uncertainties introduced
by complicated electromagnetic emission physics in the
source. For example, if an event occurs which emits
electromagnetic and gravitational radiation, some observers
may witness the electromagnetic pulses but not the gravi-
tational ones (if v < c) or vice versa (if v > c). Likewise,
observers at rest equidistant from the source in different
planes may or may not experience the gravitational
radiation if the propagation is anisotropic (see Fig. 2).
Moreover, in relativistic systems like a black hole sur-
rounded by an accretion disk, electromagnetic and gravi-
tational wave modes induce backreactions on the disk
which may not be felt simultaneously if the phase speeds
are different, because of how the metric and Faraday
tensors enter into the various magnetohydrodynamic cou-
plings [69–73]. Again, designing a “clean” experiment of
this sort is a major challenge in an astrophysical context.
The recent detection of GWs by the Laser Interferometer

Gravitational-Wave Observatory (LIGO) has opened up
new avenues for experimentally determining the phase
speed of GWs [74–76]. Given the small number of opera-
tional interferometers at present, which makes localization
and real-time electromagnetic follow-up a difficult task,
direct bounds placed on the phase speed of GWs are fairly
weak at this stage [77–79] (however see Table 5 of
Ref. [80]). To the authors’ knowledge, no LIGO-related
experimental bounds on the structure of D� exist.
Detection of an inherently nonlinear property of GWs,
such as the Christodoulou memory [81,82], would be
useful in this direction. It is interesting to compare
predictions of the amplitude of the nonlinear memory
for various theories of gravity; one can have different
memory amplitudes for different GW polarizations; see e.g.
Eqs. (7) and (8) of [83].
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FIG. 3. Allowed values of a2 and ω2=jAj (shaded region) in
arbitrary units for the fðRÞ theory given by (9) consistent with the
data presented in Table I, under the assumption that ak is given by
(14) for k ¼ 9. Theories for which the linear theory does (does
not) predict tachyons are shaded in blue (red).
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