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A family of exact vacuum solutions, representing generalized plane waves propagating on the (anti-)de
Sitter background, is constructed in the framework of Poincaré gauge theory. The wave dynamics is defined
by the general Lagrangian that includes all parity even and parity odd invariants up to the second order in
the gauge field strength. The structure of the solution shows that the wave metric significantly depends on
the spacetime torsion.
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I. INTRODUCTION

The gauge principle, which was originally formulated by
Weyl in the context of electrodynamics [1], now belongs to
the key concepts which underlie the modern understanding
of dynamical structure of fundamental physical inter-
actions. Development of Weyl’s idea, most notably in
the works of Yang, Mills and Utiyama [2,3], resulted in
the construction of the general gauge-theoretic framework
for arbitrary non-Abelian groups of internal symmetries.
Sciama and Kibble extended this formalism to the space-
time symmetries, and proposed a theory of gravity [4,5]
based on the Poincaré group—a semidirect product of the
group of spacetime translations times the Lorentz group.
The importance of the Poincaré group in particle physics
strongly supports the Poincaré gauge theory (PGT) as the
most appropriate framework for description of the gravi-
tational phenomena.
The “translational” gauge field potentials (corresponding

to the subgroup of the spacetime translations) can be
consistently identified with the spacetime coframe field,
whereas the “rotational” gauge field potentials (correspond-
ing to the local Lorentz subgroup) can be interpreted as the
spacetime connection. This introduces the Riemann–Cartan
geometry on the spacetime manifold, since one naturally
recovers the torsion and the curvature as the Poincaré gauge
field strengths [6–16] (“translational” and “rotational” one,
respectively). The gravitational dynamics in PGT is deter-
mined by a Lagrangian that is assumed to be the function of
the field strengths, the curvature and the torsion, and the
dynamical setup is completed by including a suitable matter
Lagrangian.

In the past, investigations of PGT were mostly focused
on the class of models with quadratic parity symmetric
Lagrangians of the Yang-Mills type, expecting that the
results obtained for such a class should be sufficient to
reveal essential dynamical features of the more complex
general theory, for an overview see [17]. Recently, how-
ever, there has been a growing interest for the extended
class of models with a general Lagrangian that includes
both parity even and parity odd quadratic terms, see for
instance [18–23]. An important difference between these
two classes of PGT models is manifest in their particle
spectra. Generically, the particle spectrum of the parity
conserving PGT model consists of the massless graviton
and eighteen massive torsion modes. The conditions for the
absence of ghosts and tachyons impose serious restrictions
on the propagation of these modes [24–29]. In contrast, a
recent analysis of the general PGT [30] shows that the
propagation of torsion modes is much less restricted. This is
a new and physically interesting dynamical effect of the
parity odd sector.
Based on the experience stemming from general rela-

tivity (GR), it is well known that exact solutions play an
important role in understanding gravitational dynamics. An
important class of these solutions consists of the gravita-
tional waves [31–35], one of the best known families of
exact solutions in GR. For many years, investigation of
gravitational waves has been an interesting subject also in
the framework of PGT [36–45], as well as in the metric-
affine gravity theory which is obtained in the gauge-
theoretic approach when the Poincaré group is extended
to the general affine symmetry group [46–54]. Noticing that
dynamical effects of the parity odd sector of PGT are not
sufficiently well known, recently one of us [55] has studied
exact plane wave solutions with torsion in vacuum,
propagating on the flat background, for the case of the
vanishing cosmological constant Λ. In another recent work
[56] complementary results have been obtained, when the

*mb@ipb.ac.rs
†cbranislav@ipb.ac.rs
‡obukhov@ibrae.ac.ru

PHYSICAL REVIEW D 96, 064031 (2017)

2470-0010=2017=96(6)=064031(14) 064031-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.064031
https://doi.org/10.1103/PhysRevD.96.064031
https://doi.org/10.1103/PhysRevD.96.064031
https://doi.org/10.1103/PhysRevD.96.064031


generalized pp waves with torsion were derived as exact
vacuum solutions of the parity even PGT, but for the case of
a nontrivial Λ ≠ 0. In the present paper, we merge and
extend these investigations by constructing the generalized
plane waves with torsion as vacuum solutions of the general
quadratic PGT with nonvanishing cosmological constant.
The resulting structure offers a deeper insight into the
dynamical role of the parity odd sector of PGT.
The paper is organized as follows. In the next Sec. II we

present a condensed introduction to the Poincaré gauge
gravity theory, giving the basic definitions and describing
the main structures; more details can be found in [6–9]. In
Sec. III we start with representing an (anti)-de Sitter
spacetime as a gravitational wave and use the properties
of the plane-fronted electromagnetic and gravitational
waves discussed in [57] to formulate an ansatz for the
gravitational wave in the Poincaré gauge gravity. The
properties of the resulting curvature and torsion 2-forms
are studied. In Sec. IV the set of differential equations for
the wave variables is derived. It is worthwhile to note that
the functions which describe the wave’s profile satisfy a
system of linear equations, even though the original field
equations of the Poincaré gauge theory are highly non-
linear. Solutions of this system are constructed, and their
properties are discussed. We demonstrate the consistency of
the results obtained with the particle spectrum of the
general Poincaré gauge gravity model. Finally, the con-
clusions are outlined in Sec. V.
Our basic notation and conventions are consistent with

[7]. In particular, Greek indices α; β;… ¼ 0;…; 3, denote
the anholonomic components (for example, of a coframe
ϑα), while the Latin indices i; j;… ¼ 0;…; 3, label the
holonomic components (dxi, e.g.). The anholonomic vector
frame basis eα is dual to the coframe basis in the sense that
eα⌋ϑβ ¼ δβα, where ⌋ denotes the interior product. The
volume 4-form is denoted η, and the η-basis in the space of
exterior forms is constructed with the help of the interior
products as ηα1…αp ≔ eαp⌋…eα1⌋η, p ¼ 1;…; 4. They are
related to the ϑ-basis via the Hodge dual operator �, for
example, ηαβ ¼ �ðϑα ∧ ϑβÞ. The Minkowski metric
gαβ ¼ diagðþ1;−1;−1;−1Þ. All the objects related to
the parity-odd sector (coupling constants, irreducible pieces
of the curvature, gravitational wave potentials, etc) are
marked by an overline, to distinguish them from the
corresponding parity-even objects.

II. BASICS OF POINCARÉ GAUGE GRAVITY

The gravitational field is described by the coframe ϑα ¼
eαi dx

a and connection Γα
β ¼ Γiα

βdxi 1-forms. The trans-
lational and rotational field strengths read

Tα ¼ Dϑα ¼ dϑα þ Γβ
α ∧ ϑβ; ð2:1Þ

Rα
β ¼ dΓα

β þ Γγ
β ∧ Γα

γ: ð2:2Þ
As usual, the covariant differential is denoted D.

The gravitational Lagrangian 4-form is (in general) an
arbitrary function of the geometrical variables:

V ¼ Vðϑα; Tα; Rα
βÞ: ð2:3Þ

Its variation with respect to the gravitational (translational
and Lorentz) potentials yields the field equations

Eα ≔
δV
δϑα

¼ −DHα þ Eα ¼ 0; ð2:4Þ

Cαβ ≔
δV
δΓα

β ¼ −DHα
β þ Eα

β ¼ 0: ð2:5Þ

Here, the Poincaré gauge field momenta 2-forms are
introduced by

Hα ≔ −
∂V
∂Tα ; Hα

β ≔ −
∂V
∂Rα

β ; ð2:6Þ

and the 3–forms of the canonical energy–momentum and
spin for the gravitational gauge fields are constructed as

Eα ≔
∂V
∂ϑα ¼ eα⌋V þ ðeα⌋TβÞ ∧ Hβ

þ ðeα⌋Rβ
γÞ ∧ Hβ

γ; ð2:7Þ

Eα
β ≔

∂V
∂Γα

β ¼ −ϑ½α ∧ Hβ�: ð2:8Þ

The field equations (2.4) and (2.5) are written here for
the vacuum case. In the presence of matter, the right-hand
sides of (2.4) and (2.5) contain the canonical energy-
momentum and the canonical spin currents of the physical
sources, respectively.

A. Quadratic Poincaré gravity models

The torsion 2-form can be decomposed into the 3
irreducible parts, whereas the curvature 2-form has 6
irreducible pieces. Their definition is presented in the
Appendix.
The general quadratic model is described by the

Lagrangian 4-form that contains all possible quadratic
invariants of the torsion and the curvature:

V ¼ 1

2κc

�
ða0ηαβ þ ā0ϑα ∧ ϑβÞ ∧ Rαβ − 2λ0η

− Tα ∧ X3
I¼1

½aI �ððIÞTαÞ þ āI ðIÞTα�
�

−
1

2ρ
Rαβ ∧ X6

I¼1

½bI �ððIÞRαβÞ þ b̄I ðIÞRαβ�: ð2:9Þ

The Lagrangian has a clear structure: the first line is linear
in the curvature, the second line collects torsion quadratic
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terms, whereas the third line contains the curvature
quadratic invariants. Furthermore, each line is composed
of the parity even pieces (first terms on each line), and the
parity odd parts (last terms on each line). The dimension-
less constant ā0 ¼ 1

ξ is inverse to the so-called Barbero-
Immirzi parameter ξ, and the linear part of the Lagrangian
—the first line in (2.9)—describes what is known in the
literature as the Einstein-Cartan-Holst model. A special
case a0 ¼ 0 and ā0 ¼ 0 describes the purely quadratic
model without the Hilbert-Einstein linear term in the
Lagrangian. In the Einstein-Cartan model, one puts
a0 ¼ 1 and ā0 ¼ 0.
Besides that, the general PGT model contains a set of the

coupling constants which determine the structure of quad-
ratic part of the Lagrangian: ρ, a1, a2, a3 and ā1; ā2; ā3,
b1;…; b6 and b̄1;…; b̄6. The overbar denotes the constants
responsible for the parity odd interaction. We have the
dimension ½1ρ� ¼ ½ℏ�, whereas aI, āI, bI and b̄I are dimen-
sionless. Moreover, not all of these constants are indepen-
dent: we take ā2 ¼ ā3, b̄2 ¼ b̄4 and b̄3 ¼ b̄6 because some
of terms in (2.9) are the same in view of (A14)–(A16).
For the Lagrangian (2.9) from (2.6)–(2.8) we derive the

gauge gravitational field momenta

Hα ¼
1

κc
hα; ð2:10Þ

Hα
β ¼ −

1

2κc
ða0ηαβ þ ā0ϑα ∧ ϑβÞ þ

1

ρ
hαβ; ð2:11Þ

and the canonical energy-momentum and spin currents of
the gravitational field

Eα ¼
1

2κc
ða0ηαβγ ∧ Rβγ þ 2ā0Rα

β ∧ ϑβ

− 2λ0ηα þ qðTÞα Þ þ 1

ρ
qðRÞα ; ð2:12Þ

Eα
β ¼

1

2
ðHα ∧ ϑβ −Hβ ∧ ϑαÞ: ð2:13Þ

For convenience, we introduced here the 2-forms which are
linear functions of the torsion and the curvature, respec-
tively, by

hα ¼
X3
I¼1

½aI �ððIÞTαÞ þ āIðIÞTα�; ð2:14Þ

hαβ ¼
X6
I¼1

½bI �ððIÞRα
βÞ þ b̄IðIÞRα

β�; ð2:15Þ

and the 3-forms which are quadratic in the torsion and in
the curvature, respectively:

qðTÞα ¼ 1

2
½ðeα⌋TβÞ ∧ hβ − Tβ ∧ eα⌋hβ�; ð2:16Þ

qðRÞα ¼ 1

2
½ðeα⌋Rβ

γÞ ∧ hβγ − Rβ
γ ∧ eα⌋hβγ�: ð2:17Þ

By construction, (2.14) has the dimension of a length,
½hα� ¼ ½l�, whereas the 2-form (2.15) is obviously dimen-
sionless, ½hαβ� ¼ 1. Similarly, we find for (2.16) the

dimension of length ½qðTÞα � ¼ ½l�, and the dimension of

the inverse length, ½qðRÞα � ¼ ½1=l� for (2.17).
The resulting vacuum Poincaré gravity field equa-

tions (2.4) and (2.5) then read:
a0
2
ηαβγ ∧Rβγþ ā0Rα

β∧ϑβ−λ0ηαþqðTÞα þl2
ρq

ðRÞ
α −Dhα¼0;

ð2:18Þ

a0ηαβγ ∧ Tγ þ ā0ðTα ∧ ϑβ − Tβ ∧ ϑαÞ
þhα ∧ ϑβ − hβ ∧ ϑα − 2l2

ρDhαβ ¼ 0: ð2:19Þ

The contribution of the curvature square terms in the
Lagrangian (2.9) to the gravitational field dynamics in
the Eqs. (2.18) and (2.19) is characterized by the parameter

l2
ρ ¼

κc
ρ
: ð2:20Þ

Since ½1ρ� ¼ ½ℏ�, this new coupling parameter has the
dimension of the area, ½l2

ρ� ¼ ½l2�.

III. GRAVITATIONAL WAVES IN POINCARÉ
GAUGE GRAVITY

Gravitational waves are of fundamental importance in
physics, and recently the purely theoretical research in this
area was finally supported by the first experimental
evidence [58–60]. A general overview of the history of
this fascinating subject can be found in [61–63].

A. (Anti)-de Sitter spacetime as a wave

Let us now discuss the four-dimensional manifold which
can be viewed as an “(anti)-de Sitter spacetime in the wave
disguise”. As before [55], we use the same local coor-
dinates which are divided into two groups: xi ¼ ðxa; xAÞ,
where xa ¼ ðx0 ¼ σ; x1 ¼ ρÞ and xA ¼ ðx2; x3Þ. Hereafter
the indices from the beginning of the Latin alphabet label
the coordinates σ and ρ parametrizing the wave rays,
a; b; c… ¼ 0, 1, whereas the capital Latin indices,
A;B;C… ¼ 2, 3, refer to coordinates xA on the wave front.
The coframe 1-form is chosen as a direct generalization

of the ansatz used in [55,57]:

ϑ̂0̂ ¼ q
2p

½ðÛ þ 1Þdσ þ dρ�; ð3:1Þ
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ϑ̂1̂ ¼ q
2p

½ðÛ − 1Þdσ þ dρ�; ð3:2Þ

ϑ̂Â ¼ 1

p
dxA; A ¼ 2; 3: ð3:3Þ

Here the three functions are given by the following
expressions:

Û ¼ −
λ

4
ρ2; ð3:4Þ

p ¼ 1þ λ

4
δABxAxB; ð3:5Þ

q ¼ 1 −
λ

4
δABxAxB: ð3:6Þ

The constant parameter λ is an arbitrary real number (which
can be positive, negative or zero). As a result, the line
element reads

ds2 ¼ 1

p2
fq2ðdσdρþ Ûdσ2Þ − δABdxAdxBg: ð3:7Þ

The key object for the description of the wave configu-
rations is the wave 1-form. On the basis of the earlier results
[55], we introduce a wave 1-form k as

k ≔ dσ ¼ p
q
ðϑ̂0̂ − ϑ̂1̂Þ: ð3:8Þ

By construction, we have k ∧ �k ¼ 0. As before, the wave
covector is kα ¼ eα⌋k. Its (anholonomic) components are
thus kα ¼ p

q ð1;−1; 0; 0Þ and kα ¼ p
q ð1; 1; 0; 0Þ. Hence, this

is a null vector field, kαkα ¼ 0.
The corresponding Riemannian connection Γ̂β

α is deter-
mined from

dϑ̂α þ Γ̂β
α ∧ ϑ̂β ¼ 0; ð3:9Þ

and it reads explicitly (recall that a; b;… ¼ 0, 1 and
A;B;… ¼ 2, 3)

Γ̂0̂
1̂ ¼ Γ̂1̂

0̂ ¼ −
λρ

2
k; ð3:10Þ

Γ̂B
a ¼ p

q
ϑ̂aeB⌋d

�
q
p

�
; ð3:11Þ

Γ̂B
A ¼ 1

p
ðϑ̂BeA⌋dp − ϑ̂AeB⌋dpÞ: ð3:12Þ

Substituting (3.4)–(3.6), we straightforwardly find the
curvature:

R̂β
α ¼ λϑ̂β ∧ ϑ̂α: ð3:13Þ

Thus, the coframe and connection ðϑ̂α; Γ̂β
αÞ, described by

(3.1)–(3.3) and (3.10)–(3.12), represent the geometry of a
torsionless (3.9) spacetime of constant curvature (3.13).
Depending on the sign of λ, we have either a de Sitter or an
anti-de Sitter space.
We mark the corresponding geometrical quantities by the

hat over the symbols. This geometry will be used as a
starting point for the construction of the plane wave
solutions in the Poincaré gauge gravity with nontrivial
cosmological constant.
It is worthwhile to note that the wave vector field k is a

null geodesic in this geometry:

k ∧ �k ¼ 0; k ∧ �D̂kα ¼ 0: ð3:14Þ
B. Generalized plane wave ansatz

We will construct new gravitational wave solutions in
Poincaré gauge gravity theory by making use of the ansatz
for the coframe and for the local Lorentz connection

ϑα ¼ ϑ̂α þ U
2

q
p
kαk; ð3:15Þ

Γα
β ¼ Γ̂α

β þ q
p
ðkαWβ − kβWαÞk: ð3:16Þ

Here the function U ¼ Uðσ; xAÞ determines the wave
profile. The ansatz for the local Lorentz connection is
postulated as a direct analogue of the construction used
earlier in [55], and the vector variable Wα ¼ Wαðσ; xAÞ
satisfies the same orthogonality property, kαWα ¼ 0, which
is guaranteed by the choice

Wα ¼
�
Wa ¼ 0; a ¼ 0; 1;

WA ¼ WAðσ; xBÞ; A ¼ 2; 3:
ð3:17Þ

Consequently, the generalized ansatz for the Poincaré
gauge potentials—coframe (3.15) and connection (3.16)
—is described by the three variables U ¼ Uðσ; xBÞ and
WA ¼ WAðσ; xBÞ. These should be determined from the
gravitational field equations.
The ansatz (3.15) and (3.16) can be viewed as a non-

Riemannian extension of the Kerr-Schild-Kundt construc-
tion developed recently [64–67] in general relativity and in
modified gravity models. The original Kerr-Schild con-
struction [34] in GR is underlain by the existence of
preferred null directions. In our approach, the metric
defined by the coframe (3.15) can be written in a typical
Kerr-Schild form

gij ¼ ĝij þ
q
p
Ukikj; ð3:18Þ

where ĝij is the spacetime metric of the (anti)-de Sitter line
element (3.7), and ki ¼ ∂i⌋k ¼ ∂i⌋dσ ¼ ð1; 0; 0; 0Þ is the
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null vector with respect to both ĝij and gij. On the other
hand, the orthogonality property of the vector Wα that
defines the radiation piece of the connection (3.17),
kαWα ¼ 0, ensures typical radiation structure of the
Riemann-Cartan field strengths, the torsion and the
curvature.
The line element for this ansatz has the same form (3.7),

with a replacement

Û → Û þ p
q
U: ð3:19Þ

It is important to stress that the wave 1-form k is still
defined by (3.8), which however can be recast into

k ¼ dσ ¼ p
q
ðϑ0̂ − ϑ1̂Þ: ð3:20Þ

Consequently, the anholonomic components of the wave
covector kα ¼ eα⌋k still have the values kα ¼ p

q ð1;−1; 0; 0Þ
and kα ¼ p

q ð1; 1; 0; 0Þ. As before, this is a null vector
field, kαkα ¼ 0.
One may wonder why does the factor q

p appear in the
ansatz (3.15) and (3.16). After all, it is always possible to
absorb it by redefining U and WA. However, it is conven-
ient to keep this factor explicitly by noticing that the
combination q

p k
α ¼ ð1; 1; 0; 0Þ has the constant values. It

becomes clear then that the following differential relations
are valid:

dk ¼ 0; d

�
q
p
kα

�
¼ 0: ð3:21Þ

Moreover, although Dkα no longer vanishes, we find

k ∧ D

�
q
p
kα

�
¼ k ∧ D̂

�
q
p
kα

�
¼ 0: ð3:22Þ

Taking this into account, we straightforwardly compute the
torsion 2-form

Tα ¼ −k ∧ q
p
kαΘ; ð3:23Þ

where we introduced the 1-form

Θ ¼ 1

2
dU þWαϑ

α; ð3:24Þ

with the differential d ≔ ϑAeA⌋d ¼ dxA∂A that acts in the
transversal 2-space spanned by xA ¼ ðx2; x3Þ.
The structure of the torsion is qualitatively the same as in

the case of the vanishing parameter λ, see [55]. The
structure of curvature is more nontrivial, though. A direct
computation yields a 2-form

Rα
β ¼ λϑα ∧ ϑβ − k ∧ q

p
ðkαΩβ − kβΩαÞ; ð3:25Þ

where we introduced the vector-valued 1-form with the
components

Ωα ¼
�Ωa ¼ 0; a ¼ 0; 1;

ΩA ¼ D̂WA þ λ
2
UϑA; A ¼ 2; 3:

ð3:26Þ

The transversal covariant derivative is defined by

D̂WA ¼ dWA þ Γ̂B
AWB: ð3:27Þ

Note that the Riemannian de Sitter connection (3.12)
appears here (more exactly, the corresponding components
of the Riemann-Cartan connection (3.16) coincide with the
Riemannian components: ΓB

A ¼ Γ̂B
A).

Let us describe the geometry of the transversal 2-space
spanned by xA ¼ ðx2; x3Þ explicitly. The volume 2-form
reads η ¼ 1

2
ηABϑ

A ∧ ϑB ¼ 1
p2 dx2 ∧ dx3, where ηAB ¼

−ηBA is the 2-dimensional Levi-Civita tensor (with
η23 ¼ 1). Obviously this is a non-flat space. The corre-
sponding Riemannian connection (3.12) yields a nontrivial
curvature R̂B

A ¼ λϑB ∧ ϑA of a 2-dimensional de Sitter
space. The volume 4-form of the spacetime manifold reads

η ¼ ϑ0̂ ∧ ϑ1̂ ∧ ϑ2̂ ∧ ϑ3̂ ¼ q2

2p2 k ∧ dρ ∧ η. For the wave 1-

form we find the remarkable relation

�k ¼ −k ∧ η: ð3:28Þ

We will denote the geometrical objects on the transversal
2-space by underlining them; for example, a 1-form
ϕ ¼ ϕAϑ

A. The Hodge duality on this space is defined
as usual via �ϑA ¼ η

A
¼ eA⌋η ¼ ηABϑ

B. With the help of
(3.28), we can verify

�ðk ∧ ϕÞ ¼ k ∧ �ϕ: ð3:29Þ

The new 1-forms (3.24) and (3.26) have the obvious
transversality properties:

k ∧ �Θ ¼ 0; k ∧ �Ωα ¼ 0; kαΩα ¼ 0: ð3:30Þ

In accordance with (3.17) and (3.26), we have explicitly:

Θ ¼ ϑA
�
1

2
D̂AU − δABWB

�
; ð3:31Þ

ΩA ¼ ϑB
�
D̂BWA þ λ

2
UδAB

�
: ð3:32Þ

Here we denoted D̂A ¼ eA⌋D̂. Applying the transversal
differential to (3.24), and making use of (3.26), we find
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dΘ ¼ Ωα ∧ ϑα: ð3:33Þ

In essence, this is equivalent to the Bianchi identity DTα ¼
Rβ

α ∧ ϑβ which is immediately checked by applying the
covariant differentialD to (3.23) and using (3.25). Note that
it is crucial to use (3.21).
A further refinement of the generalized wave ansatz will

be considered in Sec. IV C.

C. Irreducible decomposition
of gravitational field strengths

Irreducible parts of the torsion and the curvature are as
follows. The second (trace) and third (axial trace) irreduc-
ible part of the torsion are trivial, ð2ÞTα ¼ 0 and ð3ÞTα ¼ 0,
and the first (pure tensor) piece is nontrivial:

ð1ÞTα ¼ Tα ¼ −k ∧ q
p
kαΘ: ð3:34Þ

At the same time, the curvature pieces ð3ÞRαβ ¼ ð5ÞRαβ ¼ 0,
whereas

ð6ÞRαβ ¼ λϑα ∧ ϑβ; ð3:35Þ

and for I ¼ 1, 2, 4:

ðIÞRαβ ¼ 2k ∧ ðIÞΩ½αkβ�
q
p
: ð3:36Þ

Here ð1ÞΩα þ ð2ÞΩα þ ð4ÞΩα ¼ Ωα, and explicitly we have

ð1ÞΩα ¼ 1

2
ðΩα − ϑαeβ⌋Ωβ þ ϑβeα⌋ΩβÞ; ð3:37Þ

ð2ÞΩα ¼ 1

2
ðΩα − ϑβeα⌋ΩβÞ; ð3:38Þ

ð4ÞΩα ¼ 1

2
ϑαeβ⌋Ωβ: ð3:39Þ

The transversal components of these objects are con-
structed in terms of the irreducible pieces of the 2 × 2

matrix D̂BWA: symmetric traceless part, skew-symmetric
part and the trace, respectively. Using (3.32), we derive
ðIÞΩA ¼ ðIÞΩA

Bϑ
B, with

ð1ÞΩA
B ¼ 1

2
ðD̂BWA þ D̂AWB − δABD̂CWCÞ; ð3:40Þ

ð2ÞΩA
B ¼ 1

2
ðD̂BWA − D̂AWBÞ; ð3:41Þ

ð4ÞΩA
B ¼ 1

2
δABðD̂CWC þ λUÞ: ð3:42Þ

One can demonstrate the following properties of these
1-forms:

ϑα ∧ ð1ÞΩα ¼ 0; ϑα ∧ ð2ÞΩα ¼ ϑα ∧ Ωα; ð3:43Þ

ϑα ∧ ð4ÞΩα ¼ 0; eα⌋ð1ÞΩα ¼ −eα⌋Ωα; ð3:44Þ

eα⌋ð2ÞΩα ¼ 0; eα⌋ð4ÞΩα ¼ 2eα⌋Ωα; ð3:45Þ

kαð1ÞΩα ¼ −
1

2
keα⌋Ωα; kαð2ÞΩα ¼ 0; ð3:46Þ

kαð4ÞΩα ¼ 1

2
keα⌋Ωα; k ∧ �ð2ÞΩα ¼ 0; ð3:47Þ

k ∧ �ð1ÞΩα ¼ −k ∧ �ð4ÞΩα ¼ −
1

2
kαϑβ ∧ �Ωβ: ð3:48Þ

IV. FIELD EQUATIONS

Let us now turn to the quadratic Poincaré gauge model
with the general Lagrangian (2.9), and allow for a nontrivial
cosmological constant λ0.
Substituting the torsion (3.34) and the curvature (3.35),

(3.36), into (2.14) and (2.15), we find

hα ¼ −kαZ
q
p
; ð4:1Þ

hαβ ¼ λb6ηαβ þ λb̄6ϑα ∧ ϑβ − 2k½αZβ� q
p
; ð4:2Þ

where we introduced the 2-forms

Z ¼ a1 �ðk ∧ ΘÞ þ ā1k ∧ Θ; ð4:3Þ

Zα ¼
X

I¼1;2;4

½bI �ðk ∧ ðIÞΩαÞ þ b̄Ik ∧ ðIÞΩα�: ð4:4Þ

Making use of (3.30) and (3.43)–(3.48) we can show that

k ∧ hα ¼ 0; k ∧ �hα ¼ 0; kαhα ¼ 0: ð4:5Þ

As a result, substituting (4.2) into (2.16) and (2.17), we find

qðTÞα ¼ 0 and

qðRÞα ¼ 2λ
q
p
kαf−ðb4 þ b6Þ �keβ⌋Ωβ

þ ðb̄2 − b̄6Þk ∧ ϑβ ∧ Ωβg: ð4:6Þ
With an account of the properties (4.5), one can check that

Dhα ¼ −D̂
�
kαZ

q
p

�
; ð4:7Þ

Dhαβ ¼ −D̂
�
2k½αZβ�

q
p

�
þ λb6ηαβμ ∧ Tμ

þ λb̄6ðTα ∧ ϑβ − Tβ ∧ ϑαÞ: ð4:8Þ
The transversal nature of Θ and ΩA leads to a further

simplification. In particular, using (3.29), we recast (4.3)
and (4.4) into

BLAGOJEVIĆ, CVETKOVIĆ, and OBUKHOV PHYSICAL REVIEW D 96, 064031 (2017)

064031-6



Z ¼ k ∧ Ξ; ZA ¼ k ∧ ΞA; ð4:9Þ

where we have introduced the 1-forms

Ξ ¼ a1 �Θþ ā1Θ; ð4:10Þ

ΞA ¼
X

I¼1;2;4

½bI �ðIÞΩA þ b̄IðIÞΩA�: ð4:11Þ

A. Wave equations

After all these preparations, we are in a position to write
down the gravitational field equations for the quadratic
Poincaré gauge model (2.9). Substituting the gravitational
wave ansatz (3.15)–(3.16) into (2.18), we derive the first
equation

ð3a0λ − λ0Þηα þ
q
p
kα �kðeβ⌋ΩβÞ½a0 − 2λl2

ρðb4 þ b6Þ�

þ q
p
kαk ∧ fϑβ ∧ Ωβ½ā0 þ 2λl2

ρðb̄2 − b̄6Þ� − dΞg ¼ 0:

ð4:12Þ

Contracting this with kα, we find the value of the constant
parameter in the wave ansatz:

λ ¼ λ0
3a0

; ð4:13Þ

and with an account of (3.28) and (4.10) we recast
(4.12) into

½a0 − 2λl2
ρðb4 þ b6Þ�ϑA ∧ �ΩA þ a1d �Θ − ½ā0 þ ā1 þ 2λl2

ρðb̄2 − b̄6Þ�ϑA ∧ ΩA ¼ 0: ð4:14Þ

The first two terms describe the parity-even model, whereas the last term accounts for the parity-odd sector.
Similarly, by gravitational wave ansatz (3.15)–(3.16) in (2.19), we obtain the second equation

ka
q
p
k ∧ fða0 þ a1 − 2λl2

ρb6ÞϑB ∧ �Θþ ðā0 þ ā1 − 2λl2
ρb̄6ÞϑB ∧ Θ − 2l2

ρD̂ΞBg ¼ 0: ð4:15Þ

Note here that the ½ab� and ½AB� components in (2.19) are satisfied identically, and only the mixed ½aB� components give
rise to the result (4.15).
Equation (4.14) and the expression inside the curly bracket in (4.15) are both 2-forms on the 2-dimensional transversal

space spanned by xA ¼ ðx2; x3Þ, and thus (4.14) and (4.15) describe a system of three partial differential equations for the
three variablesU ¼ Uðσ; xBÞ andWA ¼ WAðσ; xBÞ. Substituting (3.31) and (3.32), we recast (4.14) and (4.15) into the final
tensorial form

A0ðD̂AWA þ λUÞ þ a1

�
D̂AWA −

1

2
Δ̂U

�
− Ā0η

ABD̂AWB ¼ 0; ð4:16Þ

−A1

�
WA −

1

2
D̂AU

�
þ Ā1ηAB

�
WB −

1

2
D̂BU

�
þ l2

ρðb̄1 − b̄2Þ½D̂AðηBCD̂BWCÞ þ ηABD̂
BðD̂CWC þ λUÞ�

þl2
ρðb1 þ b4Þ

�
−Δ̂

�
WA −

1

2
D̂AU

�
þ λ

�
WA −

1

2
D̂AU

�
− D̂AðD̂BWB þ λUÞ þ D̂A

�
D̂BWB −

1

2
Δ̂U

��
¼ 0: ð4:17Þ

The 2-dimensional transversal space has the (anti)-de Sitter
geometry and the corresponding covariant Laplacian reads

Δ̂ ¼ δABD̂AD̂B ¼ p2Δ; ð4:18Þ
where Δ ¼ δAB∂A∂B is the usual Laplace operator.
Note that b̄4 ¼ b̄2. Here we denoted WA ¼ δABWB and

D̂A ¼ δABD̂B, and introduced the convenient abbreviations
for the combinations of the coupling constants,

A0 ¼ a0 − 2λl2
ρðb4 þ b6Þ; ð4:19Þ

Ā0 ¼ ā0 þ ā1 þ 2λl2
ρðb̄2 − b̄6Þ; ð4:20Þ

A1 ¼ a0 þ a1 þ 2λl2
ρðb1 − b6Þ; ð4:21Þ

Ā1 ¼ ā0 þ ā1 þ 2λl2
ρðb̄1 − b̄6Þ: ð4:22Þ

The transversal covariant derivatives do not commute,

ðD̂AD̂B − D̂BD̂AÞWC ¼ R̂ABD
CWD ¼ 2λδC½AWB�; ð4:23Þ

and we used this fact when deriving (4.16) and (4.17).
Direct consequences of (4.23) are:

ηBCD̂BD̂CWA ¼ ληABWB; ð4:24Þ
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ðΔ̂D̂A − D̂AΔ̂ÞU ¼ λD̂AU: ð4:25Þ

It is worthwhile to notice that the derivatives of WA

appear in (4.16)–(4.17) only in combinations

Ω ≔ eα⌋Ωα ¼ D̂AWA þ λU; ð4:26Þ

Φ ≔ �d �Θ ¼ D̂AWA −
1

2
Δ̂U; ð4:27Þ

Φ̄ ≔ �dΘ ¼ −ηABD̂AWB; ð4:28Þ

which have a clear geometrical meaning in terms of the
curvature and the torsion.
The system (4.16)–(4.17) always admits a nontrivial

solution for arbitrary quadratic Poincaré gauge model with
any choices of the coupling constants. There are some
interesting special cases.

B. Torsionless gravitational waves

The torsion (3.23) vanishes when Θ ¼ 0 which is
realized, see (3.24) and (3.31), for

WA ¼ 1

2
δABD̂BU: ð4:29Þ

Substituting this into (4.16), we find

A0fΔ̂U þ 2λUg ¼ 0; ð4:30Þ

whereas (4.17) reduces to

l2
ρðb̄1 − b̄2ÞηABD̂BfΔ̂U þ 2λUg

−l2
ρðb1 þ b4ÞD̂AfΔ̂U þ 2λUg ¼ 0: ð4:31Þ

Accordingly, we conclude that the well-known torsionless
wave solution of GR with the function U satisfying

p2ΔU þ 2λU ¼ 0 ð4:32Þ

is an exact solution of the generic quadratic Poincaré gauge
gravity model. This is consistent with our earlier results on
the torsion-free solutions in Poincaré gauge theory [16].
Moreover, the torsionless wave (4.29)–(4.30) represents

a general solution for the purely torsion quadratic class of
Poincaré models, since this is the only configuration
admitted by the system (4.16)–(4.17) for bI ¼ b̄I ¼ 0.

C. Torsion gravitational waves

The torsion-free ansatz (3.9) can be generalized to

WA ¼ 1

2
δABD̂BðU þ VÞ þ 1

2
ηABD̂BV̄; ð4:33Þ

with V ≠ 0. The two scalar functions V ¼ Vðσ; xAÞ and
V̄ ¼ V̄ðσ; xAÞ define the non-Riemannian piece of the
connection, stemming from torsion:

Θ ¼ −
1

2
ðdV þ �d V̄Þ

¼ −
1

2
ϑAðD̂AV − ηABD̂

BV̄Þ: ð4:34Þ

For the above choice, the metric and torsion contributions
to the connection are described in a rather symmetric way,
in terms of the three potentials (U;V; V̄). In particular, we
find for (4.26)–(4.28):

Ω ¼ 1

2
ðΔ̂V þ Δ̂U þ 2λUÞ; ð4:35Þ

Φ ¼ 1

2
Δ̂V; Φ̄ ¼ 1

2
Δ̂ V̄ : ð4:36Þ

Substituting (4.33) into (4.16) and (4.17), we derive

A0Ωþ a1Φþ Ā0Φ̄ ¼ 0; ð4:37Þ

D̂A

�
−
1

2
A1V −

1

2
Ā1V̄ − l2

ρðb1 þ b4ÞΩ − l2
ρðb̄1 − b̄2ÞΦ̄

�

þηABD̂
B

�
−
1

2
A1V þ 1

2
Ā1V̄ − l2

ρðb1 þ b4ÞΦ̄þ l2
ρðb̄1 − b̄2ÞΩ

�
¼ 0: ð4:38Þ

One needs to pay attention to the noncommutativity of the covariant derivatives and use (4.23)–(4.25).
As a result, we obtain the system of the three linear second order differential equations for the three functions U, V, V̄:

A0ðΔ̂V þ Δ̂U þ 2λUÞ þ a1Δ̂V þ Ā0Δ̂ V̄ ¼ 0; ð4:39Þ

−l2
ρðb1 þ b4ÞðΔ̂V þ Δ̂U þ 2λUÞ − A1V − l2

ρðb̄1 − b̄2ÞΔ̂ V̄ −Ā1V̄ ¼ 0; ð4:40Þ

l2
ρðb̄1 − b̄2ÞðΔ̂V þ Δ̂U þ 2λUÞ þ Ā1V − l2

ρðb1 þ b2ÞΔ̂ V̄ −A1V̄ ¼ 0: ð4:41Þ
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D. Solution for potentials

Before starting the analysis of solutions, one can notice
that the system (4.40) and (4.41) is actually not equivalent
to the original equation (4.38). Indeed, by taking the
covariant divergence (applying D̂A) and by taking
the covariant curl (applying ηABD̂B) of (4.38), we derive
the pair of equations where on the right-hand sides of (4.40)
and (4.41) one finds not zeros but arbitrary functions, say,
αðσ; xAÞ and βðσ; xAÞ, which are harmonic, in the sense that
they both satisfy equations Δ̂α ¼ Δ̂β ¼ 0. However, one
then immediately notices that with the help of redefinitions

V → V þ v; Δ̂v ¼ 0; ð4:42Þ

V̄ → V̄ þ v̄; Δ̂ v̄ ¼ 0; ð4:43Þ

we can always remove these nontrivial right-hand sides and
come to the system (4.40) and (4.41).
In other words, a solution of the system (4.39)–(4.41)

admits the gauge transformation (4.42)–(4.43), under
which the potentials V and V̄ can be shifted by arbitrary
harmonic functions. Such gauge transformed potentials are
of course still solutions of the Poincaré gauge field
equations (4.37) and (4.38). What is important, however,
the curvature and the torsion remain invariant under the
redefinition (4.42)–(4.43) of potentials: (4.35) and (4.36)
obviously are not affected by the arbitrary harmonic
functions.
Now, as a first step, we substitute ðΔ̂V þ Δ̂U þ 2λUÞ

from (4.39) into (4.40) and (4.41). The resulting system
reads

l2
ρΔ̂fa1ðb1 þ b4ÞV þ ½−A0ðb̄1 − b̄2Þ þ Ā0ðb1 þ b4Þ�V̄g
− A0A1V − A0Ā1V̄ ¼ 0; ð4:44Þ

l2
ρΔ̂fa1ðb̄1 − b̄2ÞV þ ½A0ðb1 þ b2Þ þ Ā0ðb̄1 − b̄2Þ�V̄g
− A0Ā1V þ A0A1V̄ ¼ 0: ð4:45Þ

After solving this system, we can use the potentials V
and V̄ to substitute them into (4.39) which then becomes
an inhomogeneous differential equation for the metric
potential U:

A0ðΔ̂U þ 2λUÞ ¼ −ða1 þ A0ÞΔ̂V − Ā0Δ̂ V̄ : ð4:46Þ
For the parity-even models with āI ¼ 0, b̄I ¼ 0, hence
Ā0 ¼ 0 and Ā1 ¼ 0, the system (4.44)–(4.45) reduces to the
two uncoupled equations

a1ðb1 þ b4Þl2
ρΔ̂V − A0A1V ¼ 0; ð4:47Þ

ðb1 þ b2Þl2
ρΔ̂ V̄þA1V̄ ¼ 0; ð4:48Þ

recovering the result of [56].

To analyze the system (4.44)–(4.45), let us rewrite it in
matrix form

Δ̂V −MV ¼ 0; M ≔
A0

l2
ρ
F; ð4:49Þ

where we combined the potentials into a single object, a “2-
vector” V ¼ ðVV̄Þ, and the 2 × 2 matrix F ¼ K−1N is
constructed from

K ¼
�a1ðb1 þ b4Þ Ā0ðb1 þ b4Þ − A0ðb̄1 − b̄2Þ
a1ðb̄1 − b̄2Þ A0ðb1 þ b2Þ þ Ā0ðb̄1 − b̄2Þ

�
;

N ¼
�A1 Ā1

Ā1 −A1

�
: ð4:50Þ

One immediately notices the simple structure of the matrix
N which is manifest in the properties

N2¼ðA2
1þ Ā2

1Þ
�
1 0

0 1

�
; detN¼−ðA2

1þ Ā2
1Þ: ð4:51Þ

One can solve the matrix differential equation (4.49) by
diagonalizing this system. To achieve this, one needs to find
the eigenvalues of the matrix M and to construct the
corresponding eigenvectors. Let m2 be an eigenvalue of
the matrix M. It is determined from the corresponding
characteristic equation detðM −m2Þ ¼ 0 which has the
meaning of the dispersion relation for the mass:

l4
ρm4 detK þ l2

ρm2A0trðNKÞ − A2
0ðA2

1 þ Ā2
1Þ ¼ 0: ð4:52Þ

The coefficients of the quadratic equation (4.52) are
constructed from the coupling constants of the gauge
gravity model. From (4.50) we have explicitly:

detK ¼ a1A0½ðb1 þ b4Þðb1 þ b2Þ þ ðb̄1 − b̄2Þ2�; ð4:53Þ

trðNKÞ ¼ ða1A1 þ Ā0Ā1Þðb1 þ b4Þ − A0A1ðb1 þ b2Þ
þ ða1Ā1 − A0Ā1 − Ā0A1Þðb̄1 − b̄2Þ: ð4:54Þ

For the parity-even models with āI ¼ 0, b̄I ¼ 0, hence
Ā0 ¼ 0 and Ā1 ¼ 0, the dispersion equation (4.52) reduces
to

½l2
ρm2a1ðb1 þ b4Þ − A0A1�
× ½l2

ρm2A0ðb1 þ b2Þ þ A0A1� ¼ 0; ð4:55Þ

and hence we recover the result (4.47)–(4.48).
General case with parity-odd terms in the Lagrangian is

more complicated. No obvious simplification of (4.52) is
visible.
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Having found the eigenvalues m2
1 and m2

2 of the mass
matrix M as the two roots of the quadratic equation (4.49),
one can construct the matrix P that transforms M to its
diagonal form. For M12 ≠ 0, the latter reads

P ¼
� −M12 −M12

M11 −m2
1 M11 −m2

2

�
: ð4:56Þ

Multiplying Eq. (4.49) by P−1, one then obtains

Δ̂V 0 −M0V 0 ¼ 0; ð4:57Þ

where

M0 ≔ P−1MP ¼
�
m2

1 0

0 m2
2

�
; ð4:58Þ

and V 0 is the eigenvector of M, corresponding to the
eigenvalues m2

1 and m2
2:

V 0 ¼
�
V 0
1

V 0
2

�
¼ P−1V

¼ 1

detP

� ðM11 −m2
2ÞV þM12V̄

−ðM11 −m2
1ÞV −M12V̄

�
: ð4:59Þ

Recalling Δ̂ ¼ p2Δ, we thus recast the system of the
field equations (4.44) and (4.45) into a diagonal form

p2ΔV 0
n −m2

nV 0
n ¼ 0; ð4:60Þ

with n ¼ 1, 2. The solutions for V 0
n are given in terms of the

hypergeometric functions 2F1ða; b; c; zÞ, see [56]. Similar
construction exists in the case M21 ≠ 0.
Now, we can return to (4.46) to find the solution for U.

Each solution for V 0
n defines the corresponding solution

V ¼ PV 0 ð4:61Þ

of (4.49). Inserting these solutions for V and V̄ on the right-
hand side of (4.46), this equation becomes an inhomo-
geneous differential equation for U. Its general solution is
given as a general solution of the homogeneous equation
plus a particular solution of the inhomogeneous equation,
U ¼ Uh þUp. Note that Uh coincides with the general
vacuum solution of GR, see (4.32). The solution for U
obtained by choosing Uh ¼ 0 has a very interesting
interpretation. Indeed, in that case U reduces just to the
particular solution Up, the form of which is completely
determined by the torsion potentials ðV; V̄Þ. A similar
mechanism was found also in the parity even sector [56].
Clearly, there are many other solutions for Uh, and
consequently, for U. In each of them, the influence of
torsion on the metric is quite clear.

E. Masses of the torsion modes

In order to get a deeper understanding of the role of the
torsion in our gravitational wave solution, it is important to
examine the mass spectrum of the associated torsion
modes. Having found the matrix F ¼ K−1N with the help
of (4.50), the solutions of the characteristic equation (4.52)
can be conveniently represented in terms of the matrix f ¼
ðdetKÞF as

m2
� ¼ A0

2l2 detK
ðtrf �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrfÞ2 − 4 det f

q
Þ: ð4:62Þ

This is an exact formula for the mass eigenvalues m2
�

associated to the gravitational wave. It is worthwhile to
notice that trf ¼ −trðNKÞ, and det f ¼ ðdetNÞðdetKÞ.
The particle spectrum of PGT has been calculated only

with respect to the Minkowski background [24–29], and
never for the (anti)-de Sitter spacetime. Accordingly, we
can compare the result (4.62) with those existing in the
literature only for the values of m2

� in the limit of the
vanishing cosmological constant. In the limit of λ → 0, we
have

trf ¼ −½a1ða0 þ a1Þ þ ðā0 þ ā1Þ2�ðb1 þ b4Þ
þ a0ða0 þ a1Þðb1 þ b2Þ þ 2a0ðā0 þ ā1Þðb̄1 − b̄2Þ;

det f ¼ −a0a1½ða0 þ a1Þ2 þ ðā0 þ ā1Þ2�
× ½ðb1 þ b2Þðb1 þ b4Þ þ ðb̄1 − b̄2Þ2�;

detK ¼ a0a1½ðb1 þ b2Þðb1 þ b4Þ þ ðb̄1 − b̄2Þ2�: ð4:63Þ

As a first test, we apply the formula (4.62) to the parity
even sector of PGT. One can straightforwardly see that the
corresponding values ofm2

� coincide with the masses of the
spin-2� torsion modes, known from the literature [24];
compare also with [56]. This is consistent with (4.55).
A more complete verification can be done by comparing

(4.62) with the recent work of Karananas [30], which
presently offers the only existing calculation of the com-
plete mass spectrum for the most general PGT with both
parity even and parity odd sectors included. A comparison
of the Lagrangian (5) of Ref. [30] with our expression (2.9)
is straightforward, although one should be careful since the
paper [30] contains numerous misprints. As a result, we
establish the following relations between our and
Karananas’ coupling constants (we use the notation t0
instead of Karananas’ λ to distinguish it from our cosmo-
logical term):

a0 ¼ 2κct0; ā0 ¼ 0; ð4:64Þ

a1 ¼ 2κcð−t1 − t0Þ; ð4:65Þ

a2 ¼ 4κcð−t3 þ t0Þ; ð4:66Þ
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a3 ¼ κcð−t2 þ t0Þ; ð4:67Þ

ā1 ¼ 4κct5; ð4:68Þ

ā2 ¼ ā3 ¼ 2κct4: ð4:69Þ

b1 ¼ 4ρð−r1 þ r3Þ; ð4:70Þ

b2 ¼ 4ρð−r3Þ; ð4:71Þ

b3 ¼ 4ρð−r2 þ r3Þ; ð4:72Þ

b4 ¼ 4ρð−r1 þ r3 − r4Þ; ð4:73Þ

b5 ¼ 4ρð−r3 − r5Þ; ð4:74Þ

b6 ¼ 4ρð−r1 þ r3 − 3r4Þ; ð4:75Þ

b̄1 ¼ ρð−r7 þ 3r8Þ; ð4:76Þ

b̄2 ¼ b̄4 ¼ ρð−r7 − r8Þ; ð4:77Þ

b̄3 ¼ b̄6 ¼ ρð4r6 − r7 − r8Þ; ð4:78Þ

b̄5 ¼ ρð3r7 − r8Þ: ð4:79Þ

Substituting the expressions for aI, bI and āI , b̄I into (4.63),
one finds that the resulting values of m2

� in (4.62) exactly
reproduce the result (A.3.5) of Karananas’ paper [30] (after
correcting a number of his misprints), which displays the
spin-2� torsion modes.
Thus, we conclude that the massive spin-2� torsion

modes turn out to be an essential ingredient of our
gravitational wave, in the sense that these massive torsion
modes determine the structure of the wave profile encoded
in the functions V, V̄ and U. This is a remarkable result if
one recalls that the particle spectrum of PGT is derived
from the linearized equations of motion, whereas our
gravitational waves are exact solutions of the full nonlinear
field equations.

V. DISCUSSION AND CONCLUSION

In this paper, we have found a family of the exact
vacuum solutions of the most general PGT model with all
possible parity even and parity odd linear and quadratic
invariants in the Lagrangian (2.9), and with a nontrivial
cosmological constant λ0 ≠ 0. This family represents gen-
eralized plane waves with torsion, propagating on the
(anti)-de Sitter background. The present paper extends
the results obtained recently in [55,56].
The underlying construction can be understood as a

generalization of the Kerr-Schild-Kundt ansatz from the
Riemannian to the Riemann-Cartan geometry of PGT. An
essentially new element in this extended formalism is the

ansatz for the local Lorentz connection Γα
β, the radiation

piece of which is constructed in terms of the null covector
field k. The generalized plane wave ansatz (3.15)–(3.16)
ensures that the torsion 2-form Tα and the radiation piece of
the curvature 2-form Sαβ ≔ Rαβ − λϑα ∧ ϑβ satisfy the
radiation conditions

k ∧ �Tα ¼ 0; k ∧ �Sαβ ¼ 0; ð5:1Þ

k ∧ Tα ¼ 0; k ∧ Sαβ ¼ 0; ð5:2Þ

Tα ∧ �Tβ ¼ 0; Sαβ ∧ �Sρσ ¼ 0: ð5:3Þ

These relations represent an extension of the well-known
Lichnerowicz criterion for identifying gravitational waves
[68] (see also [32]), based on analogy with the electro-
magnetic waves, to the framework of the PGT.
In the limit of vanishing torsion, the generalized plane

waves with torsion reduce to the family of the Riemannian
pp waves on the (anti)-de Sitter background. The pp
waves are classified as solutions of Petrov type N, since the
corresponding Weyl tensor satisfies the special algebraic
condition kαCαβμν ¼ 0, see [34,35]. This criterion can be
naturally extended to a Riemann-Cartan geometry of
PGT as

kαð1ÞRαβμν ¼ 0; ð5:4Þ

where ð1ÞRαβμν is the first irreducible part of the curvature
tensor, see [55,56]. The validity of (5.4) for the generalized
plane waves with torsion confirms that they are also of
type N.
The spacetime torsion is an essential ingredient of the

generalized gravitational wave solution; its dynamical
characteristics are described by the two potentials V and
V̄, satisfying the matrix equation (4.49). The mass matrix
M is of particular importance for the physical interpretation
of the torsion. We demonstrate that, in the limit of λ → 0,
the eigenvalues of M coincide with the values of the mass
square the spin-2� torsion modes, identified in the work of
Karananas [30]. Generically, wave front profile of a
generalized plane wave with torsion is thus determined
by two spin-2 massive torsion modes and the massless
graviton, produced by the third, coframe potentialU (which
enters the spacetime metric).
It is interesting to note that there exist particular solutions

for which the metric potential is completely determined by
the torsion. For such solutions, the motion of a spinless test
particle is effectively determined by the spacetime torsion.
The results obtained in this work were checked with

the help of the computer algebra systems Reduce and
Mathematica.
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APPENDIX: IRREDUCIBLE DECOMPOSITION
OF THE TORSION AND CURVATURE

The torsion 2-form can be decomposed into the three
irreducible pieces, Tα ¼ ð1ÞTα þ ð2ÞTα þ ð3ÞTα, where

ð2ÞTα ¼ 1

3
ϑα ∧ ðeν⌋TνÞ; ðA1Þ

ð3ÞTα ¼ 1

3
eα⌋ðTν ∧ ϑνÞ; ðA2Þ

ð1ÞTα ¼ Tα − ð2ÞTα − ð3ÞTα: ðA3Þ

The Riemann-Cartan curvature 2-form is decomposed
Rαβ ¼ P

6
I¼1

ðIÞRαβ into the 6 irreducible parts

ð2ÞRαβ ¼ − �ðϑ½α ∧ Ψ̄β�Þ; ðA4Þ

ð3ÞRαβ ¼ −
1

12
�ðX̄ϑα ∧ ϑβÞ; ðA5Þ

ð4ÞRαβ ¼ −ϑ½α ∧ Ψβ�; ðA6Þ

ð5ÞRαβ ¼ −
1

2
ϑ½α ∧ eβ�⌋ðϑγ ∧ XγÞ; ðA7Þ

ð6ÞRαβ ¼ −
1

12
Xϑα ∧ ϑβ; ðA8Þ

ð1ÞRαβ ¼ Rαβ −
X6
I¼2

ðIÞRαβ; ðA9Þ

where

Xα ≔ eβ⌋Rαβ; X ≔ eα⌋Xα; ðA10Þ

X̄α ≔ �ðRβα ∧ ϑβÞ; X̄ ≔ eα⌋X̄α; ðA11Þ

and

Ψα ≔ Xα −
1

4
ϑαX −

1

2
eα⌋ðϑβ ∧ XβÞ; ðA12Þ

Ψ̄α ≔ X̄α −
1

4
ϑαX̄ −

1

2
eα⌋ðϑβ ∧ X̄βÞ: ðA13Þ

Directly from the definitions (A1)–(A3) and (A4)–(A9),
one can prove the relations

Tα ∧ ð2ÞTα ¼ Tα ∧ ð3ÞTα ¼ ð2ÞTα ∧ ð3ÞTα; ðA14Þ

Rαβ ∧ ð2ÞRαβ ¼ Rαβ ∧ ð4ÞRαβ ¼ ð2ÞRαβ ∧ ð4ÞRαβ; ðA15Þ

Rαβ ∧ ð3ÞRαβ ¼ Rαβ ∧ ð6ÞRαβ ¼ ð3ÞRαβ ∧ ð6ÞRαβ; ðA16Þ

whereas Tα ∧ ð1ÞTα ¼ ð1ÞTα ∧ ð1ÞTα and Rαβ ∧ ð1ÞRαβ ¼
ð1ÞRαβ ∧ ð1ÞRαβ and Rαβ ∧ ð5ÞRαβ ¼ ð5ÞRαβ ∧ ð5ÞRαβ.

[1] H. Weyl, Electron and gravitation, I, Zeitschrift für Physik,
56, 330 (1929) (in German); English translation in: L.
O’Raifeartaigh, The Dawning of Gauge Theory (Princeton
University Press, Princeton, 1997), p. 121.

[2] C. N. Yang and R. Mills, Conservation of isotopic spin and
isotopic gauge invariance, Phys. Rev. 96, 191 (1954).

[3] R. Utiyama, Invariant theoretical interpretation of inter-
actions, Phys. Rev. 101, 1597 (1956).

[4] D.W. Sciama, The analogy between charge and spin in
general relativity, in Recent Developments in General
Relativity, Festschrift for L. Infeld (Pergamon Press, Oxford,
1962), p. 415.

[5] T. W. B. Kibble, Lorentz invariance and the gravitational
field, J. Math. Phys. (N.Y.) 2, 212 (1961).

[6] F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. Nester,
General relativity with spin and torsion: Foundations and
prospects, Rev. Mod. Phys. 48, 393 (1976).

[7] F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Ne’eman,
Metric-affine gauge theory of gravity: Field equations,
Noether identities, world spinors, and breaking of dilation
invariance, Phys. Rep. 258, 1 (1995).

[8] M. Blagojević, Gravitation and Gauge Symmetries (IOP,
Bristol, 2002).

[9] Gauge Theories of Gravitation. A Reader with Commen-
taries, edited by M. Blagojević and F.W. Hehl (Imperial
College Press, London, 2013).

[10] E.W. Mielke, Geometrodynamics of Gauge Fields, 2nd ed.
(Springer, Switzerland, 2017).

BLAGOJEVIĆ, CVETKOVIĆ, and OBUKHOV PHYSICAL REVIEW D 96, 064031 (2017)

064031-12

https://doi.org/10.1007/BF01339504
https://doi.org/10.1007/BF01339504
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1103/PhysRev.101.1597
https://doi.org/10.1063/1.1703702
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1016/0370-1573(94)00111-F


[11] F. W. Hehl, J. Lemke, and E. W. Mielke, Two lectures on
fermions and gravity, in Geometry and Theoretical
Physics, edited by J. Debrus and A. C. Hirshfeld (Springer,
Heidelberg, 1991), p. 56.

[12] A. Trautman, Einstein-Cartan theory, in Encyclopedia of
Mathematical Physics, edited by J.-P. Françoise et al.
(Elsevier, Oxford, 2006), p. 189.

[13] É. Cartan, On Manifolds with an Affine Connection and the
Theory of General Relativity, English translation from
French by A. Magnon and A. Ashtekar (Bibliopolis, Napoli,
1986).

[14] H. F. M. Goenner, On the history of unified field theories,
Living Rev. Relativ. 7, 2 (2004).

[15] F. W. Hehl and Yu. N. Obukhov, Élie Cartan’s torsion in
geometry and in field theory, an essay, Ann. Fond. Louis de
Broglie 32, 157 (2007).

[16] Yu. N. Obukhov, Poincaré gauge gravity: Selected topics,
Int. J. Geom. Methods Mod. Phys. 03, 95 (2006).

[17] Yu. N. Obukhov, V. N. Ponomariev, and V. V. Zhytnikov,
Quadratic Poincaré gauge theory of gravity: A comparison
with the general relativity theory, Gen. Relativ. Gravit. 21,
1107 (1989).

[18] J. K. Ho and J. M. Nester, Poincaré gauge theory with even
and odd parity dynamic connection modes: Isotropic Bian-
chi cosmological models, J. Phys. Conf. Ser. 330, 012005
(2011).

[19] J. K. Ho and J. M. Nester, Poincaré gauge theory with
coupled even and odd parity spin-0 modes: cosmological
normal modes, Ann. Phys. (Berlin) 524, 97 (2012).

[20] F. H. Ho and J. M. Nester, Poincaré gauge theory with
coupled even and odd parity dynamic spin-0 modes:
dynamical equations for isotropic Bianchi cosmologies,
Int. J. Mod. Phys. D 20, 2125 (2011).

[21] D. Diakonov, A. G. Tumanov, and A. A. Vladimirov,
Low-energy general relativity with torsion: A systematic
derivative expansion, Phys. Rev. D 84, 124042 (2011).

[22] P. Baekler and F.W. Hehl, Beyond Einstein-Cartan gravity:
Quadratic torsion and curvature invariants with even and
odd parity including all boundary terms, Classical Quantum
Gravity 28, 215017 (2011).

[23] P. Baekler, F. W. Hehl, and J. M. Nester, Poincaré gauge
theory of gravity: Friedman cosmology with even and odd
parity modes: Analytic part, Phys. Rev. D 83, 024001
(2011).

[24] K. Hayashi and T. Shirafuji, Gravity from Poincaré gauge
theory of fundamental particles, IV. Mass and energy of
particle spectrum, Prog. Theor. Phys. 64, 2222 (1980).

[25] D. E. Neville, Gravity Lagrangian with ghost-free curvature-
squared terms, Phys. Rev. D 18, 3535 (1978).

[26] D. E. Neville, Spin-2 propagating torsion, Phys. Rev. D 23,
1244 (1981).

[27] E. Sezgin, A class of ghost-free gravity Lagrangians with
massive or massless propagating torsion, Phys. Rev. D 24,
1677 (1981).

[28] E. Sezgin and P. van Nieuwenhuizen, New ghost-free
gravity Lagrangians with propagating torsion, Phys. Rev.
D 21, 3269 (1980).

[29] R. Kuhfuss and J. Nitsch, Propagating modes in gauge field
theories of gravity, Gen. Relativ. Gravit. 18, 1207 (1986).

[30] G. K. Karananas, The particle spectrum of parity-violating
Poincaré gravitational theory, Classical Quantum Gravity
32, 055012 (2015).

[31] J. Ehlers and W. Kundt, Exact solutions of the gravitational
field equations, in Gravitation: An Introduction to Current
Research, edited by L. Witten (John Wiley & Sons,
New York, 1962), p. 49.

[32] V. D. Zakharov, Gravitational Waves in Einstein’s Theory
(Halsted Press, New York, 1973), p. 183.

[33] J. B. Griffiths, Colliding Plane Waves in General Relativity
(Clarendon Press, Oxford, 1991).

[34] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers,
and E. Herlt, Exact Solutions of Einstein’s Field Equations,
2nd ed. (Cambridge University Press, Cambridge, England,
2003), Secs. 24 and 31.

[35] J. B. Griffiths and J. Podolský, Exact Space-Times in
Einstein’s General Relativity (Cambridge University Press,
Cambridge, England, 2009).

[36] W. Adamowicz, Plane waves in gauge theories of gravita-
tion, Gen. Relativ. Gravit. 12, 677 (1980).

[37] M.-Q. Chen, D.-C. Chern, R. R. Hsu, and W. B. Yeung,
Plane-fronted torsion waves in a gravitational gauge theory
with a quadratic Lagrangian, Phys. Rev. D 28, 2094 (1983).

[38] R. Sippel and H. Goenner, Symmetry classes of pp-waves,
Gen. Relativ. Gravit. 18, 1229 (1986).

[39] V. V. Zhytnikov, Wavelike exact solutions of Rþ R2 þQ2

gravity, J. Math. Phys. 35, 6001 (1994).
[40] P. Singh and J. B. Griffiths, A new class of exact solutions of

the vacuum quadratic Poincaré gauge field theory, Gen.
Relativ. Gravit. 22, 947 (1990).

[41] O. V. Babourova, B. N. Frolov, and E. A. Klimova, Plane
torsion waves in quadratic gravitational theories in
Riemann-Cartan space, Classical Quantum Gravity 16,
1149 (1999).

[42] M. Blagojević and B. Cvetković, Gravitational waves with
torsion in 3D, Phys. Rev. D 90, 044006 (2014).

[43] M. Blagojević and B. Cvetković, Siklos waves with torsion
in 3D, J. High Energy Phys. 11 (2014) 141.

[44] M. Blagojević and B. Cvetković, Vaidya-like exact solu-
tions with torsion, J. High Energy Phys. 05 (2015) 101.

[45] M. Blagojević and B. Cvetković, Siklos waves in Poincaré
gauge theory, Phys. Rev. D 92, 024047 (2015).

[46] Yu. N. Obukhov, Plane waves in metric-affine gravity, Phys.
Rev. D 73, 024025 (2006).

[47] D. Puetzfeld, A plane-fronted wave solution in metric-affine
gravity, in Exact Solutions and Scalar Field in Gravity:
Recent Developments, edited by A. Macías, J. Cervantes-
Cota, and C. Lämmerzahl (Kluwer, Dordrecht, 2001), p. 141.

[48] A. García, A. Macías, D. Puetzfeld, and J. Socorro, Plane-
fronted waves in metric-affine gravity, Phys. Rev. D 62,
044021 (2000).

[49] A. D. King and D. Vassiliev, Torsion waves in metric-affine
field theory, Classical Quantum Gravity 18, 2317 (2001).

[50] D. Vassiliev, Pseudoinstantons in metric-affine theory, Gen.
Relativ. Gravit. 34, 1239 (2002).

[51] D. Vassiliev, Quadratic metric-affine theory, Ann. Phys.
(Berlin) 14, 231 (2005).

[52] V. Pasic and D. Vassiliev, PP-waves with torsion and metric-
affine gravity, Classical Quantum Gravity 22, 3961 (2005).

GENERALIZED PLANE WAVES IN POINCARÉ GAUGE … PHYSICAL REVIEW D 96, 064031 (2017)

064031-13

https://doi.org/10.12942/lrr-2004-2
https://doi.org/10.1142/S021988780600103X
https://doi.org/10.1007/BF00763457
https://doi.org/10.1007/BF00763457
https://doi.org/10.1088/1742-6596/330/1/012005
https://doi.org/10.1088/1742-6596/330/1/012005
https://doi.org/10.1002/andp.201100101
https://doi.org/10.1142/S0218271811020391
https://doi.org/10.1103/PhysRevD.84.124042
https://doi.org/10.1088/0264-9381/28/21/215017
https://doi.org/10.1088/0264-9381/28/21/215017
https://doi.org/10.1103/PhysRevD.83.024001
https://doi.org/10.1103/PhysRevD.83.024001
https://doi.org/10.1143/PTP.64.2222
https://doi.org/10.1103/PhysRevD.18.3535
https://doi.org/10.1103/PhysRevD.23.1244
https://doi.org/10.1103/PhysRevD.23.1244
https://doi.org/10.1103/PhysRevD.24.1677
https://doi.org/10.1103/PhysRevD.24.1677
https://doi.org/10.1103/PhysRevD.21.3269
https://doi.org/10.1103/PhysRevD.21.3269
https://doi.org/10.1007/BF00763447
https://doi.org/10.1088/0264-9381/32/5/055012
https://doi.org/10.1088/0264-9381/32/5/055012
https://doi.org/10.1007/BF00771860
https://doi.org/10.1103/PhysRevD.28.2094
https://doi.org/10.1007/BF00763448
https://doi.org/10.1063/1.530724
https://doi.org/10.1007/BF00763233
https://doi.org/10.1007/BF00763233
https://doi.org/10.1088/0264-9381/16/4/005
https://doi.org/10.1088/0264-9381/16/4/005
https://doi.org/10.1103/PhysRevD.90.044006
https://doi.org/10.1007/JHEP11(2014)141
https://doi.org/10.1007/JHEP05(2015)101
https://doi.org/10.1103/PhysRevD.92.024047
https://doi.org/10.1103/PhysRevD.73.024025
https://doi.org/10.1103/PhysRevD.73.024025
https://doi.org/10.1103/PhysRevD.62.044021
https://doi.org/10.1103/PhysRevD.62.044021
https://doi.org/10.1088/0264-9381/18/12/307
https://doi.org/10.1023/A:1019730602253
https://doi.org/10.1023/A:1019730602253
https://doi.org/10.1002/andp.200410118
https://doi.org/10.1002/andp.200410118
https://doi.org/10.1088/0264-9381/22/19/010


[53] V. Pasic and E. Barakovic, PP-waves with torsion: A metric-
affine model for the massless neutrino, Gen. Relativ. Gravit.
46, 1787 (2014).

[54] V. Pasic, E. Barakovic, and N. Okicic, A new representation
of the field equations of quadratic metric-affine gravity,
Adv. Math. Sci. J. 3, 33 (2014).

[55] Yu. N. Obukhov, Gravitational waves in Poincaré gauge
gravity theory, Phys. Rev. D 95, 084028 (2017).

[56] M. Blagojević and B. Cvetković, Generalized pp waves in
Poincaré gauge theory, Phys. Rev. D 95, 104018 (2017).

[57] Yu. N. Obukhov, Generalized plane-fronted gravitational
waves in any dimension, Phys. Rev. D 69, 024013 (2004).

[58] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Observation of Gravitational Waves from a
Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102
(2016).

[59] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), GW151226: Observation of Gravitational
Waves from a 22-Solar-Mass Binary Black Hole Coales-
cence, Phys. Rev. Lett. 116, 241103 (2016).

[60] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tion), GW170104: Observation of a 50-Solar-Mass Binary
Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett.
118, 221101 (2017).

[61] E. E. Flanagan and S. A. Hughes, The basics of gravitational
wave theory, New J. Phys. 7, 204 (2005).

[62] B. S. Sathyaprakash and B. F. Schutz, Physics, astrophysics
and cosmology with gravitational waves, Living Rev.
Relativ. 12, 2 (2009).

[63] C.-M. Chen, J. M. Nester, and W.-T. Ni, A brief history of
gravitational wave research, Chin. J. Phys. 55, 142
(2017).

[64] I. Güllü, M. Gürses, T. C. Şişman, and B. Tekin, AdS waves
as exact solutions to quadratic gravity, Phys. Rev. D 83,
084015 (2011).

[65] M. Gürses, T. C. Şişman, and B. Tekin, New exact solutions
of quadratic curvature gravity, Phys. Rev. D 86, 024009
(2012).

[66] M. Gürses, S. Hervik, T. C. Şişman, and B. Tekin, Anti-de
Sitter-Wave Solutions of Higher Derivative Theories, Phys.
Rev. Lett. 111, 101101 (2013).

[67] M. Gürses, T. C. Şişman, and B. Tekin, AdS-plane wave and
pp-wave solutions of generic gravity theories, Phys. Rev. D
90, 124005 (2014).

[68] A. Lichnerowicz, Ondes et radiations électromagnétiques et
gravitationelles en relativité générale, Annali di matematica
pura ed applicata 50, 1 (1960).

BLAGOJEVIĆ, CVETKOVIĆ, and OBUKHOV PHYSICAL REVIEW D 96, 064031 (2017)

064031-14

https://doi.org/10.1007/s10714-014-1787-y
https://doi.org/10.1007/s10714-014-1787-y
https://doi.org/10.1103/PhysRevD.95.084028
https://doi.org/10.1103/PhysRevD.95.104018
https://doi.org/10.1103/PhysRevD.69.024013
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1088/1367-2630/7/1/204
https://doi.org/10.12942/lrr-2009-2
https://doi.org/10.12942/lrr-2009-2
https://doi.org/10.1016/j.cjph.2016.10.014
https://doi.org/10.1016/j.cjph.2016.10.014
https://doi.org/10.1103/PhysRevD.83.084015
https://doi.org/10.1103/PhysRevD.83.084015
https://doi.org/10.1103/PhysRevD.86.024009
https://doi.org/10.1103/PhysRevD.86.024009
https://doi.org/10.1103/PhysRevLett.111.101101
https://doi.org/10.1103/PhysRevLett.111.101101
https://doi.org/10.1103/PhysRevD.90.124005
https://doi.org/10.1103/PhysRevD.90.124005
https://doi.org/10.1007/BF02414504
https://doi.org/10.1007/BF02414504

