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Arising out of a nonlocal nonrelativistic Bose-Einstein condensates (BEC), we present an analogue
gravity model up to Oðξ2Þ accuracy (ξ being the healing length of the condensate) in the presence of the
quantum potential term for a canonical acoustic black hole in ð3þ 1ÞD spacetime, where the series solution
of the free minimally coupled KG equation for the large-length-scale massive scalar modes is derived. We
systematically address the issues of the presence of the quantum potential term being the root cause of a
UV-IR coupling between short-wavelength primary modes which are supposedly Hawking-radiated
through the sonic horizon and the large-wavelength secondary modes. In the quantum gravity experiments
of analogue Hawking radiation within the scope of the laboratory set up, this UV-IR coupling is inevitable,
and one cannot get rid of these large-wavelength excitations which would grow over space by gaining
energy from the short-wavelength Hawking-radiated modes. We identify the characteristic feature in the
growth rate(s) that would distinguish these primary and secondary modes.
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I. INTRODUCTION

It is well known that from an experimentally realizable
condensedmattermodel, through some rigorousmathemati-
cal framework, gravity comes out as an emergent phenome-
non as seen by the sonic excitations. Unruh’s seminal work
[1] practically opened up this field of research, which has
been extensively pursued over the last couple of decades and
has a host of theoretical proposals around it [2,3].
Among many other “analogue models,” from the stand-

point of classical physics, the passing of sound waves as
acoustic disturbances through a moving Newtonian fluid is
the simplest and cleanest example of the condensed-matter
analogue for the light waves in a curved spacetime [4–6].
The idea is that if the fluid flow ever becomes supersonic,
then in that trapped region, the sound waves would never be
able to fight their way back upstream, and this surface of no
return in the fluid medium clearly bears the analogy of a
gravitational event horizon. Although this terminology of
an acoustic analogue of the event horizon (i.e., a sonic
horizon) does not qualify by the stricter definition of event
horizon in general relativity; nevertheless, this is actually a
Killing horizon from which an analogue Hawking radiation
can be expected. This implies the very existence of a “dumb
hole,” or, in other words, an acoustic black hole [7,8].
One can probe various aspects of curved spacetime

quantum field theory (QFT) via these analogue models
due to the amenability of accurate experimental control and
observational verification—a quantum system character-
ized by very cold temperature (∼100 nK), a low speed of
sound, and a high degree of quantum coherence offers the

best test field [9,10]. Bose-Einstein condensate (BEC),
which is a superfluid quantum phase of matter, happens to
be one of the most prominent candidates of all such
ultracold systems [6,11] to examine and investigate some
crucial features of emergent gravity. It does create analogue
gravitational scenarios at nK temperatures within the
laboratory setup and readily provides it with an exper-
imental window to capture some key aspects of Hawking
radiation,1 which is one of the cornerstone results [12] of
curved spacetime QFT.
This fact basically led to the increasing interest in using

BEC2 as a platform to observe analogueHawking radiation
[19–21] as a thermal bath of phonons with the temperature
proportional to the surface gravity [3,6]. In this context,
Parentani and coworkers have already proposed some novel
ideas based on density correlations, studying the hydro-
dynamics over several length scales and even surface-
gravity-independent temperature, etc. [22–25]. In order to
experimentally detect analogue Hawking radiation, a stack
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1In order for a gravitational black hole (with mass, say, MBH)
to be observed to emit Hawking radiation, it must have a
temperature (say, TH) greater than that of the present-day cosmic
microwave background (CMB) radiation (say, TCMB). TCMB ¼
2.725 K, while TH ¼ ℏc3

8πGMBHkB
≈ 6.169 × 10−8 K × Msun

MBH
in SI

units; and hence the direct detection of the gravitational Hawking
radiation for a Schwarzschild black hole with a mass equivalent to
at least the solar mass falls far below the limit of current
observational techniques. So, it is extremely difficult to verify
Hawking radiation in nature, the reason being that TH is 7 orders
of magnitude smaller than TCMB.

2Apart from BEC, some other condensed matter systems, such
as superfluid helium [13,14], superconductors [15,16], polariton
superfluid [17], and degenerate Fermi gas [18] have also been
used as tools to probe emergent gravity.
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of recent works are obviously worth mentioning here
[26–34].
In a BEC, the small-amplitude collective excitations [35]

of the uniform density moving phase (to be precise, the
first-order phase fluctuation field) obeys the quantum
hydrodynamics which, ignoring the “quantum potential”
term [refer to Sec. 4.2.1 of Ref. [3]], can be cast into the
d’Alembertian equation of motion of a massless, minimally
coupled, free scalar field on a ð3þ 1ÞD Lorentzian mani-
fold with an effective metric to be regarded as the acoustic
metric of the curved background.3

Some worthwhile efforts have been taken in order to
regularize the dynamics taking the quantum potential term
into account [36]. In 2005, Visser et al. showed the
emergence of a massive Klein-Gordon (KG) equation
considering a two-component BEC, where a laser-induced
transition between the two components was exploited [37].
Liberati et al. proposed a weak Uð1Þ symmetry breaking of
the analogue BEC model by the introduction of an extra
quadratic term in the Hamiltonian to make the scalar field
massive [38]. Considering the flow in a Laval nozzle,
Cuyubamba has shown the emergence of a massive scalar
field in the context of analogue gravity arguing for the
possibility of the observation of quasinormal ringing of
the massive scalar field within the laboratory setup [39]. In
the context of trans-Planckian backreaction issues on low-
energy predictions in analogue gravity, Fischer et al. have
recently done a remarkable work [40].
It is well known that, in order to obtain an analogue

gravity model from a nonrelativistic BEC, one needs to get
rid of the terms coming from the linearization of the
quantum potential to find the effective acoustic metric
on the basis of “hydrodynamical” approximation, where
the contributions coming from the small-length scale
regime (wavelengths shorter than the healing length ξ of
the system) are neglected. However, if one goes beyond this
hydrodynamic regime to access the high-frequency modes,
the contribution of the quantum potential cannot be
neglected, and the acoustic description can still be achieved
through eikonal approximation—the Lorentz breaking in
BECmodels [3]. The main advantage of this approximation
is that the “operator” D̂2 [refer to Eq. (13) later] can
effectively be replaced by just the “function,” and con-
sequently, the entries of the acoustic metric become
explicitly momentum-dependent numbers, but not opera-
tors. In this case, it gives rise to a modified dispersion
relation for the quasiparticles [refer to Eq. (271) of
Ref. [3]]. In this regard of the significance of the eikonal
approximation, the points 4 and 5 as mentioned by Barceló
et al. on p. 64 of Ref. [3] are of great importance.
In our previous paper [41], we looked into the effect of

the Lorentz-breaking quantum potential term in a different
way. This is a term of immense importance in the context of

analogue gravity, because this gives rise to the dispersion
relation, which is used to present an alternative scenario of
the analogue Hawking radiation, bypassing the trans-
Planckian problem [22–25,42,43]. But the presence of this
quantum potential term in the dynamics is somewhat
analogous to that of a diffusion term which should spread
the small-scale modes into the large-scale ones. In our
previous work, we guessed the existence of this coupling
between the small- and large-scale dynamics and captured
this picture through the massive large-wavelength excita-
tions as the amplitude modes over the usual small-scale
excitations. This whole work was presented on flat space-
time for the sake of simplicity and in order to introduce the
idea primarily.
In the present paper, we analyze in detail the effect and

consequence of the presence of the quantum potential term
in the context of the spreading out of the small-scale
excitations into the large-scale ones on the curved space-
time of a canonical acoustic black hole (a model first
proposed by Visser [6] in 1998). This is an important
analysis in its own right, because the ultraviolet (UV) to
infrared (IR) coupling is inevitable in these types of
systems. This, in turn, results in the presence of instabilities
to the short-wavelength (UV-correspondence) modes,
which are predominant in the Hawking spectrum, as seen
by a free-falling observer in a local Minkowski space-
time. This is because of the fact that, at very large
curvatures, the local Minkowski flat space can only account
for the short-wavelength (UV-correspondence) modes. The
large-wavelength (IR-correspondence) modes which would
be subsequently generated out of the UV modes are
characterized by a mass term solely dependent on the
small scales. This fact does manifest the energetic depend-
ence of these IR modes on the UV ones and, at some
sufficiently large time, there would be a transfer of energy
from the UV modes to the IR ones, and this can completely
mask the Hawking signal of the Hawking-radiated modes.
A detailed analysis of the UV-IR coupled dynamics is quite
essential in that respect. Very recently, Vieira et al. have
discussed the analogue Hawking radiation of the massless
scalar particles and the features of the Hawking spectrum
associated in the spacetime of rotating and canonical
acoustic black holes [44].
Here we have obtained the series solution to the free

minimally coupled “massive” KG equation on a ð3þ 1ÞD
canonical curved background.4 And we have followed the
method shown by Elizalde [45] in 1988. Although the
acoustic situation is similar to the Schwarzschild geometry,
the metric (i.e., the acoustic metric) itself is quite different
from the standard Schwarzschild metric. As a result, our
present study here is quite different in some details from the
one done by Elizalde on the Scwarzschild background.

3Refer to Eq. (254) of Ref. [3]. 4Refer to the line element given by Eq. (55) of Ref. [6].
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Using the series solution truncated to the desired
accuracy, we show that the IR modes, having grown from
the UVmodes (supposedly Hawking-radiated), would have
a dominant power-law growth over space, which is
characterized by the quartic power of the UV frequency
of the original Hawking-radiated modes. This has the clear
indication that there remains the information of the relative
abundance of the Hawking-radiated quanta within the
growth of the IR modes generated by the UV Hawking-
radiated modes.
In view of the inevitability of the appearance of the

UV-IR coupling through the presence of the quantum
potential term in these analogue gravity models, the present
exercise of ours does provide a better look at the prevailing
situation in such systems.
This paper is organized in the following manner: In

Sec. II, we start from the stepping stone which is the
nonlocal Gross-Pitaevskii (GP) model for a BEC with
interaction. By adopting the Madelung ansatz and adding
the first-order fluctuations to the density and phase of the
single-particle BEC state, we develop a setting from the
condensed matter standpoint.

In Sec. III, we give the structure of the full model as
proposed by us, derive the general acoustic metric of a
ð3þ 1ÞD curved background, and form the covariant
“massive” KG equation for a free scalar field.
In Sec. IV, we consider the geometry of a canonical

acoustic black hole where the fluid flow is assumed to be
incompressible and spherically symmetric, and we derive
the exact solution to the massive KG equation on this
background, taking into account the radial part specifically.
In Sec. V, we conclude the paper with a detailed

discussion of our results.

II. THE SETTING

To study interacting nonuniform Bose gases at very
low temperatures, one uses the Bogoliubov prescription for
the field operator ψ̂ðt; rÞ that obeys the well-known
commutation relations ½ψ̂ðt; rÞ; ψ̂†ðt; r0Þ� ¼ δðr − r0Þ and
½ψ̂ðt; rÞ; ψ̂ðt; r0Þ� ¼ 0. In the Heisenberg picture, the
dynamics of this Bose field operator ψ̂ðt; rÞ is given by
the exact equation5

iℏ∂t ψ̂ðt; rÞ ¼ ½ψ̂ðt; rÞ; Ĥ� ¼
�
−
ℏ2

2m
∇2 þ Vextðt; rÞ þ

Z
ψ̂†ðt; r0ÞVðr0 − rÞψ̂ðt; r0Þdr0

�
ψ̂ðt; rÞ; ð1Þ

where the many-body Hamiltonian Ĥ of the full interacting Bose system, as inserted above, is given by

Ĥ ¼
Z �

ℏ2

2m
∇ψ̂†ðt; rÞ∇ψ̂ðt; rÞ

�
drþ

Z
ψ̂†ðt; rÞVextðt; rÞψ̂ðt; rÞdrþ

1

2

Z
ψ̂†ðt; rÞψ̂†ðt; r0ÞVðr0 − rÞψ̂ðt; rÞψ̂ðt; r0Þdr0dr;

ð2Þ

with ℏ ¼ h=2π, h being the Planck constant, m being
the mass of a single boson. Obviously, Vextðt; rÞ is an
external (trapping) potential, and Vðr0 − rÞ is the interac-
tion potential.
Now, to the lowest-order Born approximation and at very

low temperatures, one gets the license to replace the quantum
field operator ψ̂ðt; rÞ with the classical wave function ψðt; rÞ
of the condensate due to the macroscopic occupation of a
large number of atoms in a single quantum state (the BEC
ground state). The mean-field approximation is

ψ̂ðt; rÞ → hψ̂i ¼ ψðt; rÞ; ð3Þ

by which one sort of neglects the noncommutativity of the
field operators ψ̂ðt; rÞ as defined above. This mean-field
approximation has its implication from a physical point of
viewaswell—since ψ̂ðt; rÞ or ψ̂†ðt; rÞ act as “annihilation”or
“creation” operator(s), respectively, to annihilate or create a
particle at ðt; rÞ, now if a particle is subtracted from or added

to the condensate, it does not really change the physical
properties of the whole system, which is actually governed by
the order parameter ψðt; rÞ. Moreover, this switching from
ψ̂ðt; rÞ to the classical mean field ψðt; rÞ is accurate enough
when one does not consider the realistic potential6 but replaces
Vðr0 − rÞ with some effective soft potential Veffðr0 − rÞ.
The minimal GP model for the nonlocal [46] s-wave

scattering in a nonuniform BEC is characterized by the
following equation:

iℏ∂t ψðt; rÞ

¼
�
−
ℏ2

2m
∇2 þ Vextðt; rÞ þ gjψðt; rÞj2

�
ψðt; rÞ

þ κa2gψðt; rÞ∇2jψðt; rÞj2; ð4Þ

where ψðt; rÞ is the condensate wave function which plays
the role of the order parameter of the system, and thus

5See Eq. (5.1) of Ref. [35]. 6See the argument on p. 39 of Ref. [35].
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jψðt; rÞj2 ¼ nðt; rÞ is the density of the condensate, g ¼
4πℏ2a=m parametrizes the strength of the s-wave scattering
(between different bosons in the gas) considered at the
lowest-order Born approximation with a being the s-wave
scattering length, and κ is some numerical prefactor of the
nonlocal correction term corresponding to the specific
coordinate system under consideration (for instance,
κ ¼ 1=2 for a 3D Cartesian system [41]).
The interaction term gjψðt; rÞj2ψðt; rÞ in the local7 GP

equation comes by considering a δ-function approximation
to the interaction potential Vðr0 − rÞ in the s-wave inter-
action picture

R
ψ�ðt; r0ÞVðr0 − rÞψðt; r0Þdr0 in a nonuni-

form BEC; i.e., Vðr0 − rÞ≡ Veffðr0 − rÞ ¼ gδðr0 − rÞ is
substituted. This approximation is valid under the consid-
eration jaj ≪ n−

1
3, which is the condition of diluteness; i.e.,

the s-wave scattering length (that characterizes all the
effects of boson-boson interaction on the physical proper-
ties of the gas) is much smaller than the average inter-
particle separation. Now, in a BEC, one can tune the s-wave
scattering length by Feshbach resonance [see the arguments
later where ϵ would be introduced in Eq. (15)], and this
actually opens up the possibility of going away from the
diluteness limit of jaj ≪ n−

1
3. Keeping this in mind, a

correction term [i.e., the last term in Eq. (4)] can be derived

to bring in the effects of the nonlocality of the interactions.
A Taylor expansion of ψðt; r0Þ about r0 ¼ r in the inter-
action term

R
ψ�ðt; r0ÞVðr0 − rÞψðt; r0Þdr0 will give rise to

the minimal correction at the second order, since the first-
order correction vanishes due to spherical symmetry.
We have given a detailed description of the derivation of

the above mentioned Gross-Pitaevskii equation with a
nonlocal correction term in our previous paper [41]. In
Eq. (4), the last term on the rhs represents the minimal
nonlocal “correction” to the standard GP equation with
contact interactions. If the width of the interaction potential
is of the order of a microscopic length scale, say ς, then the
minimal correction term due to the nonlocality turns out to
be ∝ ς2. For the sake of simplicity, here we have taken the
interaction width to be of the order of the s-wave scattering
length, i.e. ς≃ a, which will not affect any of our results
qualitatively.
On considering a general single-particle state of the

BEC as

ψðt; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðt; rÞ

p
eiϑðt;rÞ=ℏ ð5Þ

by adopting the Madelung ansatz, Eq. (4) gives rise to a set
of coupled equations8:

Continuity equation: ∂t nðt; rÞ þ
1

m
∇:
�
nðt; rÞ∇ϑðt; rÞ

�
¼ 0. ð6Þ

Euler equation: ∂t ϑðt; rÞ þ
�½∇ϑðt; rÞ�2

2m
þ Vextðt; rÞ þ gnðt; rÞ − ℏ2

2m
∇2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðt; rÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðt; rÞp þ κa2g∇2nðt; rÞ

�
¼ 0: ð7Þ

It is quite evident that due to the presence of the nonlocal
correction term in Eq. (4), the modified form of the
quantum potential as obtained from the above Eq. (7) is
given by

Vquantum ¼ −
ℏ2

2m
∇2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðt; rÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðt; rÞp þ κa2g∇2nðt; rÞ: ð8Þ

At this stage, we purposely define two independent scales
in spherical polar coordinates as

x≡ xμ ¼ ðt; r; θ;ϕÞ and X ≡ Xμ̄ ¼ ðT ; R;Θ;ΦÞ; ð9Þ
viz. the small scale and the large scale, respectively. Here
μ; ν…, etc. along with μ̄; ν̄…, etc. are the two different sets
of free/dummy indices which separately run over the small

and large scales, respectively. Later in this section, we will
introduce the corresponding spacetime derivatives as well.
Now, we consider the fluctuations9 to the density [i.e.,

nðt; rÞ] and phase [i.e., ϑðt; rÞ] of the BEC state in the
following manner:

n → n0 þ n1ðX; xÞ; ϑ → ϑ0ðxÞ þ fϑ2ðXÞϑ1ðxÞg;
ð10Þ

i.e., n0 and ϑ0ðxÞ are basically the classical mean-field
density and phase, respectively, such that hni ¼ n0 and
hϑi ¼ ϑ0ðxÞ. These are obviously the macroscopic descrip-
tions of the condensate within the classical regime. On the
other hand, n1ðX; xÞ is the first-order density fluctuation,

8Here, the Euler equation [Eq. (7)] is written in Hamilton-
Jacobi form for convenience. One may refer to Eq. (5.15) of
Ref. [35].

7See Eq. (5.2) of Ref. [35].

9These linearized fluctuations in the dynamical quantities are
more generally referred to as acoustic disturbances. To be precise
and according to convention, the low-frequency, large-
wavelength disturbances are called wind gusts, while the
high-frequency, short-wavelength disturbances are described as
acoustic disturbances. Refer to p. 1770 of Ref. [6].
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and fϑ2ðXÞϑ1ðxÞg is the first-order phase fluctuation
(accompanying amplitude modulations). In other words,
these fluctuations are the quantum fields in nature and can
be described as “quantum acoustic representation”.10

Inserting Eq. (10) back into Eqs. (6) and (7), one comes
up with the linearized dynamics. It is to be carefully
noted here that, at this stage, the usual partial derivatives
involve independent multiple scales which are mixed and
clubbed together as of now. Since we are not operating with
these derivatives on the density and/or phase fields at the
moment, wemay opt to refrain ourselves from the necessary
modification of the derivative operator(s) for notational
convenience. But to keep everything notationally pellucid,
these usual partial derivative operators are just being
“renamed” by the same notation with a tilde over each
one for now. However, the modification of the derivative
operator(s) is explicitly performed later in Eq. (21).
Considering Vextðt; rÞ ¼ 0 and n0 as just a constant

for simplicity, the linearized dynamics is given by
Eq. (11) (obtained from the continuity equation) coupled
with Eq. (12) (obtained from the Euler equation) as the
following:

~∂tn1ðX;xÞ

þ 1

m
~∇:
�
n1ðX;xÞ ~∇ϑ0ðxÞþn0 ~∇fϑ2ðXÞϑ1ðxÞg

�
¼0 ð11Þ

and

~∂tfϑ2ðXÞϑ1ðxÞg þ
1

m
~∇ϑ0ðxÞ: ~∇fϑ2ðXÞϑ1ðxÞg þ gn1ðX; xÞ

−
ℏ2

2m
D̂2n1ðX; xÞ ¼ 0;

ð12Þ

where

D̂2 ≡ 2mg
ℏ2

�
ℏ2

4mgn0
− κa2

�
~∇2 ¼ 2mg

ℏ2
ξ2 ~∇2 ð13Þ

represents a second-order differential operator obtained by
linearizing Vquantum from Eq. (8) and ξ is the “modified”
healing length corresponding to our proposed nonlocal
model, given by

ξ ¼
�

ℏ2

4mgn0
− κa2

�
1=2

¼ ξ0ϵ; ξ0 ¼
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mgn0
p : ð14Þ

This ξ0 is nothing but the healing length
11 corresponding to

the usual localGPmodel, and ϵ is a parameter set to be a very
small quantity,

ϵ ¼
�
1

2
− 8πκa3n0

�
1=2

: ð15Þ

The s-wave scattering length a can practically be increased
from −∞ to ∞ near a Feshbach resonance, as experimen-
tally verified by Cornish et al. in 2000 [47]. Evidently, the
tuning of a will keep increasing or decreasing the value of
the parameter ϵ as per requirement [46,48]. In fact, by
increasing a through Feshbach resonance, the value of
8πκa3n0 can be made as close to 1

2
as possible; and hence,

naturally, ϵ can be experimentally set to be a very small
quantity via Eq. (15).
From Eq. (12), n1ðX; xÞ can be obtained as the

following:

n1ðX;xÞ

¼−Â
�
~∂tfϑ2ðXÞϑ1ðxÞgþ

1

m
~∇ϑ0ðxÞ: ~∇fϑ2ðXÞϑ1ðxÞg

�
;

where Â¼
�
g−

ℏ2

2m
D̂2

�
−1≃g−1ð1þξ2 ~∇2Þ: ð16Þ

Here, ϵ being a very small quantity [as given by Eq. (15)]
is exactly what would allow us to take a binomial
approximation above. This expression of n1ðX; xÞ is
again substituted back into Eq. (11) to get a second-order
partial differential equation in terms of the phase fluctua-
tions, i.e.

~∂t

�
−Â

�
~∂tfϑ2ðXÞϑ1ðxÞg þ

1

m
~∇ϑ0ðxÞ: ~∇fϑ2ðXÞϑ1ðxÞg

��

þ 1

m
~∇:
��

−Â
�
~∂tfϑ2ðXÞϑ1ðxÞg þ

1

m
~∇ϑ0ðxÞ: ~∇fϑ2ðXÞϑ1ðxÞg

��
~∇ϑ0ðxÞ þ n0 ~∇fϑ2ðXÞϑ1ðxÞg

�
¼ 0: ð17Þ

In the present context of passing a sonic disturbance through a barotropic inviscid fluid,12 the background fluid flow vðxÞ
is considered to be vorticity free; or in other words, locally irrotational, i.e.

10Refer to Eq. (242) of Ref. [3].
11Refer to Eq. (5.20) of Ref. [35].
12For a detailed justification, refer to p. 9 of Ref. [3].
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vðxÞ ¼ 1

m
~∇ϑ0ðxÞ≡ 1

m
∇ϑ0ðxÞ: ð18Þ

See Eq. (21) for the justification of ~∇ → ∇ on ϑ0ðxÞ above.
Clearly, the classical mean-field phase ϑ0ðxÞ of the BEC
state [see Eq. (10)] now gets to act as the velocity
potential13 here in Eq. (18).
This background velocity being irrotational plays a very

crucial role in determining the metric (which eventually
turns out to be Lorentzian, as seen by the phonons inside
the fluid medium) of this particular ð3þ 1ÞD curved
spacetime. In the present context, the fluid motion is
assumed to be completely nonrelativistic; i.e., jvj ≪ c,
where c≈2.997×108ms−1 is the speed of light in vacuum.
It is worth mentioning here that the local speed of

sound14 inside the fluid medium is given by

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0g=m

p
; ð19Þ

so obviously 0 < cs ≪ c in magnitude. If one starts by
assuming the density n0 to be position independent (which
is pretty much the argument for considering a canonical

acoustic black hole out of an incompressible and spheri-
cally symmetric fluid flow), due to the barotropic
assumption, the pressure also becomes position indepen-
dent. Thus, for a barotropic fluid, cs becomes a position-
independent constant; refer to Eq. (25) of Ref. [3]. In our
analysis, the above Eq. (19) effectively keeps cs as a
constant throughout. This is an approximation on our part
in the present context. We make this approximation here
because we do not need to consider the actual structure of
the sonic horizon in that detail. Obviously, when cs
becomes position dependent, the sonic horizon would have
a spread over space. But what we are basically concerned
with here is analyzing “secondary” waves (low-frequency
sonic modes) being generated outside the acoustic horizon
by gaining energy from the “primary” waves (high-
frequency Hawking-radiated sonic modes) due to quan-
tum-potential-induced UV-IR coupling in a ð3þ 1ÞD
curved spacetime. Hence, for that reason, we can safely
regard cs to be a position-independent constant, and this
approximation is legit.
In terms of the velocity components, Eq. (17) can now be

rewritten as

~∂t

h
−Â

�
~∂tfϑ2ðXÞϑ1ðxÞg þ vðxÞ: ~∇fϑ2ðXÞϑ1ðxÞg

�i

þ ~∇:
�h

−Â
�
~∂tfϑ2ðXÞϑ1ðxÞg þ vðxÞ: ~∇fϑ2ðXÞϑ1ðxÞg

�i
vðxÞ þ n0

m
~∇fϑ2ðXÞϑ1ðxÞg

�
¼ 0; ð20Þ

where Â≡ g−1ð1þ ξ2 ~∇2Þ; see Eq. (16).
Let us note the following features of the above Eq. (20):
(1) Essentially, our choice of coordinate system is the

spherical polar coordinates throughout this paper.
(2) Each operation with Â naturally contains a Lap-

lacian which is considered to be at small scales [i.e.,
~∇2 → ∇2 ≡ ∂ j∂ j, where j≡ ðr; θ;ϕ) is the dummy
index] that comes with a prefactor of ξ2. But
ξ2 ¼ ξ20ϵ

2; see Eq. (14). This fact is being stressed
now, since we will be constructing a model here up
to Oðϵ2Þ accuracy. Hence, in the following pre-
scription, we have to consider Â to involve only the
small-scale derivatives and keep it unperturbed,
because even the small-scale Laplacian in Â already
bears a ϵ2 prefactor.

Now, we explicitly mention the decomposition of the
spacetime derivatives over independent multiple scales in
order to separate out the dynamics up to Oðϵ2Þ. The
multiple-scale perturbation as considered here is defined by

~∂μ → ∂μ þ ϵ∂ μ̄; ð21Þ

where μ and μ̄ on the rhs are merely the free indices subject
to the restriction15 as mentioned previously under Eq. (9).
From now on, throughout the paper,
(1) By “small-scale spacetime derivative,” we refer to

this ∂μ ≡ ∂
∂xμ on the rhs of Eq. (21).

(2) By “large-scale spacetime derivative,”we refer to the
above mentioned ∂ μ̄ ≡ ∂

∂Xμ̄.

III. THE MODEL: ANALOGUE
GRAVITY PERSPECTIVE

In the following prescription, we will be deriving our
proposed model in detail, where we show that the under-
lying nonrelativistic BEC system under consideration is
very much capable of simulating the massive KG equation

14For reference, in the context of fluid dynamics, see Eq. (4.15)
of Ref. [35].

13Though it is quite obvious from Eq. (18), we still write the
velocity components as vðxÞ ¼ vrðrÞr̂þ vθðrÞθ̂ þ vϕðrÞϕ̂ for the
sake of clarity, where vrðrÞ ¼ 1

m ∂rϑ0ðxÞ, vθðrÞ ¼ 1
m

∂θϑ0ðxÞ
r , and

vϕðrÞ ¼ 1
m

∂ϕϑ0ðxÞ
r sin θ .

15It is quite redundant from Eq. (21) that ~∂t → ∂t þ ϵ∂T ,
~∂r → ∂r þ ϵ∂R, ~∂θ → ∂θ þ ϵ∂Θ, ~∂ϕ → ∂ϕ þ ϵ∂Φ.
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for some scalar field in a curved background. Since many
elementary particles in nature do have nonzero mass, this
happens to be a very significant and essential step, as
already pointed out by Visser et al. in 2005 [37], towards
building some realistic analogue models rather than just
providing some fictitious mathematical methodology.
In due course, we will deduce the explicit structure of the

general acoustic metric in ð3þ 1ÞD, and here we will stick
to the signature16 of the metric tensor as ð−;þ;þ;þÞ.

A. Dynamics at different orders of ϵ

Now, Eq. (21) is applied to Eq. (20) and gives rise to a set
of equations at different orders of ϵ. The full model,
considered till Oðϵ2Þ, is given by

Oð1Þ ⇒ ∂μfμν∂νϑ1ðxÞ ¼ 0; ð22Þ

OðϵÞ ⇒ f∂μf
μμ̄
1 ∂ μ̄ þ ∂ ν̄fν̄ν1 ∂νgðϑ2ðXÞϑ1ðxÞÞ ¼ 0; ð23Þ

and

Oðϵ2Þ ⇒ ∂ μ̄f
μ̄ ν̄
2 ∂ ν̄ϑ2ðXÞ −m2ϑ2ðXÞ ¼ 0; ð24Þ

where ½fμνðxÞ�, ½fμμ̄1 ðx; XÞ� or ½fν̄ν1 ðX; xÞ� and ½fμ̄ ν̄2 ðXÞ� are
all constructed as symmetric 4 × 4 matrices explicitly
written later. Here m is the mass of the large-length-scale
phonon modes, while it is strikingly found to be a finite
function of the ϑ1ðxÞ field, and thus Eq. (24) is the massive
free KG equation for the field amplitude ϑ2ðXÞ.
It is important to acknowledge the fact that, in the

standard literature, one usually identifies this Eq. (22) as the
massless minimally coupled KG equation for a scalar field
ϑ1ðxÞ; see Eqs. (248) and (254) of Ref. [3]. But in our
present framework, on top of this usual massless picture at
Oð1Þ, we come up with a massive KG equation in larger-
length scales at Oðϵ2Þ subject to some constraint, given by
Eq. (23), obtained at the intermediate OðϵÞ.
In the beginning, the full expression of the mass term in

Eq. (24) contains a factor17 of R2 sinΘ. But through the
process of scale reversion, as we are about to see in the next
section, this factor of R2 sinΘ would obviously become
r2 sin θ, giving rise to a rescaled mass m, which gets
inserted into the scale-reversed massive KG equation [i.e.,
Eq. (31)] later. From now on, throughout the paper,

whenever we speak about m, we would only refer to this
rescaledm appearing in Eq. (31). The general expression of
m, which was obtained using the Mathematica 9.0 pack-
age, is extremely lengthy, and hence it is not shown
explicitly in this paper. However, after some physical
approximations, a relatively tidier version is presented
later by Eq. (A1) in Appendix A.
Later, in Sec. IV D, while deriving the full mass term, we

will talk about and clarify these steps one by one in detail.
Now we are going to show the structures of the f-matrices
to present our model. At Oð1Þ in Eq. (22), the ½fμνðxÞ�
matrix is of the following form:

½fμν� ¼ r2 sin θ
g

0
BBBBBB@

−1 −vr − vθ
r − vϕ

r sin θ

−vr ðc2s − v2rÞ − vrvθ
r − vrvϕ

r sin θ

− vθ
r − vθvr

r
ðc2s−v2θÞ

r2 − vθvϕ
r2 sin θ

− vϕ
r sin θ − vϕvr

r sin θ − vϕvθ
r2 sin θ

ðc2s−v2ϕÞ
r2sin2θ

1
CCCCCCA

:

ð25Þ

In Eq. (23), ½fμμ̄1 ðx; XÞ� and ½fν̄ν1 ðX; xÞ� are the two
matrices with each and every corresponding entry being
exactly the same, i.e.,

½fμμ̄1 �≡ ½fν̄ν1 �

¼ R2 sinΘr2 sin θ
g

×

0
BBBBBB@

−1 −vr − vθ
R − vϕ

R sinΘ

−vr ðc2s − v2rÞ − vrvθ
R − vrvϕ

R sinΘ

− vθ
r − vθvr

r
ðc2s−v2θÞ

Rr − vθvϕ
Rr sinΘ

− vϕ
r sin θ − vϕvr

r sin θ − vϕvθ
Rr sin θ

ðc2s−v2ϕÞ
R sinΘ r sin θ

1
CCCCCCA

:

ð26Þ

And finally, the ½fμ̄ ν̄2 ðXÞ�matrix, appearing in Eq. (24), is
given by

½fμ̄ ν̄2 � ¼ R2 sinΘ
g

0
BBBBBB@

−1 −vr − vθ
R − vϕ

R sinΘ

−vr ðc2s − v2rÞ − vrvθ
R − vrvϕ

R sinΘ

− vθ
R − vθvr

R
ðc2s−v2θÞ

R2 − vθvϕ
R2 sinΘ

− vϕ
R sinΘ − vϕvr

R sinΘ − vϕvθ
R2 sinΘ

ðc2s−v2ϕÞ
R2sin2Θ

1
CCCCCCA

:

ð27Þ

Up to this point, we have pretty much sketched the
basic introduction of our proposed model, describing the
dynamics of the phonon modes at different length scales
and at different orders of the parameter ϵ. Our main

16In fact, this convention of ð−;þ;þ;þÞ is clearly the reason
that leads to generating a “−” sign in front of m2 in Eq. (24).

17This can be regarded as a coordinate artifact due to the
spherical polar coordinates. In Cartesian coordinates, the for-
mation of ∂ μ̄f

μ̄ ν̄
2 ∂ ν̄ϑ2ðXÞ while constructing Eq. (24) would not

have required a multiplication by any factor from the left, and
consequently, the large-scale signature would have been com-
pletely absent in the expression of m. In our previous paper [see
Eq. (23) of Ref. [41]], we were able to construct a compact form
to present the mass term because our formalism was in ð3þ 1ÞD
Cartesian coordinates.
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motive is to try to investigate the massive KG equation
found at Oðϵ2Þ in detail through a simple mathematical
framework.

B. Scale reversion of the dynamics (∂μ̄ →
1
ϵ∂μ)

In our previous paper [41], we analyzed the situation in a
flat background. But, for the large-scale dynamics, to see
the curvature of spacetime, we must revert back system-
atically to the small-length scales, and this is exactly where
our present analysis stands out to be very different from our
previous analysis on flat spacetime.
On reversion back to the small-scale dynamics from the

large scales, each large-scale spacetime derivative generates
a factor of 1=ϵ (i.e., ∂ μ̄ →

1
ϵ ∂μ) while undergoing the

switching of scales.
Till now, we have yet to talk about the constraint

equation we found at OðϵÞ; see Eq. (23). First of all, we
would start by identifying the construction of two matrices,
viz. ½fμμ̄1;Iðx; XÞ� and ½fν̄ν1;II�ðX; xÞ, given by

ðR2 sinΘ × ½fμμ̄1;I�Þ ¼ ½fμμ̄1 �≡ ½fν̄ν1 � ¼ ðr2 sin θ × ½fν̄ν1;II�Þ;
ð28Þ

with reference to Eq. (26). This readily gives the permit to
rewrite Eq. (23) in the following manner:

ððR2sinΘÞ×∂μf
μμ̄
1;I∂ μ̄þðr2sinθÞ×∂ ν̄fν̄ν1;II∂νÞfϑ2ðXÞϑ1ðxÞg

¼0.

ð29Þ

Through scale reversion, R2 sinΘ written above naturally
becomes r2 sin θ ≠ 0, ∂ μ̄ →

1
ϵ ∂μ as just mentioned above,

and we find that both ½fμμ̄1;Iðx; XÞ� and ½fν̄ν1;IIðX; xÞ� strikingly
take the form of ½fμνðxÞ� as given by Eq. (25), and the field
amplitude ϑ2ðXÞ gets scale-transformed to give rise
to a new complex scalar function, hence we write
fϑ2ðXÞϑ1ðxÞg → ΞðxÞ. Thus, Eq. (29) is rewritten in the
scale-reversed form as

∂μfμν∂νΞðxÞ ¼ 0: ð30Þ

Hence, we come up with exactly the same dynamics for
ΞðxÞ atOðϵÞ as we had obtained for only ϑ1ðxÞ atOð1Þ; see
Eq. (22). This clearly indicates that we are not going to
get anything new at this stage, because OðϵÞ dynamics
practically captures the same field over small-length scales.
This happens particularly because there is no source term
at OðϵÞ.
So we have to move on to analyzing the next order,

i.e. Oðϵ2Þ dynamics, to see the new structure in the field
after having it reverted back to the small scales. By

inspection, it is quite evident that ½fμ̄ ν̄2 ðXÞ� in Eq. (24)
would again take the form exactly as ½fμνðxÞ� on switching
back to the small scales and ϑ2ðXÞ → φðxÞ as mentioned
already. Therefore, Eq. (24) gets scale-transformed as the
following:

∂μfμν∂νφðxÞ − ϵ2m2φðxÞ ¼ 0; ð31Þ

where ½fμν� is already given by Eq. (25).
Equation (31) is purposely multiplied by a real scalar

constant g=cs and gives rise to

∂μf
μν
New∂νφðxÞ −

g
cs

ϵ2m2φðxÞ ¼ 0; ð32Þ

where the contravariant f-matrix is now scaled up as

fμνNew ¼ g
cs

½fμν�

¼ r2 sin θ
cs

0
BBBBBB@

−1 −vr − vθ
r − vϕ

r sin θ

−vr ðc2s − v2rÞ − vrvθ
r − vrvϕ

r sin θ

− vθ
r − vθvr

r
ðc2s−v2θÞ

r2 − vθvϕ
r2 sin θ

− vϕ
r sin θ − vϕvr

r sin θ − vϕvθ
r2 sin θ

ðc2s−v2ϕÞ
r2sin2θ

1
CCCCCCA

:

ð33Þ

This process of scale reversion is actually a very important
step here. Had we not switched back to the small scales, the
spacetime metric arising out of ½fμ̄ ν̄2 ðXÞ� corresponding to
the large-scale dynamics would have defined the back-
ground geometry to be effectively flat, because its entries
are basically the velocity field components, all of which
were retained at small scales [see Eq. (27)] and thus act as
just constants with respect to the large-scale spacetime
derivatives.

C. The covariant massive KG equation

In order to cast the above Eq. (32) into a GCT-invariant
(i.e., invariance under General Coordinate Transformation
or in mathematical language - Diffeomorphism) form, it is
required to identify the corresponding covariant structure,
and hence the introduction of the effectivemetric (or in other
words, the acoustic metric) in place of the respective f-
matrix is essential. From this point onward,we talk about the
covariant massive minimally coupled free KG equation.
Let ½gμνðxÞ� be the general acoustic metric that actually

defines the ð3þ 1ÞD curved spacetime under consideration
with its determinant, given by g ¼ det½gμνðxÞ�. Considering
Eq. (32), one identifies

fμνNew ¼
ffiffiffiffiffi
jgj

p
gμν ð34Þ

SUPRATIK SARKAR and A. BHATTACHARYAY PHYSICAL REVIEW D 96, 064027 (2017)

064027-8



⇒ det½fμνNew� ¼ det½
ffiffiffiffiffi
jgj

p
gμν� ¼ ð

ffiffiffiffiffi
jgj

p
Þ4 det½gμν�

¼ ð
ffiffiffiffiffi
jgj

p
Þ4g−1 ¼ g:

∵ det½fμνNew� ¼ −c2sr4sin2θ; ∴ g ¼ −c2sr4sin2θ;

and obviously; gμν ¼ 1ffiffiffiffiffijgjp fμνNew ¼ 1

csr2 sin θ
fμνNew:

ð35Þ

Now, from Eq. (35), it is trivial to find the acoustic metric,
which is of the following form:

½gμν� ¼

0
BBB@

−ðc2s − v2Þ −vr −vθr −vϕr sin θ
−vr 1 0 0

−rvθ 0 r2 0

−r sin θvϕ 0 0 r2 sin2 θ

1
CCCA

:

ð36Þ

It should be noted that, in general relativity, the spacetime
metric (which does bear the feature of the background
geometry) is related to the distribution of matter (i.e., the
stress-energy tensor) through Einstein’s field equations,
whereas the acoustic metric ½gμνðxÞ� here happens to be
related to the background velocity field [vðrÞ] as well as the
local speed of sound (cs) in a much simpler algebraic
fashion. Some striking features of this ½gμνðxÞ� from its
topological aspects and regarding “stable causality” have
been discussed by Visser in pp. 1773–1774 of Ref. [6].
Finally, Eq. (32) is rewritten in the standard covariant

form, given by

1ffiffiffiffiffijgjp ∂μð
ffiffiffiffiffi
jgj

p
gμν∂νÞφðxÞ −

1ffiffiffiffiffijgjp g
cs

ϵ2m2φðxÞ ¼ 0;

i:e: ð∇μ∇μ −M2ÞφðxÞ ¼ 0; ð37Þ
where∇μ is obviously the covariant derivative, and the final
mass term M is determined through

M2 ¼ 1ffiffiffiffiffijgjp g
cs

ϵ2m2; ð38Þ

where g ¼ −c2sr4 sin2 θ in our present model [refer to
Eq. (35)].
One thing to be understood is that if the mass term is

dropped (i.e., M ¼ 0) from the solution of the scalar
function φðxÞ as determined through Eq. (37) [or, in other
words, Eq. (31)], then what we come up with as a solution
is nothing but ϑ1ðxÞ via Eq. (22).

IV. THE CANONICAL ACOUSTIC BLACK HOLE

With a strong motive to examine how closely the
acoustic metric can mimic the standard Schwarzschild
geometry in gravity, one usually considers some specific
symmetry in the analogue spacetime in order to move
ahead. If one starts by considering an analogue gravity

scenario in a spherically symmetric flow (we will
consider the flow to be nonrelativistic here) of a barotropic,
incompressible, inviscid fluid, one comes up with a
solution called the canonical acoustic black hole, found
by Visser [6] in 1998.
In principle, we would restrict ourselves only to

stationary,18 nonrotating, asymptotically flat canonical
acoustic black holes. Thus, in our following prescription,
the notions of apparent and event horizons (acoustic)19

coincide, and the distinction becomes immaterial. In the
language of standard general relativity, an event horizon is a
null hypersurface that separates those spacetime points that
are connected to infinity through a timelike path from those
that are not [49].
Since a canonical acoustic black hole (BH), as consid-

ered here, is indeed stationary and asymptotically flat,
every event horizon is a Killing horizon for some Killing
vector field—say, σμ. Due to the time-translational and
axial symmetry of the metric [refer to Eq. (43) later],
obviously there are two Killing vector fields, viz. σðtÞ ≡ ∂t

and σðϕÞ ≡ ∂ϕ, which go from timelike to spacelike and
vice versa at the event horizon. The Killing horizon is
formally defined to be the null hypersurface on which the
Killing vector field becomes null.
The acoustic (Killing) horizon is formed once the radial

component of the background fluid velocity (vr) exceeds
the local speed of sound (cs); refer to Eq. (45) of Ref. [6].

A. Massive KG equation in canonical spacetime

Since the classical mean field n0 and ϑ0ðxÞ must satisfy
the continuity equation [Eq. (6)], clearly

0 ¼ ∂tn0 þ
1

m
∇:ðn0∇ϑ0ðxÞÞ ¼ n0∇:vðxÞ

⇒ jvðxÞj ∝ 1

r2
: ð39Þ

And thus, through a normalization constant finite r0 > 0,
the background velocity field20 is set to be

jvðrÞj ¼ vr ¼ cs
r20
r2
; ð∀ 0 < r < ∞Þ: ð40Þ

Considering vθ ¼ 0 ¼ vϕ, Eq. (36) gives rise to the exact
acoustic metric that describes the present scenario. The line
element is given by

18Stationary solutions are of special interest and significance
because they are regarded as the “end states” of a gravitational
collapse.

19The event horizon is a global feature; it could be difficult to
actually locate such a boundary when handed with a metric in an
arbitrary set of coordinates. Usually, it is defined to be the
boundary of the region from which even the null geodesics cannot
escape—strictly speaking, this is the future event horizon.

20Refer to Eq. (54) of Ref. [6].
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ds2¼−c2sdt2þðdr�vrdtÞ2þr2ðdθ2þsin2θdϕ2Þ: ð41Þ

It is to be noted that when vr > 0, which is also the usual
convention, there would be a “−” sign in front of vrdt in the
second term on the rhs of the above Eq. (41). Otherwise,
there would be a “þ” sign when vr < 0; i.e., when the fluid
flow is considered to be in the opposite direction.
Instead of the laboratory time t, one can now introduce

the analogue Schwarzschild time coordinate τ via the
simple coordinate transformation as

t → τ ¼ t ∓
�
r0
2cs

tan−1ðr=r0Þ þ
r0
4cs

ln

				 1 −
r
r0

1þ r
r0

				
�
; ð42Þ

and, using Eqs. (40) and (41), it readily gives rise to
a somewhat “Schwarzschild-like” line element21 describing
a canonical acoustic black hole, given by

ds2 ¼ −
c2s
r4

ΔðrÞdτ2 þ r4

ΔðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ;

where ΔðrÞ ¼ r4 − r40: ð43Þ

It is redundant to read off the acoustic metric from the
above line element [Eq. (43)] as the following:

½gμν�Canonical BH ≡
�
−
c2s
r4

ΔðrÞ; r4

ΔðrÞ ; r
2; r2sin2θ

�
; ð44Þ

and we see that the spacetime of a canonical acoustic BH is
asymptotically flat and naturally has a “physical singular-
ity” at r ¼ 0, which is again quite obvious from Eq. (40)—
the background fluid velocity diverges at the center of the
canonical acoustic BH. Evidently, r0 is the Killing horizon
(or the sonic horizon, to be more precise) of the canonical
acoustic black hole. As far as the physical picture is
concerned, beyond this point r ¼ r0; the fluid essentially
becomes supersonic with respect to an observer sitting at
some large r → ∞; i.e., v ≥ cs holds true ∀r ≤ r0, which is
again quite obvious from Eq. (40) as well.
Through the acoustic metric ½gμνðxÞ�Canonical BH in

Eq. (44), the covariant massive KG equation [Eq. (37)]
in the spacetime of a canonical acoustic black hole boils
down to the following form:

−
r4

c2sΔðrÞ
∂ττφðτ; rÞ þ

1

r2
∂r

�
ΔðrÞ
r2

∂rφðτ; rÞ
�

þ 1

r2 sin θ
∂θðsin θ∂θφðτ; rÞÞ þ

1

r2sin2θ
∂ϕϕφðτ; rÞ

−M2φðτ; rÞ ¼ 0. ð45Þ
The above Eq. (45) has some important features:
(1) The spacetime given by Eq. (43) is clearly static

and has a time-translational symmetry. Thus, the

temporal part of φðτ; rÞ that solves the above differ-
ential equation [Eq. (45)] can easily be separated out
as e−iωτ (∀0 < ω < ∞), where ω is the frequency
(or equivalently, the energy in ℏ ¼ 1 units) of the
particles associated with the φðτ; rÞ field.

(2) ½gμνðxÞ�Canonical BH describes a spacetime that also
has a rotational invariance with respect to ϕ, and
similarly the azimuthal part of the solution to
Eq. (45) is obviously eimϕ, where m ¼ �1;�2;
�3;… is the azimuthal quantum number.

(3) From Eq. (45), it is evident that the general angular
solution can be given in terms of the standard
spherical harmonics,

Yl
mðθ;ϕÞ ¼ Pl

mðcos θÞeimϕ; ð46Þ
where Pl

m’s are obviously the Legendre poly-
nomials, with l being an integer such that jmj ≤ l.

B. The radial solution

Therefore, to solve Eq. (45), we can consider the
following ansatz:

φðτ; rÞ ¼ 1

r
RðrÞYl

mðθ;ϕÞe−iωτ; ð47Þ

where RðrÞ is just the radial function to be determined.
Substituting Eq. (47) back into Eq. (45), we find that

1

r2
d
dr

�
ΔðrÞ
r2

d
dr

�
RðrÞ
r

��

þ
�
ω2r4

c2sΔðrÞ
−
�
M2 þ lðlþ 1Þ

r2

��
RðrÞ
r

¼ 0: ð48Þ

Now, this has become a linear second-order ordinary
differential equation in r for an undetermined function
RðrÞ. We go on reducing Eq. (48) further to check the
singularity (if any) at various points, because in order to
solve the radial differential equation, we are about to pick
the Frobenius ansatz for RðrÞ and adopt the method of
series solution.
By inspection, we find the nature of singularities (for

detailed explanations, see Appendix B) of the above
differential equation [Eq. (48)] as follows:
(1) r ¼ 0 is a regular singular point. (It is to be

understood clearly that r ¼ 0 is indeed a point of
physical singularity for the metric [Eq. (44)] itself,
but not for the above ordinary differential equation
[Eq. (48)]. For Eq. (48), r ¼ 0 is a regular or
removable singular point. Refer to Appendix B
for a detailed argument).

(2) r ¼ r0 is also a regular singular point.
(3) The point r → ∞ is an irregular singular point.
We introduce a new coordinate χ in order to simplify the

structure of the above Eq. (48). The coordinate trans-
formation, actually known as the Eddington-Finkelstein21Refer to Eq. (56) of Ref. [44].
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tortoise coordinates (also known as Regge-Wheeler coor-
dinates), basically allows one to use the new coordinate χ
even in the interior region of the acoustic black hole (i.e.,
when r < r0).
In the present context,22 the coordinate transformation is

given by

r → χ ≡ χðrÞ ¼ � r
cs

∓ r0
2cs

tan−1
�
r
r0

�
� r0
4cs

ln

				 1 −
r
r0

1þ r
r0

				:
ð49Þ

Conventionally, χ ¼ þ r
cs
− r0

2cs
tan−1ð rr0Þ þ

r0
4cs

ln j 1−
r
r0

1þ r
r0

j, and
it is evident that
(1) χ approaches 0 as r → 0.
(2) χ approaches −∞ as r → r0 from either side of the

acoustic Killing horizon.
(3) As r → þ∞, χ approaches þ∞.

Hence, in the exterior region of the acoustic black hole, i.e.
∀r0 < r < þ∞, χ is found to be continuous: −∞ <
χ < þ∞.
The tortoise coordinate is intended to grow infinitely at

the appropriate rate such as to cancel out the singular
behavior of the spacetime at r ¼ r0 [the coordinate singu-
larity is quite vivid from Eq. (44)], which is essentially
nothing but the artifact of the choice of coordinates.
Via the above transformation described in Eq. (49), one

can easily reduce Eq. (48) to the following form:

d2RðrÞ
dχ2

þ ½ω2 −
�
M2 þ l̄

r2
þ 4r40

r6

�
c2s

�
1−

r40
r4

�
�RðrÞ ¼ 0;

where l̄≡ lðlþ 1Þ: ð50Þ

Our aim is to find a series solution of the above Eq. (50)
valid in the exterior region of the spacetime; i.e., ∀r > r0.

We pick an ansatz, as chosen by Elizalde [45], of the
following form:

RðrÞ ¼ αe�i½kχþhðρÞ�; ð51Þ

where

ρ ¼ 1 −
r0
r
; hðρÞ ¼ β lnð1 − ρÞ þ

X∞
n¼1

ðanρnÞ;

necessarily; a1 ≠ 0: ð52Þ

Here α is any arbitrary constant, while k in Eq. (51) and β
in Eq. (52) are the constants to be determined. One should
note that all the an’s above are nothing but the Frobenius
coefficients.
In order to avoid any conflict of notations, we would like

to clearly mention here that this n in Eq. (52) is simply the
dummy index of the infinite sum and has nothing to do with
the nwhich was introduced previously as density in Eq. (5).
From now on, we would only consider the þ sign in front
of i on the rhs of Eq. (51), but one should notice that an
ansatz with just −i there would also do equally.
Clearly, in the exterior region, i.e. ∀r ≥ r0, we always

have 0 ≤ ρ ≤ 1 [see Eq. (52)], because

lim
r→r0

ρ ¼ 0; lim
r→∞

ρ ¼ 1: ð53Þ

This is exactly what justifies the form of hðρÞ as considered
in Eq. (52) to be legit in the exterior region.
Most of the tedious algebraic expressions are explicitly

shown in the appendices, and we will be sketching only the
important steps here. Inserting Eqs. (51) and (52) back into
Eq. (50), followed by further simplifications [see Eqs. (C1)
and (C2) in Appendix C for details], one can rewrite
Eq. (50) in terms of the variable ρ as the following:

�
−
1

r20

�
ð1−ρÞ10

×
�

k2r20
ð1−ρÞ10þ

2βkðρ3−4ρ2þ6ρ−4Þρr0cs
ð1−ρÞ9 þβc2s



1

ð1−ρÞ4−1

�

β− i

ð1−ρÞ4−βþ5i
�

þ
X∞
n¼1



n2ðρ3−4ρ2þ6ρ−4Þ2a2nc2s ρ2n

ð1−ρÞ6 −
1

ð1−ρÞ8 ðicsnan ρ
n ðρ3−4ρ2þ6ρ−4Þð−csð1−ρÞ½nðρ4−5ρ3þ10ρ2−10ρþ4Þ

þρð2iβðρ3−4ρ2þ6ρ−4Þþ5ρ3−19ρ2þ26ρ−14Þ�−2ikr0ÞÞ
��

þ
�
ω2þ 1

r20
fc2sρðρ−1Þ2ðρ3−4ρ2þ6ρ−4Þðl̄þ4ðρ−1Þ4ÞþM2ρðρ3−4ρ2þ6ρ−4Þr20c2sg

�
¼0: ð54Þ

22In the case of the usual Schwarzschild metric in gravity, this tortoise coordinate becomes χ ¼ rþ rs ln j r
rs
− 1j, where rs is the

Schwarzschild radius. See Eq. (5.108) of Ref. [49].
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By clubbing the corresponding coefficients of the
various powers of ρ from the first square bracket of the
above equation, one keeps all of them on the left-hand side,
while the second square bracket of the above equation is
giving rise to the n-independent terms, all of which are
moved to the right-hand side. Thus, the above Eq. (54) can
be neatly rewritten as Eq. (C3); see Appendix C.
In order to find the recursion relation, this Eq. (C3) can

now be compacted as

lhs of Eq: ðC3Þ

¼
X∞
n¼1

X10
k¼0

ρnþkfIkðnÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
S1ðsayÞ

þ
X∞
n¼1

X10
p¼0

ρ2nþpfIIpðnÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S2ðsayÞ

⇕

rhs of Eq: ðC3Þ ¼ F ðρÞ≡ F0ρ
0 þ F1ρ

1 þ � � � þ F11ρ
11;

ð55Þ

having identified that the respective coefficient(s) of each
power of ρ on both sides by some specified functions, given
by fIkðnÞ (∀k) and fIIpðnÞ (∀p), are obviously defined in
consistence with their corresponding explicit forms written
on the lhs of Eq. (C3). On the other hand, F0; F1;…; F11,
as described above in Eq. (55), are all independent of n.
These are the respective coefficients of ρ0; ρ1;…; ρ11 in the
full source term F ðρÞ.
Our motive is to exhaust each and every term of

F ðρÞ by the corresponding term(s) picked from S1 and
S2 via the power matching of ρ on both sides of Eq. (C3)
and then try investigating the recursion relation. For
the sake of clarity and lucidness, a vast part of the
calculation23 is shown in detail and step by step in
Appendix C.
At this point, we need to refer to Eqs. (C6), (C9), (C11),

and (C13) from Appendix C, and having these equations
clubbed together, one can rewrite Eq. (55) in the following
manner:

∵ ðS1 þ S2Þ ¼ F ðρÞ

⇒
X12−k−1
n¼1

X10
k¼0

ρnþkfIkðnÞ þ
X12−p12

−1

n¼1

X10
p1¼0;2;::

ρ2nþp1fIIp1
ðnÞ þ

X13−p22
−1

n¼1

X9
p2¼1;3;::

ρ2nþp2fIIp2
ðnÞ

þ
X∞

j¼12;13;::

�X10
k¼0

fIkðj − kÞ þ
X10

p¼0;1;::

fIIp

�
j − p
2

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

∀ ðj−pÞ¼0;2;4;…

�
ρj

¼ F0ρ
0 þ F1ρ

1 þ F2ρ
2 þ � � � þ F11ρ

11

½obviously; F0 ¼ −ω2r20; F11 ¼ 0 from the rhs of Eq: ðC3Þ�: ð56Þ

From the above Eq. (56), now one can evaluate the
undetermined constants (viz. k, β, an’s) one by one which
were introduced previously in Eqs. (51) and (52).
(1) By equating the coefficients of ρ0 on both sides of

Eq. (56), we get

−k2r20 ¼ −ω2r20 ⇒ k ¼ �ω: ð57Þ

It is to be noted that we take k ¼ þω from now
on in order to consider only the outgoing modes
from the sonic horizon towards the external
observer.

(2) By equating the coefficients of ρ1 on both sides of
Eq. (56), we get

8a1csð−r0ωþ2icsÞ
−4csðcsð4iβþ l̄þ4Þþr20M

2cs−2βr0ωÞ¼0

⇒ β¼2a1ð4c2sþr20ω
2Þþr0ωcsðl̄þM2r20þ4Þ
8c2sþ2r20ω

2

þ i
�
c2sðl̄þM2r20þ4Þ

4c2sþr20ω
2

�
:

ð58Þ

(3) By equating the coefficients of ρ2 on both sides of
Eq. (56),wegeta2 givenbyEq. (C15); seeAppendixC.

(4) And so on and so forth, by equating the coefficients
of ρ11 on both sides of Eq. (56) in the same manner,
one can determine a11 explicitly (in terms of a1,
which is kept nonzero arbitrary since the beginning).

23The calculation being extremely tedious, a part of it has been
worked out via the Mathematica 9.0 package; however, the key
steps are mentioned systematically.
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(5) Finally, for any general j, one can find the coef-
ficient aj (∀j ¼ 12; 13; 14;…) from the recursion
relation, which is deduced later in Appendix C;
see Eq. (C14).

It is to be noted that the recursion relation arises out of the
square bracket on the lhs of Eq. (56) after having all the
source terms fully exhausted. Though the explicit form of
the mass term M is yet to be shown, the coefficients k, β,
an’s (∀n ≠ 1) are all determined at this stage. Hence,
through Eqs. (51) and (52), one basically gets the full
structure of the radial solution RðrÞ.
In order to findM explicitly, one requires the exact form

of ϑ1ðxÞ, which is nothing but the solution of Eq. (22).

C. Obtaining the usual massless scalar field ϑ1ðxÞ
Like Eq. (47), one can consider an ansatz for the

massless scalar field of the following form:

ϑ1ðxÞ ¼
1

r
R1ðrÞYl

mðθ;ϕÞe−iω1τ;

typically ω1 ≫ ω: ð59Þ

Inserting this into Eq. (45) with M ¼ 0 gives rise to a
radial equation [similarly to Eq. (50)] of the following
form:

d2R1ðrÞ
dχ2

þ
�
ω2
1 −

�
l̄
r2

þ 4r40
r6

�
c2s

�
1 −

r40
r4

��
R1ðrÞ ¼ 0:

ð60Þ

Keeping Eqs. (51) and (52) in mind, we chooseR1ðrÞ to
be of the following form:

R1ðrÞ ¼ α1e�i½k1χþh1ðρÞ�; ð61Þ

where

ρ ¼ 1 −
r0
r
; h1ðρÞ ¼ β1 lnð1 − ρÞ þ

X∞
n¼1

ðbnρnÞ;

necessarily; b1 ≠ 0: ð62Þ

By inspection, we figure out the following:

(1) Just as with Eq. (57), we conclude that

k1 ¼ �ω1; ð63Þ

and we again take the “þ” sign for the outgoing
modes.

(2) If we just drop the mass term in Eq. (58), we simply
come up with β1. Therefore,

β1 ≡ βjM¼0

¼
�
b1 þ

ðl̄þ 4Þr0ω1cs
8c2s þ 2r20ω

2
1

�
þ i

� ðl̄þ 4Þc2s
4c2s þ r20ω

2
1

�
:

ð64Þ

(3) Similarly, by having the mass term dropped from the
expression of a2 in Eq. (C15), we come up with b2
given by Eq. (C16) in Appendix C.

(4) And so on, till b11 in the same manner, followed
by the recursion relation for some general bj
(∀j ¼ 12; 13; 14;…), helps determine the rest of
the coefficients explicitly and all in terms of b1.

1. Outside at a finite distance from the
sonic horizon (r ≳ r0)

If one considers the massless solution [see Eq. (59)] to be
residing just outside the sonic horizon with respect to some
external observer, then the radial coordinate of ϑ1ðxÞ is
obviously almost of the same order of r0—i.e., r ≳ r0.
In this regime, the measure of the variable ρ ¼ 1 − r0

r
gives a very small number, and thus one can fairly restrict
oneself to the first order of ρ while neglecting its higher
powers throughout the calculations. And therefore, Eq. (62)
is approximated to

h1ðρÞ ≈ β1 lnð1 − ρÞ þ b1ρ: ð65Þ

Now, inserting Eqs. (63), (64), and (65) back into Eq. (61),
we get

R1ðrÞ ≈ α1 exp

�
�iω1χ � ib1

�
1 −

r0
r

�
�

 ðl̄þ 4Þc2s
4c2s þ r20ω

2
1

þ i

�
−b1 −

r0ω1csðl̄þ 4Þ
8c2s þ 2r20ω

2
1

��
ln

r
r0

�
: ð66Þ

Hence, from Eq. (59),

ϑ1ðxÞ≈
1

r
α1

�
r
r0

�� ðl̄þ4Þc2s
4c2sþr2

0
ω2
1 exp

�
�i



ω1χþb1

�
1−

r0
r

�
þ
�
−b1−

r0ω1csðl̄þ4Þ
8c2sþ2r20ω

2
1

�
ln

r
r0

��
Yl

mðθ;ϕÞe−iω1τ: ð67Þ
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The above Eq. (67) gives the final expression of the
massless scalar field approximated up to linear ρ. Between
the� signs inside the exponent above, one should consider
the “−” sign for the ingoing modes from the sonic horizon
towards the center of the acoustic black hole, and the
“þ” sign for the outgoing modes. An important thing to be
noted here is that the spatial growth of these short-
wavelength modes goes as ∼rðω−2

1
Þ. This will later be

compared with the growth of the large-wavelength ampli-
tude modes φðxÞ.
Now, we move ahead to find the expression of the

mass term.

D. Deriving the full mass term M

We can identify the following steps taken towards
arriving at the complete expression of m, for a canonical
acoustic BH, given by Eq. (A1) (see Appendix A):
(1) Equation (21) was applied on Eq. (20) throughout,

keeping the small-scale Laplacians and the back-
ground velocity field vðxÞ unperturbed. Thus, we
ended up with an enormously large set of terms and
got them all segregated according to the different
orders of the parameter ϵ.

(2) Out of that huge lot, we collected a pack of terms at
Oðϵ2Þ and equated their sum total to zero in order to
form an equation in larger scales where ϑ1ðxÞ was
treated effectively as a constant.

(3) Among the terms written on the lhs of this equation,
a number of terms got compacted as ∂ μ̄f

μ̄ ν̄
2 ∂ ν̄ϑ2ðXÞ,

while the rest were being identified as something
proportional to the amplitude field, i.e. −m2ϑ2ðXÞ.

The expression ofm, until this step, would naturally
contain a factor of R2 sinΘ while appearing in
Eq. (24).

(4) After the scale reversion (see Sec. III B), this factor
of R2 sinΘ became simply r2 sin θ and gave rise to
the expression of a rescaled mass m inserted
in Eq. (31).

(5) In order to keep things from getting too messy and
unnecessarily cluttered, we consider the background
velocity to be jvðrÞj ¼ vrðrÞ, which is exactly
nothing but the case for a canonical acoustic black
hole; see Eq. (40). Thus, we get a tidier expression
for m, given by Eq. (A1).

With the ϑ1ðxÞ field in hand, as shown24 in Eq. (67), one
can just readily evaluate mjfor Canonical BH through Eq. (A1).
Now, finding the final mass term M for a canonical
acoustic black hole is simply redundant and a one-step
process. Using Eq. (38),

M2jfor Canonical BH ¼ 1

csr2 sin θ
g
cs

ϵ2m2
			
for Canonical BH

:

ð68Þ

Since our formalism is restricted only within the domain of
a canonical acoustic black hole, from now on, we can call
off the subscript for the mass term(s) and write just M to
refer to the mass term as expressed by the above Eq. (68).
While deriving M, we again restrict ourselves to

considering only the most dominant term(s).
After some trivial and tedious algebra, the expression of

the mass term is finally given by

M ¼ ξ

��
−176c2sω2

1 þ r20ω
4
1

256c4sr20
þ i

−48c2sω1 þ 3r20ω
3
1

32c3sr30

�
ρ−4 þOðρ−3Þ þ � � �

�
1=2

ð69Þ

≈MOðρ−4Þ; ð70Þ

where

M2
Oðρ−4Þ ¼

ξ2

ð1 − r0
r Þ4

1

32c4sr30

�
r0
8
ð−176c2sω2

1 þ r20ω
4
1Þ þ i3csð−16c2sω1 þ r20ω

3
1Þ
�
: ð71Þ

It is interesting to note that, as far as the most dominant
terms are concerned,MOðρ−4Þ happens to be independent of
the choice of a particular spherical harmonic while picking
ϑ1ðxÞ from Eq. (67). Hence, this is the most general
expression of the mass term of the phonon modes

associated with the φðxÞ field in a canonical spacetime
within the regime not too far from the sonic horizon.
One may be interested in a more accurate measure ofM,

and hence the subleading contributions could be relevant in
that scenario. See Eq. (A2) in Appendix A, where we
have given the next two subleading contributions in the
expression of the mass term.
As is quite evident from the above Eq. (71), MOðρ−4Þ

does depend on the position r, and this kind of coordinate
dependence of the mass term appears in many contexts of

24Out of two possible signs, we are interested only in the
outgoing modes, and hence we consider theþi in the exponent of
the rhs of Eq. (67) throughout the paper.
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physics—e.g., Ref. [37], where Visser et al. encountered a
position-dependent mass. But if M is chosen from
Eq. (69), then for an observer sitting at a very large r,

the mass term becomes a real constant, i.e. limr→∞M ¼ ξω2
1

c2s
in the asymptotic limit for any arbitrary ω1 ∈ ℜ.
To keep the notations simpler, from now on, we will refer

to MOðρ−4Þ in Eq. (71) by calling it simply M, since the
following calculations are solely based on the leading-order
contributions in the mass term.

E. Obtaining the massive scalar field φðxÞ
Finally, we are on the verge of deriving the expression of

the massive scalar field. As with Eq. (66), one can now
obtain the radial contribution to the massive field up to
linear ρ in order to consider only the leading-order
contributions.
With the mass term M in hand, one obtains β

from Eq. (58). Then, using Eqs. (51) and (52), we come
up with

RðrÞ ≈ α exp

�
�iωχ � ia1

�
1 −

r0
r

�
�

�

c2sðl̄þM2r20 þ 4Þ
4c2s þ r20ω

2

�
þ i

�
−a1 −

r0ωcsðl̄þM2r20 þ 4Þ
8c2s þ 2r20ω

2

��
ln

r
r0

�
: ð72Þ

Thus, the massive scalar field [see Eq. (47)] is finally given by

φðxÞ ≈ 1

r
α exp

�
�iωχ� ia1

�
1−

r0
r

�
�

�

c2sðl̄þM2r20 þ 4Þ
4c2s þ r20ω

2

�
þ i

�
−a1 −

r0ωcsðl̄þM2r20 þ 4Þ
8c2s þ 2r20ω

2

��
ln

r
r0

�
Yl

mðθ;ϕÞe−iωτ

¼ 1
rα

�
r
r0

��
�

2c2s ðl̄þ4Þþ2c2s r
2
0
ℜðM2Þþr3

0
ωℑðM2Þ

8c2sþ2r2
0
ω2

�

×exp

�
�i



ωχ þ a1

�
1−

r0
r

�
−
�
a1 þ

csr0ðωðl̄þ 4Þ þ r20ωℜðM2Þ− 2csr0ℑðM2ÞÞ
8c2s þ 2r20ω

2

�
ln

r
r0

��
Yl

mðθ;ϕÞe−iωτ;

ð73Þ

where M is picked from Eq. (71), with ℜðM2Þ and
ℑðM2Þ being its real and imaginary parts, respectively.
The above expression clearly indicates that at a fixed r,

the growth rate over space is ∼r
∥M2∥
ω2 . So, from Eq. (71), the

growth rate of these large-wavelength modes, for a specific
mode of frequency ω, turns out to be actually ∼rðω4

1
Þ, which

encodes the information of the supposedly Hawking-
radiated modes [i.e., the ϑ1ðxÞ field]. This gives rise to
the low-frequency (or larger-wavelength) band of ω—i.e.,
the φðxÞ field, which, in the absence of the mass term (or in
other words, when ξ2 ≈ 0), is not distinguishable from the
primary ω1 modes. Obviously, the smaller ω modes would
grow faster and effectively extract more energy from the ω1

modes which are supposedly Hakwing radiated.

V. DISCUSSION

In the present paper, we systematically analyzed the
consequences of the presence of the quantum potential term
in the dynamics of a condensate on the perspectives of
analogue Hawking radiation. Here we have worked out this
formulation for a canonical acoustic BH configuration in
ð3þ 1ÞD spacetime. That the quantum potential term
causes a UV-IR coupling which can be separated as an
independent dynamics at larger length scales without
disturbing the Lorentz invariance (strictly speaking, actually

Diffeomorphism) of the basic KG equation (massless) is
something that we have already shown [41], and the present
work extends the same method to curved spacetime.
The presence of the UV-IR coupling resulting from the

quantum potential would cause short-wavelength modes to
lose energy to large-wavelength ones, which show up as
massive amplitude excitations of the high-frequency
Hawking-radiated modes. In the actual experimental evalu-
ation of analogue Hawking radiation, one cannot neglect
these large-wavelength modes, which will grow from
primary Hawking-radiated quanta and would cause an
“information loss” of the actually Hawking-radiated modes.
Our present analysis shows that the growth rate of these

large-wavelength (ω) modes, in a canonical spacetime,
holds the clue to keep the underlying physics consistent.
In general, a massless scalar field would grow over space
near the analogue acoustic Killing/sonic horizon (the region
which is accessible in the experiments) as something
∼rðω−2

1
Þ. On the contrary, the massive secondary excitations

generated by these primarymodeswould grow over space as
∼rðω4

1
ω−2Þ for large ω1, but ω can be obtained easily from the

temporal profile, i.e. e−iωτ in Eq. (73), of the large-
wavelength signal as received by the external observer.
So a careful observation of theω1 dependance of the growth
rates of these secondary modes can actually reveal the
relative abundance of the originally Hawking-radiated
quanta in the ð3þ 1ÞD canonical spacetime.
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These massive amplitude modes arise from the quantum
connection which isOðϵ2Þ small. But, at the same time, one
should be ensured that ω1 is typically large, and that makes
this mechanism of secondary excitation generation abso-
lutely relevant in the quantum fluids, like BEC.
We present in this paper a detailed derivation and

analysis of these excitations generated by quantum poten-
tial which, in every likelihood, would be a dominant
contributor to the loss of correlations which are instru-
mented in probing the analogue Hawking effect in such
systems. We hope to extend our present analysis in deriving
the correction to the correlations of Hawking-radiated
quanta to other low-dimensional experimentally relevant
systems within the scope of our framework.
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APPENDIX A: THE MASS TERM IN DETAILS

In order to tackle some untidy and too cluttered
expressions in a proper presentable manner, we will be
introducing a few new symbols here, viz. Q1, Q2, etc.,
whenever required.
The following expression ofm is written in the case of a

canonical acoustic black hole, where the background
velocity is selected by Eq. (40):

m2jfor Canonical BH ¼ ξ20
g
sin θ
r2

1

ϑ1ðxÞ
Q1ðxÞjfor Canonical BH; where ðA1aÞ

Q1ðxÞjfor Canonical BH ≡Q1ðxÞjvθ¼0¼vϕ

¼
�
r4v00r

∂2ϑ1
∂t∂r þ 2r3

∂3ϑ1
∂t2∂rþ 4r3v0r

∂2ϑ1
∂t∂r þ r2

∂4ϑ1
∂t2∂θ2 þ

r2

sin2θ
∂4ϑ1
∂t2∂ϕ2

þ r2cotθ
∂3ϑ1
∂t2∂θ þ r2v0r

∂3ϑ1
∂t∂θ2

þ r2

sin2θ
v0r

∂3ϑ1
∂t∂ϕ2

þ r2cotθv0r
∂2ϑ1
∂t∂θ þ r4

∂4ϑ1
∂t2∂r2 þ 3r4v0r

∂3ϑ1
∂t∂r2 þ vr



2r2

∂4ϑ1
∂t∂r∂θ2 þ

2r2

sin2θ
∂4ϑ1

∂t∂r∂ϕ2

þ 2r2cotθ
∂3ϑ1

∂t∂r∂θ þ 2r2
∂2ϑ1
∂t∂rþ 2r2v0r

∂3ϑ1
∂r∂θ2 þ

2r2

sin2θ
v0r

∂3ϑ1
∂r∂ϕ2

þ 2r2cotθv0r
∂2ϑ1
∂r∂θ þ 2r4

∂4ϑ1
∂t∂r3

þ 6r3
∂3ϑ1
∂t∂r2 þ r4vð3Þr

∂ϑ1
∂r þ 4r3v00r

∂ϑ1
∂r þ 2r2v0r

∂ϑ1
∂r þ 4r4v0r

∂3ϑ1
∂r3 þ 3r4v00r

∂2ϑ1
∂r2 þ 10r3v0r

∂2ϑ1
∂r2

�

þ r2v2r

� ∂4ϑ1
∂r2∂θ2 þ

1

sin2θ
∂4ϑ1

∂r2∂ϕ2
þ cotθ

∂3ϑ1
∂r2∂θ þ 4r

∂3ϑ1
∂r3 þ 2

∂2ϑ1
∂r2 þ r2

∂4ϑ1
∂r4

�

þ r4v0rv00r
∂ϑ1
∂r þ 2r3ðv0rÞ2

∂ϑ1
∂r þ 2r4ðv0rÞ2

∂2ϑ1
∂r2

�
: ðA1bÞ

In the above expression, v0r ≡ ∂vr∂r , v00r ≡ ∂2vr∂r2 , and vð3Þr ≡ ∂3vr∂r3 .
Only contributions up to leading order are considered in the final expression of the mass term in Eq. (71). Here we have

given a more accurate measure by taking into account the next two subleading contributions, given by

M ≈ ½Q3ðrÞ þ iQ4ðrÞ�1=2; ðA2Þ

where

Q3ðrÞ ¼
ξ2ω2

1ð−176c2s þ r20ω
2
1Þ

256c4sr20ð1 − r0
r Þ4

þ ξ2ω2
1ð64c4sð88þ 7l̄Þ − 8c2sð−113þ l̄Þr20ω2

1 − 6r40ω
4
1Þ

256c4sr20ð4c2s þ r20ω
2
1Þð1 − r0

r Þ3
þ ξ2ω2

1 l̄
16c2sr20ð1 − r0

r Þ2

and

Q4ðrÞ ¼
ξ2ω1ð−48c2s þ 3r20ω

2
1Þ

32c3sr30ð1 − r0
r Þ4

þ ξ2ω1ð64c4sð20þ l̄Þ þ 2c2sð66 − 7l̄Þr20ω2
1 − 17r40ω

4
1Þ

32c3sr30ð4c2s þ r20ω
2
1Þð1 − r0

r Þ3
þ ξ2ω1 l̄
4csr30ð1 − r0

r Þ2
:
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APPENDIX B: NATURE OF SINGULARITIES OF THE RADIAL DIFFERENTIAL EQUATION
FOR THE CANONICAL ACOUSTIC BH

In this section, we investigate the nature of singularities of Eq. (48) at various points. We first rewrite it in the following
manner:

d2

dr2
RðrÞ þ 4r40

rðr4 − r40Þ
pðrÞ ðsayÞ

d
dr

RðrÞ þ ω2r10 − c2sM2ðr4 − r40Þr6 − c2sðr4 − r40Þðlðlþ 1Þr4 þ 4r40Þ
c2sr2ðr4 − r40Þ2

qðrÞ ðsayÞ

RðrÞ ¼ 0: ðB1Þ

(1) At r ¼ 0: limr→0pðrÞ → −∞, limr→0qðrÞ → ∞; i.e., there is a singularity at the r ¼ 0 point. But we find that

lim
r→0

½rpðrÞ� ¼ −4; lim
r→0

½r2qðrÞ� ¼ 4; ðB2Þ

which refer to r ¼ 0 as a regular singular point.
(2) At r ¼ r0: limr→r0pðrÞ → ∞, limr→r0qðrÞ → ∞; i.e., there is again a singularity at the r ¼ r0 point. But

lim
r→r0

½ðr − r0ÞpðrÞ� ¼ 1; lim
r→r0

½ðr − r0Þ2qðrÞ� ¼
ω2r20
16c2s

ðB3Þ

hold true, which guarantees that r ¼ r0 is a regular singular point.
(3) At r → ∞: We take r ¼ 1

r�
; thus, as r → ∞, r� → 0. Now, obviously pðr ¼ 1

r�
Þ becomes some p1ðr�Þ and qðr ¼ 1

r�
Þ

becomes some q1ðr�Þ. We have

lim
r�→0

�
2

r�
−
p1ðr�Þ
r2�

�
→ ∞; lim

r�→0

�
q1ðr�Þ
r4�

�
→ ∞; ðB4Þ

which basically means that r� → 0 or r → ∞ is a singular point, while

lim
r�→0

�
r�

�
2

r�
−
p1ðr�Þ
r2�

��
¼ 2; lim

r�→0

�
r2�

�
q1ðr�Þ
r4�

��
→ ∞|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

i:e:; the limit does not exist

: ðB5Þ

APPENDIX C: THE NITTY-GRITTY DETAILS OF THE FROBENIUS SERIES SOLUTION
AND THE RECURSION RELATION FOR THE CANONICAL ACOUSTIC BH

Inserting Eqs. (51) and (52) into Eq. (50), we calculate the lhs of Eq. (50) part by part.
The first part of the lhs of Eq. (50)

⇒
d2RðrÞ
dχ2

¼ Q2ðrÞ ×
�
−

1

r10

��
k2r10 þ βc2sðr4 − r40Þðr4ð−iþ βÞ − ð−5iþ βÞr40Þ − 2kr5βcsðr4 − r40Þ

þ
X∞
n¼1



−inancsr0

�
1 −

r0
r

�
n

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}ðr
3 þ r0r2 þ r20rþ r30Þðcsr0r3ðn − 1Þ þ csr20r

2ðn − 1Þ þ csr40ð2iβ þ nþ 5Þ

þ csr30rðn − 1Þ þ csð−2 − 2iβÞr4 þ 2ikr5Þ þ n2a2nc2sr20

�
1 −

r0
r

�
2n

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}ðr
3 þ r0r2 þ r20rþ r30Þ2

��
; ðC1Þ

where the above two terms are underbraced for a reason, because, while switching from r → ρ, these two terms obviously
become ρn and ρ2n, respectively, which are boxed in Eq. (54).
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And the second part of the lhs of Eq. (50)

⇒

�
ω2 −

�
M2 þ l̄

r2
þ 4r40

r6

�
c2s

�
1 −

r40
r4

��
RðrÞ ¼ Q2ðrÞ ×

�
ω2 −

c2sðr4 − r40Þðl̄r4 þM2r6 þ 4r40Þ
r10

�
;

where Q2ðrÞ ¼ α exp

�
i



k
4cs

ð4r − 2r0tan−1
�
r
r0

�
þ r0 ln

				 1 −
r
r0

1þ r
r0

				
�
þ
X
n

�
an

�
1 −

r0
r

�
n
����

r0
r

�
iβ
: ðC2Þ

Clearly, Q2ðrÞ ≠ 0, because α ≠ 0. Having the above two Eqs. (C1) and (C2) attached together, followed by a trivial
algebraic manipulation, we actually come up with Eq. (54). Now, we present the corresponding coefficients of
ρn; ρnþ1;…∀n ¼ 1ð1Þ∞ in a more jotted down way by rewriting the parent equation [i.e., Eq. (50)] in the following
manner:

−k2r20|fflffl{zfflffl}þ
X∞
n¼1

�
8inancsð2ncsþ ikr0Þ ρn|{z}þ4nancsð7kr0þ2csð4β−14in−7iÞÞ ρnþ1|ffl{zffl}

þ4inancsðcsð48iβþ89nþ89Þþ10ikr0Þ ρnþ2|ffl{zffl}þ10nancsð3kr0þ2csð26β−34in−51iÞÞ ρnþ3|ffl{zffl}
þ4inancsð7csð30iβþ31nþ62Þþ3ikr0Þ ρnþ4|ffl{zffl}þ2nancsðkr0þcsð448β−388in−970iÞÞ ρnþ5|ffl{zffl}
þ inanc2sð656iβþ493nþ1479Þ ρnþ6|ffl{zffl}þ110nanc2sð3β−2in−7iÞ ρnþ7|ffl{zffl}þ22inanc2sð5iβþ3nþ12Þ ρnþ8|ffl{zffl}
þ2nanc2sð11β−6in−27iÞ ρnþ9|ffl{zffl}þ inanc2sð2iβþnþ5Þρnþ10|ffl{zffl}−16n2a2nc2s ρ2n|{z}þ112n2a2nc2sρ2nþ1|ffl{zffl}
−356n2a2nc2sρ2nþ2|ffl{zffl}þ680n2a2nc2sρ2nþ3|ffl{zffl}−868n2a2nc2sρ2nþ4|ffl{zffl}þ776n2a2nc2sρ2nþ5|ffl{zffl}
−493n2a2nc2sρ2nþ6|ffl{zffl}þ220n2a2nc2sρ2nþ7|ffl{zffl}−66n2a2nc2sρ2nþ8|ffl{zffl}þ12n2a2nc2sρ2nþ9|ffl{zffl}−n2a2nc2sρ2nþ10|fflffl{zfflffl}

�

¼−ω2r20|fflffl{zfflffl}þ4csðcsð4iβþ l̄þ4ÞþM2r20cs−2βkr0Þ ρ|{z}−2csðcsð−8β2þ68iβþ7l̄þ60Þ

þ3M2r20cs−10βkr0Þ ρ2|{z}þ4csðM2r20csþ5ð−βkr0þcsð−4β2þ24iβþ l̄þ20ÞÞÞ ρ3|{z}
−csðM2r20csþ5ð−2βkr0þ3csð−12β2þ64iβþ l̄þ52ÞÞÞ ρ4|{z}þ2csð−βkr0þ3csð−40β2þ204iβþ l̄þ164ÞÞ ρ5|{z}
þc2sð208β2−1044iβ− l̄−836Þ ρ6|{z}−ðβ2−5iβ−4Þf120c2s ρ7|{z}þ45c2s ρ8|{z}−10c2s ρ9|{z}þc2s ρ10|{z}g: ðC3Þ

Each power of ρ, in the above equation, is again purposely underbraced to depict the whole picture as vividly as possible in
front of the reader.
In the following calculation, we would go on reducing Eq. (55) and evaluate the summations systematically. The

intermediate steps are shown here to arrive at Eq. (56) in Sec. IV B. From Eq. (55),

S1 ¼
X∞
n¼1

X10
k¼0

ρnþkfIkðnÞ ¼
�X∞
n¼1

ρnþ0fI0ðnÞ þ
X∞
n¼1

ρnþ1fI1ðnÞ þ
X∞
n¼1

ρnþ2fI2ðnÞ þ � � � þ
X∞
n¼1

ρnþ10fI10ðnÞ
�
: ðC4Þ
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For any particular 0 ≤ k ≤ 10, the general term being singled out from S1 is

X∞
n¼1

ρnþkfIkðnÞ ¼
X12−k−1
n¼1

ρnþkfIkðnÞ þ
X∞

n¼12−k
ρnþkfIkðnÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

nþk¼λþ12; say

¼
X12−k−1
n¼1

ρnþkfIkðnÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
finite sum ∀ k

þ
X∞

λ¼0;1;::

ρλþ12fIkðλþ 12 − kÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

λþ12¼j; say

ðC5Þ

∴ S1 ¼
X12−k−1
n¼1

X10
k¼0

ρnþkfIkðnÞ þ
X∞

j¼12;13;::

�X10
k¼0

fIkðj − kÞ
�
ρj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s1ðsayÞ

: ðC6Þ

Similarly, like Eq. (C4),

S2¼
X∞
n¼1

X10
p¼0

ρ2nþpfIIpðnÞ

¼
�X∞
n¼1

ρ2nþ0fII1 ðnÞþ
X∞
n¼1

ρ2nþ2fII2 ðnÞþ���þ
X∞
n¼1

ρ2nþ10fII10ðnÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
say; SI

2
where ∀p≡p1¼0;2;…;10

þ
X∞
n¼1

ρ2nþ1fII1 ðnÞþ
X∞
n¼1

ρ2nþ3fII3 ðnÞþ���þ
X∞
n¼1

ρ2nþ9fII9 ðnÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
say; SII

2
where ∀p≡p2¼1;3;…;9

�
:

ðC7Þ

Now, the general term from the above SI
2 is singled out as the following:

X∞
n¼1

ρ2nþp1fIIp1
ðnÞ ¼

X12−p12
−1

n¼1

ρ2nþp1fIIp1
ðnÞ þ

X∞
n¼12−p1

2

ρ2nþp1fIIp1
ðnÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2nþp1¼λ1þ12; say

¼
X12−p12

−1

n¼1

ρ2nþp1fIIp1
ðnÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
finite sum ∀ p1

þ
X∞

λ1¼0;2;::

ρλ1þ12fIIp1

�
λ1 þ 12 − p1

2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

λ1þ12¼j; say

ðC8Þ

∴ SI
2 ¼

X12−p12
−1

n¼1

X10
p1¼0;2;::

ρ2nþp1fIIp1
ðnÞ þ

X∞
j¼12;14;::

� X10
p1¼0;2;::

fIIp1

�
j − p1

2

��
ρj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s2ðsayÞ

: ðC9Þ

Again, one can single out the general term from SII
2 as well:
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X∞
n¼1

ρ2nþp2fIIp2
ðnÞ ¼

X13−p22
−1

n¼1

ρ2nþp2fIIp2
ðnÞ þ

X∞
n¼13−p2

2

ρ2nþp2fIIp2
ðnÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2nþp2¼λ2þ12; say

¼
X13−p22

−1

n¼1

ρ2nþp2fIIp2
ðnÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
finite sum ∀ p2

þ
X∞

λ2¼1;3;::

ρλ2þ12fIIp2

�
λ2 þ 12 − p2

2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

λ2þ12¼j; say

ðC10Þ

∴ SII
2 ¼

X13−p22
−1

n¼1

X9
p2¼1;3;::

ρ2nþp2fIIp2
ðnÞ þ

X∞
j¼13;15;::

� X9
p2¼1;3;::

fIIp2

�
j − p2

2

��
ρj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s3ðsayÞ

: ðC11Þ

One can notice that
(1) For s2 in Eq. (C9), the necessary condition is that ðj − p1Þ has to always be even with ∀p1 ¼ 0; 2;…; 10

and ∀j ¼ 12; 14;…;∞.
(2) For s3 in Eq. (C11), the necessary condition is that ðj − p2Þ has to always be even with ∀p2 ¼ 1; 3;…; 9

and ∀j ¼ 13; 15;…;∞.
Clearly, the j’s are different in s2 and s3, but since the corresponding ρj’s in Eqs. (C9) and (C11) are all linearly
independent, we can practically club these two separate infinite summations into a single one. Thus,

S2 ¼ ðSI
2 þ SII

2 Þ⇒
infinite

summations
ðs2 þ s3Þ

¼
X∞

j¼12;14;::

� X10
p1¼0;2;::

fIIp1

�
j − p1

2

��
ρj þ

X∞
j¼13;15;::

� X9
p2¼1;3;::

fIIp2

�
j − p2

2

��
ρj

¼
X∞

j¼12;13;::

� X10
p¼0;1;::

fIIp

�
j − p
2

��
ρj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s2;3ðsayÞ

ðprovided ∀ ðj − pÞ ¼ 0; 2; 4;…Þ: ðC12Þ

And through Eqs. (C6) and (C12),

ðS1 þ S2Þ⇒
infinite

summations
ðs1 þ s2;3Þ ¼

X∞
j¼12;13;::

�X10
k¼0

fIkðj − kÞ
�
ρj þ

X∞
j¼12;13;::

� X10
p¼0;1;::

fIIp

�
j − p
2

��
ρj

¼
X∞

j¼12;13;…

�X10
k¼0

fIkðj − kÞ þ
X10

p¼0;1;::

fIIp

�
j − p
2

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

∀ ðj−pÞ¼0;2;4;…;∞

�
ρj: ðC13Þ

After having these Eqs. (C6), (C9), (C11), and (C13) clubbed together, we have written the lhs of Eq. (56), where the last
square bracket now generates a recursion relation quite naturally. This helps us to find out the Frobenius coefficient(s) for
any arbitrary j ¼ 12; 13; 14;…, provided ðj − pÞ ¼ 0; 2; 4;… holds true ∀p ¼ 0; 1;…; 10. The recursion relation is
explicitly given by
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aj ¼−
1

32jð2csjþ iωr0Þ
�
aj−1ð−16ðj− 1Þf28jcs− 14csþ ið8βcsþ 7r0ωÞgÞ

þaj−2ð16ðj− 2Þf89jcs− 89csþ ið48βcsþ 10r0ωÞgÞþaj−3ð−40ðj− 3Þf68jcs− 102csþ ið52βcsþ 3r0ωÞgÞ
þaj−4ð16ðj− 4Þf217jcs− 434csþ ið210βcsþ 3r0ωÞgÞþaj−5ð−8ðj− 5Þf388jcs− 970csþ ið448βcsþ r0ωÞgÞ
þaj−6ð4ðj− 6Þcsf493j− 1479þ 656iβgÞþaj−7ð−440ðj− 7Þcsf2j− 7þ 3iβgÞþaj−8ð88ðj− 8Þcsf3j− 12þ 5iβgÞ
þaj−9ð−8ðj− 9Þcsf6j− 27þ 11iβgÞþaj−10ð4ðj− 10Þcsfj− 5þ 2iβgÞ
þ a2j

2

ð16icsj2Þþ a2j−1
2

ð−112icsðj− 1Þ2Þþ a2j−2
2

ð356icsðj−2Þ2Þþ a2j−3
2

ð−680icsðj− 3Þ2Þ

þ a2j−4
2

ð868icsðj− 4Þ2Þþ a2j−5
2

ð−776icsðj− 5Þ2Þþ a2j−6
2

ð493icsðj− 6Þ2Þþ a2j−7
2

ð−220icsðj− 7Þ2Þ

þ a2j−8
2

ð66icsðj− 8Þ2Þþ a2j−9
2

ð−12icsðj− 9Þ2Þþ a2j−10
2

ðicsðj− 10Þ2Þ
�
: ðC14Þ

It is quite evident that the boxed coefficients written above do not contribute anything to aj only when (j − p) is found to
be an odd number ∀p ¼ 0; 1;…; 10. Here, in Eq. (C14), aj is expressed in terms of the coefficients, all of which are
predetermined, and thus the recursion relation is consistent.
By equating the coefficients of ρ2 on both sides of Eq. (56), we get the coefficient a2:

1

ð2cs þ ir0ωÞ2
ð4csð2ða1 − 2a2Þð2cs þ ir0ωÞ2ðr0ω − 4icsÞ þM4r40c

3
s þM2r20csð−16ir0ωcs þ 2ðl̄ − 10Þc2s þ r20ω

2Þ

þ csð−8iðl̄ − 4Þr0ωcs þ ðl̄ − 12Þl̄c2s − ðl̄þ 20Þr20ω2ÞÞÞ ¼ 0;

⇒ a2 ¼
1

4ð4c2s þ r20ω
2Þ2ð16c2s þ r20ω

2Þ ð2a1ð16c
2
s þ r20ω

2Þð4c2s þ r20ω
2Þ2 þ r0ωcsð−M2r20ðM2ðr40ω2c2s − 20r20c

4
sÞ

þ 2ðl̄þ 44Þr20ω2c2s þ 8ð18 − 5l̄Þc4s þ r40ω
4Þ − ðl̄ðl̄þ 72Þ þ 144Þr20ω2c2s þ 4ðl̄ð5l̄ − 28Þ − 128Þc4s þ ðl̄þ 20Þr40ω4ÞÞ

þ i
ð4c2s þ r20ω

2Þ2ð16c2s þ r20ω
2Þ ð2c

2
sðM4ð2r40c4s − r60ω

2c2sÞ þM2r20ð−2ðl̄þ 9Þr20ω2c2s þ 4ðl̄ − 10Þc4s þ r40ω
4Þ

− ðl̄ðl̄þ 10Þ − 40Þr20ω2c2s þ 2ðl̄ − 12Þl̄c4s þ 2ðl̄þ 8Þr40ω4ÞÞ: ðC15Þ

∴ b2 ≡ a2jM¼0 ¼
�
b1
2
þ 4ðl̄ð5l̄ − 28Þ − 128Þr0ω1c5s − ðl̄ðl̄þ 72Þ þ 144Þr30ω3

1c
3
s þ ðl̄þ 20Þr50ω5

1cs
4ð4c2s þ r20ω

2
1Þ2ð16c2s þ r20ω

2
1Þ

�

þ i

�
−2ðl̄ðl̄þ 10Þ − 40Þr20ω2

1c
4
s þ 4ðl̄þ 8Þr40ω4

1c
2
s þ 4ðl̄ − 12Þl̄c6s

ð4c2s þ r20ω
2
1Þ2ð16c2s þ r20ω

2
1Þ

�
: ðC16Þ
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