
Renormalizability, van Dam-Veltman-Zakharov discontinuity,
and Newtonian singularity in higher-derivative gravity

Yun Soo Myung1,*
1Institute of Basic Science and Department of Computer Simulation, Inje University, Gimhae 50834, Korea

(Received 7 June 2017; published 15 September 2017)

It was proposed that if a higher-derivative gravity is renormalizable it implies necessarily a finite
Newtonian potential at the origin, but the reverse of this statement is not true. Here, we show that the
reverse is true when taking into account the van Dam-Veltman-Zakharov discontinuity, which states that the
theory obtained from the massive one by taking a zero mass limit is not equivalent to the theory obtained in
the zero mass case. The surviving degree of freedom in the zero mass limit is an extra scalar that does not
affect the light bending angle but affects the Newtonian potential. This asserts that in order to make the
singularity cancellation the number of massive ghost and healthy tensors matches with that of massive
ghost and healthy scalars.
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I. INTRODUCTION

It was shown that the renormalizability in higher-
derivative gravity might be related to the behavior of the
classical potential of the model. Explicitly, there is a
conjecture that renormalizable higher-derivative gravity
has a finite Newtonian potential at the origin [1,2]. This
relation was first notified in Stelle’s seminal work [3], which
showed that the fourth-derivative gravity is renormalizable
and nonunitary and has a finite potential at the origin. In this
case, a massive ghost tensor and a massive healthy scalar
contribute in such a manner that they cancel out the
Newtonian singularity of a massless tensor. Recently, it
was conjectured that the reverse of the above statement is not
true, which indicates that the finiteness of the Newtonian
potential at the origin is a necessary, but not sufficient
condition, for the renormalizability of the model [4,5].
The model used in Refs. [5,6] includes a massive ghost
tensor, massive ghost and heathy scalars, and a healthy
tensor. Even though the potential is finite at r ¼ 0, it is
nonrenormalizable by power counting. Actually, two mas-
sive (ghost and healthy) scalars make a contribution 1=3 to
themassless andmassive ghost tensors (1 − 4=3). This is not
the case in which the number of massive ghost (healthy)
tensors matches with the number of massive healthy (ghost)
scalars.
On the other hand, it is known that Fierz and Pauli (FP)

in 1939 obtained five propagating degrees of freedom
(d.o.f.) of a massive tensor by adding a mass term of
m2ðhμνhμν − h2Þ=2 to the bilinearized Einstein-Hibert
action [7]. It is well known that a massless tensor has 2
d.o.f. An inevitable mismatch between massive and mass-
less cases was first realized in 1970 by van Dam and
Veltman [8] and independently by Zakharov [9] (vDVZ).

Then, it is known as the vDVZ discontinuity, which states
that the theory obtained from the massive one by taking the
zero mass limit (m → 0) is not equivalent to the theory
obtained in the zero mass case (m ¼ 0). Especially, the
former has 3 d.o.f., while the latter has 2 d.o.f., which
shows a difference of 1 d.o.f. When using the Stueckelberg
formalism [10], one may find the origin of the vDVZ
discontinuity [11]. After applying this formalism to the
FP massive gravity action, a scalar field that was introduced
by Stueckelberg to maintain the gauge symmetry was
coupled to the external source. The coupling between
the source and the Stueckelberg field was identified as
the origin of the vDVZ discontinuity. This Stueckelberg
scalar behaves as an attractive force in the theory and
affects the Newtonian potential but not the light bending
angle. We note that the Newtonian potential of Vm¼0ðrÞ ¼
−GM=r differs from Vm→0ðrÞ ¼ − 4

3
GM=r in the zero

mass limit of e−mr ≈ 1. Clearly, the scalar causes the
mismatch (−1=3) in the Newtonian potential between
massless and massive gravities.
Hence, we propose that the vDVZ discontinuity is related

closely to the singularity cancellation of the Newtonian
potential at the origin.
In this work, we explore why the matching of the number

of ghost and healthy modes between the spin-2 and spin-0
massive sectors is necessary to make the singularity
cancellation at the origin. This will be explained by
introducing the vDVZ discontinuity appearing in the zero
mass limit of the massive gravity.
The organization of our work is as follows. In Sec. II, we

study the fourth-derivative gravity as a toy model of higher-
derivative gravities. We will explain the singularity can-
cellation by introducing the zero mass limit where the
vDVZ discontinuity occurs. This model shows that the
theory without any kind of nonlocality could be free from
the Newtonian singularity. Section III is devoted to*ysmyung@inje.ac.kr
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explaining the finiteness of the Newtonian potential
obtained from a full sixth-derivative gravity by taking
the small mass limit. We present in Sec. IV that the half
sixth-derivative gravity is not a suitable model, which
explains the connection between the finiteness of the
potential and renormalizability. This is because this model
lacks the matching of the number of healthy and ghost
modes between spin-2 and spin-0 massive sectors needed to
implement a singularity cancellation. In Sec. V, we intro-
duce a polynomial form of infinite-derivative gravity to
explain the singularity cancellation by making use of the
vDVZ discontinuity. Finally, we discuss our results
in Sec. VI.

II. FOURTH-DERIVATIVE THEORY OF GRAVITY

The fourth-derivative gravity in four dimensions is
defined by

S4th ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
2

κ2
Rþ α

2
R2 þ β

2
R2
μν

�
ð1Þ

with κ2 ¼ 4κ4ðκ4 ¼ 8πGÞ. This action was first employed
to prove the renormalizability of fourth-derivative gravity
[3], and hence it is considered a prototype of higher-
derivative gravities. A key point is that the last two terms
are necessary to achieve the renormalizability, but the last
term induces the ghost state. We have seen that the fourth-
derivative gravity is not a healthy theory because of a
massive ghost tensor that violates the unitarity at tree level.
Recently, it was confirmed that renormalizable higher-
derivative gravities are nonunitary [6]. Hence, the ghost
problem is not a relevant issue in this work. We are
interested in exploring the connection between renormaliz-
ability of the theory and finiteness of the Newtonian
potential at the origin.
To find the Newtonian potential, one has to first

compute the propagator. For this purpose, we expand the
metric tensor gμν ¼ ημν þ κhμν around the Minkowski
metric ημν¼diagðþ;−;−;−Þ. Bilinearizing the Lagrangian
in Eq. (1) together with imposing the de Donder
gauge of Lgf ¼ −ð∂μhμν − ∂νh=2Þ2=2λ, one obtains Lbil

4th ¼
hμνOμν;αβhαβ [6]. InvertingO, one obtains the propagator for
the fourth-derivative gravity,

D4th
μν;αβðkÞ ¼

�
1

k2
−

1

k2 −m2
2

�
Pð2Þ

−
1

2

�
1

k2
−

1

k2 −m2
0

�
Pð0−sÞ þ ð� � �Þ; ð2Þ

wherePð2Þ andPð0−sÞ represent the Barnes-Rivers operators,

Pð2Þ
μν;αβ ¼

1

2
ðθμαθνβ þ θμβθναÞ −

1

3
θμνθαβ; ð3Þ

Pð0−sÞ
μν;αβ ¼ 1

3
θμνθαβ; θμν ¼ ημν −

kμkν
k2

; ð4Þ

while ð� � �Þ denotes the set of terms that are irrelevant to the
spectrum of the theory. Here, the spin-2 and spin-0 masses
squared are given by, respectively,

m2
2 ¼ −

4

βκ2
; m2

0 ¼
2

κ2ð3αþ βÞ : ð5Þ

We require β < 0 and 3αþ β > 0 for having nonta-
chyonic masses. The propagator (2) carries 8 d.o.f.:
massless tensor ð2 d.o.f.Þ þ massive tensorð5 d.o.f.Þ þ
massless scalarð1 d.o.f.Þ. We would like to note that
Eq. (2) without ð� � �Þ represents a gauge-invariant part of
the propagator. At this stage, it is worth noting that for
large momentum we have θμν ∼ 1, which implies that
the power counting argument is valid here because the

massive tensor propagator takes the form of Pð2ÞðθÞ
k2−m2

2

∼ 1
k2.

However, we have Pð2Þð~θÞ
k2−m2 ∼ k2

m2 for the FP massive gravity

with ~θμν ¼ ημν − kμkν=m2 [11], which implies that the
power counting argument does not work here and thus
one cannot deduce the renormalizability of the FP
massive gravity [12].
The spatial part of the gauge-invariant propagator (2)

takes the form

P4th
μν;αβðkÞ ¼ −

1

k2

�
1

2
ðημκηνλ þ ημληνκÞ −

1

2
ημνηκλ

�

þ 1

k2 þm2
2

�
1

2
ðημκηνλ þ ημληνκÞ −

1

3
ημνηκλ

�

−
1

k2 þm2
0

ημνηκλ
6

; ð6Þ

where the second coefficient 1=2ð¼ 1=3þ 1=6Þ in the first
line differs from 1=3 in the second line. We note the relation
between the Newtonian potential sourced by a static mass
M and propagator:

VðrÞ ¼ κ4M
ð2πÞ3

Z
d3keik·rP00;00ðkÞ: ð7Þ

Fourier transforming

P4th
00;00ðkÞ ¼

1

2

�
−

1

k2
þ 4

3

1

k2 þm2
2

−
1

3

1

k2 þm2
0

�
ð8Þ

leads to the Newtonian potential as

V4thðrÞ ¼ GM
r

�
−1þ 4

3
e−m2r −

1

3
e−m0r

�
; ð9Þ

which was already deduced by Stelle’s work [3].
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Here, we point out that in the limit of r → 0 a massive
ghost tensor contributes 4=3ð¼ 1þ 1=3Þ to the Newtonian
potential and a massive healthy scalar contributes −1=3 to
the potential. The singularity cancellation occurs in the
fourth-derivative gravity. This model shows that the theory
without any kind of nonlocality could be free from the
Newtonian singularity.
We need to explain the singularity cancellation by

introducing a different mechanism instead of taking the
r ¼ 0 limit. First of all, we wish to explain the appearance
of “4=3” explicitly. In the zero mass limit of
m2 → 0ðe−m2r ≈ 1Þ, one has not 1 but 4=3 zeroth-order
term, which indicates that the vDVZ discontinuity occurs in
the linearized fourth-derivative gravity. We could not
distinguish the zero mass limit from the r → 0 limit
because two cases provide the same zeroth-order term of
e−m2r ≈ 1 in the Newtonian potential. However, one has to
focus on the zero mass limit to introduce the other
mechanism of the vDVZ discontinuity. The vDVZ dis-
continuity dictates that the gravity theory obtained from
massive one with 5 d.o.f. by taking the zero mass limit is
not equivalent to the gravity theory obtained in the zero
mass case. Especially, the former has 3 d.o.f., while the
latter has 2 d.o.f. which describes a massless tensor. A
physical explanation of this phenomenon is that a massive
tensor with mass m carries five polarizations, while a
massless tensor carries only two [13]. In the zero mass limit
of m → 0, a massive tensor decomposes into massless
fields of spin-2, 1, and 0. The spin-0 field couples to the
trace of the stress-energy tensor. Therefore, in the zero mass
limit, one does not recover the Einstein gravity but rather a
scalar-tensor theory.
The discontinuity can be easily found by noting the

difference in coefficients between the massless tensor
propagator (the first line) and massive ghost tensor one
(the second line) in Eq. (6). In the former, we have 1=2,
whereas we have 1=3 in the latter. Thus, the zero mass limit
of the massive propagator does not coincide with the
massless propagator.
It is worth noting that surviving d.o.f. in the zero mass

limit is 3 d.o.f. (1 d.o.f. is represented by an extra ghost
scalar and the other 2 d.o.f. are given by a ghost tensor).
This massive ghost scalar with 1=3 could be identified with
the Stueckelberg scalar [11], and it cancels against a
massive healthy scalar with −1=3. On the other hand, a
ghost tensor with 1 cancels out a healthy tensor (Newton
term with −1). The vDVZ discontinuity explains why
Oð1Þ=r disappears as well. Hence, we may avoid the
singularity at the origin.
Consequently, the cancellation of singularity occurs

because there is contribution (−1, 4=3, −1=3) from 6
d.o.f. [a massless tensor with 2þ, a massless limit of
massive ghost tensor with 3−ð¼ 2− þ 1−Þ, and a massive
scalar with 1þ, where the superscripts þð−Þ represent
healthy (ghost) d.o.f.]. Considering 8 d.o.f. of the theory

initially, it is clear that the vDVZ discontinuity occurs in the
zero mass limit of a massive ghost tensor.

III. FULL SIXTH-DERIVATIVE
THEORY OF GRAVITY

An action for full sixth-derivative gravity takes the form

S6th ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

κ2

�
2Rþ α0

2
R2 þ β0

2
R2
μν

þ α1
2
R□Rþ β1

2
Rμν□Rμν

�
: ð10Þ

It was proven that the action (10) becomes super-renorma-
lizable because the superficial divergence δ½¼ 4þ E −P∞

n¼3ðn − 2ÞVn� decreases as the number of vertices Vn

increases [4,6]. An important point to remember is that the
same order of the last two six-derivative terms in (10) is a
key to guaranteeing the renormalizability. The propagator
is found to be

D6thðkÞ¼
�
1

k2
þ 1

m2
2þ −m2

2−

�
m2

2−

k2−m2
2þ

−
m2

2þ

k2−m2
2−

��
Pð2Þ

−
1

2

�
1

k2
þ 1

m2
0þ −m2

0−

�
m2

0−

k2−m2
0þ

−
m2

0þ

k2−m2
0−

��
Pð0−sÞ

þð���Þ; ð11Þ

where masses squared m2
2� and m2

0� are defined by

m2
2� ¼ β0

2β1

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16β1

β20

s �
;

m2
0� ¼ 3α0 þ β0

2ð3α1 þ β1Þ
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8ð3α1 þ β1Þ
ð3α0 þ β0Þ2

s �
:

Here, one requires β0 < 0 and β1 < 1 to have nontachyonic
masses. In this case, D6thðkÞ describes propagations of 14
(¼ 2þ 5þ 5þ 1þ 1) d.o.f. Its spatial part of the gauge-
invariant propagator is given by

P6th
00;00ðkÞ¼

1

2

�
−

1

k2
þ4

3

1

m2
2þ −m2

2−

�
m2

2þ

k2þm2
2−

−
m2

2−

k2þm2
2þ

�

−
1

3

1

m2
0þ −m2

0−

�
m2

0þ

k2þm2
0−

−
m2

0−

k2þm2
0þ

��
: ð12Þ

The particle content of the model is made up of three
healthy particles (a massless tensor, a massive tensor with
mass m2þ, and a massive scalar with m0−) and two ghosts
(a massive tensor withm2− and a massive scalar withm0þ).
In this case, the Newtonian potential generated by static

mass M is derived to be
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V6thðrÞ ¼ GM
r

�
−1þ 4

3

m2
2þe

−m2− r −m2
2−
e−m2þr

m2
2þ −m2

2−

−
1

3

m2
0þe

−m0− r −m2
0−
e−m0þ r

m2
0þ −m2

0−

�
: ð13Þ

The massive particle content is made by taking the small
mass limit (e−mir ≈ 1) of massive ghost and healthy tensors
with 6 d.o.f.,

4

3

�
m2

2þ

m2
2þ −m2

2−

;−
m2

2−

m2
2þ −m2

2−

�
⇒

4

3
¼ 1þ 1

3
; ð14Þ

which provides 4=3 in the zeroth-order amplitude. Here, we
call the zero mass limit as the small mass limit because the
masses are not zero but they are so small that one can take
e−mir ≈ 1. Also, the massive healthy and ghost scalars with
2 d.o.f. provide

−
1

3

�
m2

0þ

m2
0þ −m2

0−

;−
m2

0−

m2
0þ −m2

0−

�
⇒ −

1

3
; ð15Þ

which provides −1=3 in the zeroth-order amplitude.
Considering 14 d.o.f. of the theory, we have 10
(¼ 2þ þ 3− þ 3þ þ 1þ þ 1−) d.o.f. in the Newtonian
potential. This shows clearly that the vDVZ discontinuity
occurs in the small mass limit of massive ghost and healthy
tensors. We note that the singularity cancellation in V6thðrÞ
occurs either in the small mass limit or the r → 0 limit,
which gives the same zeroth-order approximation of
e−m

2
i r ≈ 1 for i ¼ 2�, 0�.

This model gives an affirmative answer to the conjecture
that the cancellation mechanism of the singularity is the
matching of the ghost and healthy modes between the spin-
2 and spin-0 massive sectors: ð3−; 3þÞ and ð1þ; 1−Þ.

IV. HALF SIXTH-DERIVATIVE
THEORY OF GRAVITY

It was proposed that if a higher-derivative gravity is
renormalizable it implies necessarily a finite Newtonian
potential at the origin, but the reverse of this statement is
not true. A relevant action is given by the half six-derivative
gravity as [5,6,14]

Sh6th¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
2

κ2
Rþa0R2þa1R□Rþb0R2

μν

�
: ð16Þ

This action is not renormalizable because different deriva-
tive orders lose renormalizability [4]. A matching factor of
the sixth-derivative term Rμν□Rμν was missed in the action
(16). Its propagator takes the form

Dh6thðkÞ¼
�
1

k2
þ 1

k2− ~m2
2

�
Pð2Þ

−
1

2

�
1

k2
þ 1

~m2
0þ− ~m2

0−

�
~m2
0−

k2− ~m2
0þ

−
~m2
0þ

k2− ~m2
0−

��
Pð0−sÞ

þð���Þ; ð17Þ

where masses squared ~m2
2 and ~m2

0� are defined by

~m2
2 ¼ −

4

b0κ2
;

~m2
0� ¼ 3a0 þ b0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3a0 þ b0Þ2 − 24a1=κ2

p
6a1

:

The propagator (17) describes 9 (¼ 2þ 5þ 1þ 1) d.o.f. of
the theory. In this case, the (00,00)-spatial part of the
propagator is given by

Ph6th
00;00ðkÞ ¼

1

2

�
−

1

k2
þ 4

3

1

k2 þ ~m2
2

−
1

3

1

~m2
0þ − ~m2

0−

�
~m2
0þ

k2 þ ~m2
0−

−
~m2
0−

k2 þ ~m2
0þ

��
:

ð18Þ

The potential is given by

Vh6thðrÞ¼GM
r

�
−1þ4

3
e− ~m2r−

1

3

~m2
0þe

− ~m0− r− ~m2
0−
e− ~m0þr

~m2
0þ− ~m2

0−

�
:

ð19Þ

The singularity is cancelled, despite the fact that there
is no massive healthy tensor to balance a massive ghost
scalar. It seems that this case gives a negative answer to
the conjecture that the cancellation mechanism of the
singularity requires the matching of the ghost and healthy
modes between the spin-2 and spin-0 massive sectors.
Even though the cancellation of singularity occurs in
the r → 0 limit of e− ~mir ≈ 1 for i ¼ 2; 0�, this is not the
case. Considering 9 d.o.f. of the theory, we have 7
(¼ 2þ þ 3− þ 1þ þ 1−) d.o.f. in the Newtonian potential.
Here, the vDVZ discontinuity occurs only in the small mass
limit of a massive ghost tensor, leaving a mismatch for a
massive ghost scalar with 1−. The number of massive
excitations in each sector should be the same. That is, there
exists a massive healthy tensor to each ghost mode in
scalar sector and vice versa. However, we have a particle
content of ð3−; •Þ and ð1þ; 1−Þ. In this case, a massive
healthy tensor with 5 d.o.f. is necessary to make a
renormalizable theory like the full sixth-derivative gravity
(10) and to make a balance with a massive ghost scalar.
Then, • is given by 3þ.
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Similarly, we propose that the other half six-derivative
gravity,

~Sh6th ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
2

κ2
Rþ a0R2 þ b0R2

μν þ b1Rμν□Rμν

�
:

ð20Þ

is not renormalizable but it has a finite Newtonian potential
at the origin. This model provides a particle content of
ð3−; 3þÞ and ð1þ; •Þ. Here, a massive ghost scalar (•) is
needed to make a renormalizable theory like the full sixth-
derivative gravity (10).

V. INFINITE-DERIVATIVE GRAVITY

In this section, we wish to comment on the connection
between a nonsingular Newtonian potential and the vDVZ
discontinuity in infinite-derivative gravity (IDG) [15,16]. It
was shown that the infinite-derivative gravity has provided
a finite Newtonian at the origin [16–19].
A simplest model of IDG is given by [2]

SIDG ¼ −
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ Gμν

að□ΛÞ − 1

□
Rμν

�
: ð21Þ

The propagator of this IDG takes the form

DIDGðkÞ ¼ 1

k2að−k2=Λ2Þ
�
Pð2Þ −

Pð0−sÞ

2

�
; ð22Þ

which shows a ghost-free propagator of a massless tensor.
If one chooses að□ΛÞ ¼ e−□=Λ2

[20], there is no room
to introduce masses of massive tensors. Its potential is
found to be

VIDGðrÞ ¼ −
GM
r

Erf

�
Λr
2

�
; ð23Þ

which is a nonsingular potential at the origin because the
error function takes the form of ErfðxÞ ∼ 2x=

ffiffiffi
π

p
as x → 0.

Here, the error function is defined through (7) by

Erf

�
Λr
2

�
¼ 2

π

Z
∞

0

djkj e
−jkj2=Λ2

sin½jkjr�
jkj : ð24Þ

It is important to note that, although one does not require
the small mass limit, the singularity disappears due to the
nonlocality and the effect depends on a form of að□Þ.
Hence, it seems that the singularity cancellation has
nothing to do with the vDVZ discontinuity. Interestingly,
the super-renormalizable and nonlocal massive gravity has
provided a massive propagator [21],

DSNðkÞ ¼ e−Hðk2=M2Þ

k2 −m2

�
Pð2Þ −

Pð0−sÞ

2
þ ξ

�
Pð1Þ þ

~Pð0Þ

2

��
;

ð25Þ

which is the same form as that of a massless tensor except
an overall factor. If one takes the zero mass limit ofm → 0,
the massive propagator reduces smoothly to the massless
one, which shows that there is no vDVZ discontinuity.
To study the connection between a finite Newtonian

potential and the vDVZ discontinuity, we consider a
polynomial action of IDG defined by [2]

~SIDG ¼ 1

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½−2Rþ RF1ð□ÞRþ RμνF2ð□ÞRμν�;

ð26Þ

where

F1ð□Þ ¼ α0 þ α1□þ…þ αN□
N; ð27Þ

F2ð□Þ ¼ β0 þ β1□þ…þ βN□
N: ð28Þ

The N ¼ 0½N ¼ 1� model corresponds to the fourth-deriva-
tive gravity (1) [sixth-derivative gravity (10)] with different
coefficients. It requires the two polynomials of F1 and F2 to
be of the same order. A potential generated by a static mass
M can be expressed as

~VIDGðrÞ¼−
2GM
πr

Z
∞

0

dk
k
sin½kr�

�
4

3

1

P2Nþ2ðkÞ
−
1

3

1

Q2Nþ2ðkÞ
�
;

ð29Þ

where P2Nþ2ðkÞ and Q2Nþ2ðkÞ are polynomials of spin-2
and spin-0 massive sectors given by

P2Nþ2ðkÞ ¼ 1þ 1

2
½β0k2 − β1k4 þ…þ ð−1ÞNβNk2Nþ2�;

ð30Þ

Q2Nþ2ðkÞ ¼ 1 − ð3α0 þ β0Þk2 þ ð3α1 þ β1Þk4 þ…

þ ð−1ÞNð3αN þ βNÞk2Nþ2: ð31Þ

Factorizing P2Nþ2 and Q2Nþ2, one introduces masses of
spin-0 and spin-2 massive sectors to have all simple
poles as

0 < m2
ðkÞ0 < m2

ðkÞ1 < � � � < m2
ðkÞN and

m2
ðkÞi ≠ m2

ðkÞj; i ≠ j ð32Þ

for k ¼ 0, 2. After contour integration, one arrives at the
potential
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~VIDGðrÞ ¼ −
GM
r

�
1 −

4

3

XN
i¼0

Y
j≠i

m2
ð2Þj

m2
ð2Þj −m2

ð2Þi
e−mð2Þir

þ 1

3

XN
i¼0

Y
j≠i

m2
ð0Þj

m2
ð0Þj −m2

ð0Þi
e−mð0Þir

�
: ð33Þ

In the small mass limit of e−mð2Þir ≈ 1 and e−mð0Þir ≈ 1, one
finds ½� � �� in (33) as

−
4

3

XN
i¼0

Y
j≠i

m2
ð2Þj

m2
ð2Þj −m2

ð2Þi
þ 1

3

XN
i¼0

Y
j≠i

m2
ð0Þj

m2
ð0Þj −m2

ð0Þi
: ð34Þ

Considering the relation that is valid for any set of
numbers aj,

XN
i¼0

Y
j≠i

aj
aj − ai

¼ 1; ð35Þ

we find that the sum of zeroth-order terms is zero

−1þ 4

3
−
1

3
¼ 0: ð36Þ

Considering the propagator in the integrand of (29), the
total d.o.f. is 2þ 12Nð¼ 2þ 10N þ 2NÞ. However, we
have 2þ 8Nð¼ 2þ þ ð3NÞ− þ ð3NÞþ þ Nþ þ N−) d.o.f.
in the Newtonian potential (33). This shows clearly that
the vDVZ discontinuity occurs in the small mass limit of
the spin-2 massive sector. Here, we decompose ð3NÞ− into
ðN þ 2NÞ− in the spin-2 massive sector where N− is
represented by N ghost Stueckelberg scalars, while
ð2NÞ− is represented by N massless ghost tensors. This
happens to ð3NÞþ for massive healthy tensors, similarly.
They are equivalent to writing 4=3 in (36) to be 1=3þ 1.
The last two NþðN−Þ can be represented by N healthy
(ghost) massive scalars, providing −1=3 in (36). We have a
particle content of ½ð3NÞ−; ð3NÞþ� and ½ðNÞ−; ðNÞþ�. It
explains why the matching of the number of healthy and
ghost modes between the spin-2 and spin-0 massive sectors
is essential to make the singularity cancellation in the
Newtonian potential.
Finally, this might correspond to the condition of super-

renormalizability [2,22]. At this point, it would be better to
distinguish three types of renormalizable theory: (i) finite,
in which no counterterms are needed at all; (ii) super-
renormalizable, in which only a finite number of graphs
need overall counterterms; and (iii) renormalizable, in
which infinitely many graphs need overall counterterms.
(But note that they only normalize a finite set of terms in the
basic Lagrangian since we assumed renormalizability of the
theory.)

VI. DISCUSSIONS

First of all, we have shown that the vDVZ discontinuity
is related closely to the singularity cancellation of the
Newtonian potential. For this purpose, we have chosen
the zero (small) mass limit of mi → 0 instead of the r → 0
limit.
In this work, we have explored why the matching of the

number of ghost and healthy modes between the spin-2 and
spin-0 massive sectors is necessary to make the singularity
cancellation. This was explained by introducing the vDVZ
discontinuity appearing in the zero mass limit of higher-
derivative gravity. Therefore, if a higher-derivative gravity
is renormalizable, it implies necessarily a finite Newtonian
potential at the origin. Furthermore, the reverse of this
statement seems to be true. Although a counterexample of
(16) that is not renormalizable provides a finite potential at
the origin, the vDVZ discontinuity occurs only in the small
mass limit of a massive ghost tensor. In the model of (16), a
massive healthy tensor is needed to make a renormalizable
theory which amounts to happening that the vDVZ dis-
continuity occurs in the small mass limit of both massive
ghost and healthy tensors. This leads to a balance between
the attractive forces and repulsive forces in each sector as
well as a specific matching of the number of tensor and
scalar modes.
We note that the effect of singularity cancellation and the

vDVZ discontinuity are linear effects involving the inde-
pendent contribution of scalars and tensors. Hence, it might
not be clear that the cancellation may hold in these theories
at the nonlinear level. However, it seems that the UV
divergences of quantum theory are related to the Newtonian
singularity. This means that the Newtonian singularity is
indeed the simplest UV divergence due to the interaction.
Also, we mention that two nonlinear issues of the
Vainshtein radius [23] and Boulware-Deser ghost [24]
concerning the vDVZ discontinuity are not directly related
to the renormalizability.
On the other hand, the other physical observable of light

deflection (bending angle) does not depend on the massive
spin-0 sector of R2 and R□R [25,26]. Thus, it suggests that
the UV divergence of quantum theory is not closely related
to the light bending angle.
Finally, the two tracks were found to arrive at a finite

Newtonian at the origin. One is to use the IDG action (21)
without ghost fields. In this case, the singularity disap-
peared due to the nonlocality. The other is to consider the
IDG action (26) with ghost fields. The ghost scalar and
tensors are needed to have a finite potential at the origin.
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