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In this paper, we deal with the fðR;QÞ gravity whose action depends, besides of the scalar curvature R,
on the higher-derivative invariant Q ¼ RμνRμν. In order to compare this theory with the usual general
relativity (GR), we verify the consistency of Gödel-type solutions within the fðR;QÞ gravity and discuss
the related causality issues are discussed. Explicitly, we show that in the fðR;QÞ gravity there are new
Gödel-type completely causal solutions having no analogue in the general relativity. In particular, a
remarkable Gödel-type solution corresponding to the conformally flat space and maximally symmetric for
physically well-motivated matter sources, with no necessity of cosmological constant, has been considered.
We demonstrate that, in contrast to GR framework, fðR;QÞ gravity supports new vacuum solutions with
the requirement for the cosmological constant to be nonzero. Finally, causal solutions are obtained for a
particular choice fðR;QÞ ¼ Rþ αR2 þ βQ.

DOI: 10.1103/PhysRevD.96.064020

I. INTRODUCTION

General relativity (GR) is known to be the successful
theory of gravity, its predictions are in accordance with tests
realized in solar system, the so-called classical tests, for
example, the precession of the perihelion of Mercury, as
well as with the recent detection of gravitational waves
[1–3]. Nonetheless, it turns out that the Einstein gravity
fails in some aspects, which leads to interest to search for its
possible consistent generalizations. Basically, there are two
main problems having no solution within the framework of
the GR: the first one takes place on a phenomenological
perspective that arises as one of the most enigmatic
problems in physics, the accelerated expansion of the
Universe. It is confirmed by observational data from
Type Ia supernovae [4–6], from cosmic microwave back-
ground (CMB) measurements [7–9] and studies of large
structures [10,11]. The second reason, purely theoretical, is
related to issues on quantization of gravity, since, as it is
well known, the Einstein gravity is a nonrenormalizable
theory [12]. Therefore, in the quantum regime the GR
does not present a consistent quantum gravity theory. It is
expected that in this regime new degrees of freedom
become important.
A possible way out for these issues is based on

introducing the modifications of Einstein gravity. There
are various modified gravity theories involving new fields,
the most known ones are scalar-tensor theories involving a
coupling of a nonmatter scalar field to gravity. On the other
hand, it is also possible to introduce new degrees of

freedom by considering model involving higher curvature
invariants such as R2 and RμνRμν in addition to the Einstein-
Hilbert action. It has been shown in [13] that in particular
case where the model is composed by all quadratic
curvature invariants added to the Einstein-Hilbert action,
one gets a renormalizable theory. However, for the renor-
malizability one pays the price of introducing ghostlike
modes. Furthermore, higher curvature terms come up in
others approach, for example, they naturally appear in
string theory after dimensional reduction process [14].
It should be noted that even the above-mentioned results
of observations of gravitational waves do not rule out
completely the possibility of alternative gravity models, see
the discussion in [15].
Despite the fact that ghostlike modes are present, higher

curvature theories have been receiving a recent overwhelm-
ing interest from the aforementioned fact that these theories
are renormalizable. To verify the consistency of these
theories with the cosmological observations, it is interesting
to examine the behavior of the GR solutions in the higher
curvature theory framework. Several works have discussed
this line of reasoning, for example, [16–18]. Many issues
devoted to exact solutions in modified gravity theories, that
is, first of all, higher curvature theories, were studied, see
for a review [19]. In particular, one of classes of solutions to
study is that one where causality is broken down. In fact,
the GR is infested by geometries that allow a priori to
produce a time machine. These pathological space-times
present the so-called closed timelike curves (CTCs), as a
consequence a traveler moving along such curves can come
back to his own past leading to controversial issues, for
example, causality paradoxes and time travel. The best-
known solutions containing CTCs in GR are Van Stockum
[20], Gott [21], and Gödel [22] time machines. Further, a
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generalization of the Gödel solution has been found out,
such metrics were denominated by Gödel-type metrics
[23]. A fundamental feature of these metrics is the
possibility of eliminating the CTCs for determined values
of their parameters.
Several results have been obtained with respect to the

causality aspects of the Gödel-type metrics in frameworks
other than GR, such as verification of consistency of these
metrics and proof of possibility of existence of completely
causal solutions within such theories as the fðRÞ gravity,
Horava-Lifshitz gravity, Brans-Dicke gravity, Chern-
Simons modified gravity, and fðR; TÞ gravity [23–26].
Our aim in this paper is treating the Gödel-type metrics in
one more higher curvature theory framework, more pre-
cisely in fðR;QÞ gravity, with Q ¼ RμνRμν. Many issues
related with behavior of the known GR solutions, such as
different types of black holes, including Schwarzshild and
Reissner-Nordström ones, and the possible singularity-free
black holes, impacts of torsion and wormholes, within this
theory were studied in [27]. Several other studies have
been also developed: an attempt to find ghost and singu-
larity free theories of gravity has been carried out [28]; and
in cosmological scenarios, it was found that the big bang
singularity is replaced by a cosmic bounce in isotropic and
anisotropic universes filled with standard sources of matter
and radiation [29]. To continue studies of this theory, it is
necessary to examine causality features, i.e., the likely
parameters of the theory allowing CTCs or not as well as
their unfolding.
The structure of the paper looks like follows. In Sec. II,

we review the Gödel-type metrics, resenting their classi-
fications and discussing related causality issues. Section III
is devoted to deriving of equations of motion in fðR;QÞ
gravity. In Sec. IV, we verify the consistency of the Gödel-
type metric within the fðR;QÞ gravity, and in Sec. V we
discuss the causality for the solutions we obtain the matter
sources necessary to achieve the causality. Finally, in
Sec. VI we summarize our results.

II. GÖDEL-TYPE METRICS

In this section we present a brief review on the known
properties of the Gödel-type metrics, more precisely those
ones homogeneous in space-time (ST-homogeneous), as
well as their causality features necessary for further
purposes (more details can be found in the papers [23]).
Such metrics are solutions of Einstein field equations and

have as their principal property the exhibiting the so-called
closed time-like curves. Perhaps, the best-known Gödel-
type ST-homogeneous example is the Gödel metric itself.
The Gödel universe [22] (originally it was proposed as a
rotating cosmological model) is generated by nonvanishing
cosmological constant Λ and dust-like matter with the
density ρ taken as matter sources. The line element in the
Gödel spacetime is defined by:

ds2 ¼ ½dtþHðxÞdy�2 −D2ðxÞdy2 − dx2 − dz2; ð1Þ

where the functions HðxÞ and DðxÞ look like

HðxÞ ¼ emx; DðxÞ ¼ emxffiffiffi
2

p ; ð2Þ

whose parameters of solutions are related with the matter
content through the relations:

m2 ¼ 2ω2 ¼ κρ;

Λ ¼ −κ
ρ

2
ð3Þ

where κ is the Einstein constant and ω is the vorticity of
matter. The Gödel-type metrics are generalizations of the
metric ([22], (2). In these metrics, the line element in
cylindrical coordinates is given by:

ds2 ¼ ½dtþHðrÞdθ�2 −D2ðrÞdθ2 − dr2 − dz2; ð4Þ

where the functions HðrÞ and DðrÞ satisfy the following
conditions for the ST-homogeneous case [23],

H0ðrÞ
DðrÞ ¼ 2ω;

D00ðrÞ
DðrÞ ¼ m2; ð5Þ

where the prime denotes the derivative with respect to r.
The m2 and ω are constants characterizing completely the
properties of the ST-homogeneous Gödel-type metrics.
Their values can be: ω ≠ 0 and −∞ ≤ m2 ≤ ∞. From
now we will consider only ST-homogeneous Gödel-type
metrics. Concerning the solutions of Eqs. (5) it is known
that there exist three distinct classes of a nondegenerate
(ω ≠ 0) Gödel-type metrics characterized by the sign ofm2,
namely (see also [23]):

(i) hyperbolic class: m2 > 0, ω ≠ 0:

HðrÞ ¼ 2ω

m2
½coshðmrÞ − 1�;

DðrÞ ¼ 1

m
sinhðmrÞ; ð6Þ

(ii) trigonometric class: −μ2 ¼ m2 < 0, ω ≠ 0:

HðrÞ ¼ 2ω

μ2
½1 − cosðμrÞ�;

DðrÞ ¼ 1

μ
sinðμrÞ; ð7Þ
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(iii) linear class: m2 ¼ 0, ω ≠ 0:

HðrÞ ¼ ωr2;

DðrÞ ¼ r: ð8Þ

The Gödel metric is recovered when m2 ¼ 2ω2, thus, it
belongs to the hyperbolic class ([22]).
With regard to the causality violation, the circle defined

by C ¼ fðt; r; θ; zÞ; t; r; z ¼ const; θ ∈ ½0; 2π�g, is a CTC
if GðrÞ becomes negative for a range of r-values
(r1 < r < r2) [23], where GðrÞ ¼ D2ðrÞ −H2ðrÞ. For
the linear class m2 ¼ 0, one noncausal region exists for
r > rc, where rc ¼ 1=ω is the critical radius (r-value
splitting up the causal and noncausal regions). For
m2 ¼ −μ2, the trigonometric class, there is an infinite
sequence of alternating causal and noncausal regions.
The hyperbolic class (m2 > 0) can be separated into two
depending on m2: the first one occurs for 0 < m2 < 4ω2,
where there is one noncausal region for r > rc, with the
critical radius rc given by

sinh2
�
mrc
2

�
¼

�
4ω2

m2
− 1

�
−1
: ð9Þ

The second one occurs when m2 ≥ 4ω2, in this case there
is no breakdown of causality and, thus, no occurrence of
CTCs (so, this case is completely causal).

III. THE f ðR;QÞ GRAVITY

The fðR;QÞ gravity action is described by the action
(see, e.g., [27,30]):

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðR;QÞ þ Smatðgμν;ψÞ; ð10Þ

where fðR;QÞ is an arbitrary function of the Ricci scalar R
and the curvature invariant defined by Q ¼ RμνRμν. The
matter is minimally coupled to gravity via the matter action
Smat, κ ¼ 8πG and g is the determinant of metric tensor gμν.
In order to get the field equations, in the metric approach,
it is necessary to vary the action with respect to gμν.
Proceeding in this way we obtain

δS ¼ 1

2κ

Z
d4x½δ ffiffiffiffiffiffi

−g
p

fðR;QÞ þ ffiffiffiffiffiffi
−g

p
δfðR;QÞ�

þ δSmatðgμν;ψÞ; ð11Þ

where

δ
ffiffiffiffiffiffi
−g

p ¼ −
ffiffiffiffiffiffi−gp
2

gμνδgμν; ð12Þ

δfðR;QÞ ¼ fRδRþ fQδQ: ð13Þ

with fR ≡ ∂f
∂R and fQ ≡ ∂f

∂Q. Using that δR ¼ δðgμνRμνÞ and
δQ ¼ δðRμνRμνÞ we obtain

δR ¼ Rμνδgμν þ gμνð∇λδΓλ
μν −∇μδΓλ

λνÞ; ð14Þ

where the Palatini identity has been used and

δQ ¼ δRμνRμν ¼ 2RμνδRμν þ 2Rβ
ðμRνÞβδgμν: ð15Þ

Putting (12), (14), (15) into (11), we find

δS ¼ 1

2κ

Z
d4x

� ffiffiffiffiffiffi
−g

p
δgμν

�
fRRμν −

f
2
gμν þ 2fQR

β
ðμRνÞβ þ Λgμν

�

þ ffiffiffiffiffiffi
−g

p
fRgμνð∇λδΓλ

μν −∇μδΓλ
λνÞ þ 2

ffiffiffiffiffiffi
−g

p
fQRμνð∇λδΓλ

μν −∇μδΓλ
λνÞ

�
þ δSmatðgμν;ψÞ: ð16Þ

Integrating by parts the second and the third term in
Eq. (16), and eliminating the boundary terms, the field
equations become

fRRμν −
f
2
gμν þ 2fQR

β
ðμRνÞβ þ gμν□fR −∇ðμ∇νÞfR

þ□ðfQRμνÞ − 2∇λ½∇ðμðfQRλ
νÞÞ�

þ gμν∇α∇σðfQRασÞ ¼ κTðmÞ
μν ; ð17Þ

where TðmÞ
μν ¼ − 2ffiffiffiffi−gp δð ffiffiffiffi−gp

LmÞ
δgμν is the energy-momentum ten-

sor of matter and□ ¼ ∇μ∇μ is the covariant d’Alembertian

operator. We use the following conventions: the Riemann
tensor isRα

μβν ¼ ∂βΓα
νμ−∂νΓα

βμ−Γα
ρνΓ

ρ
βμþΓα

ρβΓ
ρ
νμ and for the

Ricci tensor is Rμν ¼ Rα
μαν. Here, we use small Greek letters

for coordinate indices running from 0 to 3 and adopt a
Lorentzian signature ðþ;−;−;−Þ.
These field equations can be written in Einstein-like

form, i.e.,

Rμν −
1

2
Rgμν ¼ κeffT

ðmÞ
μν þ Teff

μν ; ð18Þ

where κeff ¼ κ
fR

and
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Teff
μν ¼ 1

fR

�
−
1

2
RgμνfR þ f

2
gμν − 2fQR

β
ðμRνÞβ − gμν□fR

þ∇ðμ∇νÞfR − −□ðfQRμνÞ

þ 2∇λ½∇ðμðfQRλ
νÞÞ� − gμν∇α∇σðfQRασÞ

�
; ð19Þ

is the effective energy-momentum tensor.
It is more convenient to write the field equations in the

trace-reversed form, thus taking the trace of (18)

R ¼ −ðκeffTðmÞ þ TeffÞ; ð20Þ

where TðmÞ ¼ gμνTðmÞ
μν and Teff ¼ gμνTeff

μν .
Using this result, one can write (18) as

Rμν ¼ κeff

�
TðmÞ
μν −

1

2
gμνTðmÞ

�
þ
�
Teff
μν −

1

2
gμνTeff

�
:

ð21Þ

We note that within our studies, the energy-momentum
tensor of the matter is conserved. Indeed, it is possible to
verify that the divergence of the r.h.s. of the Eq. (17)
vanishes, and the matter we consider throughout this paper
is usual (relativistic fluid, scalar or electromagnetic field).
From the physical viewpoint, it is related with the fact
that within our studies, a space-time is suggested to be
homogeneous.
In the next section we deal with the problem of the

causality violation in the fðR;QÞ theory using the Gödel-
type metrics.

IV. GÖDEL-TYPE METRICS IN f ðR;QÞ GRAVITY

To study the equations of motion in our theory, for the
sake of simplicity, we will use the Cartan formalism.
Following its principles, we define a Lorentzian manifold
M, a local section of its orthonormal frame bundle FðMÞ
with structure group SOð3; 1Þ (the frame bundle is defined
by FðMÞ ¼ ⋃p∈MFp, where Fp is the set of all orthonor-
mal frames eA defined at each point p inM, thus it is a fiber
of FðMÞ in p) is a orthonormal frame field, also called a
tetrad or vierbein, eAðxÞ ¼ eμAðxÞ∂μ whose set of such a
vectors forms a basis for the tangent space TpðMÞ at each
point p in M. Equivalently, we can define the dual frame
field or co-frame field θAðxÞ ¼ eAμ ðxÞdxμ where the set of
these vectors is a basis for the cotangent space T�

pðMÞ.
The duality condition eAðθBÞ ¼ δBA leads to eμAe

A
ν ¼ δμν and

eμAe
B
μ ¼ δBA. Here, capital Latin letters label Lorentz indices

and run from 0 to 3. For the Gödel-type manifolds given
by (4) we can define a local Lorentz (orthonormal)
co-frame such that

θð0Þ ¼ dtþHðrÞdθ;
θð1Þ ¼ dr; θð2Þ ¼ DðrÞdθ;
θð3Þ ¼ dz; ð22Þ

where ds2 ¼ ηABθ
AθB, with ηAB ¼ diagðþ1;−1;−1;−1Þ

being the Minkowski metric. In this coframe, the field
equations become

RAB ¼ κeff

�
TðmÞ
AB −

1

2
ηABTðmÞ

�
þ
�
Teff
AB −

1

2
ηABTeff

�
:

ð23Þ

In the Lorentz coframe (22), the nonvanishing components
of Ricci tensor are Rð0Þð0Þ ¼ 2ω2, Rð1Þð1Þ ¼ Rð2Þð2Þ ¼
2ω2 −m2. Note that, all the components are constants.
The Ricci scalar is R ¼ 2ðm2 − ω2Þ, and Q ¼
2m2ðm2 − 4ω2Þ þ 12ω4, both are also constants.
Since the R and Q scalars are constants for the Gödel-

type metrics, the Eq. (19) may be simplified. Then

Teff
μν ¼ 1

fR

�
−
1

2
RgμνfR þ f

2
gμν − 2fQR

β
ðμRνÞβ − fQ□Rμν

þ 2fQ∇λ∇ðμRλ
νÞ − fQgμν∇α∇σRασ

�

¼ 1

fR

�
−
1

2
RgμνfR þ f

2
gμν þ2fQRμλθνRλθ − fQ□Rμν

�
;

ð24Þ

where have been used the fact that derivatives of R and Q
are null and the following identities

∇ρ∇νR
ρ
μ ¼ 1

2
∇ν∇μRþ RμλθνRλθ þ Rλ

μRνλ;

∇μ∇νRμν ¼ 1

2
□R: ð25Þ

Note that the effective energy-momentum tensor in the
coframe (22) is given by Teff

AB ¼ eμAe
ν
BT

eff
μν . Furthermore, if

only the higher-order derivative term, i.e., Xμν ¼ −fQ□Rμν

is considered the nonvanishing components in the local
Lorentz coframe (22) for the Gödel-type metrics are

Xð0Þð0Þ ¼ 4fQω2ð4ω2 −m2Þ;
Xð1Þð1Þ ¼ Xð2Þð2Þ ¼ 2fQω2ð4ω2 −m2Þ: ð26Þ

Thus, differently from [31], we found that the only
possibility of the field equations to reduce to second order
is m2 ¼ 4ω2 for all fQ ≠ 0, it leads to the vanishing of the
higher-order derivative term and, consequently, avoiding
possible instabilities. It is evident that if a tensor is null in a
particular frame it is null for any other frames.
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Since the trace of Teff
μν reduces to Teff ¼ 1

fR
ð−2RfR þ

2f − 2fQRαβRαβÞ that, in turn, by substituting in (20) it
lead us to a constraint equation, namely,

fRRþ 2fQQ − 2f ¼ κTðmÞ; ð27Þ

such equation is indeed an algebraic equation which relates
the matter content to geometric quantities.
An important ingredient we must implement is the matter

content, in order to obtain new results we, besides of a
perfect fluid, will use a massless scalar field. The perfect
fluid has density ρ and pressure p, its energy-momentum

tensor is given by TðpfÞ
AB ¼ ðpþ ρÞuAuB − pηAB, in the

local Lorentz coframe (22), thus

TðpfÞ
ð0Þð0Þ ¼ ρ; TðpfÞ

ð1Þð1Þ ¼ TðpfÞ
ð2Þð2Þ ¼ TðpfÞ

ð3Þð3Þ ¼ p; ð28Þ

where we have defined the 4-velocity of a point of fluid
uA ¼ eA0 ¼ δA0 . Now, let us treat the massless scalar field ψ
which in its turn satisfies the Klein-Gordon equation
□ψ ¼ ηABð∇A∇BψþωC

BA∇CψÞ¼ 0. Due to the symmetry

of the metric we take the gradient of ψ in z-direction, in
other words, ∇Aψ ¼ eμA∇μψ ¼ bẑ implying ψ ¼ bðz − z0Þ,
where b and z0 are constants. Such a choice leads to the
nonvanishing components of the energy-momentum tensor
Tsf
AB ¼ ∇Aψ∇Bψ − 1

2
ηAB∇Cψ∇Cψ for the scalar field in the

coframe (22) are

TðsfÞ
ð0Þð0Þ ¼ TðsfÞ

ð3Þð3Þ ¼
1

2
b2; TðsfÞ

ð1Þð1Þ ¼ TðsfÞ
ð2Þð2Þ ¼ −

1

2
b2;

ð29Þ

as a consequence, TðmÞ
AB ¼ TðpfÞ

AB þ TðsfÞ
AB and, thus, we have

TðmÞ
ð0Þð0Þ ¼ ρþ 1

2
b2; TðmÞ

ð1Þð1Þ ¼ TðmÞ
ð2Þð2Þ ¼ p −

1

2
b2;

TðmÞ
ð3Þð3Þ ¼ pþ 1

2
b2: ð30Þ

Similarly, the nonvanishing components energy-
momentum tensor Teff

AB ¼ eμAe
ν
BT

eff
μν , in (22), are

Teff
ð0Þð0Þ ¼

1

2

2ðω2 −m2ÞfR þ 16ω2ð3ω2 −m2ÞfQ þ f
fR

;

Teff
ð1Þð1Þ ¼ Teff

ð2Þð2Þ ¼ −
1

2

2ðω2 −m2ÞfR þ 4ð6ω2m2 −m4 − 12ω4ÞfQ þ f
fR

;

Teff
ð3Þð3Þ ¼ −

1

2

2ðω2 −m2ÞfR þ f
fR

: ð31Þ

As discussed in Sec. III, the energy-momentum tensor
of the matter is conserved. As a consequence the field
equations, more precisely Eq. (18), lead to the constraint
∇μT

μν
ðeffÞ ¼ 0, in other words, the effective energy-

momentum tensor is conserved as well. Hence, we must
check whether the Gödel-type metrics satisfy such a
constraint, so by means of the straightforward calculation
we get:

∇μT
μν
ðeffÞ ¼ ∇μðeμAeνCTAC

ðeffÞÞ
¼ eνC½∇ATAC

ðeffÞ þ ð∇μe
μ
AÞTAC

ðeffÞ�
þ eμAð∇μeνCÞTAC

ðeffÞ ¼ 0; ð32Þ

multiplying by eBν one finds the expression in a non-
holonomic frame, namely,

∇ATAB
ðeffÞ þ ωC

ACT
AB
ðeffÞ þ ωB

CAT
AC
ðeffÞ ¼ 0; ð33Þ

where ωB
CA are the components of spin connection and we

have used the same definitions of [25]. Finally, by direct

replacement Eq. (31) into Eq. (33) one finds that the
requirement is fulfilled.
Thus, the field equations in Lorentz coframe (22) for

the Gödel-type metrics with matter content (31) are
given by

4ω2fR − 2κρ − f − 16fQω2ð3ω2 −m2Þ − κb2 ¼ 0; ð34Þ

2fRð2ω2 −m2Þ − 2κp − 4fQð12ω4 þm4 − 6ω2m2Þ
þ f þ κb2 ¼ 0; ð35Þ

f − 2κp − κb2 ¼ 0; ð36Þ

or, as is the same,

κb2 ¼ ðm2 − 2ω2ÞfR þ 2ðm4 − 6ω2m2 þ 12ω4ÞfQ; ð37Þ

κp ¼ 1

2
f −

1

2
ðm2 − 2ω2ÞfR − ðm4 − 6ω2m2 þ 12ω4ÞfQ;

ð38Þ
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κρ ¼ −
1

2
f −

1

2
ðm2 − 6ω2ÞfR

− ð36ω4 − 14ω2m2 þm4ÞfQ: ð39Þ

Now, let us treat the general features of the field
equations for this, it is worth pointing out some special
situations: the first one takes place for Gödel solution
(m2 ¼ 2ω2), that presents CTCs. In this case b depends on
fQ, as may be seen from (37). Explicitly, this statement can
be verified by substituting m2 ¼ 2ω2 into Eqs. (37)–(39)
leading to

κb2 ¼ 8ω4fQ; ð40Þ

κp ¼ 1

2
f − 4ω4fQ; ð41Þ

κρ ¼ −
1

2
f þ 2ω2fR − 12ω4fQ; ð42Þ

whose set up is univocally determined for some specified
fðR;QÞ. In order to determine the causality features of the
Gödel solution given by Eqs. (37)–(39), it is necessary to
consider Eq. (9), that defines the critical radius rc, taking
m2 ¼ 2ω2, i.e., the rc is given by

rc ¼
2

m
sinh−1ð1Þ ¼ 2 sinh−1ð1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fR

κðρþ pþ 2b2Þ

s
; ð43Þ

where we have used Eqs. (37)–(39) in the last step. Notice
that rc depends only on matter content and fR. We found
that b ≠ 0 implies fQ ≠ 0, and our result generalized that
one from [32]. In particular, when fðR;QÞ ¼ fðRÞ, we
obtain the results found in [32] where only Gödel solution
is possible for pure perfect fluid, i.e., b ¼ 0.
Other relevant Gödel-type solutions are the linear and

trigonometric classes which both are compatible with the
existence of CTCs. In the special case of the linear class
(m2 ¼ 0), the equations of motion (37)–(39) become

κb2 ¼ 24ω4fQ − 2ω2fR; ð44Þ

κp ¼ 1

2
f þ ω2fR − 12ω4fQ; ð45Þ

κρ ¼ −
1

2
f þ 3ω2fR − 36ω4fQ: ð46Þ

From the Eqs. (44)–(46) we found a relation between
the matter sources: pþ ρ ¼ −2b2. Furthermore, the rc for
linear class is given by

rc ¼
"

fR
24fQ

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24κfQ

�
b
fR

�
2

s �#−1=2

; ð47Þ

for all fR > 0 and fQ > 0.
In the subsection below, we examine particular matter

sources in the fðR;QÞ framework.

A. Vacuum solutions

In contrast to GR [23], the fðR;QÞ gravity admits Gödel-
type vacuum solutions. In such case, it is necessary to add
a cosmological constant Λ into field equations, that can
be made through redefinition fðR;QÞ → fðR;QÞ − 2Λ.
Having this in mind, the Eqs. (20) and (36) reduce to

0 ¼ fRRþ 2fQQ

¼ fRðm2 − ω2Þ þ fQð12ω4 þ 2m4 − 8ω2m2Þ ð48Þ

where R ¼ 2ðm2 − ω2Þ and Q ¼ 2m2ðm2 − 4ω2Þ þ 12ω4

have been used. On the other hand, the Eq. (35) becomes

fRð2ω2 −m2Þ − fQð24ω4 þ 2m4 − 12ω2m2Þ ¼ 0: ð49Þ

Therefore, combining the Eqs. (48) and (49) remain

fR þ 4fQm2 − 12fQω2 ¼ 0: ð50Þ

Recalling that by taking fQ ¼ 0 implies, necessarily,
fR ¼ 0 as a consequence the above equation turns out
not to be consistent in the GR framework (fR ¼ 1 and
fQ ¼ 0), therefore, there is not Gödel-type vacuum sol-
ution in GR in according with [23]. An important particular
case corresponds to the conformally flat space and CTC-free
ðm2 ¼ 4ω2Þ which, in turn, it leaves the field equations
of second order-derivative, for this situation the Eq. (50)
reduces to fR þ 4ω2fQ ¼ 0 (we note that our results are in
disagreement with [31], but we believe that there is a some
error there).
The Eq. (50) must be solved specifying both fR

and fQ which are evaluated at R ¼ 2ðm2 − ω2Þ and Q ¼
2m2ðm2 − 4ω2Þ þ 12ω4, thus generating an algebraic
equation of the form m ¼ mðωÞ. To do so, let us pick
up a specific theory, for instance, f ¼ Rþ αR2 þ βQ,
using it in the former equation we found

4m2 ¼ 4ω2ðαþ 3βÞ − 1

αþ β
: ð51Þ

Note that the theory aforementioned, in particular, admits
the three class of Gödel-type metrics. When m2 ¼ 0 (linear
class) the Eq. (51) reduces to

ω2 ¼ 1

4ðαþ 3βÞ ; ð52Þ
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with the parameters satisfying the following conditions:
αþ β ≠ 0 and αþ 3β ≠ 0. The trigonometric class
(m2 < 0) is recovered when

0 < ω2 <
1

4ðαþ 3βÞ ; ð53Þ

with αþ β > 0. Indeed, there is another possibility, how-
ever unphysical because α → 0 and β → 0 lead to ω2 → ∞.
For the hyperbolic class (m2 > 0) we have

0 < ω2 <
1

4ðαþ 3βÞ ; ð54Þ

with αþ β < 0. An interesting case of the hyperbolic class
corresponds to the geometry m2 ¼ ω2 such a situation
implies R ¼ 0, thus we may determine a range of validity
for the parameters. On the other hand, by means of Eq. (51)
we have ω2 ¼ 1

8β > 0 that, in turn, must be within the range
(54). However, by replacing in the Eq. (54) we found
αþ β < 0 which is clearly in accordance, thus the space
m2 ¼ ω2 is a vacuum solution of f ¼ Rþ αR2 þ βQ.
Particularly, we found a completely causal Gödel-type

vacuum solution that is not analogue in the GR framework.
The solutions are obtained by imposing the condition
m2 ≥ 4ω2 in Eq. (51) leading to

ω2 ≥
1

4j3αþ βj ;

f ¼ 2Λ; ð55Þ
where 3αþ β < 0 and it is required α − β > 0 so that the
Eqs. (54)–(55)) are in agreement.
The first completely causal solution takes place for

m2 ¼ 4ω2, where rc → ∞, that corresponds to equality
in Eq. (55), thus the solution is

Λ ¼ 3

2
ω2; ð56Þ

m2 ¼ 4ω2 ¼ 1

j3αþ βj ; ð57Þ

where 3αþ β < 0 due to the positivity of ω2, and the
cosmological constant is positively definite, this case have
been treated in [33], however our result differs by an
additional negative sign in both equations.

V. CAUSAL SOLUTIONS IN THE PRESENCE
OF MATTER SOURCES

In this section we treat the possibility of the existence of
causal solutions for the matter content composed by perfect
fluid and scalar field already aforementioned above.
In order to evaluate causal solutions it is necessary that
the condition m2 ≥ 4ω2 be satisfied. Taking this into

account, it is possible to determine constraints on the
fðR;QÞ theory.
The causality features become clearer by writing the field

equations (37)–(39) into the form

2fR ¼ κðm4 − 6ω2m2 þ 12ω4Þðpþ ρÞ
ω2m2ð4ω2 −m2Þ

þ κð4ω2 −m2Þð6ω2 −m2Þb2
ω2m2ð4ω2 −m2Þ ; ð58Þ

4fQ ¼ κð2ω2 −m2Þðpþ ρÞ
ω2m2ð4ω2 −m2Þ þ κb2

ω2m2
; ð59Þ

for all m2 ≠ 4ω2 and m2 ≠ 0. In particular, the first causal
solution arises when m2 ¼ 4ω2 it is evident that the above
equations do not apply, thus we should use Eqs. (37)–(39)
which, in turn, reduce to

ρþ p ¼ 0; ð60Þ

κb2 ¼ 2ω2fR þ 8ω4fQ; ð61Þ

κð2pþ b2Þ ¼ f: ð62Þ

For the pure perfect fluid case we have the relation
fR ¼ −4ω2fQ which agree with the results obtained in [31]
except for a negative sign (we believe that in [31], the
sign in equations of motion was lost). Particularly, the
case f ¼ Rþ αR2 þ βQ have been treated in [33], in this
situation the Eqs. (59)-(62) reduce to

κb2 ¼ 2ω2 þ 8ω4ð3αþ βÞ;

m2 ¼ 4ω2 ¼ 4

j3αþ βj ; ð63Þ

according to the results obtained in [33]. Returning to the
general case, the scalar field plays a underlying role
because there is an arbitrariness in choosing fR and fQ
wider than in the pure perfect fluid case. It can be verified
that Eq. (61) leads to inequality fR > −4ω2fQ, in other
words, the presence of the scalar field allows a greater
arbitrariness on the choice of fðR;QÞ function.
The other causal solutions are got by imposing the

condition m2 > 4ω2 to Eqs. (58)–(59), so that some
requirements must be fulfilled, for this purpose we might
split up into three cases:

(i) pþ ρ ¼ 0 and b2 > 0.
This situation implies the following conditions:8>>><

>>>:

fR > 0; if 4ω2 < m2 < 6ω2;

fR ¼ 0; if m2 ¼ 6ω2;

fR < 0; if m2 > 6ω2;

fQ > 0; everywhere:
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(ii) pþ ρ > 0 and b2 > 0.
In this case we have the following conditions:

�
fQ > 0; everywhere;

fR < 0; if m2 ≥ 6ω2:

The range corresponding to 4ω2 < m2 < 6ω2

leads to both possibilities fR > 0 and fR < 0
depending on the relationship between the matter
sources. Note that an interesting particular case of
completely causal solution arises for the pure scalar
field andm2 ¼ 6ω2 so that fðR;QÞ reduces to fðQÞ.

(iii) pþ ρ < 0 and b2 > 0.
This case is quite different from the former

ones. Now, fQ admits both signs as well as fR
depending on the matter content as can be seen from
Eqs. (58)–(59), apart from within range 4ω2 < m2 ≤
6ω2 where fR > 0.

In order to obtain an analysis more detailed we take
again f ¼ Rþ αR2 þ βQ for the case corresponding to
pþ ρ ¼ 0 and b2 > 0. Evidently, we have three possibil-
ities to find solutions without CTCs: the first one occurs
when 4ω2 < m2 < 6ω2, culminating in the following:
fR > 0, fQ > 0 and f ¼ κb2, as above mentioned. The
first condition provides us a relation between ω and α, i.e.,

ω2 <
1

20jαj ; ð64Þ

where α < 0while that the second condition implies β > 0,
or we can still have

ω2 > −
1

20α
; ð65Þ

when α > 0, i.e., the range corresponding to 4ω2 < m2 <
6ω2 is valid for all α although it is only valid for β > 0.
In analogy, the second possibility occurs at the range,
m2 ¼ 6ω2, leading to fR ¼ 0 and fQ > 0, thus

ω2 ¼ 1

20jαj ; ð66Þ

where α < 0 and β > 0 must be satisfied, note that differ-
ently to the previous case now α > 0 is no longer holds.
Finally, the last possibility takes place when m2 > 6ω2

whenever fR < 0 and fQ > 0 hold, and similarly to the
previous cases we find a relation for ω and α given by

ω2 <
1

20jαj ; ð67Þ

where α < 0 and β > 0, on the other hand α > 0 implies
necessarily fR > 0, thus it is not valid.

VI. SUMMARY

The Gödel-type metric within the context of the fðR;QÞ
gravity has been considered for physically well-motivated
matter sources presented by perfect fluid and scalar field.
We note that in general, extension of the gravity Lagrangian
enriches the structure of possible solutions. This is just the
situation occurring in our theory. We verified that the field
equations of the fðR;QÞ theory reduce to the second-order
derivative equations of motion, thus it is ghost-free and
CTC-free for the maximum isometry group of the Gödel-
type metric (m2 ¼ 4ω2). This means that in this case the
fðR;QÞ theory is completely stable as well as causal.
Furthermore, the necessary conditions for arising all three
Gödel-type classes have been found. Indeed, our main
result is that, within this theory, there are essentially new
solutions, that is, completely causal Gödel-type solutions
which are absent in GR. A remarkable result have been the
existence of causal vacuum Gödel-type solutions in the
presence of non-null cosmological constant, such solutions
have no analogue in GR.
Taking into account the matter sources we also found the

conditions for existence of completely causal solutions.
In particular, when the scalar field is null, we note that our
analysis covers both the case of the usual matter, that is,
ρþ p > 0, and the case of the exotic matter, that is,
ρþ p < 0. Therefore, we see that the exotic matter for
this case is not required for the existence of completely
causal solutions. On the other hand, the inclusion of the
scalar field is of fundamental importance because it permits
a wide arbitrariness for the choice of fR and fQ. Since
the results depend explicitly on the function fðR;QÞ, as
an example, we considered the particular model where
fðR;QÞ ¼ Rþ αR2 þ βQ. By studying this model we
classified the possible values of the parameters α and β
with respect to the possibility of arising CTCs.
To close the paper, we note that the Gödel-type metric

describes the rotating Universe, but without taking into
account its expansion. Nevertheless, in general, metrics
involving rotation play a central role in gravitational
physics for many reasons. It is interesting to note some
of them, first, the possibility of rotation of the Universe is
treated as a rather interesting idea within the cosmological
context [34], second, the rotation of the Universe would
imply in the presence of the privileged space-time direc-
tion, that is, the rotation axis, which clearly signalizes the
possibility of the Lorentz symmetry breaking, which makes
studies of Lorentz-breaking theories, and, especially, the
Lorentz-breaking gravity, to be extremely important. Some
results in this direction are presented in [35].
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