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Gravitational waves emitted by high redshift sources propagate through various epochs of the Universe
including the current era of measurable, accelerated expansion. Historically, the calculation of gravitational
wave power on cosmological backgrounds is based on various simplifications, including a 1=r-expansion
and the use of an algebraic projection to retrieve the radiative degrees of freedom. On a de Sitter spacetime,
recent work has demonstrated that many of these calculational techniques and approximations do not apply.
Here we calculate the power emitted by a binary system on a de Sitter background using techniques tailored
to de Sitter spacetime. The common expression for the power radiated by this source in an Friedmann-
Lemaître-Robertson-Walker spacetime, calculated using far wave-zone techniques, gives the same
expression as the late time expansion specialized to the de Sitter background in the high-frequency
approximation.
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I. INTRODUCTION

With the recent detections by LIGO of a coalescing
binary black hole system, the era of gravitational wave
astronomy has begun [1–3]. As ground-based detectors
improve their sensitivity, space-based detectors start con-
struction and pulsar timing arrays begin detecting the
stochastic background of super massive black holes, the
era of gravitational wave cosmology will dawn. These
efforts do not only require tremendous experimental efforts
and intricate data analysis, but also a strong theoretical
understanding of the relevant physics involved. The devel-
opment of gravitational wave theory that was pivotal for
the recent detection, started in the 1960s and is based on
the framework of asymptotically flat spacetimes [4,5].
However, from astrophysical and cosmological observa-
tions, we know that our Universe is best described by the
inclusion of a positive cosmological constant Λ [6–8].
Future gravitational wave observations—in particular those
aimed at detecting gravitational waves at high redshifts—
will require a better understanding of how gravitational
waves are affected by the cosmological constant. One of the
most powerful sources of gravitational waves is the
interaction of two supermassive black holes following
the merger of their two host galaxies. While the details
of this evolution are still being investigated [9,10], the event
rates of coalescences in a given volume are small enough
that we will only observe them at cosmological distances.
Thus, for such physical systems it is essential to understand

the effect of Λ. Recent research has shown that regardless
of how small the value of the cosmological constant is,
many surprises and difficulties arise when Λ is no longer
exactly zero [11–14]. This is illustrated by the discontinu-
ous behavior of some physical observables, such as energy,
in the limit Λ → 0.
In this paper, our aim is to calculate the power radiated

by a binary system on a de Sitter background. This nicely
compliments earlier work on the scalar and electromagnetic
radiation emitted by charges on a de Sitter background
[15–18] and radiation from uniformly accelerated charged
black holes with Λ > 0 [19]. We restrict ourselves to a
binary system whose orbital motion is well-approximated
by a circular orbit. A good understanding of the amount of
power radiated by such a relatively simple system is critical
for both indirect and direct observations of gravitational
waves emitted by binaries. If the power radiated in the form
of gravitational waves is altered by the cosmological
constant, the shrinking of the orbit and the decay in period
will be modified as well. This would affect indirect
observations of gravitational waves that observe the time
derivative of a binary’s rotational period over long periods
of time [20,21], as well as direct observations since the
power directly influences the evolution of the waveform
[22,23]. In addition, a thorough comprehension of the
power radiated by this system is interesting from a
theoretical standpoint. A general formula for gravitational
power radiated by a source on a de Sitter background was
recently discovered [13]. This is the first application of that
formula. It illustrates nicely some of the general properties
of gravitational power in a concrete example as well as*bpb165@psu.edu
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highlighting aspects unique to the power emitted by a
binary system.
The current understanding of propagation effects on a

cosmological background such as a Friedmann-Lemaître-
Robertson-Walker (FLRW) spacetime, relies heavily on
techniques borrowed from “far-away wave zone” calcula-
tions in flat spacetimes [24]. In particular, the calculation of
power radiated by a physical system on an FLRW spacetime
uses the 1=r expansion, an algebraic projection operator to
extract the radiative modes from the linearized gravitational
perturbation, and some type of spatial or time average over
one (or several) reduced wavelengths or complete orbital
periods of the source. Since de Sitter spacetime is globally
very different from Minkowski spacetime, and most FLRW
spacetimes, none of these calculational tools extend to de
Sitter spacetime. The 1=r expansion is to be replaced by a
“late time” expansion. Instead of using the algebraic
projection operator to extract the radiative modes, one needs
to calculate the transverse-traceless part of the perturbation
by solving a set of differential equations. Moreover, no time
averaging is done, as we work with a late time limit, nor is
any spatial averaging needed.
Despite these drastic differences in calculational tools and

their associated approximations, we show that the final result
for power radiated by a binary system on a de Sitter
background is the sameas for a binary in anFLRWspacetime
in the high-frequency approximation. Specifically, we find
that the power radiated is redshift independent when
expressed in terms of physical source quantities such as
its reduced mass, orbital angular velocity and separation
between the two bodiesmaking up the binary. This is the first
calculation from first principles that shows that the numerical
effect of the cosmological constant Λ on the power radiated
by a binary is indeed small given the observed value of Λ.
This does not rule out, however, that Λ-dependent correc-
tions may be important for the phase shift in the gravitational
waveform, which is an integrated effect of the power.
The paper is organized as follows. First, we review

the general formula for power on a de Sitter background
in Sec. II. Next, in Sec. III A, we carefully spell out all
the approximations made to model a binary on a de Sitter
background. Given these approximations, the resulting
power is presented in Sec. III B. This is the heart of the
paper. Details of the calculation of the transverse-traceless
part, needed to calculate the power, are included in the
Appendix. Section IV contains a summary of the result. We
use the convention c ¼ 1 throughout.

II. PRELIMINARIES: FORMULA
FOR POWER RADIATED WHEN Λ > 0

The physical system of interest is a binary system at a
cosmological distance. We model this system by a linear-
ized source on a cosmological background spacetime.
Ideally, one would like to consider a realistic FLRW model
describing the different epochs of the Universe that the

gravitational radiation emitted by this system would have
traveled through. Here we take the approach that we would
like to know the maximal possible effect of the cosmo-
logical constant on the gravitational radiation. Therefore,
we ignore the radiation- and matter-dominated epochs of
our cosmological history and consider a de Sitter back-
ground.1 We use the framework developed in [13] to
calculate the power emitted by this system. In this section,
the relevant equations from [13] are summarized and
discussed. Readers familiar with this work can safely skip
this section.
The causal future of the binary system only covers the

Poincaré patch of the de Sitter spacetime. Therefore, to
study the gravitational radiation emitted by this isolated
system, it suffices to restrict ourselves to this patch. The
metric in ðt; x; y; zÞ-coordinates adapted to this patch is

gab ¼ −∇at∇btþ a2ðtÞ½∇ax∇bxþ∇ay∇byþ∇az∇bz�
ð1Þ

with the scale factor a ¼ e
ffiffi
Λ
3

p
t. (For an overview of other

coordinate systems of de Sitter spacetime, see the extensive
Appendix of [16].) The “time translation” vector field of de
Sitter spacetime in these coordinates is

Ta∂a ¼
∂
∂t −

ffiffiffiffi
Λ
3

r �
x
∂
∂xþ y

∂
∂yþ z

∂
∂z

�
: ð2Þ

The Hamiltonian associated with this Killing vector field
defines the energy and the Lie derivative of this
Hamiltonian with respect to Ta defines the power. Note
that this vector field is not globally timelike. Nevertheless,
it is considered a time translation vector field for two
reasons: (i) in the limit Λ → 0, one recovers the time
translation vector field of Minkowski spacetime, and (ii) it
is the limit of the time translation Killing vector field in
Schwarzschild-de Sitter spacetimes as the Schwarzschild
mass is taken to zero.
Analogously to the power radiated for perturbations

on a Minkowski background, the power radiated by a
source on a de Sitter background is expressed in terms of its
quadrupole moments. On a constant time slice, the
Cartesian components of the quadrupole moment in de
Sitter spacetime are

QðρÞ
ab ðtÞ ≔

Z
dx

Z
dy

Z
dza3ðtÞρðtÞx̄ax̄b ð3Þ

QðpÞ
ab ðtÞ ≔

Z
dx

Z
dy

Z
dza3ðtÞðpxðtÞ

þ pyðtÞ þ pzðtÞÞx̄ax̄b; ð4Þ

1A purely de Sitter background is also appropriate for the
stochastic background of gravitational waves from an inflationary
period, but that radiation is sourcefree.
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where x̄a ≔ aðtÞxa is the physical separation of a point
described by the coordinates x⃗ to the origin, ρ is the energy
density and pi is the pressure in the i-direction. The mass
quadrupole moment is indicated by the superscript ρ and
the pressure quadrupole moment by p. These quadrupole
moments describe (part of) the physical attributes of the
source and are defined for any constant time slice.
In order to extract the physics of an isolated system

unambiguously, the formula for power radiated is defined at
null infinity,2 Iþ. This surface is reached using a late time
expansion, rather than the standard 1=r-expansion in
asymptotically flat spacetimes. This is one of the key
differences between the study of linearized gravitational
perturbations on de Sitter spacetimes and spacetimes for
which Λ ¼ 0. We assume that the physical size of the
system is uniformly bounded by the cosmological radius

Rc ≔
ffiffiffi
3
Λ

q
, and that the physical velocity of the source is

negligible, v ≪ 1. Given these approximations, the gauge-
invariant formula for power P radiated by the system
through any 2-sphere cross section of Iþ orthogonal to the
orbits of the time translation vector field Ta is

P ¼̂ G
8π

Z
d2S½Rabðx⃗ÞRTT

ab ðx⃗Þ�; ð5Þ

where the radiation field Rab is given by

Rabðx⃗Þ ¼̂
�
Q⃛ðρÞ

ab þ
ffiffiffiffiffiffi
3Λ

p
Q̈ðρÞ

ab þ 2Λ
3

_QðρÞ
ab þ

ffiffiffiffi
Λ
3

r
Q̈ðpÞ

ab

þ Λ _QðpÞ
ab þ 2

�
Λ
3

�
3=2

QðpÞ
ab

�
ðtretÞ; ð6Þ

which on Iþ is a function of r only after taking the late time

limit of the retarded time tret ¼ −
ffiffiffi
3
Λ

q
lnð

ffiffiffi
Λ
3

q
ð−ηþ rÞÞ. The

¼̂ denotes equality on Iþ, and overdots represent Lie
derivatives along Ta. The label TT refers to the transverse-
traceless part of the radiation field, so that the divergence as
well as the spatial trace of RTT

ab vanish. Details on how to
calculate the transverse-traceless part of any spatial, sym-
metric rank-2 tensor are discussed in the Appendix. It
requires solving a set of spherical Poisson equations and
cannot be replaced by the algebraic projection operator that
projects spatial tensors orthogonal to the radial direction,
as is typically done for perturbations on Minkowski

spacetime. This is because the algebraic projection operator
is local in space, whereas the transverse-traceless part of a
spatial tensor is global in space. Consequently, these two
notions are completely unrelated. Surprisingly, for asymp-
totically flat spacetimes, the radiative degrees of freedom
on Iþ can in fact be extracted using either notion (for a
detailed comparison between the two notions in the context
of asymptotically flat spacetimes, see [25,26]). This is not
true for de Sitter spacetimes. Although—as we shall see in
Sec. III B—for the specific example of a binary system in a
circular orbit, the projected radiation field and the trans-
verse-traceless part of the radiation field are the same in the
high-frequency approximation, despite being drastically
different before taking the high-frequency approximation.
Whether this generalizes to other scenarios is not clear at
the moment.
Some of the salient properties of the above expression for

power radiated, which will also be important in the next
section, are
(1) Since the label TT is only on one of the radiation

fields and not on both, the expression is not
manifestly positive. Nonetheless, in [13], it was
proven that the power radiated is indeed positive.

(2) The expression for radiated power only involves
radiation fields evaluated at retarded time. This is
critical since this means that the time scales in the
radiation field are set by the wavelength evaluated at
the source and not by the physical wavelength in the
asymptotic region. Consequently, despite the fact
that the physical wavelength of the gravitational
field perturbations grow exponentially as the wave
propagates and even exceed the cosmological radius
Rc in the asymptotic region near Iþ, the power in de
Sitter spacetimes is not “diluted” on Iþ. This is
illustrated in Fig. 1.

(3) An interesting property of gravitational waves gen-
erated on de Sitter spacetime is that the power carries
information about the energy density and the pres-
sure of the source (if no assumption is made about
the relative size of

ffiffiffiffi
Λ

p
and time derivatives of the

quadrupole moments). This is different from the case
when Λ ¼ 0, where the power to lowest post-
Newtonian order is only proportional to the third
time derivative of the mass quadrupole moment
squared and pressure terms appear at higher order.

(4) Let us reiterate that the only approximations made in
the derivation of Eq. (5) that describes the power
radiated by a linearized source on a de Sitter back-
ground are (i) the physical size of the source is
smaller than the cosmological horizon, (ii) its veloc-
ity is small compared to the speed of light and
(iii) the source is only dynamically active for a finite
time period. (Although the later condition can most
likely be relaxed and was only used to ensure
finiteness of intermediate steps in the derivation.)

2This is similar to what is done for isolated systems when
Λ ¼ 0. There one works with asymptotically flat spacetimes to
study isolated systems and even though the detector is at a finite
distance from the source, one generally performs calculations at
Iþ—which is at “r ¼ ∞”. This is because the expressions of
radiated energy and momentum are unambiguous at Iþ. Sim-
ilarly, for the case with Λ > 0, the detector will not be at the
infinite future of the source either, but following the same logic as
for asymptotically flat spacetimes, we calculate the power at Iþ.
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Thus, the radiative power presented in Eq. (5) does
not rely on the high-frequency approximation (also
known as the geometric optics or eikonal approxi-
mation). Nor is any temporal or spatial averaging
performed to calculate the power radiated, as is
explicit from the expression for power. This is in
contrast to standard expressions of power radiated
on a flat background.

III. BINARY SYSTEM IN A CIRCULAR ORBIT

In this section, we first describe in detail the assumptions
made to model the dynamics of the binary system in a
circular orbit on a de Sitter background. This description
applies to any FLRW background and is commonly used
for these spacetimes. Here we review the treatment in
standard references (that assume Λ ¼ 0) [24,27] and
endeavor to be as explicit as possible with our assump-
tions.3 After this summary we show the result for radiated
power of this system and comment on its properties. The
details of the calculation of the transverse-traceless part of
the quadrupole moments, needed for the calculation of
power, can be found in the Appendix.

A. Physical setup

To dynamically model the world lines of the two bodies
with mass m1 and m2 making up the binary system, we
make similar assumptions as in the standard treatment of
sources in expanding spacetimes with Λ ¼ 0 [24,27].
These assumptions are

(1) The characteristic (proper) time scale of the system
tc and the expansion rate of the background are
assumed to be such that the expansion of the
Universe can be neglected during the orbital cycles
of interest,

_a
a
tc ≪ 1 ⇔

ffiffiffiffi
Λ

p
tc ≪ 1: ð7Þ

This is the familiar high-frequency (short-wave)
approximation [28].4

(2) The relative physical separation between the two
bodiesR�ð¼ ar� ¼ ajr⃗1 − r⃗2jÞ is such that the bodies
are far apart compared to the Schwarzschild radius of
either body,

Gm
R�

≪ 1 and
Gμ
R�

≪ 1; ð8Þ

where the total mass of this system is m ¼ m1 þm2

and the reduced mass μ ¼ m1m2

m .
(3) Each body moves slowly, that is, in the center of

mass frame v ≪ 1.
(4) The pressure of each body is negligible compared to

the energy density.
(5) Each body is approximately spherically symmetric.
(6) The trajectory of the binary is well approximated by

a circular orbit.5

The first assumption ensures that the time evolution of
the scale factor can be neglected during the few cycles the
system is studied. Therefore, the time behavior of the
physical separation R� a few orbits before and after the time
of emission is governed by the time behavior of the
conformal separation r multiplied by the scale factor at
the time of emission ae. Similarly, the physical angular
velocityΩ is described by the conformal angular velocity ω
multiplied by a−1e ,

R�ðtÞ ¼ aer� þOð
ffiffiffiffi
Λ

p
tcÞ;

ΩðtÞ ¼ a−1e ωþOð
ffiffiffiffi
Λ

p
tcÞ:

FIG. 1. This conformal diagram shows a source that is static for
most times and dynamical between t1 < t < t2 during which the
source emits gravitational radiation. This radiation is registered
on Iþ. The coordinate u is the retarded time coordinate and
represents the null direction along which gravitational perturba-
tions travel. The power through any 2-sphere cross section
orthogonal to the orbits of the Killing vector field Ta on Iþ
is completely determined by the dynamics of the source at the
corresponding retarded time.

3Thanks to Eric Poisson for clarifications in a private com-
munication.

4Technically, the high-frequency approximation is formulated
in terms of conformal time η: Hηc ≪ 1 where H ¼ 1

a
∂a
∂η and ηc is

the characteristic conformal time. Given tc, however, we can
relate this to the characteristic conformal time by ηc ≃ tc

ae
(where

ae is the scale factor at the time of emission). Since
Hηc ≃Htca=ae, HðηÞηc ≪ 1 is the same as Htc ≪ 1 when
we evaluate expressions at the time of emission. For a de Sitter

background, the Hubble parameter is H ¼
ffiffiffi
Λ
3

q
so that the high-

frequency approximation is equivalent to
ffiffiffiffi
Λ

p
tc ≪ 1.

5The motivation for such a binary is strong since gravitational
waves effectively act to make eccentric systems circular over time
[29], and sources seen later in their evolution are expected to have
small eccentricity [30].
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From the first two assumptions, it also follows that by a
simple constant rescaling of the coordinates, the spacetime
metric is well approximated by a Minkowski metric during
the few cycles the system is studied6:

ds2 ¼ −d~η2 þ d~r2 þ ~r2ðdθ2 þ sin2 θdφ2Þ þOð
ffiffiffiffi
Λ

p
tcÞ;

ð9Þ

where ~η ≔ aeη and ~r ≔ aer.
Given these rescaled coordinates, one can now interpret

approximation 2–6 as the Newtonian approximation and
use Newtonian dynamics to describe the motion of the
binary in the rescaled coordinates. Approximation 1 is
critical for this interpretation. An example of a binary
system satisfying all of the above approximations is a
binary consisting of two weakly self-gravitating bodies
such as main-sequence stars. In addition, other examples
are binaries of two compact bodies such as neutron stars or
black holes. The internal gravity of each body can be
arbitrarily strong but as long as their mutual gravity is
weak, the Newtonian description applies.
In Newtonian mechanics, the motion of the center of

mass is uniform. Consequently, the description of the
motion simplifies when the origin of the coordinate system
is chosen such that it is attached to the center of mass; the
position of each body can then be determined in terms of
the relative separation between the bodies. This is what we
will do here as well. From conservation of angular
momentum, it follows that the orbital motion proceeds
within a fixed orbital plane. Choosing the orbital plane to
coincide with the x-y plane and introducing the orbital
angle to be φ, the equations of motion are

d2 ~r
d~η2

¼
�
~r

�
dφ
d~η

�
2

−
Gm
~r2

�

×

�
1þOð

ffiffiffiffi
Λ

p
tcÞ þO

�
Gm
R�

�
þO

�
Gμ
R�

��
; ð10Þ

d
d~η

�
~r2
dφ
d~η

�
¼ 2Gm

�
2 −

μ

m

�
d~r
d~η

dφ
d~η

×

�
1þOð

ffiffiffiffi
Λ

p
tcÞ þO

�
Gm
R�

�
þO

�
Gμ
R�

��
:

ð11Þ

For a circular orbit d~rd~η ¼ 0 and it follows from Eq. (11) that
dφ
d~η ≡ a−1e ω is constant. In other words, the physical angular

velocityΩ is constant up to terms proportional toOð ffiffiffiffi
Λ

p
tcÞ.

From Eq. (10), we obtain Kepler’s law,7

�
dφ
d~η

�
2

¼ Gm
~r3

�
1þOð

ffiffiffiffi
Λ

p
tcÞ þO

�
Gm
R�

�
þO

�
Gμ
R�

��
:

ð13Þ

In terms of the physical separation vector R� and angular
frequency Ω, Kepler’s law is

Ω2 ¼ Gm
R3�

�
1þOð

ffiffiffiffi
Λ

p
tcÞ þO

�
Gm
R�

�
þO

�
Gμ
R�

��
: ð14Þ

Once truncated this version of Kepler’s law is similar in
form to the Minkowski version, with the only difference
being constant factors of ae. The trajectory of the reduced
mass as a function of proper time is now described by

R⃗�ðtÞ ¼
�
R�ðtÞ cos

�
Ωtþ π

2

�
x̂þ R�ðtÞ sin

�
Ωtþ π

2

�
ŷ

�

×

�
1þOð

ffiffiffiffi
Λ

p
tcÞ þO

�
Gm
R�

�
þO

�
Gμ
R�

��
;

where x̂ (ŷ) is the unit vector in the x-direction (y-direction)
with respect to the Euclidean 3-metric and dR�

dt ¼ Oð ffiffiffiffi
Λ

p
tcÞ

and dΩ
dt ¼ Oð ffiffiffiffi

Λ
p

tcÞ. The trajectory of the reduced mass is
illustrated in Fig. 2 for various choices of R�. The energy
density of this system is

ρ¼μδð3ÞðR⃗− R⃗�Þ
�
1þOð

ffiffiffiffi
Λ

p
tcÞþO

�
Gm
R�

�
þO

�
Gμ
R�

��

¼ μ

a3e
δð3Þðr⃗− r⃗�Þ

�
1þOð

ffiffiffiffi
Λ

p
tcÞþO

�
Gm
R�

�
þO

�
Gμ
R�

��
:

This choice for the energy density ensures that the reduced
mass μ remains constant. Note that the stress-energy tensor
Tab constructed from this energy density is only approx-
imately conserved. In other words, the divergence of the
stress-energy tensor with respect to the derivative operator
compatible with the de Sitter metric is Oð ffiffiffiffi

Λ
p

tcÞ:
∇̄aTab ¼ Oð ffiffiffiffi

Λ
p

tcÞ. With these choices, the (mass) quadru-
pole moment is given by

6As a side remark: since the scale factor is approximately
constant, the Hubble radius is infinite to zeroth approximation
during this period.

7This is the sameKepler’s law that is used for FLRW spacetimes.
Often it is written in a slightly different format in which the above
physical quantities defined at the source are related to quantities as
measured by an observer at redshift z: ωobs ¼ ð1þ zÞ−1a−1e ω,
mz ¼ ð1þ zÞm and rz ¼ ð1þ zÞaer. In terms of the observed
quantities—given the same approximations—Kepler’s law reads

ω2
obs ¼

Gmz

r3z
: ð12Þ
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QðρÞ
ab ðtÞ ¼

μR2�ðtÞ
2

½ð1 − cos 2ΩtÞ∇ax∇bx

þ ð1þ cos 2ΩtÞ∇ay∇by − 2 sin 2Ωt∇ðax∇bÞy�

×

�
1þOð

ffiffiffiffi
Λ

p
tcÞ þO

�
Gm
R�

�
þO

�
Gμ
R�

��
:

ð15Þ
Taking Λ → 0 is equivalent to taking a → 1, and the
quadrupole moment reduces to the flat space result in this
limit [22].

B. Power radiated

Given this setup, we can now proceed to calculate the
radiated power of this system and comment on its proper-
ties. The details of the calculation of the transverse-
traceless part of the quadrupole moments, needed for the
calculation of power, can be found in the Appendix.
Once the transverse-traceless decomposition of the

quadrupole moment QðρÞ
ab ðtretÞ in Eq. (15) and its deriva-

tives, are calculated [for explicit expressions, see
Eqs. (A5)–(A10)], we use the leading order part in the
high-frequency approximation of Eq. (5) to calculate the
radiated power,

P ¼̂ G
8π

Z
d2SQ⃛TT

abQ⃛
ab½1þOð

ffiffiffiffi
Λ

p
Ω−1Þ� ð16Þ

¼̂ 32G
5

μ2R4�ðtretÞΩ6ðtretÞ

×

�
1þOð

ffiffiffiffi
Λ

p
Ω−1Þ þO

�
Gm
R�

�
þO

�
Gμ
R�

��
;

ð17Þ

where, as before, ¼̂ denotes equality on I . Since R� and Ω
are constant in time given the approximations made, this
equation can simply be written as

P ¼̂ 32G
5

μ2R4�Ω6

�
1þOð

ffiffiffiffi
Λ

p
Ω−1ÞþO

�
Gm
R�

�
þO

�
Gμ
R�

��
:

ð18Þ

Let us first comment on three of the main features of this
formula. Afterwards, we will contrast this result to the
power radiated by a binary system on Minkowski space-
time. First, the radiated power is manifestly gauge-invariant
as it solely depends on physical quantities. In addition, the
power is clearly positive. Positivity of the power radiated in
de Sitter spacetimes was proven for gravitational waves
generated by physically realistic sources in [13]. This is the
first explicit illustration of that general proof. Third, since
there are only two independent scales in this system, the
mass and distance scale, the expression for power can be
simplified further. Using Kepler’s law, see Eq. (14), the
expression for radiated power on a de Sitter background
reduces to

P ¼̂ 32

5

1

G
ðGMcΩÞ10=3

×

�
1þOð

ffiffiffiffi
Λ

p
Ω−1Þ þO

�
Gm
R�

�
þO

�
Gμ
R�

��
; ð19Þ

where Mc ≔ μ3=5m2=5 is the chirp mass.
The result in Minkowski spacetime is identical to

Eq. (18) up to constant factors of ae. This is surprising
for several reasons. At the conceptual level, it seems that de
Sitter calculation is essentially carried out on the rescaled
Minkowski spacetime in Eq. (9). However, the formula for
power used is defined on the de Sitter I and with respect to
the de Sitter time translation. In the rescaled flat coor-
dinates, I of de Sitter spacetime is at the ~η ¼ 0 time slice,
which from the Minkowskian perspective is a spacelike
slice in the middle of spacetime. This is illustrated in Fig. 3.
In addition, the de Sitter time translation is a spacelike
conformal Killing vector field on the ~η ¼ 0 surface in the
rescaled flat coordinates. How then is it possible that this
power is equivalent to the power radiated across I of
Minkowski spacetime that is defined with respect to the
time translation Killing field of Minkowski space, which is
timelike everywhere? Furthermore, the calculational tech-
niques used to derive the power radiated on a de Sitter
background are drastically different from those on a
Minkowski background. The power radiated in de Sitter
spacetime relies on a late time expansion to reach Iþ,
whereas the power radiated in Minkowski spacetime uses a
1=r expansion. In addition, the calculation of the trans-
verse-traceless part on a de Sitter background cannot be
done using the algebraic projection operator, instead one is
required to solve a set of differential equations to extract the

FIG. 2. This conformal diagram illustrates the physical setup
for a binary system in a circular orbit. The straight vertical (blue)
line on the left indicates the origin r ¼ 0 around which the
reduced mass of the binary system revolves. The curved (blue)
lines are—from left to right—the trajectories of the reduced mass
at R� ¼ 1

10
Rc;

1
5
Rc and

1
2
Rc. The values for these trajectories are

chosen for illustrative purposes; realistic systems will have a
much smaller R�. The shorter diagonal (red) line denotes the
cosmological horizon of the source. [Note that in this figure dR�

dt is

assumed to be exactly zero; not just dR�
dt ¼ Oð ffiffiffiffi

Λ
p

Ω−1Þ.]
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transverse-traceless part. An explicit calculation shows that,
for the binary system on a de Sitter background discussed
here, QTT

ab and Qtt
ab are indeed different (and this difference

does not vanish in the high-frequency limit),

QTT
ab −Qtt

ab

¼̂ μR2�
2

�
−
1

6
ð1þ 3 cos 2θÞ∇ar∇brþ r sin 2θ∇ðar∇bÞθ

þ r2

12
ð1þ 3 cos 2θÞ∇aθ∇bθ

þ r2

12
sin2θð1þ 3 cos 2θÞ∇aφ∇bφ

�

× ½1þOð
ffiffiffiffi
Λ

p
Ω−1Þ�; ð20Þ

where Qtt
ab refers to the algebraically projected quadrupole

moment

Qtt
ab ≔

�
Pc
aPd

b −
1

2
PabPcd

�
Qcd ð21Þ

with Pb
a ¼ qba −∇ar∂b

r and satisfying Pb
arb ¼ 0, Pa

a ¼ 2,
and Pc

aPb
c ¼ Pb

a. Moreover, the power on a flat background
typically makes use of some type of spatial or temporal
averaging, such as Brill-Hartle averaging. No such averag-
ing appears in the formula for power radiated on a de Sitter
background.
This puzzle is resolved by carefully considering the

power radiated across the t ¼ 0 surface in Minkowski
spacetime. Assuming that the source was only dynamic for
a finite time interval before t ¼ 0, the formula for power
radiated at the spatial surface given by t ¼ 0 is

PMinkðrÞ ¼̂
G
8π

Z
t¼0

d2Sr2

×

��
Q⃛abðtretÞ

r

�
TT Q⃛abðtretÞ

r
þO

�
1

r3

��
;

ð22Þ
where the overdots refer to the time translationvector field of
Minkowski spacetime. Note that since this formula is not
evaluated at I of Minkowski spacetime, the radiative
degrees of freedom in Q⃛abðtretÞ

r cannot be obtained by simply
projecting it onto the two-sphere. This procedure is only
valid onMinkowskiI . Therefore, the factor of r−1 cannot be
pulled out of the TT-operation and the r’s in this formula do
not cancel at leading order. Together with the fact that there
are also higher order terms that cannot be neglected for finite
r, this shows that the formula across the t ¼ 0 surface in
Minkowski spacetime in Eq. (22) is rather different from the
de Sitter formula across the Minkowskian ~η ¼ 0 surface in
Eq. (16). Hence, not only are theKilling vector fields used to
define the power radiated across the Minkowskian t ¼ 0
versus ~η ¼ 0 surface different, also the expressions for
power are. Only in the limit to I does the power radiated
in Minkowski spacetime become

PMink¼̂
G
8π

Z
I
d2SQ⃛tt

abðtretÞQ⃛abðtretÞ ð23Þ

and does the power radiated in Minkowski spacetime agree
with the power across ~η ¼ 0 of the rescaled flat spacetime
using the de Sitter expression. In summary, the power
radiated by a binary satisfying approximation 1–6 across
I of de Sitter spacetime is equal to the power radiated by the
same binary across I of Minkowski spacetime.
So far, we have focused on modeling a physically

realistic binary system. As a result, the dynamics of the
system could only reliably determined within the high-
frequency limit, and consequently the expression for power
was only valid up to Oð ffiffiffiffi

Λ
p

Ω−1Þ. Therefore, a natural
question is “How does the power change if the dynamics of
the system is known to all orders in Oð ffiffiffiffi

Λ
p

Ω−1Þ?” As a
proof of principle, let us relax assumption 1 at the
beginning of Sec. III A and imagine that the source is in
a circular orbit for all time,

dR�
dt

¼ 0 and
dΩ
dt

¼ 0: ð24Þ

In other words, this assumes that the adiabatic approximation
is valid on cosmological time scales. This is an externally
specified, fine-tuned trajectory and not necessarily physical.
(Although it does have the nice property that the bodies
making up the binary system are not being pulled apart by the
cosmological expansion, and the system remains forever
bounded by the short distance attraction.) If the associ-
ated energy density is the only nonzero component of the

FIG. 3. This diagram shows the ~η ¼ 0 surface of the rescaled
flat coordinates. From a Minkowskian perspective, this surface
is simply the t ¼ 0 surface in the middle of Minkowski
spacetime. From a de Sitter perspective, this surface is its future
null infinity Iþ.
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stress-energy tensor Tab, the stress-energy tensor is not
conserved on a de Sitter background and one cannot use
Eq. (5)—which relies on conservation of the stress-energy
tensor—beyond the high-frequency approximation. How-
ever, there are many possible stress-energy tensors with
nonzero space-time and space-space components such that
Tab is conserved.8 We consider a stress-energy tensor from
this classwith vanishing pressure. Then using the results from
the Appendix for the transverse-traceless part of the radiation
field, the resulting power is

P ¼̂ 32G
5

μ2R4�Ω6

�
1þ 5

12

Λ
Ω2

þ 1

36

Λ2

Ω4

�
: ð25Þ

This result highlights the fact that the power radiated can get
corrections in a de Sitter spacetime. These corrections are
linear and quadratic inΛwith coefficients less than one. That
these coefficients are small is a priori not obvious, especially
given that theΛ → 0 limit can be discontinuous as evidenced
by an infinite set of solutions on de Sitter spacetime that carry
negative energy while no such solutions exist on Minkowski
spacetime [13]. The above expression for power is exact and
not a truncation of a series in Λ. Taking the high-frequency
limit of this result, recovers the result in Eq. (18).
Quantitatively, the Λ-dependent corrections are extremely
small for most physically realistic binary systems and
unlikely to play a role in observations that measure power
radiated directly. However, these corrections due to Λ may
result in anobservable frequency shift for sources observedby
future space-based missions. A more realistic system is
needed to calculate the size of this effect.
Remark. Just as on a Minkowski background, for any

isolated system, linear momentum radiated in the form of
gravitational waves vanishes on a de Sitter background given
the approximations made. For the specific case studied here,
a binary system restricted to the x-y orbital plane, the flux of
angular momentum in the x- and y-direction also vanishes on
Minkowski and de Sitter backgrounds. The instantaneous
flux of angular momentum in the z-direction does not vanish
and on de Sitter Iþ is given by9

LTJz ¼̂
32G
5

μ2R4�Ω5

×

�
1þOð

ffiffiffiffi
Λ

p
Ω−1Þ þO

�
Gm
R�

�
þO

�
Gμ
R�

��
:

ð26Þ
IV. DISCUSSION

Previous results for linearized perturbations on a de Sitter
background have shown certain effects compared to a flat
spacetime background. Specifically, using different

methods, several groups found that the gravitational
memory effect is enhanced by redshift factors [31–34].
This enhancement persists even after taking the high-
frequency approximation. Thus, one might anticipate a
similar enhancement for power radiated in the form of
gravitational waves by a source on a de Sitter background.
This expectation is further supported by the striking
differences between the calculational techniques used near
Iþ of de Sitter spacetimes and those used near Iþ of
Minkowski spacetimes: late time versus large r expansions,
extracting the radiative degrees of freedom by solving a
set of differential equations versus using an algebraic
projection operator and in the calculation of power, no
averaging versus spatial or temporal averaging.10 These
expectations are not borne out. The power radiated by a
binary system on de Sitter spacetime in terms of the
reduced mass and angular velocity shows no enhancement
(nor decrease) as compared to the result on a Minkowski
background for systems we considered. In other words, the
standard expression for power radiated in Minkowski
spacetimes also applies to de Sitter spacetime in the
high-frequency approximation. The high-frequency limit
is critical for this equivalence.
This result highlights that in order to probe the cosmo-

logical constant by measuring the power, one needs to go
beyond the high-frequency approximation. Since the gen-
eral expression for power radiated in de Sitter spacetimes
does not invoke the high-frequency approximation, in
principle, there are no obstacles to perform such a calcu-
lation. In the current setup, this regime could not be probed
as the dynamics of the binary system could only be
determined up to Oð ffiffiffiffi

Λ
p

Ω−1Þ. Thus, if one could reliably
determine the source dynamics beyond the high-frequency
approximation, one could calculate the corrections due to
the background curvature on the power. This would allow
one to observe Λ through the power emitted by gravita-
tional waves.
The power emitted by the binary system was calculated

on Iþ of de Sitter spacetime. A natural question is: how
does this result relate to what an observer at a finite time in
de Sitter spacetime may detect? Since the dynamical part of
the gravitational wave on a de Sitter background propagates
sharply (its tail term is an “instantaneous” tail, see
Appendix of [13]), it is likely that the power radiated
through a 2-sphere cross section on Iþ is the same as it is
through any two-sphere connected to the two-sphere on Iþ
by a null ray [35]. In particular, the power radiated across
Iþ is the same as it is through the cosmological horizon.
This is illustrated in Fig. 4. Thus, even though the power
presented here was calculated on Iþ, there are indications
that this power is the same on the cosmological horizon,
where an observer may detect such radiation.

8Although it is unclear how realistic such stress-energy tensors
are.

9Here, Eq. (4.33) in [13] was used.

10Albeit, these differences do not indicate whether the power
would be enhanced or diminished.
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APPENDIX: TRANSVERSE-TRACELESS
DECOMPOSITION

In this appendix, we first briefly recall the decomposition
of a spatial tensor into its irreducible parts and outline a
generic prescription to extract the transverse-traceless part
of this decomposition. Next, we apply this method to
calculate the transverse-traceless part of the quadrupole
moment in Eq. (15) and comment on the calculation of the
transverse-traceless part of the radiation field Rab. For this
calculation, the algebraic computing software MAPLE

was used extensively, both for tensor analysis, using the
package DifferentialGeometry [36], and solving these
differential equations.
Any spatial symmetric rank-2 tensor Sab can be decom-

posed into its irreducible parts in the following form
[37,38]:

Sab ¼
1

3
qabSþ

�
DaDb −

1

3
qabD2

�
Bþ 2DðaBT

bÞ þ STTab ;

ðA1Þ

where qab is the spatially flat metric andDa is the covariant
derivative compatible with qab. S is the spatial trace of Sab
(S ≔ qabSab), BT

a is a transverse vector so that DaBT
a ¼ 0,

and STTab is a transverse and traceless tensor.11 Normally, in
order to extract the radiative degrees of freedom of the
gravitational field that are encoded in the transverse-
traceless part of the spatial components, one often uses
an algebraic projection operator in gravitational wave
theory. However, as the above decomposition indicates,
this generically will not extract the transverse-traceless part
STTab . Instead one needs to solve a set of differential
equations. The “recipe” to obtain the TT part of a tensor
Sab is to first take one and two covariant derivatives
of Eq. (A1). This results in two Poisson equations
and one vector-Poisson equation [37]. First, one solves
for A in D2A ¼ 3

2
DaDbSab − 1

2
D2S. Second, solve for B in

D2B ¼ A. Third,12 solve for BT
a satisfying

D2BT
a ¼ DbSab −

1

3
DaS −

2

3
D2DaB; ðA2Þ

DaBT
a ¼ 0: ðA3Þ

Knowing S, B and BT
a , one obtains STTab by subtracting these

components from Sab using Eq. (A1).
Now we apply this procedure to calculate the transverse-

traceless part of the quadrupole moment in Eq. (15). In each
step, we only keep the particular solutions to the Poisson
equations as we want the solution due to the source of the
gravitational waves. In the first and second steps normal
techniques for solving the Poisson equation can be used.
Since the source is quadrupolar finding solutions is
straightforward. In spherical coordinates the radial compo-
nent of the vector-Poisson equation in Eq. (A2) is sim-
plified by using the transverse condition to substitute out all
but the radial components of the vector-Laplacian operator,
giving an almost-standard scalar Helmholtz equation. The
θ-component of the vector-Poisson equation is the most
challenging, since the source term for the component that
appears on the right-hand side of Eq. (A2) is not purely
quadrupolar. Fortunately, the angular dependence of the
solution follows from the source term, so using an ansatz of
the form

Bθ ¼ μR2� sin 2θ
�
f1ðrÞ cos

�
2φ − 2

Ω
H
lnðHrÞ

�

þ f2ðrÞ sin
�
2φ − 2

Ω
H
lnðHrÞ

��
ðA4Þ

allows one to solve for the two functions of the
radial coordinate, f1ðrÞ and f2ðrÞ, and obtain a solution.

FIG. 4. There are strong indications, [35], that the power
radiated across a 2-sphere cross section on Iþ is the same as
the power radiated across any 2-sphere along the light-ray emitted
from Iþ to the source as long as one remains “far enough away
from the source” and within the high-frequency approximation.
Therefore, the power emitted across a 2-sphere cross section on
Iþ, P½C2�, is likely the same as the power emitted on the
cosmological horizon, P½C1�.

11York, [39], uses a similar decomposition using only the
vector Wa, related to our components via Wa ¼ BT

a þ 1
2
DaB.

12Note that the second and third steps can be interchanged.
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Here the index θ refers to the orthonormal component
of BT

a in the direction of θ. (Similarly, we shall use r
and φ indices to denote the orthonormal components
proportional to ∇ar and ∇aφ, respectively.) Once these
two components of BT

a are known, the transverse condition

can be integrated to find the third component, i.e. BT
φ.

This results in the following transverse-traceless compo-
nents of the quadrupole moment Qab evaluated at retarded
time on de Sitter Iþ (again, written in an orthonormal
frame):

QTT
rr ¼̂ −

3μR2�H2 sin2 θ
ð9H2 þ 4Ω2Þð25H2 þ 4Ω2Þ ½ð15H

2 − 4Ω2Þ cos ð2Ωtret þ 2φÞ þ 16HΩ sin ð2Ωtret þ 2φÞ

þ ð9H2 þ 4Ω2Þð25H2 þ 4Ω2Þ þ cosð2θÞð675H4 þ 408H2Ω2 þ 48Ω4Þ� ðA5Þ

QTT
rθ ¼̂ μR2� sinð2θÞ

4ð25H2 þ 4Ω2Þ ½−4HΩ sin ð2Ωtret þ 2φÞ − 10H2 cos ð2Ωtret þ 2φÞ þ 25H2 þ 4Ω2� ðA6Þ

QTT
rφ ¼̂

μR2�H sin θ
25H2 þ 4Ω2

½5H sin ð2Ωtret þ 2φÞ − 2Ω cos ð2Ωtret þ 2φÞ� ðA7Þ

QTT
θθ ¼̂ μR2�

12ð9H2 þ 4Ω2Þð25H2 þ 4Ω2Þ ½−16Ω
4 − 136H2Ω2 − 225H4 þ cosð2θÞð675H4 þ 408H2Ω2 þ 48Ω4Þ

− 6ð45H4 þ 87H2Ω2 þ cosð2θÞð45H4 þ 21H2Ω2 þ 4Ω4Þ þ 12Ω4Þ cos ð2Ωtret þ 2φÞ
þ 6HΩðcosð2θÞð4Ω2 − 3H2Þ þ 87H2 þ 12Ω2Þ sin ð2Ωtret þ 2φÞ� ðA8Þ

QTT
θφ ¼̂ μR2� cosðθÞ

225H4 þ 136H2Ω2 þ 16Ω4
½ð42H3Ωþ 8HΩ3Þ cos ð2Ωtret þ 2φÞ þ ð45H4 þ 54H2Ω2 þ 8Ω4Þ sin ð2Ωtret þ 2φÞ�

ðA9Þ

QTT
φφ ¼̂

μR2�
12ð9H2 þ 4Ω2Þð25H2 þ 4Ω2Þ ½450H

4 þ 272H2Ω2 þ 32Ω4 − 6HΩðcosð2θÞð45H2 þ 4Ω2Þ þ 39H2

þ 12Ω2Þ sinð2Ωtret þ 2φÞ6ð90H4 þΩ2 cosð2θÞð33H2 þ 4Ω2Þ þ 75H2Ω2 þ 12Ω4Þ cosð2Ωtret þ 2φÞ�: ðA10Þ

Let us comment on a few properties of the above
expressions. First, recall that the quadrupole moment is
evaluated on Iþ and that tret¼̂ − 1

H lnðHrÞ. This simplified
the calculation, as we took the late time limit of the
quadrupole evaluated at retarded time before calculating
the transverse-traceless components. Second, although
in Sec. III A, we are interested in the high-frequency limit
of QTT

ab , the above expressions are true to all order
in H

Ω [assuming dR�
dt ¼ 0, not just dR�

dt ¼ Oð ffiffiffiffi
Λ

p
tcÞ]. The

differential equations mix powers of H
Ω. This mixing is

responsible for the complicated form of QTT
ab as compared

to Qab itself. To obtain the high-frequency limit, we
truncate the result in the end. As shown in Eq. (20), taking
the high-frequency limit of QTT

ab does not reduce QTT
ab

to Qtt
ab.

Given the above recipe, one could in principle also apply
this to the radiation field Rab, appearing in the formula for
power, to extract its transverse-traceless components. This is
not needed, however. Since the decomposition in Eq. (A1) is
done on a spatial slice, it commutes with time derivatives.
However, it generically does not commute with spatial
derivatives. A notable exception to this is the derivative
along the “dilation” vector field, r∂r, that plays the role of
generating time translations on Iþ of de Sitter spacetimes.
Therefore, ðLTQabÞTT ¼ LTQTT

ab and knowing the trans-
verse-traceless components ofQab, one can easily obtain the
transverse-traceless part of the radiation fieldRab by simply
calculating the appropriate Lie derivatives ofQTT

ab . To obtain
the high-frequency limit of RTT

ab , we first calculate RTT
ab

using this method and truncate the result in the end.
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