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The “gravitational memory effect” due to an exact plane wave provides us with an elementary
description of the diffeomorphisms associated with the analogue of “soft gravitons for this nonasymptoti-
cally flat system. We explain how the presence of the latter may be detected by observing the motion of
freely falling particles or other forms of gravitational wave detection. Numerical calculations confirm the
relevance of the first, second and third time integrals of the Riemann tensor pointed out earlier. Solutions
for various profiles are constructed. It is also shown how to extend our treatment to Einstein-Maxwell plane
waves and a midisuperspace quantization is given.
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I. INTRODUCTION

The gravitational memory effect means, intuitively, that a
short-burst gravitational wave changes the separation of
freely falling particles (viewed here as “detectors”) after
thewave has passed [1,2]. The effect is potentially observable
using LISA [3]; recently, Lasky informed us that aLIGO
might also be able to detect memory associated with binary
black hole mergers in the not-too-distant future [4]. The
effect would be observed indirectly if the B-mode is detected
in the cosmic microwave background (CMB) [5]. It is also
relevant to recent work by Hawking et al. [6,7] on soft
graviton theorems in their attempt to resolve the information
paradox of black hole physics.
Gravitational waves had long been thought to arise from

periodic sources such as binary star systems and were
therefore expected to be detected through resonance. The
novel idea of observing a burstlike gravitational wave
through the displacement of freely falling bodies after
the wave has passed was put forward in 1974 by Zel’dovich
and Polnarev [1], who suggested

… another, nonresonance, type of detector is possible,
consisting of two noninteracting bodies (such as satel-
lites). … the distance between a pair of free bodies
should change, and in principle this effect might
possibly serve as a nonresonance detector. … One
should note that although the distance between the free
bodies will change, their relative velocity will actually
become vanishingly small as the flyby event concludes.

The idea of Zel’dovich and Polnarev was elaborated by
Braginsky and Grishchuk [2], who introduced term
“memory effect.” Both the title (“Kinematic resonance
and the memory effect in free mass gravitational antennas”)
and the abstract of the latter paper give a clear idea of what
is involved:

Consideration is given to two effects in the motion of
free masses subjected to gravitational waves, kinematic
resonance and the memory effect. In kinematic reso-
nance, a systematic variation in the distance between the
free masses occurs, provided the masses are free in a
suitable phase of the gravitational wave. In the memory
effect, the distance between a pair of bodies is different
from the initial distance in the presence of a gravita-
tional radiation pulse. Some possible applications … to
detect gravitational radiation …

Braginsky and Grishchuk were clearly concerned with
the motion of test masses (that is, no backreaction) moving
in a weak gravitational wave. Their analysis was at the
linear level.
Two years later, Braginsky and Thorne [8] published a

short paper making a distinction between two types of
bursts, namely, one without memory and one with memory.
The same distinction had been made earlier in [9], but
without the explicit introduction of the memory concept.
In the 1990s a nonlinear form of memory was discov-

ered, independently, by Christodoulou [10,11] and by
Blanchet and Damour [12]. It arises from the contribution
of the emitted gravitational waves to the changing quadru-
pole and higher mass moments (cf. [9]). These papers
obtained a permanent displacement.
Since the mid-1990s, there have been many studies of

plane gravitational waves. As far as we are aware, few have

*zhpm@impcas.ac.cn
†duval@cpt.univ‑mrs.fr
‡G.W.Gibbons@damtp.cam.ac.uk
§horvathy@lmpt.univ‑tours.fr

PHYSICAL REVIEW D 96, 064013 (2017)

2470-0010=2017=96(6)=064013(20) 064013-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.064013
https://doi.org/10.1103/PhysRevD.96.064013
https://doi.org/10.1103/PhysRevD.96.064013
https://doi.org/10.1103/PhysRevD.96.064013


dealt with the memory effect, and none with the concept of
soft gravitons. However, our attention was recently drawn
to two relevant papers of Harte, [13,14]. Although mainly
concerned with optics, attention was drawn in [14] to a link
with the memory effect that we shall elaborate on later in
this paper.
In what follows we consider the effect of a fully nonlinear

plane gravitational wave on a detector whose backreaction
is negligible. This is done by considering geodesics in the
exact plane wave background. We argue that our approach,
initiated in [15] following earlier work by Souriau [16], is
significantly simpler than those in [10–12], since it requires
no knowledge of the source or a sophisticated understanding
of nonlinear partial differential equations—just simple cal-
culation. It is based on the idea that far from the source we
may approximate the gravitational wave in the neighborhood
of a detector by an exact plane wave.
We shall work in 3þ 1 spacetime dimensions although

the discussion of this paper readily generalizes to higher
spatial dimensions. The assumption of three spatial dimen-
sions is an obvious requirement for any discussion of
physically realizable detectors such as LIGO and LISA and
moreover is also made in [6,7]. However, it has been
pointed out that the boundary conditions for asymptotically
flat higher dimensional spacetimes differ considerably from
those in four spacetime dimensions [17], which probably
means that the obvious generalization of the Bondi-
Metzner-Sachs (BMS) group to higher dimensions [18]
is not applicable.
A detailed analysis of weak sources at the linearized level

analogous to that in three dimensions [9] indicates that there is
nomemoryeffect inhigherdimensions [19]. Since the analysis
of the present paper reveals the importance of considering
nonlinear focusing effects it may either be the case that these
must be taken into account, or our assumption that, at a large
distance, plane waves are a good approximation to outgoing
gravitational waves, fails in higher dimensions.
The plan of the paper is as follows. In Sec. II we describe

the basic geometry of plane gravitational waves and the two
most useful coordinate systems used to describe them as well
as the relation between them. One referred to as Brinkmann
(B) coordinates [20] is global and allows the general vacuum
solution to be specified in terms of two arbitrary functions of
a single retarded time variable. The second, called Baldwin-
Jeffery-Rosen (BJR) coordinates [21,22], depends upon the
same single retarded time variable. These coordinates are
adapted to a three-dimensional mutually commuting subset
of the five independent Killing vectors of plane wave
spacetimes. This fact renders local calculations simpler than
in Brinkmann coordinates for which only a single Killing
vector is manifest. The price to pay for this simplification is
that the metric is now specified by a 2 × 2 symmetric matrix
giving the metric on the transverse space, which requires
solving a coupled system of Sturm-Liouville differential
equations with no nontrivial global solution. This holds even
in the locally flat case, as we show explicitly.

Section III is concerned with how gravitational waves are
detected. This is at the heart of the gravitational memory
effect and the detectability of soft gravitons. We consider
how a sandwich wave (i.e., one whose curvature vanishes
outside a finite interval of retarded time) affects freely
falling particles initially at rest with respect to one another
after the wave has passed.
In Secs. III A and III B we recall how, in linear theory, this

behavior is encoded in integrals of the Riemann curvature
with respect to retarded time and how these integrals serve
as a diagnostic for the nature of the source.
In Sec. IVD we show how the memory effect may be

illustrated by means of “Tissot” diagrams illustrating the
effect of gravitational pulses on a ring of freely falling
particles.
Section IV is concerned with the detailed exact behavior

of these geodesics in the exact plane wave backgrounds.
In Secs. IVA and IV B we do this both in Brinkmann and in
BJR coordinates. In (B)-coordinates our study is numerical;
however, in the latter case we can proceed analytically: by
virtue of Noether’s theorem, the spatial positions are
independent of retarded time. This has the consequence
that for pulses, the memory effect is encoded into a
diffeomorphism (i.e., a coordinate transformation) taking
a part of flat spacetime in standard inertial coordinates into
a patch of flat space in noninertial BJR coordinates. In field
theory approaches to general relativity, such as those used
in [6,7], diffeomorphisms or coordinate transformations are
thought of as “gravitational gauge transformations” and
some gravitational gauge transformations of asymptotically
flat spacetimes are associated with soft gravitons. In
Sec. IV C. we argue that in our context, flat plane waves
in BJR coordinates correspond to soft gravitons in the
asymptotically flat spacetimes.
In Sec. V we relate our work to the light cone structure of

plane gravitational waves and a well-known analysis of
Penrose.
In Sec. VI we indicate how much of our work may be

extended to exact solutions of Einstein-Maxwell theory. In
particular, we point out that the coupled system has the
Carroll symmetry identified recently [15] for pure gravita-
tional waves.
Up to this point, our work has been purely classical. In

Sec. VII we turn to possible implications for the quantum
theory by considering a midisuperspace (Sec. VII A) made
up of plane gravitational waves and the associated space of
quantum states.
In the analogous case of electromagnetic waves there is an

elaborate theory of polarization and the photon states
specified by Stokes parameters correspond to points on what
is called the Poincaré sphere, which carries a Pancharatnam
connection. In Sec. VII B we show how this formalism may
be smoothly carried over to the case of gravitons.
The subject of plane gravitational waves has a long

history and many contributions and reviews distributed
over many different journals in many different languages.
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In reviewing the material necessary for an exact and
comprehensible understanding of the memory effect and
its relation to the concept of soft gravitons we have felt it
necessary on the one hand to incorporate sufficient material
perhaps well known to experts to make our account self-
contained for nonexperts while on the other hand giving
sufficient credit to the pioneers of the field without over-
whelming the reader with an unmanageable list of all every
contribution.
Some of the results presented here appear in summary

in [23].

II. PLANE GRAVITATIONAL WAVES

We begin by reviewing some facts about plane waves
[16,20–43].

A. Brinkmann and Baldwin-Jeffery-Rosen coordinates

There are two commonly used coordinate systems for
plane gravitational waves:

(i) Brinkmann coordinates (B) [20,25] for which the
metric is1;

g¼ δijdXidXjþ2dUdVþKijðUÞXiXjdU2; ð2:1Þ

where the symmetric and traceless 2 × 2matrix with
components KijðUÞ characterizes the profile of the
wave. The only nonvanishing components of the
Riemann tensor are, up to symmetry,2

RiUjUðUÞ ¼ −KijðUÞ: ð2:2Þ
For suitable Kij, the Brinkmann coordinates
ðX; U; VÞ, which are harmonic, are global [26,27].
The general form of their profile is then

KijðUÞXiXj ¼ 1

2
AþðUÞððX1Þ2 − ðX2Þ2Þ

þA×ðUÞX1X2; ð2:3Þ
where Aþ and A× are the amplitude of the þ and ×
polarization state.
Aside from their astrophysical applications to

gravitational radiation, plane waves, in arbitrary
spacetime dimensions, provide a general framework
in which any “natural” nonrelativistic dynamical
system with a configuration space of dimension n
maybe “Eisenhart” lifted to a systemof null geodesics
in an (nþ 2)-dimensional Lorentzian spacetime en-
dowed with a covariantly constant null Killing vector
field ξ ¼ ∂V [44–47]. Conversely, a null reduction
along the orbits of such “Bargmann” spacetimes gives
rise to a possibly time-dependent dynamical system

on an n-dimensional configuration space. From the
“Bargmann” point of view, themetric (2.1) describes a
nonrelativistic particle subjected to an (attractive or
repulsive) harmonic (and generally time-dependent
and anisotropic) oscillator potential.

(ii) Baldwin-Jeffery-Rosen coordinates (BJR) [21,22,28],
for which

g ¼ aijðuÞdxidxj þ 2dudv; ð2:4Þ

where the 2 × 2 matrix aðuÞ ¼ ðaijðuÞÞ is strictly
positive. The BJR coordinates ðx; u; vÞ are not har-
monic and are typically not global, but exhibit coor-
dinate singularities [16,22,26,27,30,33], a fact which
gave rise to much confusion in the early days of the
subject. Our investigations below provide further
clarification of this issue.

The relation between the two coordinate systems is given
by [15,38]

X¼PðuÞx; U¼ u; V¼ v−
1

4
x · _aðuÞx; ð2:5Þ

with3

aðuÞ ¼ PðuÞTPðuÞ; ð2:6Þ
where P satisfies

P̈ ¼ KP: ð2:7Þ

For a given matrix K, this is a second-order ODE of
the Sturm-Liouville type for P, which implies that

PT _P − _PTP ¼ const Then the initial values of _P and of
P may be chosen so that the constant vanishes,

PT _P − _PTP ¼ 0: ð2:8Þ

The mapping (2.5) transforms the quadratic “potential”
KijðUÞXiXj in (2.1) into a time-dependent transverse
metric (2.6) and vice versa. The relation is

K ¼ 1

2
P

�
_bþ 1

2
b2
�
P−1; b ¼ a−1 _a: ð2:9Þ

B. Plane waves in BJR coordinates

Up to symmetry, the only nonzero components of the
Riemann tensor are

Ruiuj ¼ −
1

2

�
ä −

1

2
_aa−1 _a

�
ij
; ð2:10Þ

yielding the Ricci tensor, whose only nonzero component
is (2.9),

1Equation (2.1) gives the most general form of a pp-wave only
inD ¼ 4 total dimensions; further components arise also ifD ≥ 5
[20]. In this paper, we limit ourselves to D ¼ 4.

2We use the convention Rμ
νρσ ¼ 2∂ ½ρΓ

μ
σ�ν þ � � �; indices are

lowered according to Rμνρσ ¼ gμλRλ
νρσ .

3The dot stands everywhere for the derivative with respect to u.
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Ruu ¼ −
1

2
Tr

�
_bþ 1

2
b2
�

with b ¼ a−1 _a: ð2:11Þ

The most general flat metric obtained by solving the
equation Ruiuj ¼ 0. With initial conditions

a0 ¼ aðu0Þ and _a0 ¼ _aðu0Þ ð2:12Þ
we find

aðuÞ ¼
�
a0 þ

1

2
ðu − u0Þ _a0

�
a−10

�
a0 þ

1

2
ðu − u0Þ _a0

�
;

ð2:13Þ
from which we infer that

aðuÞ ¼ a
1
2

0ð1þ ðu − u0Þc0Þ2a
1
2

0; where c0 ¼
1

2
a
−1
2

0 _a0a
−1
2

0

ð2:14Þ

and where a
1
2

0 is a (symmetric) square root of the positive
matrix a0.
If, in particular, the initial conditions in (2.12) are a0 ¼ 1

and _a0 ¼ 0, then we obtain flat spacetime in inertial
coordinates, for which aðuÞ ¼ 1 for all u. More generally,
(2.14) allows us to recast, in any flat region, the metric (2.4)
into standard Minkowskian form by a change of coordi-
nates, ðx; u; vÞ ↦ ðx̂; û; v̂Þ. For

x̂ ¼ ð1þ ðu − u0Þc0Þa
1
2

0x; ð2:15aÞ
û ¼ u; ð2:15bÞ

v̂ ¼ v −
1

2
x · ða1

2

0c0ð1þ ðu − u0Þc0Þa
1
2

0xÞ; ð2:15cÞ

whose inverse is

x ¼ a
−1
2

0 ð1þ ðu − u0Þc0Þ−1x̂; ð2:16aÞ
u ¼ û; ð2:16bÞ

v ¼ v̂þ 1

2
x̂ · ðc0ð1þ ðu − u0Þc0Þ−1x̂Þ; ð2:16cÞ

one readily finds indeed that

g ¼ dx · aðuÞdxþ 2dudv ¼ dx̂ · dx̂þ 2dûdv̂: ð2:17Þ
Wewill call ðx̂; û; v̂Þ a “manifestly flat BJR coordinate chart.”
Two metrics related by a coordinate transformation, i.e.,

by a diffeomorphism, are usually regarded as equivalent.
However, as it stands, this statement is not very precise.
One needs to specify how the diffeomorphism f acts on the
spacetime fM; gg under consideration. If it is the identity
outside a compact set within the spacetime manifold M
(which we assume to be noncompact), then one typically
assumes then that the two spacetimes fM; gg and
fM; f⋆gg, where f⋆ denotes pullback, are physically
equivalent, i.e., “mere coordinate transformations of one
another.”

However if the diffeomorphism f does not vanish outside
a compact set and does not tend in some appropriate sense to
the identity at “infinity,” more care is required. For example,
in (suitably defined) asymptotically flat spacetimes, there is a
class of distinguished coordinate systems related by the
subset of diffeomorphisms which do not tend to the identity
at infinity, but which nevertheless take asymptotically flat
spacetimes to asymptotically flat spacetimes.4 The set of
such diffeomorphisms is referred to as the “asymptotic
symmetry group.” These include the translations and boosts.
Solutions of the Einstein equations which differ by such

diffeomorphisms are not usually thought of as physically
identical since they could, for example, describe two black
holes moving towards one another.
In 3þ 1 spacetime dimensions the asymptotic symmetry

is well known to be the infinite-dimensional BMS group.
Spacetimes which differ by the action of elements of the
BMS group are typically regarded as physically distinct.
This is especially so in scattering theory, both at the
classical level and in attempts to construct a perturbative
quantum version in which the S-matrix plays an important
role, the classical theory being described by tree diagrams.5

Since in this approach gravitational waves carrying
arbitrarily small energy have to be considered, the quantum
theory has to address certain difficulties, specifically
infinite quantities which arise even in electromagnetic
theory in Minkowski spacetime where they are ascribed
to the presence of so-called soft (i.e., zero energy) photons.
At the quantum level these soft quanta are frequently
assigned states in the quantum Hilbert space. At the
classical level these soft photons carry vanishing electro-
magnetic fields and so differ only by electromagnetic gauge
transformations which, however, do not tend to the identity
at infinity, “at infinity” being, in this case, a neighborhood
of the conformal boundary of Minkowski spacetime.6

The work of [6,7] is an attempt to make use of much
earlier work by their authors and others (referred to in detail
in their papers), which extends the ideas and results
obtained for photons to gravitons.

4One should be aware that confusion can arise if the class of
permissible diffeomorphisms is not viewed actively. In discussing
the elementary geometry of Euclidean space, the metric tensors
in Cartesian coordinates and in spherical coordinates differ
substantially, as do the coordinate functions themselves at large
radius. However, viewed passively, a “change of coordinates”
merely relabels the points which are left fixed.

5One might object that strictly from a rigorous point of view,
no S-matrix exists in quantum field theories based on standard
Fock space constructions of their Hilbert spaces [48] and even
classically the soundness of the so-called Lorentz covariant
approaches has often been questioned on causality grounds
(see, e.g., [49]), but in this paper we shall set aside such doubts.

6We are grateful to Piotr Bizon [50] for informing us of what
appears to the first mention of a memory effect in the electro-
magnetic case [51]. We subsequently learned from Malcolm
Perry [52] that an even earlier though not very explicit mention
may well come from Mott in a paper in which he computed the
number of photons produced in Rutherford scattering [53].
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The starting point of [6,7] (which has not been without its
critics [54–56]) was to consider asymptotically flat space-
times and the BMS group. The idea of the present paper is to
consider amuch simpler situation: planewave spacetimes. In
the present case thediffeomorphismdefined by (2.15)–(2.16)
does not tend to the identity as jxj or juj tend to infinity.
Moreover, since everymetric tensor given by (2.14) is locally
flat, it is tempting to regard them, in the language of quantum
field theory, as ground states or vacua.
As we recalled above, in theories with no massless

excitations one usually regards all such “gauge equivalent”
vacua as equivalent. But in theories with massless excita-
tions it is customary to regard such vacua related by gauge
transformations which do not tend to identity at infinity as
nonequivalent, differing by the presence of “soft” (i.e., zero
energy) quanta. Such claims are often supported by a
canonical or Hamiltonian treatment in which the soft states
are associated with charges or moment maps which may be
expressed as surfaces integrals “at infinity” which, for
asymptotically flat spacetimes, are two-surface integrals
evaluated on the conformal boundary. This has been done
in the asymptotically flat case in [6,7,57].
In the present case the massless excitations correspond, at

the quantum level, to gravitons and so one may regard the
metrics given by (2.14) as “dressed by soft gravitons,” (i.e.,
carrying vanishing energy), the dressing being affected by
the pulse of gravitational radiation itself made up of “hard”
(i.e., carrying nonvanishing energy) gravitons. This inter-
pretation is consistent with that given in [6,7] in the
asymptotically flat case.
To confirm this suggestion in full mathematical detail

would require a detailed treatment of what one means by
“at infinity” for plane gravitational waves, their conformal
boundary (cf. [58]), a canonical or Hamiltonian treatment,
and the identification of possible moment maps defined as
two-surface integrals “at infinity.” This is an interesting and
demanding challenge for the future. For the present we
shall content ourselves with fleshing out some aspects of
plane gravitational waves which (we feel) make our
suggestion plausible at the physical level. As partial
compensation we note that our results, being based on
exact solutions of the Einstein equations, evade the stric-
tures of [49] alluded to earlier.
We will consider sandwich waves, i.e., gravitational

waves which are flat outside the sandwich but not inside,
i.e., for u ∈ ½ui; uf�. Our point here is that flat spacetimes
both in the “before zone” u < ui and in the “after zone”
u > uf [33] are nonequivalent.
Inside a sandwich wave we only have Ricci flatness

[cf. (2.11)],

Tr

�
_bþ 1

2
b2
�

¼ 0: ð2:18Þ

By (2.9) this is precisely the tracelessness of K.

BJR coordinates are convenient for comparing the
standard linear theory in the transverse traceless gauge
with the fully nonlinear theory. For plane waves in linear
theory one has a metric of the form (2.4), with

aij ¼ δij þ hijðuÞ þ… ð2:19Þ
Thus

PijðuÞ ¼ δij þ
1

2
hijðuÞ þ…;

KijðuÞ ¼
1

2
ḧijðuÞ þ… ð2:20Þ

Thus after the wave has passed, i.e., if Kij ¼ 0, we have
hijðuÞ ¼ h0ij þ uh1ij, where h

0
ij and h

1
ij are independent of u.

If h1ij ¼ 0 we have the metric (5.19) of Favata [59] in his
discussion of the possibilities of detecting the memory
effect with interferometers and his (5.20) transforming to
manifestly flat coordinates. These agree with (2.13) and
(2.15). Note that generically hij is linear in u.
To see that the BJR coordinates are indeed necessarily

singular as stated, let us define

χ ¼ ðdet aÞ14 > 0 and γ ¼ χ−2a; ð2:21Þ
so that b ¼ γ−1 _γ þ 2χ−1 _χ1. Since det γ ¼ 1, we readily
obtain Trðγ−1 _γÞ ¼ 0; this allows us to show that (2.18) is
equivalent to the Sturm-Liouville equation

χ̈ þ ω2ðuÞχ ¼ 0; ω2ðuÞ ¼ 1

8
Trððγ−1 _γÞ2Þ; ð2:22Þ

which thus guarantees that the vacuum Einstein equations
are satisfied for an otherwise arbitrary choice of the
unimodular symmetric 2 × 2 matrix,

γðuÞ ¼
�
αðuÞ βðuÞ
βðuÞ ð1þ βðuÞ2Þ=αðuÞ

�
: ð2:23Þ

Thus the matrix aðuÞ depends on two arbitrary functions
αðuÞ and βðuÞ; see Eq. (2.23) and [15].
The positivity of the matrix ðγ−1 _γÞ2 implies that ω2 in

(2.22) is positive; the equation describes therefore an
attractive oscillator with a time-dependent frequency. It
follows that χðuÞ is a concave function, χ̈ < 0, which in
turn implies the vanishing of χ for some using > ui,

χðusingÞ ¼ 0; ð2:24Þ
signaling a singularity of the metric (2.4). Choosing
aðuÞ ¼ diagða11; a22Þ, for example, we find

ω2ðuÞ ¼ 1

16

�
_a11
a11

−
_a22
a22

�
2

ð2:25Þ

and the Sturm-Liouville equation (2.22) becomes
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ä11
a11

þ ä22
a22

−
1

2

�
_a211
a211

þ _a222
a222

�
¼ 0: ð2:26Þ

Expressed in terms of the matrix P, this is simply

P̈11

P11

þ P̈22

P22

¼ 0; ð2:27Þ

which is indeed TrK ¼ 0 since P̈P−1 ¼ K.
While we cannot solve the nonlinear equation (2.27) in

general, we may proceed differently: starting with some
physically relevant profile in Brinkmann coordinates and
solving (2.7) numerically allows us to calculate the matrix
a and to plot χðuÞ and ω2ðuÞ in (2.21) and (2.22). This
confirms the existence of a using > ui such that the metric
becomes singular, χðusingÞ ¼ 0. For the choice A× ¼ 0,
Aþ ¼ A3þ in (4.9) (justified in the next section), for
example, χ and ω2 are plotted in Fig. 1.

III. DETECTION OF THE MEMORY EFFECT

A. Detection theory

We turn now to the question of the detectability of soft
gravitons. As pointed out in the pioneering papers of Pirani
[29,30] knowledge of the relative motion of freely falling
particles in time-dependent gravitational fields is essential
for our understanding of gravitational radiation and its
detection. In practical devices, the “particles,” such as
mirrors in interferometers or the individual atoms in old-
fashioned bar detectors, are never truly freely falling since
they are subject to various forces holding them in place.
Nevertheless it is the relative motions induced by external
time-dependent gravitational influences that are what is
actually detected.
Let us consider two infinitesimally close geodesics, Xμ

1

and Xμ
2 ¼ Xμ

1 þ ημ, whose unit tangent vector is dxα
dτ , where τ

is their common proper time. The quantity ημ is referred to

as the connecting vector. Theories of detectors start with the
equation of geodesic deviation (or Jacobi equation),7

D2ημ

dτ2
þ Rμ

ανβ

dxα

dτ
dxβ

dτ
ην ¼ 0; ð3:1Þ

and then modify it with elastic and damping terms [see,
e.g., Eq. (4) of [9]]. The connecting vector satisfies

gμν
dxμ

dτ
ην ¼ 0: ð3:2Þ

The geodesic deviation has been studied by Griffiths and
Podolsky [36]. For the central geodesic given by U ¼ τ,
V ¼ − 1

2
τ, X1 ¼ X2 ¼ 0, their equations may be cast in the

form

d2η1

dU2
¼ 1

2
AþðUÞη1 þ 1

2
A×ðUÞη2; ð3:3aÞ

d2η2

dU2
¼ −

1

2
AþðUÞη2 þ 1

2
A×ðUÞη1; ð3:3bÞ

d2η3

dU2
¼ 0: ð3:3cÞ

Given AþðUÞ and A×ðUÞ, this is a system of second-order
linear differential equations for ηi as a function of U and
hence τ. Within a tubular neighborhood of any geodesic,
one may introduce a Fermi coordinate system ðx0; xiÞ in
which the metric is locally flat and t ¼ x0 coincides with
proper time τ along the geodesic. In such a local coordinate
system at rest with respect to a freely falling detector, the
acceleration of the separation ηi in such a local coordinate
system is subject to a forcing term

FIG. 1. (a) χ ¼ ðdet aÞ1=4 and (b) ω2 in (2.22), respectively, calculated numerically forAþ ¼ A3þ confirm that, in BJR coordinates, the
metric becomes singular at using.

7For any tensorial quantity T…
…q, we put DT…

…
dτ ¼ T…

…;ν
dxν
dτ .
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−Ri
0j0η

j; ð3:4Þ

where 0 labels the time direction and i, j the spatial
directions. For a more detailed discussion of Fermi coor-
dinates in plane gravitational wave spacetimes, see [60].
In fact, since, if li is the time averaged separation, both the

change xi ¼ ηi − li in separation and the curvatures are
typically small, one may approximate the geodesic deviation
equation by

d2xi

dt2
¼ −Ri

0j0l
j: ð3:5Þ

Thus supposing _xi is initially zero, one has an induced
velocity

viðtÞ ¼ dxi

dt
¼ −

Z
t

ti

dt0Ri
0j0ðt0Þlj: ð3:6Þ

Now in linear theory

Ri0j0 ¼
G
3r

d4Dij

dt4
ðt − rÞ; ð3:7Þ

where Dij is the quadrupole of the source, r its distance,
and u ¼ t − r is retarded time. Note that in linear theory
and to the approximation we are using, there is no
distinction between upper and lower spatial indices.
Thus for many plausible sources such as

(i) gravitational collapse of a previously time-indepen-
dent object to form a black hole

(ii) or a gravitational flyby
the forcing term would be confined to a finite interval
ti ≤ t ≤ tf of time: it is pulselike referred to as a sandwich
wave [26,27,35]. It follows that while the separation ηi may
have been constant before the arrival of the pulse, it will
nevertheless, in general, be time dependent after the pulse.
In fact it was pointed out in [9] that, at the linear level, the
three time integrals of the signal,

Ið3Þ ¼ ðIð3Þij Þ ¼
Z

tf

ti

dt
Z

t

ti

dt0
Z

t0

ti

dt00R0i0jðt00Þ ð3:8aÞ

Ið2Þ ¼ ðIð2Þij Þ ¼
Z

tf

ti

dt
Z

t

ti

dt0R0i0jðt0Þ ð3:8bÞ

Ið1Þ ¼ ðIð1Þij Þ ¼
Z

tf

ti

dtR0i0jðtÞ; ð3:8cÞ

should vanish in the collapse case, since dDij

dt would vanish
initially and finally. By contrast, in the flyby case only the
last integral needs to vanish, since initially and finally Dij

could be expected to be quadratic in time and hence only
dD3

ij

dt3 would vanish initially and finally.

The analyses of Zel’dovich and Polnarev and of
Braginsky and Grishchuk are entirely at the linear level
and as far as the source is concerned, they simply use the
analogue of (3.7) for the metric perturbation. Using the
transverse traceless or radiation gauge,8 one has

hTTij ∝
1

r
d2

dt2
Dijðt − rÞ: ð3:9Þ

Now from (3.9) we have

R0i0j ∝
d2hTTij
dt2

: ð3:10Þ

Thus

d2xi

dt2
∝ −

d2hTTij
dt2

lj; ð3:11Þ

which is consistent with

xi ∝ hTTij l
j: ð3:12Þ

Braginsky and Grishchuk also suggest [their Eq. (7)] that
flybys should have Dij quadratic in time. Braginsky and
Thorne [8] makes a distinction between two types of bursts,
one without memory and one with memory, expressed in
terms of a linearized description of the gravitational
perturbation in the transverse traceless gauge hTTij rather
than the gauge-invariant Riemann tensor components
R0i0j. Thus,

(i) for a gravitational-wave burst without memory hTTij
is nonzero only in a finite interval ti < t < tf

(ii) while for a gravitational-wave burst with memory,
hTTij ¼ constant for t > tf.

From (3.10) it follows that for bursts without memory the
two integrals I1 and I2 in (3.8) should vanish, while for
signals with memory, only I1 needs to vanish.
To test these ideas we shall consider pulses constructed

from Gaussians, and their integrals and derivatives. While
not strictly sandwich waves, their curvatures vanish rapidly
outside the width of the Gaussian.
(1) For a flyby the Dij could be the third integral of a

Gaussian and hence Kij would be the derivative of a
Gaussian; see (4.5) below.

(ii) The system considered by Thorne and Braginsky
could be the second derivative of a Gaussian, (4.7).

(iii) For a collapse one could take DijðuÞ ∝ −erfcðuÞ,
minus the complementary error function. Thus the
Riemann tensor or equivalently Kij would be the
third derivative of a Gaussian, (4.9).

8In fact, their Eq. (1) is a plane wave in BJR coordinates with
TrðaÞ ¼ 2, which they regard as a small perturbation of flat space,
i.e., when aij ¼ δij. They write aij ¼ δij þ hij.
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B. Memory via Hamilton-Jacobi theory
in BJR coordinates

Since it is central to an understanding of the physical
reality of the memory effect, we shall begin by giving a
self-contained account of the motion of freely falling
particles using the Hamilton-Jacobi method in BJR coor-
dinates. The results agree with the derivation in [12,15] but
are included for the sake of making the paper self-
contained. We thus need to solve

gμν∂μS∂νS ¼ 2c;
dxμ

dτ
¼ gμν∂νS: ð3:13Þ

The coordinates v; xi are ignorable and we may separate
variables

2∂uS∂vSþ aij∂iS∂iS ¼ 2c; S ¼ GðuÞ þ vpv þ xipi;

where pv, pi are constants and the motion is reduced to
quadratures,

dxi

dτ
¼ aijpj;

dv
dτ

¼ _G;
du
dτ

¼ pv; ð3:14Þ

where τ is proper time. It follows that particles which have
initially constant coordinates x have x constant for all times
for which the coordinates are well defined. This is key to
our approach to the memory effect.
In BJR coordinates we may obtain flat spacetime for

u ≤ ui by setting aij ¼ δij. Thus before the pulse arrives we
may make this choice. It is consistent with the Einstein
vacuum equations which state that the trace of the right-
hand side of (2.9) should vanish. However clearly from
(2.9), we will not have aij ¼ δij after the pulse has passed.
At the linear level

äij ≈ 2Kij; ð3:15Þ
and in Brinkmann coordinates as an exact statement [15]
Kij ¼ −RiUjU, so at the linear level [see (2.10)] we have

äij ≈ −2Ruiuj; ð3:16Þ
which is the analogue of (3.10) in the BJR gauge. We have
1
2
bijðufÞ ≈

R uf
ui duKijðuÞ. Since in linear theory bij ≈ _aij,

aijðuÞ ≈ δij þ 2

Z
u

ui

du0
Z

u0

ui

du00Kijðu00Þ: ð3:17Þ

The particles are at rest in this coordinate system;
however, their distances apart will be different after the
pulse has passed, i.e., for u > uf if the metric is different
and hence if the double integral in (3.17) is nonzero.
This, then, is the linear memory effect in BJR coor-

dinates. A persistent change in the metric means a persis-
tent change in separation. A similar conclusion in the
optical context was reached in [14].

Now it is clear how this works at the nonlinear level.
Equation (2.9) provides a nonlinear second-order differ-
ential equation for aij and with initial conditions that aij ¼
δij before the arrival of the pulse. This means that in general
aij ≠ δij after the pulse has passed and so the distance
between nearby freely falling particles has changed. At the
linear level we can express the shift in terms of integrals of
the Riemann tensor introduced in [9]. In the full nonlinear
case (2.9) has no obvious explicit solution but in a
perturbation expansion, it seems clear that many more
such iterated integrals will crop up. In fact, after the first
version of this paper was circulated, we were informed that
this is indeed the case; see Sec. IV. 1. 1 of [14]. In later
sections we shall explore the relevant solutions both
numerically and analytically.

IV. GEODESICS

A. Geodesics in Brinkmann coordinates

Brinkmann coordinates, (2.1), are convenient for a
numerical study. For simplicity, we only consider the þ
polarization, for which

KijðUÞXiXj ¼ 1

2
AþðUÞððX1Þ2 − ðX2Þ2Þ: ð4:1Þ

The geodesics are the solution of the uncoupled system

d2X1

dU2
−
1

2
AþX1 ¼ 0; ð4:2aÞ

d2X2

dU2
þ 1

2
AþX2 ¼ 0; ð4:2bÞ

d2V
dU2

þ 1

4

dAþ
dU

ððX1Þ2 − ðX2Þ2Þ

þAþ

�
X1

dX1

dU
− X2

dX2

dU

�
¼ 0: ð4:2cÞ

Fixing the initial conditionsXðU0Þ ¼ X0 and _XðU0Þ ¼ _X0,
the projection of the 4D worldline to the transverse plane is
therefore independent of the choice of VðU0Þ ¼ V0, i.e.,
independent of whether the motion is timelike, lightlike, or
spacelike.
The geodesic deviation equations of Griths and

Podolsky, their Eq. (III.3) in [36], can be rederived from
ours here. For ηi ¼ Xi

2 − Xi
1, i ¼ 1, 2, this follows from the

linearity of the first two equations in (4.2). As to the third
one, Eq. (4.2c) entails that

d2ðV2−V1Þ
dU2

¼−
1

4

dAþ
dU

ððX1
2Þ2− ðX1

1Þ2− ðX2
2Þ2þðX2

1Þ2Þ

þAþ

�
X1
2

dX1
2

dU
−X1

1

dX1
1

dU
−X2

2

dX2
2

dU
−X2

1

dX2
1

dU

�

¼−
1

4

dAþ
dU

ððη1Þ2− ðη2Þ2ÞþAþðη1 _η1− η2 _η2Þ
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if one assumes that Xi
1 ¼ 0, i.e., ηi ¼ Xi

2. The Jacobi
deviation equation being linear in ημ, we can conclude
that d2η3=dU2 ¼ d2ðV2 − V1Þ=dU2 ¼ 0.
The system (4.2) can be solved once AþðUÞ is given.

Analytic solutions can be obtained in particular cases
only, though; therefore we study our equations numerically.
An insight into what happens is gained by considering
Gaussians and their integrals and derivatives. The colors
refer, in Figs. 3,5,6, and 7, to identical initial conditions
X1
0 ¼ X2

0 ¼ V0 ¼ :5; 1; 1.5 at U0 ≪ 0.
(i) We start with a toy example, assuming that the

gravitational burst is a simple Gaussian,

AþðUÞ ¼ A0þðUÞ≡ 1

2
e−U

2

: ð4:3Þ
Then the integrals (3.8) are

I1 ¼
ffiffiffi
π

p
2

diagð1;−1Þ;
I2 ¼ I3 ¼ ∞ diagð1;−1Þ: ð4:4Þ

The evolution of the profile and the geodesics are
shown Figs. 2 and 3, respectively.

The variation of the relative (Euclidean) distance
ΔXðX;YÞ ¼ jX − Yj and of the relative velocity
Δ _X ¼ j _X − _Yj are depicted in Fig. 4. The latter

FIG. 2. Evolution of the wave profile of a Gaussian burst.

FIG. 3. Evolution of geodesics for a Gaussian burst.

FIG. 4. In the Gaussian case, (a) two particles initially at rest recede from each other after the wave has passed. Their distance, ΔX,
increases roughly linearly in the after zone. (b) The relative velocity, Δ _X, jumps to an approximately constant but nonzero value.
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could in principle be observed through the Doppler
effect [2].

(ii) For a flyby the quadrupole of the source,Dij in (3.7),
would be the third integral of a Gaussian and hence
AþðUÞ would be proportional to the first derivative
of a Gaussian,

AþðUÞ ¼ A1þðUÞ≡ 1

2

dðe−U2Þ
dU

: ð4:5Þ

The integrals (3.8) are now

I1 ¼ 0;

I2 ¼
ffiffiffi
π

p
2

diagð1;−1Þ;
I3 ¼ ∞ diagð1;−1Þ; ð4:6Þ

consistently with the interpretation as flyby;
cf. Sec. III. The geodesics are depicted in Fig. 5.

(iii) The system considered by Braginsky and Thorne [8]
would seem to correspond to the second derivative
of a Gaussian,

AþðUÞ ¼ A2þðUÞ≡ 1

2

d2ðe−U2Þ
dU2

: ð4:7Þ

The integrals (3.8) are now

I1 ¼ I2 ¼ 0; I3 ¼
ffiffiffi
π

p
2

diagð1;−1Þ: ð4:8Þ

The geodesics are shown in Fig. 6.
(iv) In the early 1970s when it was claimed that

gravitational-wave bursts had been discovered

[61], it was suggested that for gravitational collapse
the quadrupole momentum could be modeled by the
fourth derivative of the error function −erfc [9],
yielding

AþðUÞ ¼ A3þðUÞ≡ 1

2

d3ðe−U2Þ
dU3

: ð4:9Þ

All integrals in (3.8) vanish now,

I1 ¼ I2 ¼ I3 ¼ 0; ð4:10Þ

as expected for gravitational collapse; cf. Sec. III.
The evolution is presented in Fig. 7.

B. Geodesics in BJR coordinates

Further insight can be gained by working in the BJR
coordinates ðx; u; vÞ used in (2.4).
Plane gravitational waves (2.1) or (2.4) have a five-

dimensional isometry group [27], which has been identified
recently as the “Carroll group with broken rotations” [15],
implemented on spacetime as

x → xþHðuÞbþ c;

u → u;

v → v − b · x −
1

2
b ·HðuÞbþ f; ð4:11Þ

with b; r ∈ R2, and f ∈ R, where HðuÞ is the symmetric
2 × 2 matrix,

FIG. 5. Evolution of geodesics for the first derivative of a Gaussian, Eq. (4.5), appropriate for flyby.

FIG. 6. The system considered by Thorne and Braginsky corresponds to the second derivative of a Gaussian, (4.7).
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HðuÞ ¼
Z

u

u0

aðtÞ−1dt: ð4:12Þ

Here aðuÞ is the transverse-space metric in (2.4) [16].
Noether’s theorem associates with the Carroll symmetry

five conserved quantities, associated to these isometries.
For the geodesic flow parametrized by some s, they are
[16,23]

p ¼ aðuÞ dx
ds

; k ¼ xðuÞ −HðuÞp; μ ¼ du
ds

:

ð4:13Þ

An extra constant of the motion we identify with the kinetic
energy is

e ¼ 1

2
gμν

dxμ

ds
dxν

ds
¼ 1

2

dx
ds

· aðuðsÞÞ dx
ds

þ μ
dv
ds

: ð4:14Þ

Geodesics are timelike/lightlike/spacelike, depending on
the sign of e. Timelike means e < 0, implying that μ ≠ 0
since aðuÞ > 0; the same condition holds also for null
geodesics, e ¼ 0. Therefore from now on we put μ ¼ 1,
which amounts to choosing u as a parameter. Then the
quantities listed in (4.13) are interpreted as conserved linear
momentum, boost momentum, and “μ”.9

The geodesics may be expressed using the Noetherian
quantities above [15,16], via

xðuÞ ¼ HðuÞpþ k;

vðuÞ ¼ −
1

2
p ·HðuÞpþ euþ d; ð4:15Þ

where d is a constant of integration. These equations are
consistent with (3.14) with pv ¼ 1, as expected. Note that
once the values of the conserved quantities are chosen, the
only quantity to calculate here is the matrix-valued function
HðuÞ in (4.12). Thus the latter determines both the action of
the isometries and the evolution of causal geodesics. In flat

Minkowski space with the choice u0 ¼ 0, we have
HðuÞ ¼ u1, yielding free motion

xðuÞ ¼ upþ k;

vðuÞ ¼
�
−
1

2
jpj2 þ e

�
uþ v0: ð4:16Þ

Returning to the general case, the isometries act on the
constants of the motion as

ðp;k; e; dÞ → ðpþ b;kþ c; e; dþ f − b · kÞ; ð4:17Þ
leaving e invariant [15,16]. They can be used therefore to
“straighten out” a geodesic by carrying it to one with p ¼ 0,
k ¼ x0, and d ¼ 0, yielding

xðuÞ ¼ x0 ¼ const; v ¼ eu; ð4:18Þ
as shown on Fig. 8. Therefore we have, for each sign of e,
just one type of “vertical” geodesic [16,33]. Conversely,
any geodesic is obtained from one of form (4.18) by an
isometry.

C. The geodesics in the flat before zone or after zone

We first study the geodesics in the flat spacetime zones
outside a sandwich by making use of the results of
Sec. II B.
Let us suppose that aðuÞ ¼ 1 in the before zone [33], i.e.,

for u < ui; then the concavity of the function χðuÞ
mentioned above implies that the BJR coordinate system
suffers a singularity at some time using such that
χðusingÞ ¼ 0, as illustrated in Fig. 1. Note that using may
lie in or outside the sandwich ½ui; uf�. This coordinate
system, used in Eqs. (4.15), is therefore legitimate for
u < using only, which we will assume henceforth.
Consider a system of particles at rest (detectors or dust

[16]) in the before zone. Their geodesics are given, in
natural flat BJR coordinates, by

x̂ ¼ x̂0 and v̂ ¼ eðû − û0Þ þ v̂0 ð4:19Þ

which identifies the quantities x̂0 and v̂0 as initial values.
For the flat metric (2.14) with general initial condition

matrix c0 ≠ 0, the matrix (4.12) is

FIG. 7. Geodesics for particles initially at rest for A3þðUÞ in (4.9), modeling gravitational collapse.

9When viewed as a Bargmann space of a nonrelativistic
particle in one lower dimension, μ (chosen here to be unity) is
indeed interpreted as the mass.
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HðuÞ ¼ −a−
1
2

0 c−10 ½ð1þ ðu − u0Þc0Þ−1 − 1�a−1
2

0 : ð4:20Þ
Then a further tedious calculation yields the first integrals
p, k, and d in (4.15), namely,

p¼−a
1
2

0c0x̂0; k¼ a
−1
2

0 x̂0; d¼ v̂0−eû0þ
1

2
x̂0 ·c0x̂0:

ð4:21Þ

Moreover, another lengthy calculation yields, using (4.21)
and (4.19), that the geodesics (4.15) are expressed, in
original BJR coordinates, as

xðuÞ ¼ ½−HðuÞa1
2

0c0 þ a
−1
2

0 �x̂; ð4:22aÞ
u ¼ û; ð4:22bÞ

vðuÞ ¼ v̂þ 1

2
x̂ · ½c0 − c0a

1
2

0HðuÞa1
2

0c0�x̂: ð4:22cÞ

These equations may be extended into the sandwich
(provided the singularity is avoided) using HðuÞ given
by (4.12). Note that Eqs. (2.21) and (2.22) hold every-
where, including the inside zone.
In the new BJR coordinate system given by (4.22)

[which we will still denote by ðx̂; û; v̂Þ], the metric can
be recast into the form

g ¼ dx · aðuÞdxþ 2dudv ¼ dx̂ · âðuÞdx̂þ 2dûdv̂;

ð4:23aÞ

âðuÞ ¼
�
a
−1
2

0 − c0a
1
2

0HðuÞ
�
aðuÞ

�
a
−1
2

0 −HðuÞa1
2

0c0

�
;

ð4:23bÞ
cf. (2.14).
We would like to emphasize that the descriptions in

Brinkmann and respectively in BJR coordinates are

consistent: numerical calculations show that pushing for-
ward to B coordinates a solution constructed in BJR
coordinates yields a trajectory which coincides with the
one calculated independently in B coordinates, as long as
the BJR coordinate system is regular.

D. Tissot indicatrices and gravitational waves

Textbooks providing an account of the action gravita-
tional waves on a ring of freely falling particles are often
illustrated by a series of time frames showing how the ring
is squashed and stretched as the wave passes over it. See,
e.g., [34]. This representation has an interesting connection
with Tissot’s indicatrix [62,63], which was originally
introduced in cartography to illustrate the distortions
brought about by map projections.
Suppose we have a projection ϕ∶S2 → R2 from the

surface of the Earth to a flat sheet of paper equipped
with Cartesian coordinates x, y; let gxxðx; yÞ; gxyðx; yÞ ¼
gyxðx; yÞ; gyyðx; yÞ be the components of the push forward
to the flat sheet of paper of the curved metric on the Earth’s
surface. Tissot’s indicatrix at the point p ∈ S2 with coor-
dinates ðxp; ypÞ is the ellipse

gxxðxp; ypÞx2 þ 2gxyðxp; ypÞxyþ gyyðxp; ypÞy2 ¼ 1

ð4:24Þ
and is the image under ϕ of the unit disc in the tangent
space of S2 [62,63].
If for some reason the metric of the surface of the Earth

varied with time then so would Tissot’s indicatrix:

gxxðxp; yp; tÞx2 þ 2gxyðxp; yp; tÞxyþ gyyðxp; xp; tÞy2 ¼ 1:

ð4:25Þ
Returning to gravitational waves, we note that the two-

dimensional sections of the wave fronts at constant time in
Brinkmann coordinates are given byU ¼ const, V ¼ const;
in Cartesian coordinates Xi carry a flat, time-independent
Euclidean metric. These are mapped into two-dimensional
sections of the wave fronts at constant times in BJR
co-ordinates u ¼ const, v ¼ const by Xi ¼ Pi

jðuÞxj as in
(2.5), which carry a flat time-dependent Euclidean metric
aijðuÞ in xi coordinates. Note that these two-surfaces do not
in general coincide in spacetime since while U and u are
identical, V and v differ.
The family of timelike geodesics xi ¼ const do not have

Xi ¼ const in Brinkmann coordinates. This means that an
initially (i.e., before the pulse) circular disc of geodesics in
Xi coordinates, X ·X ≤ 1 for U < Ui, projects to a time-
independent circle in xi coordinates, x · x ≤ 1 for all u,
i.e., even during and after the sandwich, u ≥ ui. However,
their inverse image in Brinkmann coordinates is a time-
dependent ellipse,

1 ¼ x · x ¼ X · ðPPTÞ−1X: ð4:26Þ

FIG. 8. Each geodesic can be “straightened out” by a suitable
action of the (Carroll) isometry group.
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Since in Brinkmann coordinates the metric is Euclidean,
the coordinates represent proper distance measured within
that two-surface.
The deformation of the Tissot circle is illustrated by the

spacetime diagram in Fig. 9 for the linear polarization
AþðUÞ ¼ dðe−U2Þ=dU, A×ðUÞ ¼ 0 appropriate to model
flyby, as argued above. Similar diagrams could be obtained
for circular polarization, and also for nonburstlike profiles
as in the case of primordial gravitational waves. The
deformation starts before u ¼ 0, since the burst has a finite
thickness. A similar diagram is presented in [23] in the
gravitation-collapse case AþðUÞ ¼ d3ðe−U2Þ=dU3.

E. Permanent displacements?

Equation (4.15) implies that BJR solutions with p ¼ 0
are trivial for any profile,

xðuÞ ¼ x0; v ¼ eðu − u0Þ þ v0; ð4:27Þ
for all u, i.e., in the before, inside, and after zones. This
happens in particular for particles which are at rest in the
before zone whose conserved momentum vanishes because
p ¼ a _x; cf. (4.13). It is worth emphasizing that the memory
effect does arise even in this case: nontrivial behavior in B
coordinates arises entirely from the relation [15]

XðuÞ ¼ Pðu − u0Þx0: ð4:28Þ
But such particles are not in general at rest in the after zone

because _P ≠ 0 in general, whereas some important papers on
the memory effect [1,2,10] predict precisely that: particles at
rest in the before zone could end upat restbutdisplaced in the
after zone. Indeed, according to some authorities, this is taken
as a definition of the memory effect.
A possible indication that this might not be possible

comes from the particular cases studied in Sec. IVAwhich
show constant but nonzero asymptotic velocity in the after

zone (except for x0 ¼ 0). Moreover, the relative velocities
depend on x0, contradicting the expectations of Zel’dovich
and Polnarev [1] cited in the Introduction.
One may ask whether one may have a smooth inter-

polation between PðuÞ ¼ 1 in the before zone and a
constant diagonal matrix P∞ ≠ 1 in the after zone. For
example, is there a smooth function fðuÞ such that

PðuÞ ¼ ð1 − fðuÞÞ1þ fðuÞP∞ with

fðuÞ ¼
�
0 u ≤ ui
1 u ≥ uf

? ð4:29Þ

If we further assume that P∞ is diagonal and P∞ ¼
diagðπ1; π2Þ with π1;2 ¼ const ≠ 1, we find that

KðuÞ ¼ P̈:P−1 ¼ f̈ðuÞdiag
�

−1þ π1
1 − f þ π1f

;
−1þ π2

1 − f þ π2f

�
:

ð4:30Þ

In order to satisfy the vacuum Einstein equationsK must be
traceless which is however readily seen to contradict the
assumption that f is smooth: fðuÞ should be linear with
nonzero slope in the inside zone, joined by horizontal lines
in the before and after zones and therefore nondifferentiable
at u ¼ ui; uf.
If this rather special example could be generalized, one

might conclude that no static displacement is possible
unless some sort of impulsive waves with nonsmooth
profiles are considered [16,24,42,43].

V. NULL GEODESICS, LIGHT CONES,
AND GLOBAL GEOMETRY

A. The memory effect and optics

So far we have only considered freely falling particles.
However, as remarked in [14], the memory effect also
influences the motion of light. One way to see this is to
recall that Maxwell’s equations in a curved vacuum
spacetime may be interpreted as flat spacetime electrody-
namics in an “impedance-matched” medium. Using the
results of [15] we see that in BJR coordinates the
permittivity ϵab and permeability μab (with ϵab ¼ μab)
satisfy ϵab ¼ μab ¼ δab before the gravitational wave
arrives but after it has passed. They are given by

ϵij¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detaðuÞ

p
ðaðuÞ−1Þij; ϵ33¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detaðuÞ

p
; ϵ3i¼ 0;

ð5:1Þ

and since ϵij ≠ δij, the wave has left a memory on the
effective optical medium.

FIG. 9. Tissot spacetime diagram for the linear polarization
AþðUÞ ¼ dðe−U2Þ=dU, A×ðUÞ ¼ 0, for values u ¼ −3 (purple),
u ¼ −1.5 (blue), u ¼ 0 (green), u ¼ 1.5 (orange), u ¼ 3 (red).
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B. Light cones and causality

In an insightful account of the global geometry of plane
gravitational waves Penrose [35] showed that in general
they are not globally hyperbolic and as a consequence they
cannot be isometrically embedded into a higher dimen-
sional flat space with just a single time coordinate [35].
Penrose mainly worked in Brinkmann coordinates [20]
although he does allude to the existence of BJR coordinates
which he ascribes to Rosen [22].
Penrose obtains, for a sandwich wave, the formula

V ¼ FijðUÞXiXj þ V0 ð5:2Þ
for the light cone of a point p ¼ ðX0; U0; V0Þ, where the
symmetric matrix F with components Fij ≈ ðU −U0Þ−1δij
near p must satisfy

_F þ F2 − K ¼ 0: ð5:3Þ
Penrose considers the case when p is located in the flat

region before the pulse arrives. He shows that the metric F
becomes singular within a finite amount of u time [16].
This allows him to obtain his nonglobal hyperbolicity
result. He points out that this phenomenon is closely related
to the singularity of BJR coordinates discussed by
[22,26,27].
Penrose’s results are readily rederived by translating our

result from BJR to Brinkmann coordinates. Null geodesics
are characterized by

e ¼ 1

2
gμν _xμ _xν ¼ 0: ð5:4Þ

Special null geodesics, defined by the vanishing of the
linear momentum, p ¼ 0, are thus simply

xðuÞ ¼ x0; vðuÞ ¼ v0: ð5:5Þ
Moreover, (2.5) gives us the image of the special null
geodesics (5.5), namely,

XðUÞ ¼ PðUÞx0; ð5:6aÞ

VðUÞ ¼ v0 −
1

2
X · _PP−1X: ð5:6bÞ

Then the three-dimensional light cone in R4 generated by
null geodesics through some point is thus defined by the
equation

V ¼ v0 −
1

2
X · FX; ð5:7Þ

where F ¼ _PP−1 satisfies (5.3) in view of (2.7). Our
equations above thus reproduce (7.1) and (7.2) of [35]
up to a factor 1

2
and a sign, due to different conventions.

Null geodesics in plane gravitational waves have
recently received an extended study in [13,14].

VI. EXACT EINSTEIN-MAXWELL PLANE WAVES

Exact Einstein-Maxwell plane waves were first consid-
ered in [21] in BJR coordinates. Here we shall follow [64].
For the sake of comparison, we will temporarily adhere to
their signature conventions. Their metric in Brinkmann
coordinates is

g ¼ −δijdXidXj þ dUdV − KðX; UÞdU2: ð6:1Þ

Their vector potential is taken to be

A ¼ AiðUÞdXi ¼ dðAiXiÞ − XiA0
iðUÞdU: ð6:2Þ

In fact we shall find it useful to use the last term on the rhs
of (6.2) which differs from AiðUÞdXi by a gauge trans-
formation. The Maxwell field,

F ¼ A0
iðUÞdU ∧ dXi; ð6:3Þ

solves ⋆dF ¼ 0. Then the Einstein equation is equivalent to

∂2K
∂Xi∂Xi ¼ 4GA0

iA
0
i; ð6:4Þ

where G is Newton’s constant and we are using Heaviside
units (4πϵ0 ¼ 1). We choose the solution

KðX; UÞ ¼ AþðUÞððX1Þ2 − ðX2Þ2Þ þ 2A×ðUÞX1X2

þ 8GjA0ðUÞj2ððX1Þ2 þ ðX2Þ2Þ; ð6:5Þ

which merely differs from (2.3) in an additional quadratic
(in Bargmann language, a “time-dependent oscillator”
[45,46,65]) term.
The passage to BJR coordinates proceeds in a way

similar to the pure gravity case, (2.5).
Note that since the gravitational wave and the electro-

magnetic wave are essentially independent in Brinkmann
coordinates, we can specify AþðUÞ, A×ðUÞ, and AiðUÞ
independently. There is no graviton-photon or photon-
graviton conversion, even though the metric has back-
reacted to the presence of the electromagnetic field.
This looks very different in the BJR coordinates, though,

in which no simple “superposition principle” holds. A
special case is that one can superpose polarization states in
Brinkmann coordinates, but not in a literal fashion in BJR
coordinates [66–68].
As pointed out in [64] the coupled Einstein-Maxwell

system has five Killing fields, three of which mutually
commute—in fact, the generators of the isometry group
found for a pure plane gravitational wave [15]—namely,
the Carroll group with broken rotations, implemented as
in (4.11).
The proof is straightforward: everything we developed

here and in our previous paper [15] goes through
unchanged. The metric a ¼ ðaijðuÞÞ is related to the
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wavefront K ¼ ðKijðuÞÞ in the usual manner; the only
difference is that the tracelessness of K is replaced by (6.4).
But this does not affect the general form of the metric,
cf. (2.4), whose isometries span the Carroll group in 2þ 1
dimensions with broken rotations.

VII. MIDISUPERSPACE QUANTIZATION OF
PLANE GRAVITATIONAL WAVES

A. Midisuperspace of plane gravitational waves

We have seen that the midisuperspace10 of Ricci flat
plane gravitational waves is parametrized by the two real
functions AþðUÞ and A×ðUÞ. This is an infinite-dimen-
sional vector space W and in what follows it will be
convenient to assume that AþðUÞ andA×ðUÞ are in L2ðRÞ
so as to permit Fourier analysis. Thus we take

W ¼ L2ðRÞ ⊕ L2ðRÞ: ð7:1Þ

The rotation group SOð2Þ acts on W,

X1→ cosαX1þ sinαX2

X2→ cosαX2− sinαX1
⇒

Aþ→ cos2αAþ− sin2αA×

A× → cos2αA×þ sin2αAþ
:

ð7:2Þ

Thus W carries a helicity-2 representation of SO(2), as
expected. Note that two metrics related by a rotation are
geometrically identical but we choose to distinguish them
because the action of the rotation does not tend to the
identity at infinity. In other words we are imagining some
reference system “at infinity” relative to which it is
meaningful to speak of the orientation X1 − X2 space.
The real vector spaceW admits a symplectic formΩ. Let

us introduce the notation C ¼ ðAþ;A×Þ for a general
vector in W. Then for two vectors C1 and C2 we define

ΩðC1; C2Þ ¼
Z

∞

−∞

�
Aþ1

dAþ2

dU
−Aþ2

dAþ1

dU

þA×1

dA×2

dU
−A×2

dA×1

dU

�
dU: ð7:3Þ

Note that if one regards V as the time coordinate, thenW
is well defined and independent of V and therefore the

symplectic form Ω is independent of “time.” The hyper-
surfaces U ¼ const, while not null, act here as surrogates
for Cauchy surfaces.11

In order to quantize this sector of quantum Einstein
theory, we now pass to the complexification WC of the
classical real symplectic vector spaceW and to extend Ω to
WC in a C-linear fashion. This enables us to endow WC
with a sesquilinear form,

hCjCi ¼ i
2
ΩðC̄; CÞ; ð7:4Þ

where C̄ denotes the complex conjugate of C. However
hCjCi is not positive definite. In order to render ΩðC; CÞ
positive definite, we must restrict hCjCi to a C-linear
subspace H ⊂ WC on which hCjCi is positive definite on
which hAþjA×i is positive definite.
This is conventionally achieved in quantum field theory

by restricting to functions in WC which have “positive
frequency” with respect to the coordinate U. If U is chosen
to increase to the future, then that means that Aþ and A×
only contain Fourier components with ω < 0. One then has

WC ¼ H ⊕ H̄: ð7:5Þ

The space of quantum statesH in this sector of the entire
Hilbert space of Einstein quantum gravity may be identified
with the vacuum Einstein equations which are analytically
continued to complex values of the Brinkmann coordinates
X1, X2, U;V, which are holomorphic in the lower half of
the U-plane.
One might then envisage an entire free “one graviton”

Hilbert space by considering gravitational waves moving in
all possible directions but not interacting, the continuous
direct sum

Z
S2
sin θdθdϕHn; ð7:6Þ

where n ∈ S2 labels the direction in the space of the plane
waves. Following the conventional rules of perturbative
quantum field theory one might then pass to the free Fock
space based onH. Free correlation functions would then be
defined on symmetric products of the complexified plane-
wave spacetime. The inclusion of interactions then however
presents severe difficulties. Moreover, at the classical level
spacetime singularities are encountered when plane waves
collide [70,71].

10“Superspace” was a term coined by Wheeler to denote the
configuration space of all Riemannian 3-metrics modulo diffeo-
morphisms. He thought of it as the natural arena for quantum
gravity. Strictly speaking, when one quantizes, one passes to the
reduced phase space, obtained by taking into account the
Hamiltonian and diffeomorphism constraints. This amounts to
considering the space of Cauchy data, or equivalently, classical
histories, that is, classical solutions of the Einstein equations
modulo diffeomorphism equivalence. A symmetry reduction (but
still with infinite dimensions) is called a midisuperspace. A
symmetry reduction to finite dimensions is called a minisuper-
space. The reader may consult [69] for a review.

11Our choice of the sign in front of 2dUdV in our metric
complicates this because it implies that either V or U decreases
into the future. In order to ensure that g ¼ −dT2 þ dZ2 þ � � � we
need to put U ¼ 1ffiffi

2
p ðZ þ TÞ, V ¼ 1ffiffi

2
p ðZ − TÞ, or vice versa, for

example. Often U and V are thought of as retarded and advanced
times, i.e., U ¼ T − Z and V ¼ T þ Z. This does not quite work
with our conventions.
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B. Stokes parameters and the Poincaré sphere

The only covariant treatment of this is at the linear level
and notationally rather complicated [72]. A treatment of
electromagnetic waves in a pp-wave background is given in
[73]. See also [74]. Hence we shall follow the obvious
analogy with the electromagnetic case. We begin by stating
our conventions about Fourier transforms. For a real valued
function of fðUÞ we define its Fourier transform ~fðωÞ by

~fðωÞ ¼
Z

∞

−∞
fðUÞeiωUdU: ð7:7Þ

The Fourier inversion theorem states that

fðUÞ ¼ 1

2π

Z
∞

−∞
~fðωÞe−iωUdω

¼ 1

π

Z
∞

0

Reðj ~fðωÞj cosðωt − ψðωÞÞÞdω: ð7:8Þ

Now in the case of a coherent classical electromagnetic
wave the transverse electric field has two real components
E1ðUÞ and E2ðUÞ with Fourier transforms ~E1ðωÞ and
~E2ðωÞ, and we shall take their gravitational analogues to
be AþðUÞ and A×ðUÞ with Fourier transforms ~AþðωÞ and
~A×ðωÞ. From now on we shall work at fixedω and suppress
it in most of the formulas which follow. We define the
following four real Stokes parameters [75], which we
combine in a Stokes four-vector Sμ given by

ðS0; S1; S2; S3Þ ¼ ðj ~Aþj2 þ j ~A×j2; j ~Aþj2

− j ~A×j2; 2Re ~Aþ ~A×; 2Im ~Aþ ~A×Þ:
ð7:9Þ

It follows that

−ðS0Þ2 þ ðS1Þ2 þ ðS2Þ2 þ ðS3Þ2 ¼ ημνSμSν ¼ 0: ð7:10Þ
That is, for a coherent state, the Stokes four-vector Sμ is a
future directed null vector passing through the origin of an
auxiliary Minkowski spacetime. For a statistical ensemble
of gravitational waves, the definition of the Stokes four-
vector contains a statistical average or expectation value
denoted by E½·�, and thus

Sμ ¼ E½ðj ~Aþj2 þ j ~A×j2; j ~Aþj2

− j ~A×j2; 2Re ~Aþ ~A×; 2Im ~Aþ ~A×Þ�: ð7:11Þ
It then follows that Sμ is future directed timelike or null, i.e.,

−ðS0Þ2 þ ðS1Þ2 þ ðS2Þ2 þ ðS3Þ2 ≤ 0: ð7:12Þ
It is possible to encode the Stokes four-vector in a 2 × 2
Hermitian matrix positive semidefinite coherence matrix ρ
which has some analogies to a density matrix in quantum

mechanics. Indeed, if the ensemble is a quantum ensemble
this analogy holds fairly closely.
We set

ρ ¼ E

�� j ~Aþj2; ~Aþ ~A×

~Aþ ~A×; j ~A×j2

��

¼ 1

2

�
S0 þ S1; S2 þ iS3

S2 − iS3; S0 − S1

�
: ð7:13Þ

As long as the Stokes four-vector Sμ lies inside the future
light cone, the Hermitian matrix ρ will be positive definite
since trρ ¼ S0 > 0 and det ρ ¼ − 1

4
ημνSμSν > 0. If the

Stokes four-vector lies on the light cone, then det ρ ¼ 0.
If one introduces the Jones complex valued two-vector [76]

J ¼
� ~Aþ

~A×

�
; ð7:14Þ

then

ρ ¼ E½JJ†�: ð7:15Þ

In the coherent case, the Poincaré sphere [77] is obtained by
normalizing the Jones two-vector

J†J ¼ 1; ð7:16Þ

since this implies that S0 ¼ 1. The spinor geometry behind
this construction has recently been described in [78].
In the coherent electromagnetic case it is customary to

describe the polarization states by plotting the curve
ðE1; E2Þ ¼ ðRe ~E1e−iωt;Re ~E2e−iωtÞ in the ðX1; X2Þ plane.
If one normalizes the Jones two-vector

J ¼
�

~E1e−iωt

~E2e−iωt

�
ð7:17Þ

such that

J†J ¼ j ~E1e−iωtj2 þ j ~E2e−iωtj2 ¼ 1; ð7:18Þ

one may introduce parameters such that

J ¼
�
cos θ

2
eið−ωtþδ1Þ

sin θ
2
eið−ωtþδ2Þ

�
: ð7:19Þ

Now (7.18) defines a unit three-sphere in four-dimensional
Euclidean space. As time progresses, points on the three-
sphere are moved along the orbits of the Uð1Þ action
J → e−iωtJ. However, the angle θ and the relative phase
δ ¼ δ2 − δ1, −π ≤ δ ≤ π are unchanged. As this happens,
the electric vector ðE1; E2Þ sweeps out an ellipse lying
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inside a rectangle of sides ðcos θ
2
; sin θ

2
Þ whose major axis

makes an angle 1
2
arctanðtan θ cos δÞ with the Ex axis. If

δ > 0, the polarization is right handed; if δ ≤ 0, it is left
handed. The orbits in S3 are called Hopf fibers and the space
of such orbits is called the Poincaré sphere. Points on the
north and south poles θ ¼ � π

2
, respectively, correspond to

plane polarized states and points on the equator θ ¼ 0 to
circularly polarized states. The remaining states are ellipti-
cally polarized. All but the plane polarized states have a
“handedness.”
The foregoing theory may readily be adapted to the

complex polarization gravitational wave amplitudes ~Aþe−ωt

and ~A×e−ωt. However, there is no direct analogue of the
electric field vector other than the tensorKIJ and so the image
of the electric vector executing an ellipse does not seem to
have a direct analogue. However, an important aspect
brought out above is that gravitational waves also have a
handedness. It is this handedness of primordial gravitational
waveswhich is responsible for the generation of the so-called
“B-mode” of the electromagnetic waves making up the
cosmic background radiation, whose presence is predicted
by theories of inflation [5].
The mechanism for the transfer of gravitational wave

energy to electromagnetic wave energy is the effect of
gravitational waves described in the present paper on freely
falling electrically charged particles (free electrons in the
primordial plasma around recombination in the case of
the CMB) envisaged as an abstract possibility in [79].12 The
charged particles are necessary because, as we noted in the
previous section, there is no direct conversion of gravita-
tional waves into electromagnetic waves. One might almost
claim that if the B-mode is observed then the gravitational
memory effect will be, albeit indirectly, observed.
The effect of a polarized monochromatic gravitational

wave may be seen by solving the equations of geodesic
deviation (3.3), assuming

Aþ ¼ Cþ sinðωUÞ; A× ¼ C× sinðωU þ ϕÞ; ð7:20Þ

where the frequency ω; amplitudes Cþ; C×; and relative
phase ϕ are constants.
We conclude by remarking on the analogy between the use

of the Poincaré sphere and the way a two-state system, up to
and over all phases, corresponds to the Bloch sphere [80].
However, depending upon the spin or helicity of the states,
the action of a physical rotation through an angle α on the
spheres will differ. For spin 1

2
, one has δ → δþ 2sα. For

quantum systems there is a notion of Berry or Aharonov-
Bohm transport [81–83]. In the case of spin 1 states, this
corresponds to parallel transport on complex projective space
CP2 [84]. However, in the case of polarized states in optics,

this corresponds to Pancharatnam transport [85–87].
Pancharatnam’s condition of maximum parallelism between
two waves with Jones two-vectors is J†J0 ≥ 0 and in
particular that J†J0 ≥ 0 is real. If J and J þ dJ are two
neighboring states we have by virtue of the normalization
condition J†J ¼ 1

J†dJ þ dJ†J ¼ 0; ð7:21Þ

sowe define Pancharatnam parallel transport of the phase by

J†dJ ¼ 0 ¼ J̄1dJ1 þ J̄2dJ2: ð7:22Þ

Now we introduce the stereographic coordinate on S2 by

ζ ¼ J2
J1

¼ tan
θ

2
e−2iδ: ð7:23Þ

Pancharatnam’s rule for parallel transport reads

d lnZ1 þ ζ̄dζ
1þ jζj2 ¼ 0; that is;

iðdτ þ dδ1Þ þ
ζ̄dζ

1þ jζj2 ¼ 0; ð7:24Þ

which corresponds to the Uð1Þ connection and curvature,

A ¼ −i
ζ̄dζ

1þ jζj2 and F ¼ dA ¼ −idζ̄ ∧ dζ̄
ð1þ jζj2Þ2 ;

ð7:25Þ

respectively. Parallel transport around a simple closed curve γ
enclosing a domain D produces total holonomy,

Z
D
F ¼ 1

2
Ω; ð7:26Þ

where Ω is the solid angle subtended by the loop γ at the
center of the sphere. The factor of 1

2
arises because A is the

spin connection of the metric on S2 and satisfies the minimal
Dirac requirement:

Z
S2
F ¼ 2π: ð7:27Þ

The Levi-Cività connection, whose curvature 2F ¼ K is the
Gauss curvature, is twice as large and its curvature 2F ¼ K is
the Gauss curvature [thought of as an soð2Þ valued 2-form],
which satisfies the Gauss-Bonnet condition

Z
S2
2F ¼

Z
S2
K ¼ 4π: ð7:28Þ12However, it should be pointed out that these authors mention

neither the CMB nor polarization effects.
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VIII. CONCLUSION

In this paper we have clarified the physically important
notions of “gravitational memory” and of “soft graviton” in
a simple and easily calculable model that nevertheless
permits a mathematically rigorous treatment and that
captures all the relevant physics. We present exact solutions
of Einstein’s equations describing plane gravitational
waves of arbitrary polarization in the two most useful
coordinates. We obtained exact expressions for the geo-
desics in both sets of coordinates. This allowed us to exhibit
the action of a finite duration pulse of gravitational
radiation on freely falling particles initially at rest in an
inertial coordinate system in a portion of flat Minkowski
spacetime to the past of the pulse.
Integrating the geodesic equations in BJR coordinates

became possibly due to their manifest Carroll symmetry,
(4.11), leading to the conserved quantities (4.13).
Plane gravitational waves have long been known to have

a five-parameter isometry group [16,27]. The generating
Killing vectors have, in Brinkmann coordinates, the com-
ponents of our P matrix (2.7) as coefficients [33,39].
However, being solutions of a Sturm-Liouville equation,
these coefficients are not known in general.
In BJR coordinates the symmetry is manifest and the

associated conserved quantities can be calculated by
calculating the matrix H in (4.12). The price to pay is
that it is now the correspondence B ⇔ BJR that requires
solving a Sturm-Liouville equation: the difficulty is thus
transferred to the transformation between the two sets of
coordinates.
Particles initially at rest have vanishing momentum

p ¼ 0 and their trajectory in BJR coordinates is therefore,
for all smooth wave profiles, the simply straight one in
(4.18). Thus after the pulse their transverse positions
remain at rest in the noninertial BJR coordinate system.
The memory effect is not lost, however: it is encoded in the

diffeomorphism which we calculate explicitly, relating the
past inertial coordinates to the future noninertial coordinate
system. This diffeomorphism, which is in principle con-
structible from observations using gravitational wave
detectors, does not tend to identity at infinity.
Flat plane wave solutions of Einstein’s vacuum equations

Eq. (2.14) in noninertial coordinates are more general than
just Minkowski and may be thought of as soft gravitons
dressing the initial Minkowski vacuum state.
The extension to Einstein-Maxwell theory is straightfor-

ward and a midisuperspace quantization can be given.
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