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We investigate the possibility of overcharging spherically symmetric black holes in spacetime
dimensions D > 4 by the capture of a charged particle. We generalize Wald’s classic result that extremal
black holes cannot be overcharged. For nearly extremal black holes, we also generalize Hubeny’s scenario
by showing that overcharging is possible in a small region of parameter space. We check howD affects the
overcharging parameter space and find that this appears to shrink in the large-D limit, which suggests that
overcharging becomes increasingly difficult in higher dimensions.
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I. INTRODUCTION

The cosmic censorship conjecture [1] is a long-standing
open question in classical general relativity that continues
to attract interest. Loosely speaking, the conjecture asserts
that singularities arising from gravitational collapse are
always hidden behind event horizons. It is useful in so
much as it affords general relativity predictability as a
classical theory. Its violation would compel input from a
more complete and as-yet-undiscovered theory—quantum
gravity—in order to make predictive statements on observ-
ables pertaining to events at or near singularities.
That it remains a challenging open conjecture is due in

part to its lack of a rigorous formulation. In spite of this, or
perhaps because of this, there has been no shortage of
efforts to find counterexamples [2–21]. Nonetheless, the
cosmic censorship conjecture is widely believed to be true,
and the challenge to those who adhere to it is to explain
why the counterexamples flounder upon closer scrutiny,
and more importantly, to understand the mechanism that
enforces cosmic censorship. Most of these counterexam-
ples require some degree of fine-tuned initial data. An
exception, however, can be found in higher dimensions.
Higher-dimensional (D > 4) black hole analogs such as
black strings, black rings, and p-branes have long been
demonstrated to be unstable to small perturbations, and
recent numerical evidence appears to indicate that they lead
to the formation of naked singularities [22–24]. The end
state of this instability is widely considered to be the only
known generic violation of cosmic censorship so far [25].
A common approach to unveiling the singularities of

black holes is by making them absorb point particles with
certain properties. The seminal work by Wald [10] was the
first to seriously explore this possibility. Black hole
overcharging is the process by which a test particle of
sufficient mass m, charge q, and energy E falls down a
charged black hole of massM and chargeQ, overcomes the

electrostatic repulsion between them, and is absorbed by
the black hole, ultimately resulting in a spacetime that no
longer corresponds to a black hole but a naked singularity.
Wald demonstrated that when one tries to overcharge an
extremal Kerr-Newman black hole in this way, however,
the electrostatic repulsion prevents the particle from cross-
ing the event horizon [10]. Many years later, Hubeny [15]
revisited this scenario and discovered that if one starts with
a nearly extremal Reissner-Nordström black hole instead of
an extremal one, then overcharging is possible.
The same situation holds for spinning black holes. A

black hole is overspun when it absorbs a test body with
enough angular momentum such that the resulting metric
after absorption is that of a naked singularity. Again, in
Ref. [10], it was demonstrated that overspinning is impos-
sible for an extremal Kerr-Newman black hole because the
test body cannot overcome the spin-spin repulsion between
the particle and the black hole. In the same spirit as Hubeny,
Jacobson and Sotiriou [16] found that starting with near-
extremality evades this restriction.
Overcharging and overspinning share the same fine-

tuning flaw of other mechanisms for creating naked
singularities; only for an infinitesimally narrow region of
parameter space do they succeed. A more serious short-
coming though, already acknowledged in Refs. [15,16], is
that both analyses rely on the test-particle approximation. It
has been widely believed then that finite-charge and finite-
mass corrections to the dynamics of the point particle
drastically affect the outcomes of both scenarios [27].
These corrections are known as self-force effects. The
self-force on a particle moving in a curved spacetime arises
from the interaction between the particle and the fields it
produces. In general, it cannot be computed straightfor-
wardly [28–33], though the technology for such compu-
tations has progressed tremendously in recent years and
remains an active area of research [34].
A more complete picture of the influence of the

electromagnetic self-force on the Hubeny overcharging
scenario was revealed by the work of Zimmerman et al.
[20]. There it was shown that the self-force prevents the test
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particle from crossing the event horizon, becoming strongly
repulsive as the charged particle gets close to the event
horizon, and creating a turning point in the trajectory of the
particle just as it is about to overcharge the black hole.
Colleoni et al. reached similar conclusions in their careful
study of the inclusion of gravitational self-force effects in the
Kerr overspinning scenario [35]. This corroborates and
completes the work by Barausse et al. that looked into
the impact of dissipative self-force effects [36,37]. The
emerging picture thus confirms the expectation that four-
dimensional black holes are immune to overcharging or
overspinning by point particles, and that indeed it is the self-
force that acts as the cosmic censor in these scenarios.
In this short paper, we contribute to this developing

narrative by extending the Hubeny overcharging scenario
to higher-dimensional black holes. Indeed, the fact that
generic violations of cosmic censorship occur in the non-
linear evolution of higher-dimensional black objects sug-
gests that higher dimensions might be a more fertile arena
for seeking out violations. However, earlier work on
extending the overspinning process to higher dimensions
by Bouhmadi-Lopez et al. concluded that potentially
destructive point particles with large angular momenta
are not captured by the extremal Myers-Perry black holes.
Higher-dimensional overspinning in the extremal case
cannot succeed. To the best of our knowledge, the analo-
gous overcharging scenario is yet to be extended to
dimensions D > 4. (See, however, Ref. [9] for an over-
charging by charged thin shells.) We find that, just like in
four dimensions, overcharging an extremally charged black
hole is impossible in the test-particle limit. We also show
that Hubeny’s conclusions in D ¼ 4 extend to higher
dimensions as well: there exist charged test particles that
can overcharge a nearly extremal charged Schwarzschild-
Tangherlini black hole.
Very recent work by Sorce and Wald [38] showed quite

generally that overcharging and overspinning of nearly
extremal black holes cannot occur, though it is not clear if
this statement extends to all dimensions. For the extremal
case (including higher dimensions), Natario et al. [39]
showed that overcharging and overspinning fails for test
fields satisfying the null energy condition at the horizon.
The rest of the paper proceeds as follows. To set the

stage, we first briefly review the Hubeny overcharging
scenario in a nearly extremal Reissner-Nordström black
hole. We then look at generalizing this situation to a
charged Schwarzschild-Tangherlini black hole. We work
out the kinematics of charged particle infall in this back-
ground. From these we derive the conditions for over-
charging these black holes—what we call generalized
Hubeny inequalities—and show that these cannot be
satisfied when the black hole is extremal, but can be
satisfied for a small region of parameter space when the
black hole is nearly extremal. These generalize the Wald
and Hubeny results to D > 4. We also check how the

overcharging parameter space depends on D. Finally, we
summarize with a discussion of our results.
Throughout this paper our metric signature is mostly

plus ð−;þ;þ; � � � ;þ;þÞ. For consistency with past work
in D ¼ 4, we adopt geometric units in which GD ¼ c ¼ 1.

II. THE HUBENY SCENARIO

We first recall the Reissner-Nordström (RN) line element
in the usual Schwarzschild coordinates, which describes the
spacetime of a charged, asymptotically flat solution to the
Einstein-Maxwell equations. The line element reads

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2; ð1Þ

where

fðrÞ ¼ 1 −
2M
r

þQ2

r2
; ð2Þ

and dΩ2 ¼ dθ2 þ sin2 θdϕ2 is the metric on the unit two-
sphere. This solution represents a black hole of massM and
charge Q possessing an event horizon at r ¼ rþ ≔ Mþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. The black hole supports an electromagnetic

field and four-potential whose only nonzero components
are Ftr ¼ −Q=r2 and At ¼ −Q=r, respectively.
When Q > M, there is no event horizon, and the

Reissner-Nordström solution bears its curvature singularity
located at r ¼ 0 to the outside universe. The case Q ¼ M
represents an extremal RN black hole, and when
ðQ −MÞ=M ≪ 1, we have a nearly extremal RN black
hole. Hubeny parametrizes near-extremality by relating the
mass and charge of the black hole as Q ¼ M − 2ϵ2 and
requiring that 0 < ϵ ≪ 1. Extremal RN black holes are then
those for which ϵ ¼ 0.
The Hubeny scenario consists of a test charge, with mass

m and charge q, falling radially towards a nearly extremal
Reissner-Nordström black hole. This radial infall proceeds
according to the equation of motion

maα ¼ qFα
βuβ; ð3Þ

whereby the charged particle is met by the electrostatic
repulsion coming from the black hole. For overcharging to
occur, the charged particle must overcome this repulsion
and accrete its energy E and charge q onto the black hole so
that the latter’s final mass and charge are M þ E and
Qþ q, respectively. When

Qþ q > M þ E; ð4Þ

the final state is said to be overcharged.
For the particle to cross the event horizon, its four-

velocity, uα ¼ ð_t; _r; 0; 0Þ, must satisfy the conditions
(i) _r2 > 0 ∀ r ≥ rþ, and
(ii) _t > 0 ∀ r > rþ.
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The overdot means differentiation with respect to the
particle’s proper time. Condition (i) simply means that
no turning point exists in its trajectory before it enters the
horizon. The particle must have sufficient energy E to
overcome electrostatic repulsion. Condition (ii) ensures
that the four-velocity is future-pointing at the horizon.
Taking Eq. (4) and conditions (i) and (ii) together, one can
derive the following inequalities:

q >
rþ −Q

2
; ð5aÞ

qQ
rþ

< E < qþQ −M; ð5bÞ

m < Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MEq −QðE2 þ q2Þ

QðM2 −Q2Þ

s
: ð5cÞ

These are the conditions for overcharging, and are con-
straints on the particle parameter space fm;E; qg. Particles
with mass, energy, and charge fm;E; qgwithin this domain
are then said to produce an overcharged final state, i.e. a
naked singularity, from a RN black hole of mass and
charge fM;Qg.
In addition to these conditions, one must bear in mind

that the test-particle approximation has to be valid, i.e., the
test particle’s stress-energy tensor must not significantly
disturb the background spacetime. Thus, the particle
parameters fm;E; qg have to be much smaller than black
hole parameters fM;Qg.
In the extremal limit, the inequalities (5a)–(5c) reduce to

q > 0; ð6aÞ

q < E < q; ð6bÞ

m < ∞; ð6cÞ

which admit no solution. We therefore recover Wald’s
result that extremal RN black holes cannot be over-
charged.If the RN black hole is nearly extremal, so that
Q ¼ Mð1 − 2ϵ2Þ, Hubeny showed how to obtain a solution
to Eqs. (5a)–(5c). In particular, for any nonzero ϵ ≪ 1 and
for M ¼ 1, the choices

q ¼ aϵ; a > 1; ð7aÞ

E ¼ aϵ − 2bϵ2; 1 < b < a; ð7bÞ

m ¼ cϵ; c <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
ð7cÞ

will satisfy the above inequalities [15,40].

III. OVERCHARGING IN D DIMENSIONS

In this section, we show that in D dimensions the
Hubeny inequalities generalize to

q > rD−3þ

�
M − ωDQ

ωDrD−3þ −Q=ðD − 3Þ
�
; ð8Þ

qQ
ðD − 3ÞrD−3þ

< E < ωDðQþ qÞ −M; ð9Þ

and,

m < ωDQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MEq −QðE2 þ ω2

Dq
2Þ

QðM2 − ω2
DQ

2Þ

s
; ð10Þ

where

rD−3þ ¼ M
ðD − 3Þω2

D

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
DQ

2

M2

r !
; ð11Þ

and ωD is defined as

ωD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 2Þ
ðD − 3Þ

ΩðD−2Þ
8π

s
: ð12Þ

Here ΩðD−2Þ is the volume of the unit (D − 2)-sphere
defined as ΩðD−2Þ ¼ 2πðD−1Þ=2=ΓððD − 1Þ=2Þ. It is easy
to check that ωD ¼ 1 in D ¼ 4 and that these inequalities
correctly reduce to the Hubeny inequalities in D ¼ 4.

A. Einstein-Maxwell action

The Einstein-Maxwell equations in D dimensions arise
from the action

S ¼ Sg þ SEM þ Sm þ Sint; ð13Þ

where

Sg ¼
κ0
GD

Z
dDx

ffiffiffiffiffiffi
−g

p
R; ð14Þ

SEM ¼ −κ0
Z

dDx
ffiffiffiffiffiffi
−g

p
FμνFμν; ð15Þ

Sm ¼ −m
Z
γ
dτ; ð16Þ

Sint ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
Aμjμ: ð17Þ

We choose the value of κ0 to be
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κ0 ≔
1

4ΩðD−2Þ
: ð18Þ

For a particle with charge q moving along a worldline γ,
which is parametrized by xμ ¼ zμðλÞ for some arbitrary
parameter λ,

jμ ¼ q
Z
γ
dλ

dzμ

dλ
δðDÞðxμ − zμðλÞÞffiffiffiffiffiffi−gp : ð19Þ

This action yields the field equations

Gαβ ¼ 8πGDTαβ; ð20Þ

Fαβ
;β ¼ ΩðD−2Þjα; ð21Þ

maα ¼ qFα
βuβ; ð22Þ

upon imposing stationarity of the action with respect to gαβ,
Aμ and zμðλÞ, respectively. The stress-energy tensor in our
chosen units is given by

Tαβ ¼
1

ΩðD−2Þ

�
FαμF

μ
β −

1

4
gαβFμνFμν

�
: ð23Þ

B. Charged Schwarzschild-Tangherlini
black holes in D dimensions

The D-dimensional analogue to the Reissner-Nordström
solution, or the charged Schwarzschild-Tangherlini solu-
tion, is again parametrized by a mass M and charge Q. Its
line element is given by

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
D−2 ð24Þ

where

fðrÞ ¼ 1 −
μ

rD−3 þ
ξ2

r2ðD−3Þ ; ð25Þ

and

μ ¼ 16πM
ðD − 2ÞΩðD−2Þ

; ð26Þ

ξ ¼
�

8π

ΩðD−2ÞðD − 2ÞðD − 3Þ
�

1=2
Q; ð27Þ

with M and Q being the Arnowitt-Deser-Misner (ADM)
mass and charge of the black hole. Finally,

dΩ2
D−2 ¼ dθ21 þ sin2θ1dθ22 þ � � �

þ sin2θ1 � � � sin2θD−3dθ2D−2

is the line element of the unit (D − 2)-sphere. WhenD ¼ 4,
this solution reduces to the expected Reissner-Nordström
solution i.e. Eqs. (1)–(2). This solution supports an electro-
magnetic field and potential whose only nonzero compo-
nents are Ftr ¼ −Q=rD−2 and At ¼ −Q=ððD − 3ÞrD−3Þ.
The metric function f has an outer root

rD−3þ ¼ μ

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ξ2

μ2

s !
; ð28Þ

which locates the event horizon. The location of the event
horizon in terms of the black hole mass and charge is

rD−3þ ¼ 8πM
ðD − 2ÞΩðD−2Þ

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðD − 2Þ
ðD − 3Þ

ΩðD−2Þ
8π

Q2

M2

s !
:

ð29Þ

While taking note of the definition of ωD as

ωD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 2Þ
ðD − 3Þ

ΩðD−2Þ
8π

s
; ð30Þ

we can rewrite the location of the horizon as

rD−3þ ¼ M
ðD − 3Þω2

D

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
DQ

2

M2

r !
: ð31Þ

An event horizon exists only when

M ≥ ωDQ: ð32Þ

The extremal state occurs when the equality holds in
relation (32). The overcharged state occurs when this is
violated or when

Q > ω−1
D M: ð33Þ

C. Crossing conditions for charged particle infall

The setup for overcharging proceeds exactly as in
Hubeny. We consider a particle of a certain mass m and
charge q radially falling into the black hole with just the
right parameters so that it crosses the horizon rþ and
produces a spacetime that violates Eq. (32). Our goal now is
to generalize the Hubeny inequalities in Eqs. (5a)–(5c) toD
spacetime dimensions.
The equation of motion for the charged particle remains

maα ¼ qFα
βuβ. For a radial trajectory zα ¼ ðTðτÞ; RðτÞ;

0;…; 0Þ, where (τ) is the proper time, the point charge has a
velocity

uα ¼ dzα

dτ
¼ ð _TðτÞ; _RðτÞ; 0;…; 0Þ; ð34Þ
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and momentum given by

pα ¼
�
−mf _T −

qQ
ðD − 3ÞrD−3 ; f

−1 _R; 0;…; 0

�
: ð35Þ

Associated with the time-like Killing vector of the space-
time, ξαðtÞ ¼ ð1; 0;…; 0Þ, is a constant of motion given by

E ¼ −pαξ
α
ðtÞ ¼ mf _T þ qQ

ðD − 3ÞrD−3 : ð36Þ

From this, we get

_T ¼ 1

mf

�
E −

qQ
ðD − 3ÞrD−3

�
: ð37Þ

Moreover, from the normalization of the velocity,
uαuα ¼ −1, the equation of motion for RðτÞ becomes

_R2 ¼ 1

m2

�
E −

qQ
ðD − 3ÞrD−3

�
2

− fðrÞ: ð38Þ

For the particle to cross the horizon, it is sufficient to
require that _T > 0 for r > rþ and _R2 > 0 for all r ≥ rþ.
Evaluating Eq. (38) at r ¼ rþ, we get

E >
qQ

ðD − 3ÞrD−3þ
: ð39Þ

From Eq. (38), the condition _R2 > 0 for all r > rþ can be
written as

m2 <
1

fðrÞ
�
E −

qQ
ðD − 3ÞrD−3

�
2

; ∀ r > rþ: ð40Þ

The minimum of the right-hand side occurs at

rD−3
m ¼ MQq −Q2E

ðD − 3Þω2
DqQ − ðD − 3ÞME

: ð41Þ

Substituting this back into Eq. (40), we get

m < ωDQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MEq −QðE2 þ ω2

Dq
2Þ

QðM2 − ω2
DQ

2Þ

s
: ð42Þ

To summarize, the crossing conditions _T > 0 and _R2 > 0
for all r > rþ lead to the two inequalities

E > Emin ≔
qQ

ðD − 3ÞrD−3þ
; ð43aÞ

m < mmax ≔ ωDQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MEq −QðE2 þ ω2

Dq
2Þ

QðM2 − ω2
DQ

2Þ

s
: ð43bÞ

Equation (43a) ensures that the right-hand side of Eq. (43b)
is real-valued. Taken together, these inequalities guarantee
that a charged particle characterized by fm;E; qg will cross
the event horizon. Now we seek to ascertain the form of the
D-dimensional RN metric after it absorbs the charged
particle.

D. Overcharging condition

Like all previous works [10,15,16,41], we assume that
the particle energy E fully accretes to the ADMmass of the
black hole. The ADM mass upon absorption of the particle
then simply increases as M → M þ E while the ADM
charge increases asQ toQþ q. This assumption misses out
on all radiative/self-force effects, which of course lie
outside the test-particle approximation.
The line element of the spacetime after absorption of the

charged particle becomes

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
D−2; ð44aÞ

where

fðrÞ ¼ 1 −
16π

ðD − 2ÞΩD−2

M þ E
rD−3

þ 8π

ΩðD−2ÞðD − 2ÞðD − 3Þ
ðQþ qÞ2
r2ðD−3Þ : ð44bÞ

The location of the horizons for this new line element (44)
is given by

rD−3
� ¼ M þ E

ðD − 3Þω2
D

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
DðQþ qÞ2
ðM þ EÞ2

s !
: ð45Þ

The line element describes the spacetime around a black
hole when r� are real or

M þ E ≥ ωDðQþ qÞ: ð46Þ

A naked singularity is described by the RN line element
when

Qþ q > ω−1
D ðM þ EÞ: ð47Þ

This can be rewritten to give an upper bound for E

E < Emax ≔ ωDðQþ qÞ −M: ð48Þ

Together with Eq. (39), Eq. (48) can be written as

qQ
ðD − 3ÞrD−3þ

< E < ωDðQþ qÞ −M; ð49Þ

allowing us to derive a lower bound for the charge,
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qQ
ðD − 3ÞrD−3þ

< ωDðQþ qÞ −M; ð50Þ

or

q > qmin ≔ rD−3þ

�
M − ωDQ

ωDrD−3þ −Q=ðD − 3Þ
�
: ð51Þ

This completes the derivation of the generalized Hubeny
inequalities.

E. Overcharging extremal black holes

We now use these inequalities to constrain the parameter
space for a charged particle that is about to fall towards an
extremal black hole. In the extremal limit, M ¼ ωDQ, the
horizon location becomes

rD−3 ¼ rD−3þ ¼ M
ðD − 3Þω2

D
¼ Q

ðD − 3ÞωD
; ð52Þ

and the system of inequalities in Eqs. (8), (9), and (10)
reduces to

q > 0; ð53Þ

ωDq < E < ωDq; ð54Þ

m < ∞; ð55Þ

which does not have a solution. This confirms that Wald’s
result remains correct for higher-dimensional extremal
black holes. This was already anticipated by the general
arguments made in Ref. [39].

F. Overcharging in the nearly extremal case

Looking now at the near-extremal case, we note that
near-extremality in D dimensions can be parametrized
using an extremality parameter 0 < ϵ ≪ 1 as

M ≡ 1; Q≡ ω−1
D − 2ϵ2: ð56Þ

Similar to Hubeny [15], we can deal with the inequalities
(8), (9), and (10), perturbatively in ϵ, and show that a
solution to them (i.e. a choice of m, E, and q satisfying
them) is always possible for any 0 < ϵ ≪ 1.
The expression for the event horizon then reduces to

rD−3þ ¼ 1þ 2
ffiffiffiffiffiffiffi
ωD

p
ϵ

ðD − 3Þω2
D
; ð57Þ

while the lower bound for q becomes

q >
ϵþ 2

ffiffiffiffiffiffiffi
ωD

p
ϵ2ffiffiffiffiffiffiffi

ωD
p þ ωDϵ

: ð58aÞ

Expanding in ϵ, this becomes

q > ω−1=2
D ϵþ ϵ2 þOðϵ3Þ; ð59Þ

which can be satisfied by the choice

q ¼ Aϵ; A > ω−1=2
D : ð60Þ

At D ¼ 4, this reduces to

q ¼ aϵ; a > 1; ð61Þ
the same solution to the Hubeny inequalities in the near-
extremal case in the lowest order.
Inserting Eq. (60) into the energy constraints, Eqs. (39)

and (48), we get

E < ωDðAϵ − 2ϵ2Þ; ð62aÞ

E > ωDAðϵ − 2ϵ2
ffiffiffiffiffiffiffi
ωD

p þ 2ωDϵ
3 þOðϵ4ÞÞ; ð62bÞ

which can be satisfied with the choice

E ¼ ωDðAϵ − 2Bϵ2Þ; 1 < B <
ffiffiffiffiffiffiffi
ωD

p
A: ð63Þ

This also reduces to the D ¼ 4 case where

E ¼ aϵ − 2bϵ2; 1 < b < a: ð64Þ

Inserting Eqs. (56), (60), and (63) into Eq. (42), we get

m < ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ω2

D − B2ωD

q
− ϵ2

ABω3=2
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2ωD − B2
p þOðϵ3Þ: ð65Þ

This can be satisfied with the choice

m ¼ Cϵ; C <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ω2

D − B2ωD

q
: ð66Þ

Again, this reduces to Hubeny’s mass constraint in D ¼ 4,

m ¼ cϵ; c <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
: ð67Þ

This demonstrates that it is quite easy to find a solution to
the generalized Hubeny inequalities for the case of a nearly
extremal black hole for any dimension, D.
To summarize, the overcharging solution to nearly

extremal black holes can be parametrized as q ¼ Aϵ,
E ¼ ωDðAϵ − 2Bϵ2Þ, m ¼ Cϵ, for

A > ω−1=2
D ; ð68Þ

1 < B <
ffiffiffiffiffiffiffi
ωD

p
A; ð69Þ

C <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ω2

D − B2ωD

q
: ð70Þ
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Note that we can reparametrize this region by letting
A ¼ α=

ffiffiffiffiffiffiffi
ωD

p
; B ¼ β; C ¼ γ

ffiffiffiffiffiffiffi
ωD

p
. Then, the overcharging

parameter region for D > 4 simplifies to

α > 1; ð71Þ

1 < β < α; ð72Þ

γ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − β2

q
; ð73Þ

which is in fact identical to the original overcharging
parameter space identified by Hubeny in D ¼ 4. This
means that a solution to the inequalities exists in all
dimensions D ≥ 4.
Though a solution always exists for anyD, it is of interest

to look at how the overcharging parameter regions in
fm;E; qg are affected as D → ∞. We can do this by
looking at the generalized Hubeny inequalities directly.
The inequality in Eq. (8) provides a D-dependent lower

bound on q. This lower bound is plotted in Fig. 1 for
ϵ ¼ 0.001. We see from this that the smallest charge

allowing for overcharging, qmin, increases with D.
Therefore, the required charge eventually becomes too large
to satisfy the test-particle assumption, ωDq ≪ M ∼ ωDQ.
(Note that qmin=Q ∼ ω−1=2

D asD → ∞.) In the energy sector,
the inequality in Eq. (9) allows for energies within a range
that also depends onD and q. In Fig. 2, this range is plotted
as a function ofD for various choices of q and the same ϵ as
in Fig. 1. We see from this that the allowed energy range,
ΔE ¼ Emax − Emin, generically shrinks to zero as D → ∞.
Finally, the upper bound on the massm is plotted againstD
in Fig. 3 for various choices ofq andE, which shows it going
to zero in the same limit.We infer from these figures that, for
any fixed ϵ, the available parameter space for overcharging
rapidly shrinks as D → ∞. Perhaps more importantly, in
going to ever higher dimensions we eventually run afoul
with the starting assumptions of a Hubeny-type analysis. In
particular, the rapid growth of qmin as D → ∞ throws into
question the test-particle assumption at some sufficiently
large D.
Interestingly, overcharging appears most favorable in

D ¼ 8. This intriguingly coincides with the dimension at
which the volume of a two-sphere ΩD−2 is largest. We are
unable to provide a simple physical explanation for this
coincidence at this point.

IV. SUMMARY AND CONCLUSION

The goal in this work was to explore the possibility of
overcharging of black holes by point particles in higher
dimensions. To this end, we studied the radial infall of a
charged particle in a charged, spherically symmetric,
D-dimensional black hole. Like Hubeny, we reduced the
conditions leading to cosmic censorship violation in this
scenario into a set of generalized Hubeny inequalities. We
further learned that these inequalities cannot be satisfied in
extremal black holes, but that they can be satisfied when the
black holes are nearly extremal. Thus, the results of Wald
and Hubeny for D ¼ 4 remain true in higher dimensions.

4 10 20 30 40 50
D

0.001

0.010

0.100

1

q

FIG. 1. Allowed parameter space in q for a nearly extremal
D ≥ 4 BH with ϵ ¼ 0.001. The dots represent the lower bound,
qmin, for different dimensions D ≥ 4.

4 10 20 30 40 50
D

10 13

10 10

10 7

10 4

10 1
E

FIG. 2. Width of parameter space, ΔE ¼ Emax − Emin, for a
nearly extremal BH with ϵ ¼ 0.001 and a specific value of q.
From top to bottom: q ¼ 10000qmin, 1000qmin, 100qmin, 10qmin,
and qmin þ ϵ=2. As D → ∞, ΔE decreases exponentially.

4 10 20 30 40 50
D

10 5

0.01

10

mmax

FIG. 3. mmax for a nearly extremal BH with ϵ ¼ 0.001 and
different values of q and E. For the same choice of q in Fig. 2, we
take E to be E ¼ ðEmin þ EmaxÞ=2. From top to bottom:
q ¼ 10000qmin, 1000qmin, 100qmin, 10qmin, and qmin þ ϵ=2.
As D → ∞, mmax also decreases exponentially.

OVERCHARGING HIGHER-DIMENSIONAL BLACK HOLES … PHYSICAL REVIEW D 96, 064010 (2017)

064010-7



These results are not entirely surprising. The interaction
between a charged black hole and an infalling test charge
consists of a competition between their gravitational
attraction and electromagnetic repulsion. Wald’s classic
no-go result in the extremal case (Q ¼ M) can be taken to
mean that these competing effects precisely cancel. On the
other hand, starting with a black hole charge just shy of
extremality [i.e. Q ¼ Mð1 − 2ϵ2Þ] weakens the electro-
magnetic repulsion sufficiently enough to allow some test
charges to cross the horizon and overcharge the black hole.
In higher dimensions, the strengths of both gravitational
attraction and electromagnetic repulsion scale precisely in
the same way as ∼r−ðD−2Þ. So the previous considerations
concerning the balance between these two effects can be
expected to remain true.
There may be little doubt that our conclusions are an

artifact of the test-particle approximation, just as in D ¼ 4.
Destroying the event horizon is a violation not only of
cosmic censorship but also the second and third laws of
black hole mechanics, which ought to hold in higher
dimensions [42]. Beyond these theoretical considerations,
for any process that violates cosmic censorship, we are
always left to ask about what possible mechanism might
prevent the violation. For scenarios involving point par-
ticles, the natural choice of cosmic censor is the

backreacting self-force, the calculation of which, in higher
dimensions, is a subject still in its infancy, and is an active
area of research [43–46]. Our work can be viewed as a
strong invitation to pursue higher-dimensional self-force
calculations.
There are indications that the self-force in higher

dimensions gets divergently repulsive as the particle
approaches the horizon [43], which would mean that none
of the charged particles we identify as overcharging do, in
fact, cross the horizon. However, the matter is far from
settled [44]. It would be interesting to see how this story
unfolds, as self-force calculations in higher dimensions
mature to the state that has been reached in D ¼ 4. We
leave this problem for future work.
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