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Higher derivative extensions of Einstein gravity are important within the string theory approach
to gravity and as alternative and effective theories of gravity. H. Lü, A. Perkins, C. Pope, and K. Stelle
[Phys. Rev. Lett. 114, 171601 (2015)] found a numerical solution describing a spherically symmetric non-
Schwarzschild asymptotically flat black hole in Einstein gravity with added higher derivative terms. Using
the general and quickly convergent parametrization in terms of the continued fractions, we represent this
numerical solution in the analytical form, which is accurate not only near the event horizon or far from the
black hole, but in the whole space. Thereby, the obtained analytical form of the metric allows one to study
easily all the further properties of the black hole, such as thermodynamics, Hawking radiation, particle
motion, accretion, perturbations, stability, quasinormal spectrum, etc. Thus, the found analytical
approximate representation can serve in the same way as an exact solution.
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I. INTRODUCTION

Recent observation of gravitational waves from,
apparently, a binary black hole merger [1] and considerable
progress in observations of the galactic black hole in the
electromagnetic spectrum [2] have made black holes
important objects for testing the regime of strong gravity.
At the same time, the current lack of accuracy in determin-
ing the angular momentum and mass of the resultant
ringing black hole leaves open the window for alter-
native theories of gravity, allowing for deviations from
Schwarzschild and Kerr geometries [3]. One such interest-
ing alternative is Einstein gravity with an added quadratic
in curvature term for which the most general action has the
form

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðγR − αCμνρσCμνρσ þ βR2Þ; ð1Þ

where α, β and γ are constants, andCμνρσ is the Weyl tensor.
In [4] it was shown that in addition to the Schwarzschild

solution in the theory (1), there is another spherically
symmetric asymptotically flat non-Schwarzschild black-
hole solution within the same theory. The numerical
solution for the non-Schwarzschild case was represented
in [4,5].

The numerical solution, although it can be used for
further numerical analysis at fixed values of parameters,
does not give a clear picture of the dependence of the metric
on physical parameters of the system. Therefore, the
general method of parametrization of black-hole space-
times was developed in [6] for spherically symmetric black
holes and in [7] for axially symmetric black holes. In the
spherically symmetric case, considered here, the method is
based on the continued fraction expansion in terms of a
compactified radial coordinate. Comparison of observ-
ables, such as position of the innermost stable circular
orbit and shadows cast by black holes, demonstrated that
this method turned out to be rapidly convergent [8], giving
us an opportunity to find a relatively concise analytical
approximation for a black-hole metric.
Here we shall use the above mentioned continued

fraction parametrization and find the analytical form for
the asymptotically flat non-Schwarzschild numerical sol-
ution [4] in Einstein gravity with quadratic in curvature
corrections. The obtained metric satisfies the currently
existing constraints on the post-Newtonian (weak field)
behavior.
The metric functions are represented as ratios of poly-

nomials of the radial coordinate with the coefficients, which
depend on the coupling constant and black-hole radius. The
latter rescales the black-hole mass and radial coordinate
and can be fixed in further analysis. The main result of our
work is the obtaining of an analytical fourth order repre-
sentation of the metric (written down explicitly in the
Appendix), which is accurate in the whole space outside the
black hole. This allows one to use it effectively for various
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studies of black-hole properties and analysis of interactions
between the black hole and surrounding matter.
The paper is organized as follows. Section II briefly

discusses the theory under consideration and shows that
without loss of generality it can be reduced to the Einstein-
Weyl theory when considering spherically symmetric
solutions. Section III relates the deduction of the analytical
expressions for the metric functions with the help of the
continued fraction parametrization. Section IV is devoted to
testing the accuracy of the obtained analytical metric
through calculation of observable characteristics: rotational
frequency on the innermost stable circular orbit and eikonal
quasinormal modes. Finally, in Sec. V we discuss the
obtained results and spotlight the main potentially interest-
ing applications that can be done based on the analytical
form of the metric obtained here.

II. STATIC SOLUTIONS IN THE EINSTEIN
GRAVITY WITH ADDED QUADRATIC TERMS

A. Analytical approximation

One of the coupling constants can be fixed when
choosing the system of units, so we take γ ¼ 1. Then,
the equations of motion take the form

Rμν −
1

2
Rgμν − 4αBμν þ 2βR

�
Rμν −

1

4
Rgμν

�
þ 2βðgμν□R −∇μ∇νRÞ ¼ 0; ð2Þ

where

Bμν ¼
�
∇ρ∇σ þ 1

4
Rρσ

�
Cμρνσ ð3Þ

is the tracefree Bach tensor. It is the only conformally
invariant tensor that is algebraically independent of the
Weyl tensor.
One can write a static metric as follows:

ds24 ¼ −λ2dt2 þ hijdxidxj; ð4Þ

where λ and hij are functions of the spatial coordinates xi.
In [4] it was shown that, taking the trace of the field Eqs. (2)
and integrating the equations of motion over the spatial
domain from the event horizon to infinity, one can find thatZ ffiffiffi

h
p

d3x½DiðλRDiRÞ − λðDiRÞ2 −m2
0λR

2� ¼ 0; ð5Þ

where Di is the covariant derivative with respect to the
spatial 3-metric hij.
By definition, λ vanishes on the event horizon, so that if

DiR goes to zero sufficiently rapidly at spatial infinity, then
the total derivative term can be discarded and any static
black-hole solution of (1) must have a vanishing Ricci
scalar R ¼ 0. The latter means that, without loss of
generality, we can be constrained by Einstein-Weyl gravity
(β ¼ 0). Then, since Bμν is tracefree, the trace of (2)
implies the vanishing Ricci scalar (R ¼ 0). Therefore,
the Schwarzschild solution is also a solution for
Einstein-Weyl gravity.
Summarizing, when considering static solutions in the

most general Einstein gravity with quadratic in curvature
corrections given by (1), one can take γ ¼ 1 and β ¼ 0
without loss of generality.

III. BLACK HOLES IN HIGHER
DERIVATIVE GRAVITY

Here, first, we shall find a general analytical form of the
non-Schwarzschild metric and then expand it in terms of
the small deviation k from the Schwarzschild branch.

A. Analytical approximation

The line element of a black hole is given by

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð6Þ

where the functions hðrÞ and fðrÞ satisfy the Einstein-Weyl
equations of motion, which have the following form:

h00ðrÞ ¼ 4hðrÞ2ð1 − rf0ðrÞ − fðrÞÞ − rhðrÞðrf0ðrÞ þ 4fðrÞÞh0ðrÞ þ r2fðrÞh0ðrÞ2
2r2fðrÞhðrÞ ; ð7Þ

f00ðrÞ ¼ hðrÞ − fðrÞhðrÞ − rfðrÞh0ðrÞ
αfðrÞð2hðrÞ − rh0ðrÞÞ −

hðrÞð3r2f0ðrÞ2 þ 12rfðrÞf0ðrÞ − 4rf0ðrÞ þ 12fðrÞ2 − 8fðrÞÞ
2r2fðrÞðrh0ðrÞ − 2hðrÞÞ

þ fðrÞðr2h0ðrÞ2 − rhðrÞh0ðrÞ − 2hðrÞ2Þ − rhðrÞf0ðrÞðrh0ðrÞ þ 4hðrÞÞ
2r2hðrÞ2 : ð8Þ

The metric functions fðrÞ and hðrÞ can be expanded into the Taylor series near the horizon r0,

hðrÞ ¼ c½ðr − r0Þ þ h2ðr − r0Þ2 þ � � �� fðrÞ ¼ f1ðr − r0Þ þ f2ðr − r0Þ2 þ � � � ; ð9Þ
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where f1 is the shooting parameter, which we choose in
such a way that the solution is asymptotically flat, and c is
the arbitrary scaling factor, which we choose such that t is
the time coordinate of a remote observer, i.e.,

lim
r→∞

hðrÞ ¼ 1:

Substituting (9) into (7) and (8), one can express all the
coefficients in terms of c and f1, which we find using
numerical integration as prescribed in [4].
It is useful to introduce the dimensionless parameter,

which parametrizes the solutions up to the rescaling

p ¼ r0ffiffiffiffiffiffi
2α

p : ð10Þ

Notice that for all p the Schwarzschild metric is the exact
solution of the Einstein-Weyl equations as well, but at some
minimal nonzero pmin, in addition to the Schwarzschild
solution, there appears the non-Schwarzschild branch
(found numerically in [4]) which describes the asymptoti-
cally flat black hole, whose mass is decreasing when p
grows, and vanishing at some pmax. The approximate
maximal and minimal values of p are

pmin ≈ 1054=1203 ≈ 0.876; pmax ≈ 1.14: ð11Þ

Following the parametrization procedure given in [6] we
define the functions A and B through the following
relations:

hðrÞ≡ xAðxÞ; ð12Þ

hðrÞ
fðrÞ≡ BðxÞ2; ð13Þ

where x denotes the dimensionless compact coordinate

x≡ 1 −
r0
r
: ð14Þ

We represent the above two functions as follows:

AðxÞ ¼ 1 − ϵð1 − xÞ þ ða0 − ϵÞð1 − xÞ2 þ ~AðxÞð1 − xÞ3;
BðxÞ ¼ 1þ b0ð1 − xÞ þ ~BðxÞð1 − xÞ2; ð15Þ

where ~AðxÞ and ~BðxÞ are introduced in terms of the
continued fractions, in order to describe the metric near
the event horizon x ¼ 0,

~AðxÞ ¼ a1
1þ a2x

1þ a3x

1þ a4x
1þ���

;

~BðxÞ ¼ b1
1þ b2x

1þ b3x

1þ b4x
1þ���

: ð16Þ

At the event horizon one has: ~Að0Þ ¼ a1; ~Bð0Þ ¼ b1.
We notice that (7) and (8) imply that a0 ¼ b0 ¼ 0, i.e.,

the post-Newtonian parameters for the non-Schwarzschild
solution coincide with those in general relativity. We fix the
asymptotic parameter ϵ as

ϵ ¼ −
�
1 −

2M
r0

�
ð17Þ

using the value of the asymptotic mass which can be found
by numerical fitting of the asymptotical behavior of the
metric functions.
Expanding (12) and (13) near the event horizon we find

the parameters a1; a2; a3;…; b1; b2; b3;… as functions of c
and f1. In their turn, the values of c and f1 can be found
numerically for each value of the parameter p. It appears
that ϵ, a1 and b1 approach zero for

p ≈
1054

1203
;

where the numerical non-Schwarzschild solution coincides
with the Schwarzschild one.
The fitting of numerical data for various values of p and

r0 shows that ϵ, a1 and b1 can be approximated within the
maximal error ≲0.1% by parabolas as follows:

ϵ ≈ ð1054 − 1203pÞ
�

3

1271
þ p
1529

�
; ð18Þ

a1≈ð1054 − 1203pÞ
�

7

1746
−

5p
2421

�
; ð19Þ

b1≈ð1054 − 1203pÞ
�

p
1465

−
2

1585

�
: ð20Þ

These fittings are almost linear in p. Indeed, if one uses
k ¼ 1054–1203p, then the above relations read

ϵ ≈
6857795

2337860877
k

�
1 −

1271

6857795
k

�
þOðk3Þ; ð21Þ

a1 ≈
1242869

565017822
k
�
1þ 970

1242869
k
�
þOðk3Þ; ð22Þ

b1 ≈ −
370840

558679215
k

�
1þ 317

370840
k

�
þOðk3Þ; ð23Þ
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where one can see that the coefficients of the quadratic form
are quite small. Nevertheless, they cannot be neglected if
one aims at 0.1% accuracy.
With the same accuracy we are able to find a2 and b2 as

a2 ≈
6p2

17
þ 5p

6
−
131

102
; ð24Þ

b2 ≈
81p2

242
−
109p
118

−
16

89
: ð25Þ

a3 and a4 diverge at

p ≈
237

223
:

Therefore, we find out that these parameters can be well
approximated as

a3 ≈
9921p2

31
− 385pþ 4857

29

237 − 223p
; ð26Þ

a4 ≈
9p2

14
þ 3149p

42
− 2803

14

237 − 223p
: ð27Þ

In this way, although each of the parameters a3 and a4
diverges at p ≈ 237=223, their ratio is finite and thereby has
finite contribution into the continued fraction (see Fig. 1).
Finally, we observe that b3 and b4 are well approximated by
the straight lines as

b3 ≈ −
2p
57

þ 29

56
; ð28Þ

b4 ≈
13p
95

−
121

98
: ð29Þ

Within the chosen accuracy of a fraction of 0.1% for
the metric functions fðrÞ and hðrÞ (see Fig. 2) we can set
a5 ¼ b5 ¼ 0 in (16) and, substituting the found above
coefficients ϵ, a1, a2, a3, a4, b1, b2, b3, b4 into (15), obtain
the final analytic expressions for the metric functions as the
forth order continued fraction expansion (see the
Appendix).
If one is limited by a rougher approximation of the

second order, all the parameters ϵ, a1, b1, a2, b2 can also be
well approximated by linear (in p) polynomials instead of
the quadratic ones. Such an approximation would have a
much simpler analytical form (which will be discussed in
Subsection C), leading to the larger maximal error of about
a few percentage points.

0.90 0.95 1.00 1.05 1.10

1.2

1.1

1.0

0.9

0.8

0.7

0.6

a3 a4

p

FIG. 1. Fit of the numerically found parameters. The ratio
a3=a4 and the corresponding fit, which remains finite for any
p ≥ 1054

1203
.
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FIG. 2. Comparison of numerical and analytical approximations for the metric functions: r0 ¼ 1, α ¼ 0.5 (p ¼ 1). Left panel: fðrÞ
(upper) and, rescaled, hðrÞ (lower). The numerical approximation (blue) fails at sufficiently large distance while our analytical
approximation (red) has the correct behavior both near and far from the event horizon. Right panel: The difference between analytical
and numerical approximations for fðrÞ (black, upper) and hðrÞ (green, lower). The largest difference is around the innermost stable
circular orbit of a massive particle and photon circular orbit, where it still remains smaller than 0.1%.
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B. Expansion of the forth order approximation
near the Schwarzschild solution

When one is interested in relatively small deviations
from the Schwarzschild geometry, a more concise expres-
sion can be obtained by using the expansion in terms of k.
In order to have a positive asymptotic mass, the values
of k can vary from 0 until approximately −321.727. For

example, the final formula for hðrÞ expanded up to the first
order in k then reads

hðrÞ ¼
�
1 −

r0
r

��
1 − k

r0
r
h1ðrÞ
h2ðrÞ

þOðk2Þ
�
; ð30Þ

where

h1ðrÞ ¼ 7094296364854698294656777815r3 þ 2700140790021572890363934045r2r0

þ 32852984866789222219083981378rr20 − 4194480693404458083513273360r30; ð31Þ

h2ðrÞ ¼ 61001803863561rð39646131244569649r2 − 24556525364789942rr0 þ 156809140779977329r20Þ: ð32Þ

This formula is considerably shorter than the full formula for hðrÞ, which might be useful when one numerically models
various process around the black hole. The ratio of both metric functions is

fðrÞ
hðrÞ ¼ 1þ 37793605455056kr20ð50038777rþ 84360383r0Þ

278643rð6266529735540821295r2 − 3742896005107026923rr0 þ 11207698915983181988r20Þ
þOðk2Þ:

ð33Þ

When jkj⪅100, first order expansions in k for hðrÞ and
fðrÞ stay within a few tenths of one percent from the full
analytical metric, thereby keeping the same order of the
general error. The k-expanded metric is also included into
the MATHEMATICA® notebook we share.

C. Second order approximation: More compact
but robust analytical metric

In case one is interested in a much more robust but
compact expression for the metric, one can be limited by
the second order in the expansion (16), i.e., take
a3 ¼ b3 ¼ 0. Then, it is sufficient to consider a linear fit
for ϵ, a1, a2, b1, b2 as follows:

ϵ ≈
1054 − 1203p

326
; ð34Þ

a1 ≈
1054 − 1203p

556
; ð35Þ

a2 ≈ −
18 − 17p

11
; ð36Þ

b1 ≈ −
1054 − 1203p

1881
; ð37Þ

b2 ≈ −
2þ p
4

: ð38Þ

Thus, we obtain an even simpler (than in the two
previous subsections) form for the metric functions AðrÞ
and BðrÞ in (A1),

AðrÞ ¼ 1 −
ð1054 − 1203pÞr20

2r2

×

�
rþ r0
163r0

þ 11r0
278ð7r − 18r0 − 17pðr − r0ÞÞ

�
;

ð39Þ

BðrÞ ¼ 1 −
4ð1054 − 1203pÞr20

1881r2ð2ðrþ r0Þ − pðr − r0ÞÞ
: ð40Þ

Yet, the obtained metric is considerably less accurate: for
p < 0.97 the relative error stays within a fraction of one
percent, but for near extremal values of p it may reach a few
percentage points. The accuracy of the approximation for a
given value of p of the second and forth order approxi-
mation can be learned from the MATHEMATICA notebook we
share with readers.

IV. TESTING THE ACCURACY OF THE
APPROXIMATION

The metric is not a gauge-invariant characteristic and,
strictly speaking, comparing the metric functions has no
direct physical interpretation. Therefore, the best way to
test the accuracy of the analytical metric obtained in the
previous section is to calculate basic observable quantities
for the analytical metric and compare them with the
accurate ones found for the numerical metric. Here we
shall consider two kinds of such observable characteristics:
the frequency of a massive particle on the innermost stable
circular orbit (ISCO) and frequencies of the quasinormal
modes in the eikonal (short wavelength) regime.
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A. Innermost stable circular orbit

First, we shall compute the radius of the smallest circular
orbit of a massive test particle rotating around the black
hole. The circular movement of a massive particle is
described by the following potential:

VmðrÞ ¼
E2

hðrÞ −
L2

r2
− 1;

where E and L are, respectively, the energy and momentum
per unit mass.
The innermost stable circular orbit corresponds to

VmðrÞ ¼ V 0
mðrÞ ¼ V 00

mðrÞ ¼ 0;

which is reduced to the following equation for the radial
coordinate of the orbit:

rhðrÞh00ðrÞ − 2rh0ðrÞ2 þ 3hðrÞh0ðrÞ ¼ 0:

We solve the above equation numerically with hðrÞ given in
the Appendix in the analytical from and in [4] numerically.
The corresponding orbital frequencies are given

Ω ¼
ffiffiffiffiffiffiffiffiffiffi
h0ðrÞ
2r

r
: ð41Þ

From Fig. 3 we see that the frequency of ISCO decreases
quite a few times as the parameter p grows. This means that
the ISCO moves outward the black hole at a great extent.
The relative error stays within a few percentage points
for the parametric region under consideration, being much
less for the near Schwarzschild and near extremal (almost
massless) cases. At the same time, for the intermediate
values of p, when the error of the analytical approximation
is maximal (see Fig. 3), the effect of the deviation from the

Schwarzschild metric on the orbital frequency is already
much larger than the error. This means that the forth order
approximation developed here is adequate.

B. Analytical formulas for the eikonal
quasinormal frequencies

Here we shall consider the proper oscillation frequen-
cies, called quasinormal modes [9], of a test field in the
background of the black hole in the high frequency (eikonal
or high multipole number) regime. The boundary condi-
tions for the quasinormal modes are a purely incoming
wave on the event horizon and a purely outgoing wave at
infinity. In the geometrical optic (eikonal) regime pertur-
bations of test fields of any spin are dominated by the same
centrifugal-like part of the effective potential. Therefore, it
is sufficient to consider here the derivations only for the test
massless scalar field, while the resultant eikonal formulas
for the test fields of other spins will be the same.
Perturbations of a test scalar field obey the general
relativistic Klein-Gordon equation

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0; ð42Þ

implying that

Φðt; r; θ;ϕÞ ¼ e−iωtYlðθ;ϕÞΨðrÞ=r;

where Ylðθ;ϕÞ are spherical harmonics, the Klein-Gordon
equation can be reduced to the following form:

d2Ψ
dr2�

þ ðω2 − Vðr�ÞÞΨ ¼ 0: ð43Þ

Here ω is the frequency; the tortoise coordinate r� is
defined as follows:

dr� ¼
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞhðrÞp ;

and the effective potential for the large value of the
multipole number l takes the form

VðrÞ ¼
�
lþ 1

2

�
2
�
hðrÞ
r2

þO
�
1

l2

��
: ð44Þ

From (30) we find that the effective potential (44) has the
maximum at

rm ¼ 3r0
2

ð1þ 0.000393kÞ þOðk2;l−2Þ:

As k is negative, then the peak of the effective potential is
closer to the black-hole horizon for the non-Schwarzschild
solution than for the Schwarzschild one.

0.90 0.95 1.00 1.05 1.10
p

0.2

0.4

0.6

0.8

1.0

3 6 r0

FIG. 3. ISCO frequency Ω normalized by the Schwarzschild
value: red (upper) is for the analytical metric and blue (lower) is
for the numerical one.
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At high l, once the effective potential has the form of the
potential barrier, falling off at the event horizon and spacial
infinity, the WKB formula found in [10] (for improvements
and extensions of this formula, see [11–14]) can be applied
for finding quasinormal modes,

ω2 ¼ VðrmÞ − i

�
nþ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2

d2VðrmÞ
dr2�

s
; ð45Þ

which depends on the value and the second derivative of the
potential in its maximum rm. Using the above eikonal
formula for the QNMs we find that

ω ¼ 2

3
ffiffiffi
3

p
r0

��
lþ 1

2

�
ð1 − 0.001308kÞ

− i

�
nþ 1

2

�
ð1 − 0.002743kÞ

�
þOðk2;l−1Þ; ð46Þ

implying higher real (photon circular orbit) frequency and
faster decay of the oscillations for the non-Schwarzschild
branch. When k ¼ 0 the above formula is reduced to its
Schwarzschild analogue.
We compare the above formulas with the precise values

for the real and imaginary parts of the frequencies, obtained
by substituting the numerical solutions into the eikonal
WKB formula. From Fig. 4 we see that the first order in the
k formula (46) provides quite an accurate result for the real
(fractions of a percent) and imaginary (a few percentage
points) parts of the eikonal frequencies. Notice that the
obtained analytical form in terms of the deviation from the
Schwarzschild solution k allowed us to find easily
the concise analytical non-Schwarzschild generalization
of the well-known eikonal formulas for quasinormal modes
of the Schwarzschild black hole. Usually the eikonal
quasinormal modes of a test scalar field obtained here
determine the parameters of the circular null geodesic: the

real and imaginary parts of the quasinormal mode are
multiples of the frequency and instability timescale of the
circular null geodesics, respectively. However, quasinormal
modes of nontest, e.g., gravitational, fields may not obey
this rule [15].

V. DISCUSSION

In the present paper we have obtained the approximate
analytic expression for the black-hole solution of the
non-Schwarzschild metric in the most general Einstein
gravity with quadratic in curvature corrections. The
obtained analytical metric represents an asymptotically
flat black hole which has the same post-Newtonian behav-
ior as in general relativity, but is essentially different in
the strong field regime. The metric is expressed in terms
of event horizon radius r0 and the dimensionless para-
meter p ¼ r0=

ffiffiffiffiffiffi
2α

p
, where α is the coupling constant. The

minimal value of p ≈ 0.876 corresponds to the merger
of the Schwarzschild and non-Schwarzschild solutions,
while at p ≈ 1.14 the black-hole mass approaches zero
(ϵ ¼ −1).
As the metric is written in terms of the black-hole

parameter and coupling constant and is accurate every-
where outside the event horizon, it can be used in the study
of the basic properties of the black hole and the description
of various phenomena in its vicinity in the same way as the
exact analytical solution. Our main future aim is to
generalize the obtained analytical metric to the case of
rotating black holes [16]. At the same time a number of
other appealing problems associated with the obtained
metric could be solved:
(a) Perturbations and analysis of stability of the non-

Schwarzschild black hole.
(b) Quasinormal modes of gravitational and test fields in

its vicinity (this was partially done for the numerical
solution in [17], and comparison between analytical
and numerical metrics would be appealing). As higher
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FIG. 4. Relative error (in percentage) of the first order in k ¼ 1054–1203p approximated eikonal formula (46) for the real (left panel)
and imaginary (right panel) parts of the eikonal formula for the QNMs.
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curvature corrections frequently lead to a new branch
of nonperturbative (in coupling constant) modes [18],
it is interesting to check whether these phenomena
take place for the quadratic gravity considered here.

(c) Analysis of massless and massive particles’ motion,
binding energy, innermost stable circular orbits, sta-
bility of orbits.

(d) Analysis of the accretion disks and the corresponding
radiation in the electromagnetic spectra.

(e) Consideration of tidal and external magnetic fields in
the vicinity of a black hole, etc.

(f) Hawking radiation in the semiclassical and beyond
semiclassical regimes.

(g) Detailed study of black-hole thermodynamics.
The analytical approximation for the metric obtained

here (given in the Appendix) has two evident advantages
over the numerical solution. First, it allows one to solve all
the above enumerated problems in a much more economic
and elegant way. Second, the analytical metric allows
applications of a greater variety of methods for its analysis.
For example, in order to get the full knowledge of the
characteristic quasinormal spectrum of a black hole, one
has to use the Leaver method [19], which simply cannot be
applied to the numerical interpolation function and requires
the analytically written metric. Applications of other
methods, for example (used here for illustration), the
WKB method [10,11] or the time-domain integration
[20], are considerably constrained and give information
only about the lowest modes.
In addition, we found the eikonal quasinormal frequen-

cies of test fields and the frequency and positions of ISCO
for the non-Schwarzschild black hole solution in the higher
derivative gravity. Comparison of the data obtained for the
analytical and numerical metrics allowed us to test the
accuracy of our approximation. It is shown that the non-
Schwarzschild black hole is characterized by a much
further position of ISCO and much slower rotational
frequency of a massive particle. The eikonal quasinormal
modes of the non-Schwarzschild black hole have smaller
real oscillation frequencies and damping rates.

Here we used the expansion up to the forth order and
achieved accuracy in the metric functions with the maximal
error of fractions of a percent. Once it is necessary,
expansion to higher orders will produce much more
accurate representations of the metric.
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APPENDIX: ANALYTICAL FORM
OF THE METRIC FUNCTIONS

Here we provide the obtained analytical form of the
metric. In the attachment to this article we share with
readers the MATHEMATICA notebook, where the metric
functions are explicitly written down.
The black-hole metric can be written in the form

ds2 ¼ −
�
1 −

r0
r

�
AðrÞdt2 þ BðrÞ2dr2

ð1 − r0
r ÞAðrÞ

þ r2ðdθ2 þ sin2θdϕ2Þ: ðA1Þ

Here we present the metric functions AðrÞ and BðrÞ in
terms of the parameters b and r0. Notice that one can get the
black-hole radius r0 ¼ 1 (which leads to the redefinition of
the black-hole mass) and express everything in terms of r0.

AðrÞ ¼ ½152124199161ð873828p4 − 199143783p3 þ 806771764p2 − 1202612078pþ 604749333Þr4
þ 78279ð1336094371764p6 − 300842119184823p5 þ 393815823540843p4 þ 2680050514097926p3

− 9501392159249689p2 þ 10978748485369369p − 4249747766121792Þr3r0
− 70372821ð1486200636p6 þ 180905642811p5 þ 417682197141p4 − 1208134566031p3

− 324990706209p2 þ 3382539200269p − 2557857695019Þr2r20 − ð104588131327314156p6

− 23549620247668759617p5 − 435688050031083222417p4 þ 2389090517292988952355p3

− 3731827099716921879958p2 þ 2186684376605688462974p − 389142952738481370396Þrr30
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þ 31ð3373810687977876p6 þ 410672271594465801p5 − 14105000476530678231p4

þ 51431640078486304191p3 − 71532183052581307042p2

þ 43250367615320791700p − 9476049523901501640Þr40�
=½152124199161r2ðð873828p4 − 199143783p3 þ 806771764p2 − 1202612078pþ 604749333Þr2
− 2ð873828p4 − 47583171p3 þ 386036980p2 − 678598463pþ 341153481Þrr0
þ 899ð972p4 þ 115659p3 − 38596p2 − 1127284pþ 1101579Þr20Þ�; ðA2Þ

BðrÞ ¼ ½464405ð3251230164p3 − 14548777134p2 þ 20865434326pþ 23094914865Þr3
− 464405ð6502460328p3 − 52856543928p2 þ 100077612184p − 32132674695Þr2r0
− ð1244571650887908p3 þ 17950319416564777p2 − 53210739821255918p

þ 5097428297648940Þrr20 þ 635371ð4335198168p3 − 42352710803p2 þ 90235778452p − 49464019740Þr30�
=½464405rðð3251230164p3 − 14548777134p2 þ 20865434326pþ 23094914865Þr2
− ð6502460328p3 − 52856543928p2 þ 100077612184p − 32132674695Þrr0
þ 6ð541871694p3 − 6384627799p2 þ 13202029643pþ 2626009760Þr20Þ�: ðA3Þ

Here, the minimal value of p ≈ 1054=1203 ≈ 0.876 corresponds to the merger of the Schwarzschild and non-
Schwarzschild solutions and at the maximal value of p ≈ 1.14 the black-hole mass approaches zero (ϵ ¼ −1).
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