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We construct an analytical approximation for the numerical black hole metric of P. Kanti et al.
[Phys. Rev. D 54, 5049 (1996)] in the four-dimensional Einstein-dilaton-Gauss-Bonnet (EdGB) theory.
The continued fraction expansion in terms of a compactified radial coordinate, used here, converges slowly
when the dilaton coupling approaches its extremal values, but for a black hole far from the extremal state,
the analytical formula has a maximal relative error of a fraction of one percent already within the third order
of the continued fraction expansion. The suggested analytical representation of the numerical black hole
metric is relatively compact and a good approximation in the whole space outside the black hole event
horizon. Therefore, it can serve in the same way as an exact solution when analyzing particles’ motion,
perturbations, quasinormal modes, Hawking radiation, accreting disks, and many other problems in the
vicinity of a black hole. In addition, we construct the approximate analytical expression for the dilaton
field.
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I. INTRODUCTION

Observations of black holes through the gravitational
waves they emit or by electromagnetic spectra of the
surrounding matter are intensively developing in the past
few years [1,2]. Nevertheless, the current observational
data, although compatible with the Einsteinian gravity,
leaves a large window for alternative theories [3,4]. The
latter appear as attempts to solve a number of principal
theoretical problems, such as construction of a consistent
quantum gravity, the nature of singularities, the dark
energy/dark matter problem, the hierarchy problem, etc.
One of the most interesting and motivated alternative

theories has the form of Einstein gravity with an added
second order in curvature (Gauss-Bonnet) term, which is
coupled to a scalar field, called dilaton. This theory (thus,
Einstein-dilaton-Gauss-Bonnet) comes from the low-
energy limit of string theory and, thereby, represents
quantum corrections to Einstein gravity inspired by the
string theory. The black hole solution for this theory is
unknown in an analytical form; however, the numerical
solution was found by P. Kanti and co-workers [5] for a
static spherically symmetric case. A numerical solution for
the rotating black hole has been recently obtained in [6],
while perturbative solutions in terms of the rotation
parameter were developed in [7,8].

In addition to black holes, neutron star models in EdGB
gravity have been also constructed both for the static and
the slowly rotating case [9]. Their axial oscillations have
been studied in [10]. Rapidly rotating neutron star models
were also constructed inEdGBgravity [11,12]. Their I-Love-
Q relations were derived and it was found that the deviations
from pure general relativity are relatively small.
Recently, a number of potentially observable properties

of the Einstein-dilaton-Gauss-Bonnet black holes have
been considered. Reflection spectrum of accreting black
holes was analyzed in [13] and its quasiperiod oscillations
in [14]. The shadows cast by the black hole were consid-
ered in [15,16], while the gravitational quasinormal modes
were calculated in [17–19]. At the same time, for a number
of problems related to simulations of evolution of matter
and radiation in the vicinity of a black hole, thermody-
namics, Hawking radiation etc., the analytical expression
for the metric, even if approximate, would be preferable.
An approach to finding such an analytical approximation

is based on the generic parametrization for black hole-space
times formulated in [20] for spherically symmetric and in
[21] for axially symmetric black holes for arbitrary metric
theories of gravity. For spherical symmetry, this para-
metrization is based on the continued-fraction expansion
of the metric coefficients in terms of a compactified radial
coordinate [20], what provides the superior convergence of
the expansion to an exact solution or accurate numerical
data for the metric. The expansion is designed in such a
way that the coefficients in the continued fraction are fixed
by behavior of a metric near the event horizon, while the
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prefactors are introduced to match the asymptotic behavior
at infinity. This way, the accurate analytical expression can
be obtained for the whole space outside the event horizon,
and not only near the black hole or far from it, as it usually
happened in various approaches which deform/perturb the
Schwarzschild and Kerr spacetimes by a set of multipoles.
In this way, the analytical approximation for the numerical
non-Schwarzschild asymptotically flat black hole solution
was obtained for the Einstein-Weyl theory [22]. There, the
expansion of the fourth order provided the maximal relative
error of about a fraction of one percent.
In the present work, we shall construct an analytical

approximation for the numerical solution obtained by
P. Kanti and co-workers [5] for the four-dimensional
spherically symmetric and asymptotically flat black hole
in the Einstein-dilaton-Gauss-Bonnet theory of gravity. We
shall use the continued fraction parametrization and show
that in order to meet the maximal error of a few tenths of a
percent for the nonextremal black hole, it is sufficient to
take first three orders of the expansion. For near extremal
values of the dilaton coupling, which is still compatible
with an asymptotically flat metric and existence of the
horizon, the continued fraction converges slowly, so that
more than three orders must be taken to find a good
approximation. The obtained metric has relatively compact
form and can be effectively used for further simulations
of accreting matter in its vicinity, analysis of Hawking
radiation, quasinormal modes, etc.
The paper is organized as follows. Section II gives the

essentials of the Einstein-dilaton-Gauss-Bonnet theory and
the numerical solution obtained in [5]. Section III relates
the continued fraction parametrization for this numerical
solution and derivation of the analytical formula for the
metric coefficients. Section IV discusses the accuracy of the
obtained analytical metric through the direct comparison of
metric coefficients obtained numerically and analytically
and by consideration of characteristics of the orbital photon
motion.

II. BLACK HOLES IN THE EINSTEIN-DILATON-
GAUSS-BONNET THEORY

The Lagrangian for dilaton gravity with a Gauss Bonnet
term reads

L ¼ 1

2
R −

1

4
∂μϕ∂μϕ

þ α0

8g2
eϕðRμνρσRμνρσ − 4RμνRμν þ R2Þ; ð1Þ

where α0 is the Regge slope and g is the gauge coupling
constant.
Following [5], a shifting of the dilaton field function

ϕ → ϕ − lnðα0=g2Þ will lead to α0=g2 ¼ 1. Furthermore, a
spherically symmetric spacetime may be chosen

ds2 ¼ −eΓðrÞdt2 þ eΛðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ: ð2Þ

In this metric, the functions ϕðrÞ, ΓðrÞ, and ΛðrÞ are
defined as follows:

ϕ00ðrÞ ¼ −
d1ðr;Λ;Γ0;ϕ;ϕ0Þ
dðr;Λ;Γ0;ϕ;ϕ0Þ ; ð3Þ

Γ00ðrÞ ¼ −
d2ðr;Λ;Γ0;ϕ;ϕ0Þ
dðr;Λ;Γ0;ϕ;ϕ0Þ ; ð4Þ

eΛðrÞ ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 6ϕ0eϕΓ0

q
−Q

�
; ð5Þ

where

QðrÞ≡ ϕ02r2

4
− 1 −

�
rþ ϕ0eϕ

2

�
Γ0;

while for the analytic description of the quite cumbersome
expressions d, d1, and d2, the interested reader may check
the appendix of [5]. It is noticeable that Eq. (4) is of first
order for Γ0ðrÞ diverging at the event horizon r0 as

Γ0ðrÞ ¼ 1

r − r0
ð1þOðr − r0ÞÞ:

Therefore, a new function ΨðrÞ can be defined as

ΨðrÞ≡ Γ0ðrÞðr − r0Þ;

while Eqs. (3), (4), and (5) can be solved numerically.
Actually, the initial conditions will be specified by requir-
ing regularity of the functions ΨðrÞ and ϕðrÞ at the event
horizon

ϕðr0Þ ¼ ϕ0;

ϕ0ðr0Þ ¼ r0e−ϕ0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6

e2ϕ0

r40

s
− 1

!
;

Ψðr0Þ ¼ 1; ð6Þ

where r0 and ϕ0 are arbitrary parameters. The above
equations suggest that the value of the dilaton on the event
horizon ϕ0 must be always smaller than a particular value in
order to provide existence of the event horizon of a given
radius:

eϕ0 <
r20ffiffiffi
6

p : ð7Þ

For each numerical solution (for a fixed set of all the
parameters), the auxiliary function

KOKKOTAS, KONOPLYA, and ZHIDENKO PHYSICAL REVIEW D 96, 064004 (2017)

064004-2



SðrÞ ¼
Z

r

0

�
ΨðrÞ − 1

r − r0
þ 1

r

�
dr;

is also calculated numerically. Actually, for large r, the
function S gets the asymptotic form

SðrÞ ¼ S∞ þ r0 − 2M
r

þO
�
1

r2

�
: ð8Þ

This allows one to read off the asymptotic mass M. Then,
the metric functions ΛðrÞ can be derived from Eq. (5),
while ΓðrÞ will be extracted from the following relation:

eΓðrÞ ¼
�
1 −

r0
r

�
eSðrÞ−S∞ : ð9Þ

In a similar manner, one can read off the asymptotic dilaton
parameters

ϕðrÞ ¼ ϕ∞ þD
r
þO

�
1

r2

�
; ð10Þ

where ϕ∞ is the asymptotic value of the dilaton and D its
charge. In order to restore the asymptotically vanishing
dilaton, one should perform the inverse shifting through
consideration of the function ϕðrÞ − ϕ∞. Then, one gets

α0

g2
¼ eϕ∞ :

This asymptotic parameter allows one to calculate also ζ
defined in [7]

ζ ≡ α02

16g4M4
¼ e2ϕ∞

ð2MÞ4 : ð11Þ

In order to simplify the analysis, we fix r0 ¼ 1 and
measure the radial coordinate in the units of the event

horizon radius, so that the family of the EdGB black hole
solutions can be parametrized via the following dimension-
less parameter

p≡ 6e2ϕ0 ¼ 6α02

g4r40
e2ðϕ0−ϕ∞Þ; 0 ≤ p < 1 ð12Þ

so that p ¼ 0 corresponds to the Schwarzschild black hole.
Owing to the above dilaton shifting, the shifted dilaton
function goes to minus infinity when p → 0. This choice
does not cause any problems for our purposes because eϕðrÞ
remains finite.
It is more convenient to parametrize the family of the

EdGB black holes using p instead of ζ, which is not a
monotonous function of p (see the right plot of Fig. 1). The
latter leads to a branching of the solutions for large ζ, i.e., to
the existence of two black holes of different size, corre-
sponding to the same parameters M and ζ [23]. It has been
recently shown in [19] that the additional branch, which in
our notations corresponds to the values of p≳ 0.97, is
linearly unstable.
Using Eqs. (3), (4), and (5), one can expand eϕðrÞ and

eΛðrÞ near the horizon and calculate all the series coef-
ficients in terms of the parameter p defined in Eq. (12).
From (9), we find the expansion for eΓðrÞ, which also
depends on M and S∞, calculated numerically for each
value of p.

III. ANALYTICAL APPROXIMATION

Here, it is advantageous to use the dimensionless
compact coordinate x

x≡ 1 −
r0
r

ð13Þ

so that x ¼ 0 corresponds to the event horizon and x ¼ 1 to
infinity. Following the parametrization procedure given in
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FIG. 1. Fit (solid line) of the numerically found ϵ (left) and ζ (right) as functions of the parameter p. Notice that ζðpÞ has a maximum
at p ≈ 0.97.
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[20], we define the new functions AðxÞ and BðxÞ through
the following relations:

eΓ ≡ xAðxÞ; ð14Þ

e
ΓþΛ
2 ≡ BðxÞ: ð15Þ

We represent the above two functions as follows:

AðxÞ ¼ 1 − ϵð1 − xÞ þ ða0 − ϵÞð1 − xÞ2 þ ~AðxÞð1 − xÞ3;
BðxÞ ¼ 1þ b0ð1 − xÞ þ ~BðxÞð1 − xÞ2; ð16Þ

where ~AðxÞ and ~BðxÞ are given in terms of the continued
fractions in order to describe the metric near the event
horizon x ¼ 0:

~AðxÞ ¼ a1

1þ a2x

1þ a3x

1þ a4x
1þ…

;

~BðxÞ ¼ b1

1þ b2x

1þ b3x

1þ b4x
1þ…

: ð17Þ

The coefficients a0, b0, and ϵ are introduced to match the
post-Newtonian asymptotic at infinity. Thus,

a0 ¼
ðβ − γÞð1þ ϵÞ2

2
; ð18Þ

b0 ¼
ðγ − 1Þð1þ ϵÞ2

2
; ð19Þ

where β and γ are the corresponding parameterized post-
Newtonian (PPN) parameters [24]. The asymptotical
behavior of the metric functions analyzed in [5] implies
that β ¼ γ ¼ 1; i.e., the post-Newtonian parameters for the
static black hole solution coincide with those in general
relativity, leading to a0 ¼ b0 ¼ 0. This is compatible with
the current observational constrains. The asymptotic coef-
ficient ϵ defines the relation between the position of the
event horizon and asymptotic mass:

ϵ ¼ −
�
1 −

2M
r0

�
: ð20Þ

Here, we certainly use the numerically found value of the
massM in calculations. Notice that ϵ can be approximately
expressed in terms of the dimensionless parameter p
defined in (12). The accuracy is excellent as it can be
seen in Fig. 1 (left), while to leading order one can get

ϵ ≈
p
11

−
p2

131
: ð21Þ

Once the radius of the event horizon is fixed, all
quantities can be expressed as functions of the independent
dimensionless parameter p. Thus, the parameter ζ defined
in Eq. (11) can be also approximately expressed as a
function of p (see right panel of Fig. 1)

ζ ≈
p

1þ 4p

�
3

22
þ 2p

29
−
p2

18

�
: ð22Þ

This approximate relation can be used to compare the black
holes solutions with those in [7] which are expressed in
terms of ζ. For instance, we easily prove that

ϵ ≈
p
11

þOðp2Þ ¼ 2

3
ζ þOðζ2Þ; ð23Þ

which is close to the accurate result [21]

ϵ ¼ 49

80
ζ þOðζ2Þ:

Expanding (14) and (15) near the event horizon (x ¼ 0),
we calculate numerically the coefficients a1; a2; a3;…,
b1; b2; b3;… for each value of p. Then, assembling data
for each p one can find an approximation for the coef-
ficients ai and bi as functions of p by fitting this numerical
data. The optimal fitting will certainly depend on the order
of our approximation, that is, on the order at which one
truncates the continued fraction. At the third order of
expansion, we find that the coefficients a1 and b1 are best
fit by the rational functions as follows:

a1 ¼
5p

ð1 − pÞð5 − 3pÞ
�
p2

40
þ p
19

−
1

13

�
; ð24Þ

b1 ¼ −
13p

ð1 − pÞð13 − 9pÞ
�
p2

8
−
5p
13

þ 7

27

�
: ð25Þ

The coefficient a2 crosses zero at p ≈ 3=11. We fit,
therefore, a2 as follows

a2 ¼
3 − 11p

ð1 − pÞð2 − pÞ
�
15p
19

−
11

13

�
: ð26Þ

Unfortunately, in the parametric region where the abso-
lute value of a2 is small, the other coefficients are
determined with significantly lower accuracy. That is
why we find approximately

b2 ¼ −
1

ð1 − pÞð5 − 4pÞ
�
19p2

12
þ 248p

19
−
151

10

�
; ð27Þ
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a3 ¼
1

1 − p

�
22

9
−
5p
7

�
; ð28Þ

and truncate the higher coefficients, b3 ¼ 0, a4 ¼ 0.
This approximates the metric functions for p≲ 0.97 within
a few tenths of a percent (see Fig. 2). Unfortunately, the
absolute values of the coefficients grow as p → 1 and for
near-extreme values of p, the continued fractions (17)
converge slower.

A. Analytical expressions for the metric functions

The metric functions, obtained via the third-order
expansion described earlier, get the following form:

eΓðrÞ ≈
�
1 −

r0
r

�
N 1

D1

and eðΓðrÞþΛðrÞÞ=2 ≈
N 2

D2

; ð29Þ

where

N 1 ¼ 30888rr0ðrþ r0Þð927r − 1060r0Þp6 − 3r0ð145693952r3 − 24067680r2r0 − 156948260rr20 − 5338905r30Þp5

þ ð3750946056r4 − 3062334104r3r0 − 325162656r2r20 − 1478746401rr30 − 53126788r40Þp4

− 2ð6293682780r4 − 7334803204r3r0 − 306613944r2r20 − 934415049rr30 þ 61245382r40Þp3

þ 8ð1350407212r4 − 2160940683r3r0 − 64904931r2r20 − 139116640rr30 þ 62251200r40ÞÞp2

þ 1048ð1846581r4 þ 3798205r3r0 þ 155610r2r20 þ 270655rr30 − 321860r40Þp − 7666120r3ð509r − 275r0Þ;
D1 ¼ 11528ð1 − pÞð5 − 3pÞr3½117ð927r − 1060r0Þp2 − ð74741r − 121424r0Þp − 67697rþ 36575r0�;
N 2 ¼ 133380r20p

4 − 7695ð58r2 þ 38rr0 þ 75r20Þp3 þ 10ð471735r2 − 198819rr0 þ 78964r20Þp2

− 4ð2398707r2 − 1567647rr0 þ 86450r20Þpþ 26676rð201r − 151r0Þ;
D2 ¼ 18ð13 − 9pÞr½95ð29rþ 19r0Þp2 − 60ð419r − 248r0Þpþ 6ð3819r − 2869r0Þ�:

B. Analytical expression for the dilaton field

In order to find an analytical approximation for the
dilaton field, we employ a similar approach, i.e., we define
a new function

eϕ−ϕ∞ ¼ FðxÞ; ð30Þ

which has the following form:

FðxÞ ¼ 1þ f0ð1 − xÞ þ ~FðxÞð1 − xÞ2; ð31Þ
where f0 ¼ D=r0 is the asymptotic coefficient and

~FðxÞ ¼ f1
1þ f2x

1þ f3x
1þ…

: ð32Þ

1.5 2.0 2.5 3.0 3.5 4.0
r r0

0.001

0.000
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0.004

0.005

r r p

0.2 0.4 0.6 0.8
p

0.08

0.06

0.04

0.02

0.00

0.02

p

S

FIG. 2. Left: difference between the numerical value of the function Γ and its analytical approximation ΓP for p ¼ 0.8. The maximum
deviation lies near the circular photon orbit. The relative error for the metric coefficient is ðeΓðrÞ − eΓpðrÞÞ=eΓðrÞ ≈ ΓðrÞ − ΓpðrÞ. Right:
the difference between the numerical value of the value of the photon-orbit frequencyΩ and the frequency calculated using the analytical
approximation for the metric functions Ωp divided by the difference between the frequency and its Schwarzschild value ΩS ¼ 2

3
ffiffi
3

p
r0
.

For 0 < p < 0.97, the error is smaller by more than one order than the effect.
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Expanding (30) near the event horizon (x ¼ 0), we calcu-
late numerically the coefficients f1, f2, f3, … The
following fits can be found for the coefficients:

f0 ¼
p

1þ 35p

�
48

11
þ 222p

19
− 5p2

�
; ð33Þ

f1 ¼
p

1þ 25p

�
57

17
þ 89p

6

�
; ð34Þ

f2 ¼
1

1 − p

�
8

15
þ 13p

8
−
19p2

9

�
; ð35Þ

while the higher coefficients f3 ¼ 0 were truncated.
The previous analysis leads to the following analytical

approximation for the dilaton:

eϕðrÞ−ϕ∞ ≈
N 3

D3

; ð36Þ

where

N 3 ¼ −337535000ðr − r0Þr0p6 þ 88825ð9853r − 11653r0Þr0p5

þ 85ð27797000r2 − 23776241rr0 þ 9993021r20Þp4 − 15ð35832005r2 − 67254703rr0 þ 3991594r20Þp3

− 68ð25902415r2 − 7037569rr0 þ 1078359r20Þp2 − 171ð692835r2 − 201467rr0 þ 7672r20Þp
þ 85272ð23rþ 8r0Þr;

D3 ¼ 3553ð25pþ 1Þð35pþ 1Þr½760ðr − r0Þp2 − 45ð5r − 13r0Þp − 8ð69r − 24r0Þ�:

In the Supplemental Material [25], we share with readers
theMathematica notebook in which the obtained analytical
formulas for the metric coefficients and the dilaton field are
written down.

IV. ACCURACY OF THE APPROXIMATION:
CIRCULAR PHOTON ORBITS

Now we would like to understand how well the found
analytical metric (29) approximates the accurate numerical
solution of [5]. The immediate comparison of the metric
coefficients for numerical and analytical approaches show
(see the left plot on Fig. 2) that the deviation from the
numerical data is never higher than a few tenths of one
percent. It is interesting that the maximal error occurs in the
region where the innermost stable circular orbit, photon
orbits, peak of the effective potential for quasinormal
modes occur. In other words, the error is maximal in the
most important region where all scattering processes occur.
Therefore, we will pay special attention to this region and
suggest another test of accuracy through comparison of
orbit frequencies of photons calculated in the background
of numerically derived metric and its analytical approxi-
mation (29) derived in this work.
Thus, we shall study the circular photon orbits in the

backgrounds of the numerical version of the metric and in
its analytical approximation derived here. Owing to spheri-
cal symmetry, we can assume that the particle moves in the
equatorial plane and take θ ¼ π=2. We shall associate rc
with the radial coordinate of the particle in its geodesic
motion along a circular orbit. We shall further estimate the
maximal difference between the accurate and the approxi-
mate metrics. The coordinate rc satisfies the following
equations:

ds2 ¼ −eΓðrcÞdt2 þ r2cdφ2 ¼ 0;

d2rc ¼
�
−
1

2
Γ0ðrcÞeΓðrcÞdt2 þ rcdφ2

�
e−ΛðrcÞ ¼ 0;

where the first equation is fulfilled for null geodesics, while
the second one is for circular orbits. The combination of
the two equations leads to the following equation for rc:

rcΓ0ðrcÞ ¼ 2; ð37Þ
which can be solved numerically.
The corresponding orbital frequency Ω, which is an

observable quantity, is given by

Ω ¼ dφ
dt

����
r¼rc

¼ 1

rc
eΓðrcÞ=2: ð38Þ

Let us point out that the limiting value of the dilaton
parameter (7) allows only a relatively small deviation of the
numerical solution [5] from the Schwarzschild metric.
Thus, it is important to ensure that the difference between
the analytical approximation and the precise numerical
data is much smaller than the difference between the
Schwarzschild solution and the Einstein-dilaton-Gauss-
Bonnet black hole metric of [5]. In other words, it is
essential that the effect of deviation from the Schwarzschild
geometry owing to extra couplings are not “absorbed” by
the error of our approximation owing to the truncation of
the continued fraction. Therefore, we calculate the fre-
quency for the analytically approximated metric and
compare it with its precise value and the photon orbit
frequency for the Schwarzschild black hole (see the right
panel of Fig. 2)
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ΩS ¼
2

3
ffiffiffi
3

p
r0
:

From the plots on Fig. 2, one can see that the error due to
the third-order approximation leads to a deviation of at
least one order of magnitude smaller than the deviation of
the EdGB spacetime from the Einsteinian geometry, when
the black hole is far from its extremal state. From Fig. 3, it
can be seen that the maximal error for the function ΛðrÞ
and the dilaton field ϕðrÞ is of the same order as in Fig. 2.
Therefore, the found analytical metric (29) can be effec-
tively used for testing quantum corrections to the Einstein
gravity.

V. FINAL REMARKS

In this article, we present a method of construction of an
analytical approximation to the metric of the asymptotically
flat and spherically symmetric four-dimensional Einstein-
dilaton-Gauss-Bonnet black hole [5]. An analytic approxi-
mate expression for the dilaton field has been also derived.
Application of the continued fraction parametrization
allowed us to find a relatively compact form of the metric
(29), which, at the same time, provides good accuracy of a
fraction of one percent. Therefore, the found analytical
approximate metric can serve in the same way as an exact
solution for analysis of various phenomena in the vicinity
of a black hole, such as, particle motion, gravitational
lensing, Hawking radiation, perturbations and quasinormal
modes of black holes, scattering of fields, accretion of
matter, and others. In all the above phenomena, it is
essential to have a good approximation not only near the

event horizon or/and infinity, but also in the intermediate
region, on which all the scattering and accreting processes
strongly depend. Here we met this requirement by provid-
ing a good analytical approximation in the whole space
outside the event horizon.
An interesting test of our approximate analytical metric

could be calculation of gravitational quasinormal modes
and comparison of them with those found recently for the
numerical metric [19]. Although the quasinormal modes of
a four-dimensional dilatonic black holes without Gauss-
Bonnet term are well studied by now (see, for example,
[26–29]), the presence of the Gauss-Bonnet term evidently
leads to new phenomena and instability for some values of
the parameters [19,30–32]. The analytical approximation
can also be obtained for more general cases. For example,
when the scalar field has an additional coupling [23], which
equals to unity in the case of the heterotic string theory, we
were limited here. Finally, our next aim in this direction is
to find an analytical approximation for the numerical
rotating EdGB black hole solution [6].
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