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Under the commonly used spherical collapse model, we study how dark energy affects the growth of
large scale structures of the Universe in the context of agegraphic dark energy models. The dynamics of the
spherical collapse of dark matter halos in nonlinear regimes is determined by the properties of the dark
energy model. We show that the main parameters of the spherical collapse model are directly affected by
the evolution of dark energy in the agegraphic dark energy models. We compute the spherical collapse
quantities for different values of agegraphic model parameter α in two different scenarios: first, when dark
energy does not exhibit fluctuations on cluster scales, and second, when dark energy inside the overdense
region collapses similar to dark matter. Using the Sheth-Tormen and Reed mass functions, we investigate
the abundance of dark matter halos in the framework of agegraphic dark energy cosmologies. The model
parameter α is a crucial parameter in order to count the abundance of dark matter halos. Specifically, the
present analysis suggests that the agegraphic dark energy model with a bigger (smaller) value of α predicts
less (more) virialized halos with respect to that of ΛCDM cosmology. We also show that in agegraphic dark
energy models, the number of halos strongly depends on clustered or uniformed distributions of dark
energy.
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I. INTRODUCTION

In the past two decades, various observational data
gathered by different independent cosmological experi-
ments including those of type Ia supernova [1–3], cosmic
microwave background (CMB) [4–7], large scale structure
and baryonic acoustic oscillation [8–13], high redshift
galaxies [14], high redshift galaxy clusters [15,16], and
weak gravitational lensing [17–19] indicate that our
Universe is undergoing a period of cosmic acceleration.
There is a gap in our understanding of the cosmological
dynamics. In fact, we do not understand the cause and
nature of this accelerated expansion. To interpret this
phenomenon, cosmologists follow two approaches. Some
believe that this acceleration reflects on the physics of
gravity at cosmological scales. They are trying to modify
general relativity (GR) to justify the accelerated expansion
of the Universe. In this way they propose modified gravity
models that have been widely studied in the literature, e.g.,
fðRÞ gravity [20], the Randall-Sundrum model [21], the
Dvali-Gabadadze-Porrati (DGP) model [22], the general-
ized braneworld model [23], and the modified DGP model
[24]. On the other hand, one can adopt GR and try to justify
the accelerated expansion by introducing a new form of
fluid with sufficiently negative pressure named dark energy
(DE). Based on the latest observational experiments, this
unknown fluid occupies about 70% of the total energy
budget of the Universe [7]. Einstein cosmological constant

Λwith constant equation of state (EoS) parameterwΛ ¼ −1
is the first and simplest candidate for DE. However, the
standard Λ cosmology suffers from severe theoretical
problems, the so-called fine-tuning and cosmic coincidence
problems [25–29]. The Λ problems persuade cosmologists
to seek a DE model with a time-varying equation of state
parameter. Recently, several attempts on this way led to the
appearance of new dynamical DE models with a time
varying EoS parameter proposed extensively in literature.
Quintessence [30,31], ghost [32–35], holographic [36,37],
k-essence [38], tacyon [39], chaplygin gas [40], generalized
chaplygin gas [41], dilaton [42–44], phantom [45], quintom
[46] are examples of such dynamical DE models. In this
work we focus on the agegraphic dark energy model (see
Sec. II) as the most interesting model in the family of
dynamical DE models.
More deeply speaking, DE not only causes the accel-

erated expansion of the Universe but also affects the
scenario of structure formation in late times. It is believed
that the large scale structures in the Universe are developed
from the gravitational collapse of primordial small density
perturbations [47–54]. Initial seeds of these density per-
turbations are produced during the phase of inflationary
expansion [55,56]. An analytical and simple approach for
studying the evolution of matter fluctuations is the spheri-
cal collapse model (SCM), first introduced by [47]. In this
scenario, due to self-gravity, spherical overdense regions
expand slower compared with Hubble flow. Therefore the
overdense sphere becomes denser and denser (compare to
background). At a certain redshift the so-called turnaround
redshift, zta, the overdense sphere completely decouples
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from the background fluid and starts to collapse. The
collapsing sphere finally reaches the steady state at a virial
radius in certain redshift zvir. SCM in standard and DE
cosmologies has been wildly investigated in several works
[57–64]. It has been extended for various cosmological
models [65–76]. In this work we investigate the SCM in
agegraphic dark energy cosmologies and predict the abun-
dance of virialized halos in this model. The paper is
organized as follows: In Sec. II we introduce the agegraphic
dark energy and describe the evolution of Hubble flow in
this model. In Sec. III, the basic equations for evolution of
density perturbations in linear and nonlinear regimes are
presented. In Sec. IV we compute the predicted mass
function and cluster number in our model in both clustered
and homogeneous DE approaches. Finally in Sec. V we
conclude and summarize our results.

II. HUBBLE FLOW IN AGEGRAPHIC DE

In this section we review DE models that are constructed
based on the holographic principle in the quantum gravity
scenario [77,78]. According to the holographic principle,
the number of degrees of freedom of a finite-size system
should be finite and bounded by the area of its boundary
[79]. If we have a system with size L, its total energy should
not exceed the mass of a black hole with the same size,
i.e., L3ρΛ ≤ Lmp

2, where ρΛ is the quantum zero-point
energy density caused by UV cutoff and mp is the Planck
mass (mp ¼ 1=8πG). In cosmological contexts, when the
whole of the Universe is taken into account, the vacuum
energy related to the holographic principle can be viewed as
a DE, the so-called holographic dark energy (HDE) with
energy density given by

ρd ¼ 3α2m2
pL−2; ð1Þ

where α is a positive numerical constant and the coefficient
3 is for convenience. It should be noted that the HDEmodel
is defined by assuming an IR cutoff L in Eq. (1). One of the
choices for IR cutoff is the Hubble length, L ¼ H−1. In this
case, DE density will be close to the observational data,
but the current accelerated expansion of the Universe
cannot be recovered [36,37,80,81]. Another choice for
the IR cutoff is the particle horizon, which, however, does
not lead to the current accelerated expansion [36,37,80,81].
The final choice for L is to use the event horizon [82].
By choosing the event horizon, not only can the HDE
justify the accelerated expansion of the Universe but also
it is consistent with observations [83–85]. Based on the
holographic principle as well as using the Karolyhazy
relation, the authors of Refs. [86–88] suggest the new
model agegraphic dark energy (ADE) in which the length
scale L is replaced by cosmic time T. Karolyhazy and
Lukacs [86,87] made an interesting observation concerning

the distance measurement for Minkowski spacetime
through a light-clock Gedanken experiment. They found
that the distance t in Minkowski spacetime cannot be
known to a better accuracy than δt ¼ βtp2=3t1=3, where β is
a dimensionless constant of order Oð1Þ. Based on the
Karolyhazy relation, Maziashvili [89] argued that the
energy density of metric fluctuations in the Minkowski
spacetime is given by ρd ∼ 1

t2tp2
∼ mp

t2 , where mp and tp are

the reduced Planck mass and the Planck time, respectively
[see also 90–95]. Using this form for ρd, Cai [88] proposed
the ADE model in which the time scale t is chosen to be
equal with T, the age of the Universe. The ADE energy
density is given by [88]

ρd ¼
3α2m2

p

T2
: ð2Þ

Although the ADE scenario solves the casuality problem
[88], it faces some problems toward describing the matter-
dominated epoch [96–98]. To solve these new problems,
the authors in [97] proposed a new version of ADE dubbed
the new agegraphic dark energy (NADE) model, in which
they use conformal time η instead of cosmic time T. The
energy density in the NADE model is given by [97]

ρd ¼
3α2m2

p

η2
; ð3Þ

where η ¼ R
a
0

da
a2H. Considering the spatially flat

Friedmann-Robertson-Walker universe, the Friedmann
equation for a universe containing radiation, pressureless
dust matter, and NADE is given by

H2 ¼ 1

3m2
p
ðρr þ ρm þ ρdÞ; ð4Þ

where ρr, ρm, and ρd are energy densities of radiation,
pressureless matter, and DE, respectively. Now utilizing the
Friedmann equation (4) and continuity equations, respec-
tively, for radiation, pressureless matter, and DE,

_ρr þ 4Hρr ¼ 0; ð5Þ

_ρm þ 3Hρm ¼ 0; ð6Þ

_ρd þ 3Hð1þ wdÞρd ¼ 0; ð7Þ

the dimensionless Hubble parameter becomes

EðaÞ ¼ HðaÞ
H0

¼ Ωm0a−3 þ Ωr0a−4

1 −ΩdðaÞ
; ð8Þ

whereΩd ¼ ρd
3mp

2H2 is the density parameter for DE andΩm0

and Ωr0 are the present values of matter and radiation
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density parameters, respectively. Replacing ρd from Eq. (3)
in Ωd it becomes

Ωd ¼
α2

η2H2
: ð9Þ

Differentiating with respect to cosmic time in Eq. (3)
and using Eqs. (5) and (9) the equation of state parameter
for NADE takes the form (see also [97])

wd ¼ −1þ 2

3αa

ffiffiffiffiffiffi
Ωd

p
: ð10Þ

The evolution of energy density of DE in the NADE
model is given by the following differential equation (see
also [97]):

dΩd

da
¼ Ωd

a
ð1 −ΩdÞ

�
3 −

2

αa

ffiffiffiffiffiffi
Ωd

p �
: ð11Þ

Now by solving the system of coupled equations (8), (10),
and (11), we can obtain the evolution of ΩdðaÞ, wdðaÞ,
and EðaÞ. We solve coupled equations from the scale
factor ai ¼ 0.0005, which is deep enough in the matter-
dominated epoch (see also [98]). Hence the initial con-
ditions can be chosen at the matter-dominated epoch where
H2 ∝ ρm ∝ a−3, and η ∝ a1=2. Using Eqs. (3) and (9) we

find ΩdðaiÞ≃ α2ai2

4
, and using Eq. (10) we have wdðaiÞ≃

−2=3 [98]. In Fig. 1 we show the evolution of background
quantities in NADE cosmology, the equation of state
parameter of NADE wdðzÞ (top panel), the ratio of
dimensionless Hubble parameter EðzÞ of the NADE model
to that of theΛCDMmodel EΛ (middle panel), and the ratio
of DE density parameter ΩdðzÞ to that of the ΛCDMmodel
ΩΛðzÞ (bottom panel), for different values of model
parameter α considered in this work. The red-dotted,
blue-dashed, and green dot-dashed curves correspond to
NADE models with α ¼ 2, α ¼ 3, and α ¼ 4, respectively.
Also the concordance ΛCDM model is shown by the black
solid line. As we can see in the top panel of Fig. 1 for all
selected values of α, the NADE EoS parameter obeys the
inequality −1 < wd < −2=3, and thus it cannot enter in
the phantom regime at all. Also, we see that by increasing
the value of α, wd decreases. The middle panel shows the
evolution of dimensionless Hubble parameter EðzÞ. We see
that E for α ¼ 2 (α ¼ 4) is higher (smaller) than that of the
ΛCDM model throughout its history. For the case α ¼ 3, E
is higher thanΛCDM at low redshifts but at higher redshifts
it falls down and becomes smaller than the ΛCDM model.
In analogy with the behavior of wd, by increasing the value
of α, EðzÞ decreases. In the bottom panel we see that DE
density parameter Ωd increases with α, as we expect from
Eq. (3). For all values of α, at high redshifts, Ωd reduces as

expected at the matter-dominated epoch. But since the
decreasing of the ΩΛ is faster than Ωd of NADE, therefore,
at high redshifts the ratio of Ωd=ΩΛ increases for all values
of α.

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

 0  0.5  1  1.5  2  2.5  3  3.5  4

w
d

z

α=2
α=3
α=4

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  0.5  1  1.5  2  2.5  3  3.5  4

E
m

o
d

el
/E

Λ
C

D
M

z

ΛCDM
α=2
α=3
α=4

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.5  1  1.5  2  2.5  3  3.5  4

Ω
d

/Ω
Λ

C
D

M

z

ΛCDM
α=2
α=3
α=4

FIG. 1. The redshift evolution of the equation of state parameter
of NADE wdðzÞ (top panel), ratio of dimensionless Hubble
parameter of NADE model to the ΛCDM model (middle panel),
and ratio of DE density parameter ΩdðzÞ to ΩΛðzÞ (bottom panel)
for different values of model parameter α considered in this work.
The red dotted, blue dashed, and green dot-dashed curves corre-
spond to NADE models with α ¼ 2, α ¼ 3, and α ¼ 4, respec-
tively. The referenceΛCDMmodel is shownby the black solid line.
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III. SPHERICAL COLLAPSE IN
NADE COSMOLOGIES

In this section we extend the SCM in the framework of
NADE cosmologies. For this purpose, we first review the
basic equations used to obtain the characteristic parameters
of SCM in NADE cosmologies. In the scenario of structure
formation, several attempts have been made to derive the
differential equations governing the evolution of matter and
DE perturbations. Some of these attempts have been made
to investigate the equations in a matter-dominated universe
[99–102]. In the work of [68], the equation for the evolution
of δm was generalized to a universe containing a dynamical
DE component.
The important note regarding the perturbations of DE is

related to adiabatic sound speed. The authors of [103]
showed that the adiabatic sound speed of agegraphic DE
models is imaginary. In fact, the adiabatic sound speed of
most DE models such as quintessence DE models with
constant wde is imaginary, which causes the unphysical
instability of DE perturbations. To overcome this problem,
we can consider the perturbations of entropy. In the
presence of entropy perturbation, one can define the
effective sound speed ceff for DE, which is basically null
or positive. In the linear regime (δ ≪ 1), the cosmological
observations favor a small effective sound speed
c2eff≦0.001 for DE (the speed of light c ¼ 1) [104,105].
In particular, performing the Markov Chain Monte Carlo
(MCMC) statistical analysis, the authors of [105] showed
that the peak of the likelihood function happens at ceff ¼ 0.
However, in the nonlinear regime (δ > 1), which will be
important in SCM, ceff is a free parameter in the range of
[0, 1]. In this work, we consider two extreme cases: ceff ¼ 0
and ceff ¼ 1 based on the following arguments. In the case
of ceff ¼ 1 (homogeneous DE) the Jeans length of DE is
equal to or larger than the Hubble length, and consequently
the DE perturbations inside the Hubble horizon cannot
grow. In this case the DE distributes uniformly and only
matter perturbation grows to form cosmic structures. In
fact, the DE component affects the perturbations of matter
through changing the Hubble expansion in background
cosmology. On the other hand, the limiting case of ceff ¼ 0

(clustered DE) results in the null value for the Jeans length
scale of DE (similar to pressureless matter). In this case the
perturbations of DE can grow due to gravitational insta-
bility similar to matter perturbations (see also [106]).
Notice that because of negative pressure, the amplitude
of DE perturbations is much smaller than the amplitude
of matter perturbations. Another important issue is that
assuming ceff ¼ 0 causes the comoving collapse of DE
and dark matter perturbations, therefore equations for the
evolution of SCM are easily simplified. The equations
for the evolution of matter and dark energy perturbations
(δm and δd) in SCM (without the contribution of shear and
rotation) are given by [107]

δ́m þ ð1þ δmÞ
~θ

a
¼ 0; ð12Þ

δ́d −
3

a
wdδd þ ð1þ wd þ δdÞ

~θ

a
¼ 0; ð13Þ

~θ0 þ
�
2

a
þ E0

E

�
~θ þ

~θ2

3a
þ 3

2a
ðΩmδm þΩdδdÞ ¼ 0; ð14Þ

where ~θ ¼ θ
H is the dimensionless divergence of the

comoving peculiar velocity for both nonrelativistic matter
and DE. The linearized equations (12), (13), and (14) read

δ́m þ
~θ

a
¼ 0; ð15Þ

δ́d −
3

a
wdδd þ ð1þ wdÞ

~θ

a
¼ 0; ð16Þ

~́θ þ
�
2

a
þ E0

E

�
~θ þ 3

2a
ðΩmδm þ ΩdδdÞ ¼ 0: ð17Þ

For appropriate initial conditions, we will obtain the linear
overdensity δm for nonrelativistic matter and δd for DE at
any redshift z. These equations are also used to determine
the time evolution of the growth factor if suitable initial
conditions are used. To determine the appropriate initial
conditions, we start by considering nonlinear equa-
tions (12), (13), and (14). Since at collapse time ac the
collapsing sphere falls to the center, its overdensity δm
basically becomes infinite. Thus, we search for an initial
matter density contrast δmi such that the δm from solving the
nonlinear equations diverges (numerically, we assume this
to be achieved when δm ≥ 107) at the chosen collapse time.
Once δmi is found, we use this value as one of the initial
conditions in our linear differential equations (15), (16),
and (17) to find the linear threshold parameter δc as one of
the main quantities in the SCM scenario. In fact, in the
context of SCM when δlinearm ≥ δc the corresponding per-
turbed region is virialized. Since we are dealing with three
differential equations, three initial conditions have to be
chosen. Two others are initial values for the DE overdensity
δdi and peculiar velocity perturbation ~θi, where both of
them are related to δmi, via [106,107]

δdi ¼
μ

μ − 3wd
ð1þ wdiÞδmi; ð18Þ

~θi ¼ −μδmi: ð19Þ

In the case of an Einstein–de Sitter (EdS) universe we
have μ ¼ 1. However, in DE cosmologies it has been
shown that there is a small deviation from unity [106].
Since at high redshifts the contribution of DE is negligible,
we approximately set μ ¼ 1 in Eqs. (18) and (19) to obtain
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the two remaining initial conditions for solving coupled
linear equations (15), (16), and (17). In homogeneous
DE with ceff ¼ 1, we have δd ¼ 0, and the systems of
Eqs. (12)–(14) and (15)–(17) are, respectively, reduced to
Eqs. (18) and (19) in [72] as expected.

A. Growth factor and ISW effect

Here we follow the linear growth of perturbations of
nonrelativistic dust matter by solving coupled linear equa-
tions (15), (16), and (17). We compute the linear growth
factorDþðaÞ ¼ δmðaÞ=δmða ¼ 1Þ (for a similar discussion,
see also [108–114]). Figure 2 (top panel) shows the
variations of the growth factor as a function of redshift z
for different values of model parameter α. The growth
factor of perturbations in NADE models with selected
model parameter α ¼ 3, 4 (α ¼ 2) in this analysis is larger

(smaller) than the ΛCDM universe. All NADE models and
concordance ΛCDM models result in a bigger growth
factor than the EdS universe. This result is expected since
in former models, DE suppresses the growth of matter
perturbations and in the EdS universe this suppression does
not exist. Therefore in DE models, the initial matter
perturbations should grow with a larger growth factor than
the EdS universe to exhibit the large scale structures
observed today. Also, for larger values of model parameter
α, the energy density of NADE becomes more significant
as we expect from Eq. (3) so that the suppression process of
matter perturbations is enhanced. Thus for the case α ¼ 4,
we predict the largest value for the growth factor. Moreover,
for all values of α, the growth factor in homogeneous
NADE cases is bigger than those obtained in clustered
NADE cases, respectively. In fact, when DE can cluster, the
amount of clustered DE behaves as DM and amplifies the
formation of cosmic structures. The study of the growth
factor is important also for the evaluation of the integrated
Sachs-Wolfe (ISW) [115]. The ISW effect can distinguish
the cosmological constant from other models of dark
energy [116,117]. The ISW effect is due to the interaction
of CMB photons with a time varying gravitational
potential. The relative change of the CMB temperature
is given by

τ ¼ ΔT
TCMB

¼ 2

c3

Z
0

χH
dχa2HðaÞ ∂

∂a ðΦ −ΨÞ; ð20Þ

where χH is the horizon distance. The gravitational poten-
tials are related via the Poisson equation to the matter
overdensity. The ISW effect is therefore proportional to the
quantity dDþðaÞ=da. Dark energy perturbations affect the
low l quadrupole in the CMB angular power spectrum
through the ISW effect [118,119]. Here we are, in particu-
lar, interested in the late ISWeffect because it is affected by
the dark energy component. The ISWeffect depends on the
time derivative of the gravitational potential Φ and the
overdensity δ via the Poisson equation [120]. In the bottom
panel of Fig. 2 we present the difference between the ISW
effect of the NADE model and that obtained in ΛCDM. For
all values of NADE model parameter α, since dark energy
perturbations affect the matter perturbations, the value of
ISW for clustered NADE is always closer to the predictions
in ΛCDM; compare to the results of the homogeneous
NADE. The differences from the ΛCDM model becomes
smaller at low redshifts due to the fact that the NADE
equation of state becomes closer to w ¼ −1.

B. Parameters of the SCM

Now we calculate two main quantities of SCM, the linear
overdensity parameter δc and the virial overdensity param-
eterΔvir in the context of NADE cosmologies. The quantity
δc together with the linear growth factor DþðzÞ is used to
calculate the mass function of virialized halos (see, e.g.,

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

D
+

z

 EDS
ΛCDM
α=2,Clustered
α=3,Clustered
α=4,Clustered
α=2,Homogeneous
α=3,Homogeneous
α=4,Homogeneous

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0  0.5  1  1.5  2  2.5  3  3.5  4

IS
W

m
o

d
el

-I
S

W
Λ

C
D

M

z

ΛCDM
α=2,Clustered
α=3,Clustered
α=4,Clustered
α=2,Homogeneous
α=3,Homogeneous
α=4,Homogeneous

FIG. 2. The evolution of growth factor (top panel) and ISW
(bottom panel) as a function of redshift z for different values of
model parameter α considered in this work. The red dotted, blue
dashed, and green dot-dashed curves correspond to NADE
models with α ¼ 2, α ¼ 3, and α ¼ 4, respectively. Thick and
thin curves represent clustered and homogeneous NADE, re-
spectively. The reference ΛCDM (EdS) model is shown by the
thick (thin) solid black line.
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[48,121,122]). To calculate δc in NADE cosmologies, we
use the following fitting function obtained by [123,124]

δcðzcÞ ¼
3ð12πÞ2=3

20
ð1þ β logΩmðzÞÞ: ð21Þ

Different values of model parameter α result in different
slope parameters β presented in Table I for homogeneous
and clustered NADE models, respectively.
The other parameter in SCM is the virial overdensity

Δvir. The virial overdensity is used to define the size of
halos. This quantity is given by Δvir ¼ δnl þ 1 ¼ ζðx=yÞ3
where x ¼ a=at is the normalized scale factor and y is the
radius of the sphere normalized to its value at the turn-
around and ζ is the overdensity at the turnaround epoch (see
also [72]). Our results for the evolution of δc, Δvir, and ζ
are presented in Figs. 3 and 4. In Fig. 3 we show the time
evolution of the linear overdensity parameter δc in the
NADE model (top panel) and the ratio of the linear
overdensity parameter of NADE to that of ΛCDM (bottom
panel). We see that the NADE models with α ¼ 3 and
α ¼ 4 (α ¼ 2) always have a lower (higher) δcðzÞ with
respect to the ΛCDM model. We also observe that at
zc ¼ 0, the δc in clustered NADE models is larger com-
pared to homogeneous cases. The difference between δc
of NADE models compared to that of ΛCDM is smaller
than 0.8%. NADE models, similar to ΛCDM cosmology,
asymptotically approach the EdS limit at high redshift,
where we can ignore the effects of DE.
Figure 4 shows the evolution of the virial overdensity

parameter ΔvirðzÞ (top panel) and turnaround overdensity ζ
(bottom panel). In all models,Δvir tends to EdS value 178 at
high redshifts, as expected. At low redshifts, decrements of
Δvir indicate that low dense virialized halos are formed in
NADE and ΛCDM models compared to the EdS model.
Particularly in the case of the NADE model with α ¼ 4, the
density of dark matter in virialized halos is ∼50% lower
than that of the EdS model. This value is roughly 44% for
the ΛCDM model and the NADE model with α ¼ 3. In the
case of α ¼ 2 we observe this vale as ∼27%. The lower
density of virialized halos in NADE and ΛCDM models
than the EdS universe can be interpreted as the affect of DE
on the process of virialization. In fact, DE prevents more
collapse, and consequently halos virialize at a larger
radius with a lower density. We also conclude that Δvir
in homogeneous NADE models is larger than clustered
NADE. Finally, the evolution of turnaround overdensity ζ

is shown in the bottom panel of Fig. 4. As expected, in the
limiting case of the EdS model, ζ ¼ 5.6. At high redshifts,
ζ tends to the EdS value ζ ¼ 5.6 representing the early
matter-dominated era. In both clustered and homogeneous
versions of NADEmodels with α ¼ 3 and 4, ζ is larger than
that of the concordance ΛCDM model. Moreover, ζ for
clustered NADE is smaller than the homogeneous version,
which shows that in homogeneous NADE, the perturbed
spherical region detaches from the Hubble flow with higher
overdensity compared to the clustered cases.

IV. MASS FUNCTION AND NUMBER OF HALOS

In this section using the Press-Schechter formalism, we
compute the number of cluster-size halos in the context of
the NADE cosmologies. In Press-Schechter formalism the
abundance of virialized halos can be expressed in terms of
their mass [48]. The comoving number density of virialized
halos with masses in the range of M and M þ dM is given
by [48,125]

TABLE I. The results for fitting parameter β in Eq. (21).

Model α ¼ 2 α ¼ 3 α ¼ 4

Homogeneous DE 0.00469021 0.00571213 0.00602396
Clustered DE 0.00477487 0.00557702 0.00577207
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values of model parameter α considered in this work. Line styles
and colors are the same as in Fig. 2.
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dnðM; zÞ
dM

¼ ρm0

M
dσ−1

dM
fðνÞ; ð22Þ

where ρm0 is the background density of matter at the
present time, νðM; zÞ ¼ δc=σ, and σ is the root mean square
of the mass fluctuations in spheres containing the mass M.
Although the standard mass function fðνÞ ¼ ffiffiffiffiffiffiffiffi

2=π
p

e−
ν
2

presented in [48,125] can provide a good estimate of
the predicted number density of halos, it fails by predicting
too many low-mass and too few high-mass objects
[122,126,127]. Hence, in this work we use another popular
fitting formula proposed by [122,126]

fðνÞ¼0.2709

ffiffiffi
2

π

r
ð1þ1.1096ν0.6Þexp

�
−
0.707ν2

2

�
: ð23Þ

In a Gaussian density field, σ is given by

σ2ðRÞ ¼ 1

2π2

Z
0

∞
k2PðkÞW2ðkRÞdk; ð24Þ

where R ¼ ð3M=4πρm0Þ1=3 is the radius of the overdense
spherical region, WðkRÞ is the Fourier transform of a
spherical top-hat profile with radius R, and PðkÞ is the
linear power spectrum of density fluctuations [50]. To
calculate σ, we follow the procedure presented in [68,74].
Following [128], we use the normalization of matter power
spectrum σ8 ¼ 0.815 for the concordance ΛCDM model.
The number density of dark matter halos above a certain
mass M at collapse redshift z is simply given by

NðM; zÞ ¼
Z
0

∞ dnðzÞ
dM0 dM

0; ð25Þ

where we fix the above limit of integration by M ¼
1018Msunh−1 as such a gigantic structure could not in
practice be observed. We now compute the predicted
number density of virialized halos for homogeneous and
clustered NADE models using Eqs. (22) and (25). In this
case the total mass of halos is defined by the pressureless
matter perturbations. However, it was shown that the
virialization of dark matter perturbations in the nonlinear
regime depends on the properties of DE models [66,
129–131]. Thus in clustered DE models, we should take
into account the contribution of DE perturbations to the
total mass of the halos [106,107,130,131]. Depending on
the form of EoS parameter, wdðzÞ, DE may decrease or
increase the total mass of the halo. The fraction of DE mass
taken into account with respect to the mass of pressureless
matter is given by

ϵðzÞ ¼ mDE

mDM
; ð26Þ

where mDE depends on what we consider as a mass of the
DE component. If we only consider the contribution of DE
perturbation, then we would have

mDE
Perturbed ¼ 4πρ̄DE

Z
0

Rvir

dRR2δDEð1þ 3c2effÞ; ð27Þ

but if we assume both the contributions of DE perturbation
and DE at the background level, the total mass of DE in
virialized halos takes the form

mDE
Total¼ 4πρ̄DE

Z
0

Rvir

dRR2½ð1þ3wDEÞþδDEð1þ3c2effÞ�:

ð28Þ

Since we work in the framework of the top-hat spherical
profile, the quantities inside the collapsing region vary only
with cosmic time. Thus from Eq. (27) we can obtain

ϵðzÞ ¼ ΩDE

ΩDM

δDE
1þ δDM

; ð29Þ
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FIG. 4. Redshift evolution of virial overdensity parameter Δvir
(top panel) and turnaround overdensity ζ (bottom panel) for
different values of model parameter α considered in this work.
Line styles and colors are the same as in Fig. 2.
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and from Eq. (28) we have

ϵðzÞ ¼ ΩDE

ΩDM

1þ 3wDE þ δDE
1þ δDM

: ð30Þ

Also the mass of dark matter is defined as (see also
[75,76])

mDM ¼ 4πρ̄DM

Z
0

Rvir

dRR2ð1þ δDMÞ: ð31Þ

In this work we adopt the definition of DE mass based on
Eq. (29). In Fig. 5 we show the evolution of ϵðzÞ from
Eq. (29). One can see, at high redshift, where the con-
tribution of dark energy is less important, ϵ for all values of
α becomes negligible. Also, for different values of model
parameter α, the amount of ϵ in clusters becomes larger by
increasing the value of α.
To compute the number density of virialized halos in

clustered DE, one should assume the presence of the DE
mass correction. Following the procedure outlined in
[106,107], the mass of halos in clustered DE models is
Mð1 − ϵÞ. Hence, the corrected mass function can be
rewritten as [106]

dnðM; zÞ
dM

¼ ρm0

Mð1 − ϵÞ
dνðM; zÞ

dM
fðνÞ: ð32Þ

In the case of clustered NADE models, we insert Eq. (32)
into Eq. (25) in order to calculate the number density of
virialized halos.
We also examine how the predicted number of halos are

sensitive to the chosen mass function. To do this, we repeat
our analysis using the Reed mass function provided by

[132]. In the Reed mass function, the authors fit their
simulation data by steepening the high mass slope of the
Sheth-Tormen mass function by adding new parameters c
and G1 described as follows [132]:

fðνÞ ¼ 0.2709

ffiffiffi
2

π

r
ð1þ 1.1096ν0.6

þ 0.2G1Þ exp
�
−
0.707cν2

2

�
; ð33Þ

where c ¼ 1.08 and

G1 ¼ exp

�
−
ðln σ−1 − 0.4Þ2

2ð0.6Þ2
�
: ð34Þ

In Fig. 6 we present the numerical results of our analysis
by computing the number density of cluster-size halos at
different redshifts: z ¼ 0.0, 0.5, 1.0, and 2.0 for three
different values of NADE model parameter α considered in
this work. To have a better comparison between all models,
we normalize the results of NADE by that of the ΛCDM
cosmology at z ¼ 0. The main results is sorted out as
follows.
At z ¼ 0, for both Sheth-Tormen and Reed mass

functions, one can observe that in the cases α ¼ 3 and
α ¼ 4 (α ¼ 2) the NADE cosmology predicts less (more)
abundance of halos in comparison with the ΛCDM model
at both the low and high mass tails. The similar results are
achieved at z ¼ 0.5. The precise numerical results of our
analysis for three different mass scales are presented in
Table II (see also Fig. 7). We observe that at z ¼ 0, the
difference between NADE and ΛCDM models is consid-
erable at both low and high mass tails of the mass function.
However, this difference is more pronounced for high mass
ranges. Also the difference between the results of the two
mass functions used appears in the high mass tail of clusters
for the NADE model with α ¼ 2. In particular, in the case
of α ¼ 2, the number density of clusters with mass above
M ¼ 1015Msunh−1 counted using the Reed mass function
at z ¼ 0 is roughly 7% higher than that of the Sheth-
Tormen (ST) mass function.
Moreover, at z ¼ 0 the clustered NADE models result in

somewhat more abundance of halos compared to homo-
geneous cases, while the difference is negligible at higher
redshifts. Quantitatively speaking, the number density of
halos with mass larger than 1013Msunh−1 calculated at
z ¼ 0 for the clustered NADE model with α ¼ 2 is almost
5% higher than the homogeneous case with the same α.
For all models, we see that by increasing the redshift z,

the number density of clusters decreases. Using the results
presented in Table II, we visualize the predicted number
densities for three different mass scales:M > 1013Msunh−1,
M > 1014Msunh−1, and M > 1013Msunh−1 in Fig. 7. For
example, in the case of the standard ΛCDM model, the
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predicted number density of halos above 1013Msunh−1

calculated using the ST mass function at z ¼ 2 is roughly
84% lower than z ¼ 0. Notice that for all models, the
number density of massive halos with mass higher than
1015Msunh−1 at z ¼ 2 is roughly negligible compared to
z ¼ 0. The above result tells us that the dark matter halos
with smaller masses form sooner than larger ones.
Moreover, we can conclude that the suppression effects
of DE on the virialization of halos are more pronounced in

halos with higher masses. The same results are also found
for the Reed mass function.

V. CONCLUSION

In this work we studied the SCM and predicted the
number of dark matter halos in the framework of NADE
cosmologies. We first studied the evolution of Hubble
expansion in this model. We saw that the EoS parameter of
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NADE remains in the quintessence regime and cannot cross
the phantom line.
Then we studied the impact of DE in the NADE model

on the collapse of dark matter halos in the framework of the
SCM. In particular, the effects of DE on the linear growth
factor of perturbations, ISW, the linear and virial over-
densities, and the abundance of virialized halos were
investigated.
While DE accelerates the expansion rate of Hubble flow,

it has two different rules on the formation of cosmic
structures. In the framework of homogeneous NADE,
DE suppresses the growth of dark matter perturbations.
On the other hand, in the case of clustered NADE, DE
perturbations can enhance the growth of matter fluctua-
tions. Depending on the model parameter α, the growth

factor of perturbations Dþ can be larger or smaller than
standard ΛCDM cosmology. Notice that NADE for all the
values of α results in the higher growth factor compared to
an EdS universe.
Measuring the ISW effect as a useful observational tool,

we showed that depending on α and redshift z this effect in
NADE cosmologies can be smaller or larger than that in
concordance ΛCDM cosmology. We also showed that the
ISW effect in clustered NADE models is somewhat larger
than the homogeneous cases.
The two main parameters of SCM, δc andΔvir, have been

computed. Similar to what happened for growth factor Dþ
and the ISW effect, we saw that the evolution of these
quantities strongly depends on the model parameter of
NADE such that δc and Δvir become smaller for larger

TABLE II. Ratio of the number of cluster-size halos above given mass M for different NADE models at different redshifts to the
concordance ΛCDM cosmology at z ¼ 0.

z M½Msun=h� MF ΛCDM Homogeneous NADE Clustered NADE
α ¼ 2 α ¼ 3 α ¼ 4 α ¼ 2 α ¼ 3 α ¼ 4

ST 1.0 1.66 0.80 0.42 1.75 0.88 0.49
z ¼ 0 1013

Reed 1.0 1.63 0.80 0.43 1.73 0.89 0.50
ST 1.0 1.96 0.73 0.32 2.11 0.81 0.35

z ¼ 0 1014

Reed 1.0 1.99 0.73 0.30 2.11 0.81 0.34
ST 1.0 2.59 0.61 0.15 2.74 0.68 0.17

z ¼ 0 1015

Reed 1.0 2.79 0.61 0.13 2.94 0.68 0.15
ST 0.80 1.41 0.64 0.34 1.45 0.67 0.36

z ¼ 0.5 1013

Reed 0.81 1.43 0.65 0.34 1.46 0.68 0.37
ST 0.46 0.97 0.36 0.15 0.98 0.36 0.16

z ¼ 0.5 1014

Reed 0.44 0.95 0.34 0.14 0.96 0.35 0.15
ST 0.09 0.23 0.07 0.02 0.22 0.07 0.02

z ¼ 0.5 1015

Reed 0.07 0.20 0.06 0.02 0.19 0.05 0.02
ST 0.56 1.06 0.46 0.25 1.06 0.47 0.25

z ¼ 1.0 1013

Reed 0.55 1.07 0.46 0.24 1.07 0.46 0.25
ST 0.16 0.38 0.14 0.06 0.37 0.13 0.06

z ¼ 1.0 1014

Reed 0.14 0.34 0.12 0.05 0.33 0.12 0.05
ST 0.004 0.009 0.004 0.002 0.009 0.003 0.001

z ¼ 1.0 1015

Reed 0.002 0.007 0.003 0.001 0.006 0.002 0.001
ST 0.16 0.39 0.17 0.09 0.42 0.16 0.09

z ¼ 2.0 1013

Reed 0.15 0.37 0.15 0.08 0.35 0.13 0.08
ST 5 × 10−5 3 × 10−4 2 × 10−4 1 × 10−4 4 × 10−4 1 × 10−4 8 × 10−5

z ¼ 2.0 1014

Reed 0.004 0.015 0.006 0.003 0.013 0.004 0.003
ST 1 × 10−7 1 × 10−6 2 × 10−6 1 × 10−6 2 × 10−6 8 × 10−7 6 × 10−7

z ¼ 2.0 1015

Reed 4 × 10−8 3 × 10−7 3 × 10−7 3 × 10−7 2 × 10−7 2 × 10−7 2 × 10−7
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values on α at low redshifts. In particular, we conclude that
the low dense virialized halos can be formed for higher
values of α.
We computed the predicted number of virialized dark

matter halos using the two relevant Sheth-Tormen and Reed
mass functions in the context of clustered and homo-
geneous NADE models, respectively. Notice that in the
case of clustered NADE model, we used the corrected mass
function formula by adding the contribution of the DE mass
on the total mass of clusters. It has been shown that the
abundance of halos at different redshifts depends on the
model parameter α of NADE cosmologies. We showed our
results for four different redshifts z ¼ 0, 0.5, 1.0, and 2.0
and saw that for all mentioned redshifts both mass
functions predict a greater abundance of halos in NADE
cosmology for α ¼ 2 compared to the ΛCDM universe. For
higher values α ¼ 3 and α ¼ 4, we observe fewer abundant

halos in NADE compared to the ΛCDM until z≲ 1. Along
the redshift, the number density of halos computed in our
analysis is decreasing. These decrements are more pro-
nounced for massive halos compared to low-mass objects.
This result is compatible with the fact in standard gravity
that the low mass dark matter halos form sooner than the
larger ones. Also the suppression effects of DE in NADE
cosmology on the virialization of cluster-size halos are
more significant at higher masses. It has been shown that all
qualitatively results obtained with the Sheth-Tormen mass
function are also valid in the Reed mass function. We also
concluded that the number of dark matter halos computed
at low redshifts in clustered NADE cosmology is higher
than that of homogeneous cases. Notice that at high redshift
z ¼ 2 where the abundance of halos falls down, the
differences between clustered and homogeneous models
become negligible.
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