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In this paper we present conjoined constraints on several cosmological models from the expansion
history HðzÞ and cosmic growth fσ8. The models we study include the CPL w0wa parametrization, the
holographic dark energy (HDE) model, the time-varying vacuum (ΛtCDM) model, the Dvali, Gabadadze
and Porrati (DGP) and Finsler-Randers (FRDE) models, a power-law fðTÞ model, and finally the Hu-
Sawicki fðRÞ model. In all cases we perform a simultaneous fit to the SnIa, CMB, BAO, HðzÞ and growth
data, while also following the conjoined visualization of HðzÞ and fσ8 as in Linder (2017). Furthermore,
we introduce the figure of merit (FoM) in the HðzÞ-fσ8 parameter space as a way to constrain models that
jointly fit both probes well. We use both the latest HðzÞ and fσ8 data, but also LSST-like mocks with 1%
measurements, and we find that the conjoined method of constraining the expansion history and cosmic
growth simultaneously is able not only to place stringent constraints on these parameters, but also to
provide an easy visual way to discriminate cosmological models. Finally, we confirm the existence of a
tension between the growth-rate and Planck CMB data, and we find that the FoM in the conjoined
parameter space ofHðzÞ-fσ8ðzÞ can be used to discriminate between the ΛCDM model and certain classes
of modified gravity models, namely the DGP and fðTÞ.
DOI: 10.1103/PhysRevD.96.063517

I. INTRODUCTION

The portrait of the cosmos, as it is revealed by the
analysis of various independent cosmological observa-
tions (see Ref. [1] and references therein), is tightly tied
with a spatially flat Universe in which the cosmic fluid
contains ∼30% of matter (baryonic and dark) and the rest
is the so-called dark energy (DE). Although there is
mounting observational evidence that DE is responsible
for the accelerated expansion of the Universe, the under-
lying mechanism behind such a phenomenon is yet
unknown.
Despite the lack of our knowledge regarding the nature

of the DE, in the literature there is a large class of
cosmological models which mathematically treats the
accelerated expansion of the Universe. In general, these
cosmological scenarios are split into two large groups. The
first category of DE models adhere to general relativity
(GR) and propose the existence of new fields in nature (for
review, see Refs. [2,3] and references therein). The second
group of cosmological models is mainly based on modified
gravity for which the present accelerating era appears as a
geometric effect due to the fact that gravity becomes weak
at cosmological scales [2,4]. It is interesting to mention that
in the context of modified gravity models, the effective

equation of state (EoS) parameter can enter in the phantom
regime, namely w < −1.
At the perturbation level, the growth of matter fluctuation

provides a useful tool to investigate the matter distribution
in the Universe [5], and, more importantly, it can be
measured from observations. Indeed, the growth-rate data
are mainly based on galaxy surveys, like SDSS, BOSS,
WiggleZ, etc. (see our Table II and references therein). The
growth-rate data have been used extensively in the literature
in order to put constraints on the growth index γ. The
measurement of the growth index provides an efficient way
to discriminate between modified gravity models and DE
models which are developed in the context of GR. Indeed,
one can find a large family of studies in which the predicted
growth index is given analytically for various DE models,
including scalar-field DE [6–10], DGP [9,11,12], fðRÞ
[13–15], Finsler-Randers [16], time-varying vacuum mod-
els ΛðHÞ [17], clustered DE [18], holographic dark energy
[19] and fðTÞ [20].
From the aforementioned discussion, it becomes clear

that up to now, the expansion data and the growth data have
been used separately in order to study the cosmic history at
the background and perturbations levels, respectively. In
this article we follow a different path, namely the conjoined
method recently proposed by Linder [21], where it was
claimed that in order to distinguish the DE models, it is
better to use the Hubble parameter HðzÞ directly with the
growth quantity fσ8ðzÞ in a conjoined diagram, rather than
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using each as a function of redshift. In the current article we
attempt to investigate such a possibility by computing the
H-fσ8 diagram of the most popular DE models and
comparing the corresponding predictions with the observed
conjoined diagram provided by the cosmic chronometer
HðzÞ and the growth data. A similar, but not overlapping,
analysis of the conjoined constraints was also made by
Ref. [22], where the authors studied extensions of the
ΛCDM model, such as a constant but free equation of state
w or the effect of neutrinos. However, we consider a much
bigger ensemble of dark energy models, hence our analysis
is much more broad in scope.
The layout of the article is as follows: In Sec. II we

discuss the linear growth of matter fluctuations in the dark
energy regime, while in Sec. III we present the basic
properties of various cosmological models, including those
of modified gravity. In Sec. IV we discuss the tension
between the growth and Planck15 CMB data, while in
Sec. V, we test the DE cosmologies by comparing the
theoretical predictions of the conjoined H-fσ8 diagram
with observations. Finally, we present our conclusions
in Sec. VI.

II. LINEAR GROWTH OF MATTER
PERTURBATIONS

In this section we present the main ingredients of the
linear growth of matter perturbations within the context of
different types of dark energy. Since we are in the matter-
dominated epoch, we can neglect the radiation component
from the cosmic expansion. Let us start the current analysis
with the basic differential equation at subhorizon scales
[9,11,13,23–25]:

δ̈m þ 2~νH _δm − 4πGμρmδm ¼ 0: ð1Þ

As is well known, a general solution of the aforementioned
equation is written as δm ∝ DðtÞ. Notice that DðtÞ is the
growth factor, usually scaled to unity at the present time.
In order to address the issue of how the quantities ~ν and
μ≡Geff=GN affect the matter fluctuations, one has to deal
in general with the following three distinct scenarios:
(1) The situation in which the dark energy models

(quintessence and the like) adhere to GR, hence
ð~ν; μÞ ¼ ð1; 1Þ.

(2) The case where ð~ν; μÞ ≠ ð1; 1Þ, which implies that
there are interactions in the dark sector.

(3) The case of either modified gravity models or
inhomogeneous dark energy models (inside GR),
hence ~ν ¼ 1 and μ ≠ 1.1

Now we are ready to introduce the growth rate of
clustering (first proposed by Ref. [27]) as follows:

fðaÞ ¼ d ln δm
d ln a

≃ Ωγ
mðaÞ; ð2Þ

with

ΩmðaÞ ¼
Ωm0a−3

E2ðaÞ ; ð3Þ

where EðaÞ ¼ HðaÞ=H0 is the normalized Hubble param-
eter and γ is the growth index. By differentiating Eq. (3), it
is easy to show

dΩm

da
¼ −3

ΩmðaÞ
a

�
1þ 2

3

d lnE
d ln a

�
: ð4Þ

Furthermore, combining Eqs. (2)–(4), the main equation (1)
becomes

a
df
da

þ
�
2~νþ d lnE

d ln a

�
f þ f2 ¼ 3μΩm

2
; ð5Þ

or

a lnðΩmÞ
dγ
da

þ Ωγ
m − 3γ þ 2~ν −

�
γ −

1

2

�
d lnE
d ln a

¼ 3

2
μΩ1−γ

m :

ð6Þ

It is interesting to mention that Steigerwald et al. [28] have
provided another expression of the above equation, namely

dω
d ln a

�
γ þ ω

dγ
dω

�
þ eωγ þ 2~νþ d lnE

d ln a
¼ 3

2
μeωð1−γÞ; ð7Þ

where ω ¼ lnΩmðaÞ, which implies that at z ≫ 1 (a → 0)
we get ΩmðaÞ → 1 (or ω → 0). Based on Eq. (7),
Steigerwald et al. [28] proposed a general mathematical
approach in order to derive the asymptotic value of the
growth index, which is given by [see Eq. (8) in Ref. [28]
and the relevant discussion in Ref. [17]]

γ∞ ¼ 3ðM0 þM1Þ − 2ðH1 þ N1Þ
2þ 2X1 þ 3M0

; ð8Þ

where

M0 ¼ μjω¼0; M1 ¼
dμ
dω

����
ω¼0

; ð9Þ

and

N1 ¼
d~ν
dω

����
ω¼0

H1 ¼ −
X1

2
¼ dðd lnE=d ln aÞ

dω

����
ω¼0

:

ð10Þ
Since the exact functional form of the growth index has

yet to be found, here we utilize the well-known Taylor
expansion around aðzÞ ¼ 1 (see Refs. [29–31]):

1Note that if matter and geometry are coupled, then we have
μ≡ Geff=GN þ βða; kÞ, in which βða; kÞ is a quantity that
depends on derivatives of the Lagrangian of the model [26].
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γðaÞ ¼ γ0 þ γ1ð1 − aÞ; ð11Þ

in which the asymptotic value boils down to γ∞ ≃ γ0 þ γ1,
where we have set γ0 ¼ γð1Þ. Lastly, writing Eq. (6) at the
present time (a ¼ 1),

−γ0ð1Þ lnðΩm0ÞþΩγð1Þ
m0 −3γð1Þþ2~ν0−2

�
γ0−

1

2

�
dlnE
d lna

����
a¼1

¼3

2
μ0Ω

1−γð1Þ
m0 ; ð12Þ

and with the aid of Eq. (11), we arrive at

γ1 ¼
Ωγ0

m0 − 3γ0 þ 2~ν0 − 2ðγ0 − 1
2
Þd lnEd ln a ja¼1

− 3
2
μ0Ω

1−γ0
m0

lnΩm0

;

ð13Þ

where a prime denotes a derivative with respect to the scale
factor, μ0 ¼ μð1Þ, and ~ν0 ¼ ~νð1Þ.

III. DARK ENERGY MODELS

In this section, we describe the ten distinct cosmological
models used in our analysis. Notice that the observational
viability of these DE models was recently tested in
Basilakos and Nesseris [32] using the JLA supernovae,
the BAO data, and the CMB shift parameters, but also the
HðzÞ data shown in Table I. We also used a growth-rate data
compilation which we now update to the “Gold-2017” set
of Ref. [33], shown for completeness in Table II. For the
details of the analysis of the JLA, BAO, CMB and HðzÞ
data, we refer the interested reader to Ref. [32], while for
that of the new growth-rate data, we refer to Ref. [33]. The
best-fit parameters and their errors for all of the models
used in this analysis were obtained via an MCMC, and the
results are shown in Table III.2

Knowing the basic cosmological functions of a given
dark energy model and the corresponding model param-
eters, it is trivial to compute the asymptotic value of the
growth index γ∞ from Eq. (8). The next step is to solve the
system of γ∞ ¼ γ0 þ γ1 and Eq. (13) in order to compute
ðγ0; γ1Þ from the cosmological parameters. Let us now
briefly present the cosmological models explored in
the current work. Notice that in all cases we assume a
spatially flat Friedmann-Lemaître-Robertson-Walker
(FLRW) geometry.
(1) wCDMmodel: In this case, we consider as constant

the equation-of-state (hereafter EoS) parameter
w ¼ pd=ρd, where pd and ρd are the pressure and
density of the dark energy fluid, respectively. Since
this model is inside GR and does not allow inter-
actions in the dark sector, we have μðaÞ ¼ ~νðaÞ ¼ 1.

The latter conditions imply that the dimensionless
Hubble parameter is written as

E2ðaÞ ¼ Ωm0a−3 þ Ωd0a−3ð1þwÞ; ð14Þ

where the model parameters are Ωm0 ¼ 1 −Ωd0 and
w. Using Eq. (14), we find

d lnE
d ln a

¼ −
3

2
−
3

2
w½1 −ΩmðaÞ� ð15Þ

and

fM0;M1; H1; X1g ¼
�
1; 0;

3w
2
;−3w

�
:

TABLE I. TheHðzÞ data used in the current analysis (in units of
km s−1 Mpc−1). This compilation is based partly on those of
Refs. [34,35].

z HðzÞ σH References

0.07 69.0 19.6 [36]
0.09 69.0 12.0 [37]
0.12 68.6 26.2 [36]
0.17 83.0 8.0 [37]
0.179 75.0 4.0 [38]
0.199 75.0 5.0 [38]
0.2 72.9 29.6 [36]
0.27 77.0 14.0 [37]
0.28 88.8 36.6 [36]
0.35 82.7 8.4 [39]
0.352 83.0 14.0 [38]
0.3802 83.0 13.5 [34]
0.4 95.0 17.0 [37]
0.4004 77.0 10.2 [34]
0.4247 87.1 11.2 [34]
0.44 82.6 7.8 [40]
0.44497 92.8 12.9 [34]
0.4783 80.9 9.0 [34]
0.48 97.0 62.0 [37]
0.57 96.8 3.4 [41]
0.593 104.0 13.0 [38]
0.60 87.9 6.1 [40]
0.68 92.0 8.0 [38]
0.73 97.3 7.0 [40]
0.781 105.0 12.0 [38]
0.875 125.0 17.0 [38]
0.88 90.0 40.0 [37]
0.9 117.0 23.0 [37]
1.037 154.0 20.0 [38]
1.3 168.0 17.0 [37]
1.363 160.0 33.6 [42]
1.43 177.0 18.0 [37]
1.53 140.0 14.0 [37]
1.75 202.0 40.0 [37]
1.965 186.5 50.4 [42]
2.34 222.0 7.0 [43]

2The codes used in the analysis are freely available at www
.uam.es/savvas.nesseris/.
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Inserting the above coefficients into Eq. (8), we
recover the well-known asymptotic value of the
growth index (see also Refs. [6–11,56]), namely

γ∞ ¼ 3ðw − 1Þ
6w − 5

:

As expected for w ¼ −1, the wCDM model
reduces to a ΛCDM cosmological model in which

γðΛÞ∞ ¼ 6=11.
(2) CPL model (w0waCDM): This phenomenological

model was first proposed by Chevalier, Polarski, and
Linder [57,58]. Specifically, the dark energy EoS
parameter is given as a first-order Taylor expansion
around the present epoch, wðaÞ ¼ w0 þ w1ð1 − aÞ.
This model shares the same cosmological properties
with wCDM, which means that μðaÞ ¼ ~νðaÞ ¼ 1.
The normalized Hubble parameter is given by

E2ðaÞ ¼ Ωm0a−3 þΩd0a−3ð1þw0þw1Þe3w1ða−1Þ;

where the free parameters of the models are
ðΩm0; w0; w1Þ, with Ωd0 ¼ 1 −Ωm0. The quantity
d lnE=d ln a is given by Eq. (15), but here the EoS
parameter is w ¼ wðaÞ. Within this context, the
growth coefficients (see also Ref. [28]) are written as

fM0;M1; H1; X1g

¼
�
1; 0;

3ðw0 þ w1Þ
2

;−3ðw0 þ w1Þ
�
;

and thus

γ∞ ¼ 3ðw0 þ w1 − 1Þ
6ðw0 þ w1Þ − 5

:

(3) Running Λ (ΛtCDM model): Here we allow Λ
to vary with redshift. Using the notations of
Refs. [59,60], the evolution of the vacuum is written
as ΛðHÞ¼Λ0þ3νðH2−H2

0Þ, where Λ0≡ΛðH0Þ¼
3ΩΛ0H2

0. In this case the normalized Hubble param-
eter takes the form

E2ðaÞ ¼ ~ΩΛ0 þ ~Ωm0a−3ð1−νÞ; ð16Þ

with

d lnE
d ln a

¼ −
3

2
ð1 − νÞ ~ΩmðaÞ; ð17Þ

where we have set ~ΩmðaÞ ¼ ~Ωm0a−3ð1−νÞ

E2ðaÞ , ~Ωm0 ≡ Ωm0

1−ν

and ~ΩΛ0 ≡ 1−Ωm0−ν
1−ν . Evidently, the free parameters of

the model are ð ~Ωm0; νÞ. The basic quantities ~ν and μ
(see Ref. [17]) are given by

~ν ¼ 1þ 3

2
ν ð18Þ

and

μðaÞ ¼ 1 − ν −
4ν

~ΩmðaÞ
þ 3νð1 − νÞ: ð19Þ

TABLE II. A compilation of robust and independent fσ8ðzÞ measurements from different surveys, compiled in Ref. [33]. In the
columns, we show in ascending order, with respect to redshift, the name and year of the survey that made the measurement, the redshift
and value of fσ8ðzÞ, and the corresponding reference and fiducial cosmology. These data points are used in our analysis in the next
sections.

Index Data set z fσ8ðzÞ References Year Notes

1 6dFGSþ SnIa 0.02 0.428� 0.0465 [44] 2016 ðΩm; h; σ8Þ ¼ ð0.3; 0.683; 0.8Þ
2 SnIaþ IRAS 0.02 0.398� 0.065 [45,46] 2011 ðΩm;ΩKÞ ¼ ð0.3; 0Þ
3 2MASS 0.02 0.314� 0.048 [46,47] 2010 ðΩm;ΩKÞ ¼ ð0.266; 0Þ
4 SDSS-veloc 0.10 0.370� 0.130 [48] 2015 ðΩm;ΩKÞ ¼ ð0.3; 0Þ
5 SDSS-MGS 0.15 0.490� 0.145 [49] 2014 ðΩm; h; σ8Þ ¼ ð0.31; 0.67; 0.83Þ
6 2dFGRS 0.17 0.510� 0.060 [50] 2009 ðΩm;ΩKÞ ¼ ð0.3; 0Þ
7 GAMA 0.18 0.360� 0.090 [51] 2013 ðΩm;ΩKÞ ¼ ð0.27; 0Þ
8 GAMA 0.38 0.440� 0.060 [51] 2013
9 SDSS-LRG-200 0.25 0.3512� 0.0583 [52] 2011 ðΩm;ΩKÞ ¼ ð0.25; 0Þ
10 SDSS-LRG-200 0.37 0.4602� 0.0378 [52] 2011
11 BOSS-LOWZ 0.32 0.384� 0.095 [53] 2013 ðΩm;ΩKÞ ¼ ð0.274; 0Þ
12 SDSS-CMASS 0.59 0.488� 0.060 [54] 2013 ðΩm; h; σ8Þ ¼ ð0.307115; 0.6777; 0.8288Þ
13 WiggleZ 0.44 0.413� 0.080 [40] 2012 ðΩm; hÞ ¼ ð0.27; 0.71Þ
14 WiggleZ 0.60 0.390� 0.063 [40] 2012
15 WiggleZ 0.73 0.437� 0.072 [40] 2012
16 Vipers PDR-2 0.60 0.550� 0.120 [55] 2016 ðΩm;ΩbÞ ¼ ð0.3; 0.045Þ
17 Vipers PDR-2 0.86 0.400� 0.110 [55] 2016
18 FastSound 1.40 0.482� 0.116 [5] 2015 ðΩm;ΩKÞ ¼ ð0.270; 0Þ
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Based on the above, we compute the growth co-
efficients [17]

fM0;M1; H1; X1g

¼
�
1 − 2ν − 3ν2;−

3ð1 − νÞ
2

; 3ð1 − νÞ
�
;

from which we provide

γ∞ ¼ 6þ 3ν

11 − 12ν
:

(4) Holographic dark energy (HDE) model:Using the
holographic [61,62] principle in GR ~νðaÞ ¼ 1, one
can show that

wðaÞ ¼ −
1

3
−
2

ffiffiffiffiffiffiffiffiffiffiffiffi
ΩdðaÞ

p
3s

and

d lnΩd

d ln a
¼ −

wðaÞ
3

½1 −ΩdðaÞ�

and

E2ðaÞ ¼ Ωm0a−3

1 −ΩdðaÞ
;

where ΩdðaÞ ¼ 1 −ΩmðaÞ. Here the cosmological
parameters are Ωm0 and s. Note that the expression
of d lnE=d ln a is given by Eq. (14). We would like
to stress that the aforementioned three equations
produce a system whose solution provides wðaÞ,
ΩdðaÞ and EðaÞ.
The intrinsic features of the HDE are character-

ized by the quantity μðaÞ as follows [19]:

μðaÞ

¼
� 1 homogeneousHDE

1þ ΩdðaÞ
ΩmðaÞΔdðaÞð1þ3c2effÞ clusteredHDE

;

ð20Þ

where c2eff is the effective sound speed of the dark

energy and Δd ¼ 1þwðaÞ
1−3wðaÞ [19,63]. For the homo-

geneous HDE model (hereafter HHDE), we have
(see also Ref. [19])

fM0;M1; H1; X1g ¼
�
1; 0;

3w∞

2
;−3w∞

�
;

where w∞ ≃ −1=3, while the asymptotic value of
the growth index becomes γ∞ ¼ 4

7
. The likelihoodTA
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analysis of Ref. [32] provides Ωm0 ¼ 0.311� 0.003
and s ¼ 0.654� 0.006, from which we get
ðγ0; γ1Þ≃ ð0.558; 0.013Þ.
Moreover, for clustered HDE (hereafter CHDE)

we find

fM0;M1; H1; X1g

¼
�
1;−

ð1þ 3c2effÞ
3

;
3w∞

2
;−3w∞

�
;

and hence

γ∞ ¼ 3ð1 − c2effÞ
7

:

Notice that we impose c2eff ¼ 0, which means that
the sound horizon is small with respect to the Hubble
radius, and thus DE perturbations grow in a similar
fashion to matter perturbations [64,65].

(5) f ðTÞ gravity model (f TCDM model): Among the
large body of fðTÞ gravity models here, we focus on
the power-law scenario first introduced by Bengo-
chea and Ferraro [66], with fðTÞ ¼ αð−TÞb, where
α ¼ ð6H2

0Þ1−b ΩF0
2b−1. In this case, the dimensionless

Hubble parameter is

E2ða; bÞ ¼ Ωm0a−3 þ Ωd0E2bða; bÞ; ð21Þ

and

d lnE
d ln a

¼ −
3

2

ΩmðaÞ
½1 − bE2ðb−1ÞΩd0�

; ð22Þ

whereΩd0 ¼ 1 −Ωm0. Since b ≪ 1 [67], we use the
approximation of Nesseris et al. [68] in order to
simplify Eqs. (21) and (22), namely

E2ða; bÞ≃ E2
ΛðaÞ þ Ωd0 ln ½E2

ΛðaÞ�bþ � � � ; ð23Þ

d lnE
d ln a

≃ −
3

2
ΩmðaÞ

�
1þ Ωd0b

E2
ΛðaÞ

þ � � �
	
: ð24Þ

For this geometrical model we have ~ν ¼ 1, while the
quantity μ is given by (see Ref. [20] and references
therein)

μðaÞ ¼ 1

1þ bΩd0

ð1−2bÞE2ð1−bÞ
ð25Þ

or

μðaÞ≃ 1 −
Ωd0

E2
ΛðaÞ

bþ � � � : ð26Þ

Using the above expressions, we are ready to
compute the growth index coefficients of Eqs. (9)
and (10) (see also Ref. [20]):

fM0;M1; H1; X1g ¼
�
1; b;−

3ð1 − bÞ
2

; 3ð1 − bÞ
�
;

from which we derive

γ∞ ¼ 6

11 − 6b
:

Obviously, for b ¼ 0 we recover the ΛCDM
value 6=11.

(6) f ðRÞ gravity (f RCDM model): We would like to
finish the presentation of the cosmological models
with the fðRÞ model introduced by Hu and Sawicki.
As proposed by Basilakos et al. [69], the Lagrangian
of the current fðRÞ model can be equivalently
written as

fðRÞ ¼ R −
2Λ

1þ ðbΛR Þn
; ð27Þ

where n is a parameter of the model (we set it to
unity without loss of generality). Following the
methodology of Ref. [69], the Hubble parameter
is given in terms of a series expansion of the solution
of the equations of motion around b ¼ 0; i.e.
ΛCDM, as

H2ðaÞ ¼ H2
ΛðaÞ þ

XM
i¼1

biδH2
i ðaÞ; ð28Þ

where HΛ is the Hubble parameter of the concord-
ance ΛCDM model. Notice that δH2

i ðaÞ is a set of
algebraic quantities that can be determined from the
equations of motion; see Ref. [69]. Moreover, the
latter authors found that if we keep the two first
nonzero terms (M ¼ 2) of the series, then the
approximated Hubble parameter is in excellent
agreement with that provided by the numerical
solution. Investigating the growth index in this
model is not an easy task, since the modified
Newton’s constant is a function of both the scale
factor a and the scale k; i.e.Geff ¼ Geffða; kÞ [70]. In
particular, we have

μða; kÞ ¼ Geffða; kÞ
GN

¼ 1

F

1þ 4 k2

a2 F;R=F

1þ 3 k2

a2 F;R=F
; ð29Þ

where F ¼ f0ðRÞ, F;R ¼ f00ðRÞ, and we have scaled
Eq. (29) so that in the case of b ¼ 0 (ΛCDM) we
recover Geffða;kÞ

GN
¼ 1 as we should. Here we follow

Ref. [69] and set k ¼ 0.1hMpc−1 ≃ 300H0, while
~νðaÞ ¼ 1.
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Finally, in Ref. [13], one can see that the current
fðRÞ model predicts rather low and rather high
values for the growth index parameters,
ðγ0; γ1Þ≃ ð0.4;−0.2Þ. Due to the k-dependence of
the effective Newton’s constant, in order to obtain
the exact values of ðγ0; γ1Þ, we first need to solve
Eq. (5) numerically in order to compute γ0 ≃ lnðfð1ÞÞ

lnðΩm0Þ,
where fð1Þ is the growth rate at a ¼ 1, and then one
can utilize Eq. (13) to estimate γ1.

(7) Dvali, Gabadadze and Porrati (DGP) gravity
model: In the framework of modified gravity mod-
els, we first introduce that of Dvali, Gabadadze and
Porrati [71]. It is well known that the normalized
Hubble parameter takes the form

EðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0a−3 þΩrc

q
þ

ffiffiffiffiffiffiffi
Ωrc

p
; ð30Þ

and thus Ωrc ¼ ð1 −Ωm0Þ2=4:

d lnE
d ln a

¼ −
3ΩmðaÞ

1þΩmðaÞ
: ð31Þ

Here the quantity μðaÞ ¼ Geff=GN takes the form

μðaÞ ¼ 2þ 4Ω2
mðaÞ

3þ 3Ω2
mðaÞ

and ~νðaÞ ¼ 1. Combining the above equations with
Eqs. (9), (10), and (8), we obtain

fM0;M1; H1; X1g ¼
�
1;
1

3
;−

3

4
;
3

2

�

and γ∞ ¼ 11
16

(see also Refs. [9,12]). Similar to the
ΛCDM model, the DGP gravity model contains one
free parameter, namely Ω.

(8) Finsler-Randers dark energy model (FRDE): The
Finsler-Randers version of Finsler geometry has
been used in order to build the FRDE model (see
Ref. [72] and references therein). Interestingly, it has
been shown that the cosmic expansion of this model
coincides with that of DGP gravity [16]. Therefore,
Eqs. (30) and (31) are also valid here, and thus we
use Ωm ¼ 0.392� 0.008. Although the two dark
energy models (FRDE and DGP) are identical at the
background level, they deviate at the perturbation
level, because for the FRDE model we are dealing
with μðaÞ ¼ ~νðaÞ ¼ 1 [72]. In this case it has been
found that [32]

fM0;M1; H1; X1g ¼ f1; 0;− 3

4
;
3

2
g;

which implies γ∞ ¼ 9
16
.

IV. TENSION WITH PLANCK
AND PREVIOUS ANALYSES

At this point, we should stress that by performing the
joint analysis of all the data, including the updated growth
compilation “Gold-2017” of Ref. [33], we confirm the
existence of a tension between the growth-rate and the
Planck15 data which have been already observed, and also
for other low-redshift probes, and those discussed in the
literature (see Refs. [33,73,74]).
This tension was not so obvious in the previous analysis

of Basilakos and Nesseris [32] for two reasons: First, the
analysis was done in two steps by initially fitting the
background to the SnIa, CMB, BAO and HðzÞ data and
then fixing these best-fit parameters ðΩm;Ωbh2;…Þ before
fitting the growth-rate data. Second, not only were the
growth-rate data used an older compilation with much
bigger errors, but the corrections required due to the
Alcock-Paczynski effect, due to the different fiducial
cosmologies assumed in the derivations of the data, were
not implemented at the time, unlike in the current analysis
or that of Ref. [33]. These corrections contribute only up to
a few percent, but could in principle bias the results and are
thus necessary.
In order to understand why this tension, but also the

difference in the best-fit values of ðγ0; γ1Þ from Ref. [32],
occurs, we show in Fig. 1 the best-fit γ0 for the ΛCDM
model as a function of Ωm for various values of the σ8
parameter. As can be seen, for higher values of Ωm the new
fσ8 data push the best-fit γ0 to higher values as well—or in
other words, they are positively correlated. This means that

FIG. 1. The best-fit γ0 for theΛCDMmodel as a function ofΩm
for various values of the σ8 parameter. As can be seen, the fσ8
data push the best-fit γ0 to higher values for higher Ωm. This
means that when a Planck cosmology of Ωm ¼ 0.315 is used
(shown with a vertical dashed line), then the best fit is in the
region of γ0 ∼ 0.73, in contrast to lower values ofΩm that prefer a
value for the γ0 parameter closer to 6=11.
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when the Planck cosmology of Ωm ¼ 0.315 is used (shown
in Fig. 1 with a vertical dashed line), then the best-fit
growth index is in the range of γ0 ∼ 0.73, in contrast to
lower values of Ωm that prefer a value for the γ0 parameter
closer to 6=11≃ 0.545.
Furthermore, with the small arrow we show the Planck

ΛCDM values of ðγ0;ΩmÞ ¼ ð6=11; 0.315Þ, which is quite
far from our best fit of γ0 ¼ 0.725. Also, it is important to
note that the effect of the parameter σ8 is quite strong, as it
can strongly affect the value of the growth index. For
example, as shown in Fig. 1, by changing σ between
σ8 ∈ ½0.75; 0.85�, the growth index changes by roughly

30%. This is also part of the reason for the disagreement
with Ref. [32], as the best-fit values of σ8 in that case were
quite lower than in this analysis.
Finally, this tension could be attributed to systematics in

the low-redshift probes [73], new physics in the form of
modifications of gravity and Geff in particular [33], or even
in the form of a suppression of power at small scales [75].

V. CONJOINED ANALYSIS WITH REAL
AND MOCK DATA

In this section we implement the conjoined method of
Ref. [21] in order to distinguish the dark energy models, by

FIG. 2. The conjoined plots of the cosmic growth fσ8 vs the cosmic expansion history HðzÞ based on the real data (blue points) and
mock data (yellow points), as described in the text, for the ΛCDM, wCDM, w0waCDM and holographic models. We also show the 1σ
error regions in grey.
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placing constraints simultaneously on both the expansion
history HðzÞ and the growth of structure fσ8ðzÞ.
Specifically, Ref. [21] proposed to utilize the expansion
history together with the cosmic growth history, namely the
joined analysis of H-fσ8, as a tool for testing the perfor-
mance of the dark energy models. Obviously, in order to
obtain the conjoined histories diagram, it is essential to
provide a proper collection of the H-fσ8 data. Concerning
the cosmic history, we use the latest cosmic chronometer
HðzÞ data (see Table I and references therein), while for the
growth data we refer the reader to our Table II.

Therefore, assuming that the Universe is isotropic, our
aim is to correlate the growth as measured in the form of
fσ8ðzÞ with that of the cosmic expansion via the Hubble
measurements HðzhÞ from the cosmic chronometer data,
which are measured in the range 0.07 ≤ zh ≤ 2.34 (see
Table I). More specifically, we implement the follow-
ing steps:
(1) We note that the maximum redshift for the fσ8 data

is zmax ¼ 1.4; hence, we only keep the HðzÞ data up
to that redshift, so that we have a common sample in
the same redshift range.

FIG. 3. The conjoined plots of the cosmic growth fσ8 vs the cosmic expansion history HðzÞ based on the real data (blue points) and
mock data (yellow points), as described in the text, for the time-varying vacuum, DGP, fðRÞ and fðTÞmodels. We also show the 1σ error
regions in grey.
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(2) We then split both the fσ8 and the remaining HðzÞ
data into four equal bins3 and weight the data
according to their errors; see Ref. [76].

(3) For the combined sample we perform a statistical
analysis, and by using the models and best-fit
parameters as mentioned in the previous section,
we make the conjoined H-fσ8 curves as seen in
Figs. 2 and 3, along with real and mock data.

(4) For the region defined by the 1σ errors of the best-fit
theoretical models in theHðzÞ-fσ8ðzÞ space, we also
calculate the figure of merit (FoM), which is equal to
the inverse of the enclosed area up to the maximum
redshift range covered by both models. Then we
rank the models according to their constraining
power (see Table V). Note that the higher the
FoM, the more constraining the model becomes.

Following the previous steps, we now show in Figs. 2
and 3 the conjoined plots of the cosmic growth fσ8ðzÞ vs
the cosmic expansion history HðzÞ based on the real data
(blue points) and mock data (yellow points), for the
ΛCDM, wCDM, w0waCDM, holographic, time-varying
vacuum, DGP, fðRÞ and fðTÞ models. We also show the
1σ error regions in grey, and we use them later on to
calculate the HðzÞ-fσ8ðzÞ FoM. In these plots, the real
data of Table II were split into four equally spaced bins,
given in Table IV, while the mock data (yellow points) were
based on an LSST-like survey with data in the range z ∈
½0; 2� and a Planck15 best-fit cosmology with Ωm ¼ 0.317,
H0 ¼ 67.2 km=s=Mpc, w ¼ −1 and σ8 ¼ 0.687. Finally,
the mock data were slit into ten equally spaced red-
shift bins.
As can be seen, there is little difference between the

theoretical curves of the various models, which is in
agreement with our results in Ref. [32]. One exception
however, is the DGP model, which seems to be in strong
tension with the data, having a δχ2 ∼ 100 with the rest of
the models, again confirming our earlier analysis. However,
an LSST-like survey, as seen by the mock data (yellow
points in Figs. 2 and 3), will be able to discriminate the
models and provide stringent constraints on the cosmic
growth and expansion history. Furthermore, a survey like
this will be able to shed light on the existing tension with
Planck by providing data points with very small errors and

by minimizing the systematics that occur by combining
data from many surveys.
We also calculate the FoM in the HðzÞ-fσ8ðzÞ parameter

space in order to assess how constraining the joined
analysis of these data can be. We have defined the FoM
as the inverse of the enclosed area of the 1σ error regions in
Figs. 2 and 3 up to the common maximum redshift
zmax ¼ 1.4. We then rank all the models according to their
constraining power, noting that the higher the FoM, the
more constraining the model becomes.
The result of this comparison is shown in Table V, where

we notice that the ΛCDM model seems to be much more
constraining, followed up closely by the fRCDM and
wCDM models. As mentioned before, the DGP/Finsler
models are at the bottom of the ranking, with less than half
the constraining power of the rest of the models. Finally, we
note that the fðTÞ model is also at the bottom of the list,
something which allows us to discriminate it from the rest
of the models even though the model itself is just a
perturbation around ΛCDM. Therefore, the technique of
the conjoined analysis of both the HðzÞ and fσ8ðzÞ can in
principle discriminate some modifications of gravity
from ΛCDM.

VI. CONCLUSIONS

In our present study we implemented the H-fσ8 con-
joined method of Ref. [21] in order to test the viability of a
large family of DE models, including the ΛCDM, wCDM,
w0waCDM, holographic, time-varying vacuum, DGP, fðRÞ
and fðTÞ models. First, we combined the available cosmic
chronometer and growth data, given in Tables I and II,
respectively, and then we identified a common subsample
which extends up to redshift zmax ¼ 1.4, and we binned the
corresponding data. With this subsample and using the
best-fit parameters of the models, as described in Table III,
we then performed the conjoined analysis of the H-fσ8
parameters, the results of which can be seen in Figs. 2
and 3.
We found that even though there is little difference

between the theoretical curves of most of the models,

TABLE IV. The binned HðzÞ-fσ8ðzÞ growth data based on the
original data of Tables I and II.

Bins HðzÞ fσ8ðzÞ
0 ≤ z < 0.28 75.489� 2.718 0.394� 0.023
0.28 ≤ z < 0.56 83.572� 3.501 0.443� 0.028
0.56 ≤ z < 0.84 95.540� 2.482 0.449� 0.036
0.84 ≤ z < 1.12 129.189� 10.862 0.400� 0.110

TABLE V. The FoM in the HðzÞ-fσ8ðzÞ parameter space in
descending order, from higher FoM (more constraining) to lower
FoM (less constraining).

Model FoM

ΛCDM 0.3767
fRCDM 0.3733
wCDM 0.3589
CPL 0.3488
HDE 0.2509
ΛtCDM 0.2416
DGP 0.2288
FRDE 0.2288
fTCDM 0.2223

3We found by trial and error that this is the optimal number of
bins given the number of data in both sets.

SPYROS BASILAKOS and SAVVAS NESSERIS PHYSICAL REVIEW D 96, 063517 (2017)

063517-10



something which is in agreement with our previous results
in Ref. [32], we note that the DGP/Finsler class of models
seems to be in somewhat strong tension with the data. Also,
by analyzing all the data [CMB, SnIa, BAO, growth and
HðzÞ], we also observed a strong tension between the
growth data and Planck. As mentioned, this tension pushes
the values of the growth index γ0 and σ8 to be higher than
our previous separate analysis.
Furthermore, using a set of mock data, based on an

LSST-like survey with Planck15 cosmological parameters,
i.e. the yellow points in Figs. 2 and 3, we determined that in
the near future we will be able to discriminate the models
and provide even more stringent simultaneous constraints
on the cosmic growth and expansion history.
Using our analysis, we could also quantify the level of

the constraining power of these models by using the FoM
on the conjoined parameter space of H-fσ8. The results of
this analysis were shown in Table V. By ranking the models
according to their performance, noting that the higher the
FoM, the more constraining the model becomes, we found
that the ΛCDM model seems to be the most constraining,
followed up closely by the fRCDM and wCDM models.
Again, in agreement with our previous results, we also

found that the DGP/Finsler models are at the bottom of the
ranking, with almost half the constraining power of the rest
of the models.
Finally, we observed that the fðTÞ model is also at the

bottom of the list, something which hints that the conjoined
analysis is capable of discriminating such modified gravity
models from ΛCDM, thus proving to be a useful tool given
the plethora of dark energy or modified gravity models that
are currently available, but also the wealth of data expected
from the upcoming surveys in the next decade or so.
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