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We study relic gravitational waves in the paradigm of quintessential inflation. In this framework,
irrespective of the underlying model, inflation is followed by the kinetic regime. Thereafter, the field energy
density remains subdominant before the onset of acceleration. We carry out model-independent analysis to
obtain the temperature at the end of inflation and the estimate for the upper bound on the Hubble parameter
to circumvent the problem due to relic gravitational waves. In this process, we use Planck 2015 data to
constrain the inflationary phase. We demonstrate that the required temperature can be produced by the
mechanism of instant preheating. The generic feature of the scenario includes the presence of the kinetic
regime after inflation, which results in the blue spectrum of gravitational wave background at high
frequencies. We discuss the prospects of detection of relic gravitational wave background in the advanced
LIGO and LISA space-born gravitational wave missions. Finally, we consider a concrete model to realize
the paradigm of quintessential inflation and show that inflationary as well as postinflationary evolution
can be successfully described by the inflaton potential, VðϕÞ ∝ Expð−λϕn=Mn

PlÞðn > 1Þ, by suitably
constraining the parameters of the model.
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I. INTRODUCTION

Accelerated expansion has played an important role in
the history of our Universe. It is a common belief that the
Universe has gone through a phase of rapid expansion
dubbed inflation [1–4] at early times and it started accel-
erating once again around the present epoch [5–10]. The
standard model of the Universe, therefore, should be
complemented by two phases of acceleration. Inflation is
a beautiful paradigm that not only resolves the inconsis-
tencies of the hot big bang model but also provides a
mechanism of generation of primordial perturbations
required for structure formation. Late-time cosmic accel-
eration is needed to address the age problem in the standard
model. The phenomenon was detected in 1998 by super-
novae observations [11,12] and was supported by other
probes indirectly thereafter [13–15]. Similar confirmation
for cosmological inflation is not available at present.
Cosmic acceleration is a generic phenomenon in our

Universe that manifests at early and late times, keeping
the thermal history intact. Often, these two phases are
described independently. As for late-time acceleration, a
variety of scalar field models has been investigated in
the literature since 1998. At the background level, the
cosmology community seems to converge on the cosmo-
logical constant as the underlying cause of said phenomenon.

Even if acceleration is caused by a slowly rolling scalar
field, the latter is not distinguished from the cosmological
constant at the background level. As for perturbations,
the study of large scale structure might reveal if there is
something beyond ΛCDM (Λþ cold darkmatter). The cur-
rent observational constraints related to inflation are tight
such that many popular models are on the verge of being
ruled out. We should emphasize that in a successful model
inflation should be followed by an efficient reheating also.
It is interesting to ask whether a successful model of

inflation can also describe late-time acceleration without
interfering with the thermal history of Universe or if an
inflaton can be dark energy. Unification of inflation with
late-time acceleration or dark energy is termed quintessen-
tial inflation [16–33]. It is indeed challenging to describe
inflation and late-time acceleration using a single scalar
field. At the onset, it sounds possible if the field potential is
shallow at early and late stages and steep for most of the
history of the Universe. First, the model should comply
with all the observational constraints related to inflation
and should give rise to successful reheating, which is itself
a difficult task. As we pointed out, the current observational
constraints are quite tight, putting many known models in
tension. Second, the conventional reheating mechanism
[16,34–40] is not applicable to this class of models as the
field potential is typically the runaway type. However, in
this case, one can invoke an alternative mechanism dubbed
instant preheating [41–44]. It is desirable that we have a
scaling regime [45] after inflation allowing inflaton to go
into hiding till late times, which is necessary to keep the
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thermal history intact. To what extent the field should
be hidden is decided by the nucleosynthesis constraint. In
this case, unlike the thawing picture, evolution, to a great
extent, is independent of initial conditions.
The generic feature of quintessential inflation includes

the presence of the kinetic regime [21,25,44] that follows
inflation. The duration of the regime depends upon the
temperature at the end of inflation. The energy density of
relic gravitational waves [44,46–54] as compared to the
field energy density enhances during the kinetic regime
and might challenge the nucleosynthesis constraint at the
commencement of the radiative regime. The distinguished
signature of the unification, irrespective of the underlying
model, includes the production of relic gravitational waves
with the blue spectrum. Clearly, an alternative reheating
mechanism is needed in this case to circumvent the problem.
Let us note that the generalized exponential potential

VðϕÞ ∝ Expð−λϕn=Mn
PlÞ; ðn > 1Þ [55] can successfully

realize the paradigm of quintessential inflation. This
potential has a remarkable property: it is shallow around
ϕ ¼ 0 and steep thereafter. Thanks to an additional param-
eter n compared to standard exponential, the model can
comply with observational constraints on inflation. Second,
the model shares the property of a simple steep exponential
potential [20,21,28,56–58] at late times; namely, the
approximate scaling regime is a late-time attractor in this
case as Γ ¼ V 00V=V 02 → 1 for large values of the field.
Last but not least, we need to exit from the scaling

regime around the present epoch. This can be achieved by
invoking nonminimal coupling to massive neutrino matter
(see Refs. [30,55,59–65] and references therein for details).
The coupling appears at late stages as neutrinos turn non-
relativistic. As a result, the effective potential for the field
acquires aminimumwhere the field can settle, causingan exit
from the scaling regime to late-time cosmic acceleration.
In this paper, we first carry out a model-independent

analysis to obtain the temperature at the end of inflation and
the estimate on the upper bound of the Hubble parameter
to circumvent the problem due to relic gravitational waves.
We also investigate an alternative reheating mechanism
suitable to the scenario under consideration. Finally, we
discuss a model of quintessential inflation that can success-
fully realize the paradigm. Throughout this paper, MPl
denotes the reduced Planck mass.

II. RELIC GRAVITATIONAL WAVE SPECTRUM

In this section, we shall study relic gravitational waves in
the scenario of quintessential inflation. The evolution of
tensor perturbations, hij, is given by the Klein-Gordon
equation

□hij ¼ 0 → φ̈kðτÞ þ 2
_a
a
φkðτÞ þ k2φkðτÞ ¼ 0;

hij ∼ φkeikxeij; ð1Þ

where eij is the polarization tensor, τ (dτ ¼ dt=a) is the
conformal time, and k is the comoving wave number.
For simplicity, we shall consider the exponential inflation,
namely, a ¼ τ0=τ and Hin ¼ −1=τ0. The positive fre-
quency solution of Eq. (1) in the adiabatic vacuum

corresponds to the “in” state, φðþÞ
in ðk; τÞ,

φðþÞ
in ðk; τÞ ¼ ðπτ0=4Þ1=2ðτ=τ0Þ3=2Hð2Þ

3=2ðkτÞ; ð2Þ

where Hð2Þ
3=2 is the Hankel function of the second kind.

In a scenario of quintessential inflation, the Universe
enters into the kinetic phase with a stiff equation of state
parameter soon after the inflation ends [21,25]. This
transition involves the nonadiabatic change of space-time
geometry. Assuming for simplicity that the postinflationary
dynamics is described by the power law expansion, i.e.,
a¼ðt=t0Þp≡ ðτ=τ0Þ1=2−μ where μ≡ ð3ðw− 1Þ=2ð3wþ 1ÞÞ
with w being the postinflationary equation of state param-
eter. Let us note that μ ¼ 0 in the kinetic regime (w ¼ 1).
As for the “out” state, it contains both positive and negative
frequency solutions of (1),

φout ¼ αφðþÞ
out þ βφð−Þ

out ; ð3Þ

where α and β designate the Bogoliubov coefficients [21]
and

φðþ;−Þ
out ¼ ðπτ0=4Þ1=2ðτ=τ0ÞμHð2;1Þ

jμj ðkτÞ: ð4Þ

We then estimate the energy density of relic gravitational
waves [21,48],

ρg ¼ hT00i ¼
1

π2a2

Z
dkk3jβj2: ð5Þ

During the kinetic regime, jβkinj2 ∼ ðkτkinÞ−3, using then
Eq. (5) and the fact that Hin ¼ −1=τ0, we obtain

ρg ¼
32

3π
h2GWρb

�
τ

τkin

�
; ð6Þ

where ρb denotes the background energy density and
contains radiation and stiff scalar matter in the kinetic
regime. We have hereby assumed that the generation of
radiation takes place at the end of inflation thanks to some
mechanism to be specified in the subsequent section.
Since, at the equality of radiation and scalar field energy

densities (τ ¼ τrh),

τrh
τkin

¼
�
Tkin

Trh

�
2

ð7Þ

and ρb ¼ 2ρr, we find using Eq. (6)
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�
ρg
ρr

�
rh
¼ 64

3π
h2GW

�
Tend

Trh

�
2

; ð8Þ

where hGW is the dimensionless amplitude of the gravita-
tional waves given by

h2GW ¼ H2
inf

8πM2
Pl

¼ V inf

24πM4
Pl

; ð9Þ

where V inf is the value of the inflationary potential at the
time the cosmological scales exit the horizon and can be
fixed by imposing the COBE normalization [66,67].
Equations (7) and (8) imply that a longer kinetic regime,

i.e., large τrh, would correspond to smaller Trh and hence
the larger value of ρg=ρr at equality. As given in Ref. [21], it
can be shown from (5) that for w > 1=3, ρg ∝ 1=a4 and for
w < 1=3, ρg ∝ ρb; during the radiation era also, ρg approx-
imately tracks the background. For w ¼ 1=3 (radiation),
log factor appears.1

For simplicity,2 we hereby assume that the kinetic regime
(ρϕ ∝ 1=a6) immediately follows inflation; thus, we can
use the approximation, Hend ≃Hkin and Tend ≃ Tkin. Since
Trh ∼ Tendðaend=arhÞ, we find

�
ρϕ
ρr

�
end

¼
�
Tend

Trh

�
2

ð10Þ

and the following important relation:

�
ρϕ
ρr

�
end

¼ 3π

64

�
ρg
ρr

�
rh

1

h2GW
: ð11Þ

From COBE normalization, we find that

V1=4
inf ¼ 0.013r1=4MPl; ð12Þ

where r is the scalar-to-tensor ratio. Combining this with
Eq. (9) and inserting it into Eq. (11), we find

�
ρϕ
ρr

�
end

¼ 9π2

8

�
ρg
ρr

�
rh

M4
Pl

V inf
≲ 3.88 × 106

r
; ð13Þ

where we have used the constraint on the ratio, ðρg=ρrÞrh ≲
0.01 as imposed by nucleosynthesis. We can compute the
temperature at the end of inflation by using the fact that
the cosmological scales, k, that cross the horizon during
inflation and the scales that reenter it at a later time satisfy
the relation k ¼ ainfHinf ¼ a0H0, which implies that

k
a0H0

¼ ainf
aend

aend
a0

Hinf

H0

⇒ e−N
T0

Tend

Hinf

H0

¼ 1: ð14Þ

For N ¼ 65, we find that

Tend ¼ 1.99 × 1015r1=2 GeV: ð15Þ

Now, the upper bound on the value of the Hubble parameter
at the end of inflation, Hend, can be obtained from Eq. (13),
and using the fact that ρr;end ¼ T4

end,

Hend ≲ 1.85 × 1015r1=2 GeV: ð16Þ

However, the bound (16) should be consistent with the
estimate forHinf obtained after using COBE normalization,
namely, Hinf ≃ 2.37 × 1014r1=2 GeV. In general, the ratio
Hinf=Hend is more than a few, in the realistic scenarios with
graceful exit. Clearly, Hinf ¼ Hend in case of de Sitter.
Thus, we can take Hend ≲Hinf for estimates, which is
clearly a more conservative bound than (16). The bound
on Hend in turn gives us the bound on Vend, which is
Vend ≲ 1.15 × 10−6rM4

Pl. Again, we know that Vend can at
most take the value of V inf .
Since the potential in the model of quintessential

inflation is generically the runaway type, the conventional
reheating mechanism does not operate in this case.
Gravitational particle production is a known possibility.
After inflation, the geometry of space-time undergoes a
nonadiabatic process, which gives rise to particle produc-
tion. Let us note that gravitational particle production gives
rise to the energy density [16,34]

ρr;end ≃ 0.01gpH4
end; ð17Þ

where gp is the number of different particles produced,
which is typically ∼10–100, and since Hend ≲Hinf , we
find that

�
ρϕ
ρr

�
end

≃ ρϕ;end
0.01gpH4

end

≳ 2.1 × 1010g−1p
r

: ð18Þ

In the aforementioned model-independent discussion, we
have used Hend ≃Hinf . For an exact relation between these
quantities, we need a concrete model. However, in models
with r ≪ 1 such as the Starobinsky inflation model [1],
Hinf is close toHend. Thus, in general, the respective energy
density produced due to gravitational particle production
misses the nucleosynthesis constraint imposed by relic
gravitational waves (13) by at least 2 orders of magnitude,
which is related to the fact that the temperature of radiation
due to gravitational particle production Tg

end is somewhat
less than Tend (15), namely, Tg

end ≃ 2.63 × 1014r1=2 GeV.
In the scenario under consideration, due to the steep
postinflationary behavior of the potential, the field enters
the kinetic regime soon after inflation ends and remains

1Precisely, ρg ∝ a−4 logðτ=τ0Þ ∝ a−4 logðaÞ, but we have
ignored the logarithmic factor as its contribution is negligible
during evolution.

2It is supported by numerical simulation.
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there for a long time in view of the aforementioned. Clearly,
the problem of relic gravitational waves in quintessential
inflation is associated with the longevity of the kinetic
regime. During this time, the energy density in gravitational
waves enhances compared to the field energy density
challenging the nucleosynthesis constraint at the com-
mencement of the radiative regime. We naturally require
a more efficient process to circumvent the problem; one
should then look for a suitable reheating mechanism.
We are now in a position to discuss the gravitational

wave spectrum. The fractional spectral energy density
parameter of the relic gravitational wave is defined as

ΩGWðkÞ ¼
~ρgðkÞ
ρc

; ð19Þ

where ρc denotes the critical energy density (see Ref. [21]
for details) and ~ρgðkÞ is the spectral energy density

~ρgðkÞ ∝ k1−2jμj; μ ¼ 3

2

�
w − 1

3wþ 1

�
: ð20Þ

From the above equation, we see that during the kinetic
regime, i.e., for w ¼ 1, ρgðkÞ ∝ k, giving rise to a blue
spectrum in the wave spectrum. This is a generic feature of
any model of quintessential inflation in which the scalar
field enters into the kinetic regime after inflation.
We also have the relations

ΩðMDÞ
GW ¼ 3

8π3
h2GWΩm0

�
λ

λh

�
2

; λMD < λ ≤ λh; ð21Þ

ΩðRDÞ
GW ðλÞ ¼ 1

6π
h2GWΩr0; λRD < λ ≤ λMD; ð22Þ

ΩðkinÞ
GW ðλÞ ¼ ΩðRDÞ

GW

�
λRD
λ

�
; λkin < λ ≤ λRD; ð23Þ

with

λh ¼ 2cH−1
0 ; ð24Þ

λMD ¼ 2π

3
λh

�
Ωr0

Ωm0

�
1=2

; ð25Þ

λRD ¼ 4λh

�
Ωm0

Ωr0

�
1=2 TMD

Tend
; ð26Þ

λkin ¼ cH−1
kin

�
Tend

T0

��
Hkin

Hend

�
1=3 ≃ cH−1

end

�
Tend

T0

�
; ð27Þ

where “MD,” “RD,” and “kin” designate matter, radiation,
and kinetic energy dominated epochs;H0,Ωm0, andΩr0 are
the present values of the Hubble parameter, dimensionless
density parameters corresponding to matter energy density,

and radiation energy density; and Tend and Hend denote the
temperature and Hubble parameter at the end of inflation,
respectively. We note that in Eq. (22) we again ignore the
insignificant logarithmic correction.

III. INSTANT PARTICLE PRODUCTION
AND PREHEATING

We hereby emphasize once again that the gravitational
particle production is quite inefficient for circumventing
the problem due to relic gravitational waves; one therefore
should look for an alternative mechanism. One of the
alternatives suitable to the class of models similar to the
one we are going to discuss in the next section is based
upon instant particle production dubbed instant preheating,
which proceeds as follows. We assume that the scalar
field, ϕ, interacts with some other scalar field, χ, which
interacts with the Fermion field, ψ ,

Lint ¼ −
1

2
g2ϕ2χ2 − hψ̄ψχ; ð28Þ

where g and h denote the coupling constants, assumed to be
positive for convenience, and g; h < 1 for the perturbation
treatment to be applicable. In this case, χ does not have a
bare mass. However, the χ field has an effective mass that
grows with ϕ as mχ ¼ gjϕj. The Lagrangian is specially
designed to give rise to this feature. As inflation ends, the
field ϕ enters the kinetic regime as the potential is very
steep in the postinflationary regime. Consequently, the field
ϕ rolls down its potential fast soon after inflation ends.
Since the mass of χ depends upon ϕ, we can shift the field
as ϕ → ϕ0 ¼ ϕ − ϕend such that the effective mass of χ
vanishes at the end of inflation. However, the Lagrangian
(28) does not obey shift symmetry, and thus we need to
assume an enhanced symmetry in the Lagrangian, which
can be achieved by adding a suitable counterterm to (28).
It is important to check how mχ changes with time around
the transition from inflation to the kinetic phase. The
nonadiabatic change in mχ is crucial for particle produc-
tion. Indeed, the production of χ particles takes place when
the adiabaticity condition is violated, i.e.,

j _mχ j ≳m2
χ ⇒ j _ϕj≳ gϕ2: ð29Þ

The above condition is satisfied if

jϕj≲ jϕpj ¼
ffiffiffiffiffiffiffiffiffi
_ϕend

g

s
: ð30Þ

The equation-of-state parameter for the inflaton field is
given by

ωϕ ¼
_ϕ2 − 2V
_ϕ2 þ 2V

: ð31Þ
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Now, using the fact that inflation ends when ωϕ increases
to −1=3, we find that

_ϕend ¼
ffiffiffiffiffiffiffiffiffi
Vend

p
: ð32Þ

Considering the fact that ϕp ≲MPl, Eq. (30) gives us the
bound on the coupling g,

_ϕend

g
≲M2

Pl → g ≫
1

M2
Pl

ffiffiffiffiffiffiffiffiffi
Vend

p
: ð33Þ

In addition, the production time of χ particles is given by

δtp ∼
jϕj
_ϕ

¼ ðg _ϕendÞ−1=2: ð34Þ

The uncertainty relation allows us to obtain the momentum,

kp ≃ ðδpÞ−1 ≃
ffiffiffiffiffiffiffiffiffiffiffi
g _ϕend

q
. Following Refs. [39,42], the occu-

pation number of χ is given by

nk ∼ exp

�
−
πk2

k2p

�
: ð35Þ

which allows us to estimate the number density of χ
particles,

Nχ ¼
1

ð2πÞ3
Z

∞

0

nkd3k⃗ ¼ ðg _ϕendÞ3=2
ð2πÞ3 ; ð36Þ

and their total energy density

ρχ ¼ Nχmχ ¼
g2Vend

8π3
: ð37Þ

Assuming that at the end of inflation the produced energy is
thermalized instantaneously, we obtain

�
ρϕ
ρr

�
end

≃ 12π3

g2
: ð38Þ

The above equation combined with Eq. (13) gives the lower
bound on the coupling g,

g≳ 9.78r1=2 × 10−3: ð39Þ

Now, since

δtpHend ≃ 1

MPl
ffiffiffiffiffi
2g

p ðVendÞ1=4 < 9.29 × 10−2

⇒ δtp ≪ H−1
end; ð40Þ

the expansion is negligible during the particle production. It
should be noted that, since ϕp ≲ 0.13MPl, the production of
particles commences immediately after the inflation ends.

In the postinflationary regime, the scalar field ϕ rolls down
its potential faster, and hence the effective mass gjϕj of
the scalar field χ grows, which facilitates the decay of χ
particles into fermions. The decay rate is given by

Γψ̄ψ ¼ h2mχ

8π
¼ h2

8π
gjϕj: ð41Þ

Around the end of inflation, ρϕ ∝ 1=a2 and diminishes
more slowly than ρχ with the expansion of the Universe.3

We now should arrange the decay rate of χ into matter fields
such that the decay takes place before the backreaction of χ
on ϕ evolution becomes important, which implies that

Γψ̄ψ ≫ Hend ⇒ h2 ≳ 8π
Hend

gjϕj : ð42Þ

For ϕ≲MPl, the above condition gives us the lower bound
on the coupling h, namely, h ≳ 0.13g−1=2r1=4. In Fig. 1, we
depict the allowed values of g and h, which shows that we
have a wide parameter space for an efficient preheating
to occur.
Figure 2 illustrates the spectral energy density (ΩGW)

of the relic gravitational wave background for the temper-
ature Tend ¼ 6.29 × 1013 GeV, which corresponds to g ¼
1.96 × 10−3 (for r≃ 10−3) of the coupling, along with the

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
2.0

1.5

1.0

0.5

0.0

FIG. 1. Figure shows the parameter space of (g, h), while the
shaded region gives the allowed values of the parameters
for efficient preheating to occur. We have used r ¼ 10−3 to plot
this figure.

3Immediately after inflation ends (ωϕ ¼ −1=3), ρϕ ∼ 1=a2;
thereafter, it redshifts faster and enters the kinetic regime. Since
the kinetic regime establishes quickly after inflation, the estimates
change insignificantly if we identify the end of inflation with the
commencement of the kinetic regime.
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sensitivity curve of AdvLIGO [68,69] and LISA [70,71].
The figure shows that the spectrum is blue at high
frequencies.

IV. SUCCESSFUL MODEL OF
QUINTESSENTIAL INFLATION

We shall now check whether we can realize the afore-
mentioned requirement in a particular model of quintes-
sential inflation. To this effect, we shall consider a model
based upon the following generalized exponential potential
with two parameters n and λ,

VðϕÞ ¼ V0e−λϕ
n=Mn

Pl ; n > 1: ð43Þ

Using the expressions of slow-roll parameters,

ϵ≡M2
Pl

2

�
Vϕ

V

�
2

; η≡M2
Pl

Vϕϕ

V
; ð44Þ

we have the standard expressions for the scalar spectral
index (ns) and tensor-to-scalar ratio (r) as

ns − 1 ¼ −6ϵþ 2η; r ¼ 16ϵ: ð45Þ

In the flat Friedmann-Robertson-Walker (FRW) back-
ground, the slow-roll parameter, ϵ, for the generalized
exponential potential (43) is given by

ϵ ¼ 1

2
n2λ2

�
ϕ

MPl

�
2n−2

; ð46Þ

which shows that slow roll takes place for ϕ=MPl ≪ 1,
whereas the potential is steep for large values of the field.
Using the condition for the end of inflation, namely,
ϵjϕ¼ϕend

¼ 1, and the expression for the number of the
e-foldings,

N ¼
Z

tend

t
Hdt0 ¼ −M−2

Pl

Z
ϕend

ϕ

Vðϕ0Þdϕ0

dVðϕ0Þ=dϕ0 ð47Þ

¼ 1

nλðn − 2Þ
��

ϕ

MPl

�
2−n

−
�

2

n2λ2

� 2−n
2n−2

�
; ð48Þ

we estimate the numerical value of ϕ at the commencement
of inflation,

ϕ

MPl
¼

�
nðn − 2ÞλN þ

�
2

n2λ2

� 2−n
2n−2

� 1
2−n

: ð49Þ

We can then eliminate ϕ from the slow-roll parameter, ϵ,
in favor of model parameters n and λ and the number of
e-folds by inserting the above expression for ϕ as

ϵ ¼ 1

2
n2λ2

�
nλðn − 2ÞN þ

� ffiffiffi
2

p

nλ

�2−n
n−1
�2ðn−1Þ

2−n

: ð50Þ

We shall use the relation (50) in the subsequent dis-
cussion for the estimation of Vend. Current observations,
namely, the Planck 2015 results, impose constraints on the
model parameters n and λ. Indeed, the predictions of the
model are within the 2σ bound, provided that n≳ 5 and
λ≲ 10−4; see Refs. [55,72].
The radiation energy produced due to the production

of the particle at the end of inflation [16,34],

ρr;end ≃ 0.01gpH4
end; ð51Þ

can now be calculated exactly. Choosing r¼ 10−3,N ¼ 65,
and n ¼ 6 and making use of Eqs. (45) and (50), we
find that λ ¼ 8.08 × 10−6. In addition, using COBE nor-
malization, we can estimate V0 ¼ 3.4 × 10−8rM4

Pl and
Vend ¼ 5.39 × 10−9rM4

Pl so that�
ρϕ
ρr

�
end

≃ ρϕ;end
0.01gpH4

end

≃ 1.11 × 1011g−1p
r

: ð52Þ

Clearly, the radiation energy density is very low in this
case, only one part in 1012 (assuming gp ≃ 100 and
r≃ 10−3) as compared to the field energy density at the

0 5 10 15 20 25

15

10

5

0

Log10 cm

L
o

g
10

G
W

AdvLIGO

LISA

FIG. 2. Spectral energy density of the relic gravitational wave
background for different temperatures have been plotted. The
blue (dashed) line corresponds to Tend ¼ 6.29 × 1013 GeV ob-
tained using COBE normalization, while the red (long dashed)
and green (dotted) lines have been plotted using the model we
have considered in Sec. IV for temperatures Tend ¼ 2.09 × 1013

and 2.09 × 1014 GeV, respectively. The numerical values of
model parameters are taken to be n ¼ 6, r ¼ 10−3 and
λ ¼ 8.08 × 10−6. Also, we have considered N ¼ 65 (behavior
does not seem to change significantly for the variation of N ),
where black solid curves represent the expected sensitivity curves
of Advanced LIGO and LISA.
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end of inflation, and violates the constraint on ðρϕ=ρrÞend
put by nucleosynthesis (13). Also note that for this model
the ratioHinf=Hend, for r≃ 10−3, is found to be 1.87, which
implies that Hinf is very close to Hend for r ≪ 1 as we have
mentioned in Sec. II. This ratio is larger for a larger value
of r. For the model under consideration, one can invoke the
instant preheating mechanism as explained in the previous
section. In this case, the lower bound on the temperature
at the end of inflation can be calculated using Eq. (11)
together with the constraint on ratio, ðρg=ρrÞrh ≲ 0.01, due
to nucleosynthesis as

ρr;end ≳ 9V2
0

M4
Pl

exp

�
−λ

�
nλðn − 2ÞN þ

� ffiffiffi
2

p

nλ

�2−n
n−1
� n

2−n

þ
� ffiffiffi

2
p

nλ

� n
n−1
�

⇒ Tend ¼ ρ1=4r;end ≳ 4.9r1=2 × 1014 GeV; ð53Þ
which is consistent with the model-independent estimate
obtained earlier. Now that we have a lower bound on Tend,
using Eq. (14), we can obtain a bound on the number of
e-foldings in this model, namely, N ≲ 66.4. Note that the
number of e-foldings depends on the temperature at
the end of inflation and would be even more than this
for the temperature of radiation due to gravitational particle
production.
Also, the lower bound on the coupling constant h, for

n ¼ 6, is found to be h ≳ 0.12g−1=2r1=4. Clearly, the model
under consideration successfully implements the paradigm
of quintessential inflation. Last but not least, we should
emphasize that it is challenging to find a model that can
implement all the requirements of the scenario listed in the
introduction.

V. CONCLUSIONS

In the scenario of quintessential inflation, the field enters
the steep region of the potential soon after inflation ends,
such that ρϕ ∝ a−6 à la the kinetic regime. The duration of
this phase, which generally follows inflation in the scenario
of the quintessential inflation, irrespective of the field
potential, depends upon the temperature at the end of
inflation. A longer kinetic regime or the lower value of Tend
implies the enhancement of the energy density in relic
gravitational waves compared to the field energy density
and might challenge the nucleosynthesis constraint at the
commencement of the radiative regime. The temperature at
the end of inflation can be estimated fromHinf , the value of
which is fixed using COBE normalization. The estimate on
the temperature is found to be Tend ≃ 1.99r1=2 × 1015 GeV.
We certainly need a reheating mechanism other than the
standard one, which is not operative in the case of quintes-
sential inflation. The gravitational particle production is a
quantum mechanical process of particle creation from the
vacuum. The leading contribution to the energy density of

created particles in this process comes from the epoch when
the transition from acceleration to deceleration takes place,
namely, from the end of inflation. Using the estimate for
Hend ≃Hinf , we estimated the temperature of radiation
created during this process. The radiation temperature so
estimated turns out to be less than Tend, challenging the
nucleosynthesis constraint.
To set the goal, we implemented the instant preheating,

which is based upon the assumption that ϕ interacts with
an auxiliary scalar field χ with the coupling g, which then
interacts with the matter field with the coupling strength h.
We have found a wide range in the parameter space, ðg; hÞ,
which allows us toobtain thedesired temperature (seeFig. 1).
The generic feature of the paradigm of quintessential

inflation includes the relic gravitational wave background
with the blue spectrum produced during the transition from
inflation to the kinetic regime. In Fig. 2, we depict the
spectral energy density of relic gravitational waves for the
temperature at the end of inflation, which we have
estimated model independently, as well as for the temper-
atures we have calculated from the model we have
considered. We have also plotted the proposed sensitivity
curves for advanced LIGO and LISA. As seen in the figure,
the blue spectrum appears at high frequencies, which
clearly distinguishes the paradigm of quintessential infla-
tion from conventional inflation.
We show that the aforementioned requirements of

quintessential inflation, which are model independent,
can be successfully met by a model based upon the inflaton
potential, V ∝ Expð−λϕn=Mn

PlÞ; ðn > 1Þ. This potential
has an interesting property; namely, its slope goes as
ϕn−1, giving rise to slow roll for small ϕ, whereas it
exhibits steep behavior at late stages for large values of the
field. As demonstrated in Refs. [55,72], the model under
consideration leads to a viable postinflationary dynamics.
In particular, the scaling solution is an attractor of the
dynamics, namely, an approximate scaling solution, despite
n > 1 in (43). In this case, the late-time exit from scaling
regime to cosmic acceleration may be successfully realized
by invoking nonminimal coupling of the field with massive
neutrino matter [55,72]. The present scenario, therefore, is
of great interest; it provides a successful unification of
inflation and late-time cosmic acceleration.
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