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We consider a dark matter model offering a very natural explanation of the observed relation,
Ωdark ∼ Ωvisible. This generic consequence of the model is a result of the common origin of both types of
matter (dark and visible) which are formed during the same QCD transition. The masses of both types of
matter in this framework are proportional to one and the same dimensional parameter of the system, ΛQCD.
The focus of the present work is the detailed study of the dynamics of the CP-odd coherent axion field aðxÞ
just before the QCD transition. We argue that the baryon charge separation effect on the largest possible
scales inevitably occurs as a result of merely the existence of the coherent axion field in the early Universe.
It leads to preferential formation of one species of nuggets on the scales of the visible Universe where the
axion field aðxÞ is coherent. A natural outcome of this preferential evolution is that only one type of the
visible baryons remains in the system after the nuggets complete their formation. This represents a specific
mechanism of how the baryon charge separation mechanism (when the Universe is neutral, but the visible
part of matter consists of the baryons only) replaces the conventional “baryogenesis” scenario.
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I. INTRODUCTION

The nature of dark matter (DM) and the asymmetry
between matter and antimatter are generally assumed to be
two unrelated open questions in cosmology. However, we
advocate a model, originally suggested in Refs. [1,2], that
these two fundamental, naively unrelated, questions are, in
fact, closely interconnected. In this model, the matter-
antimatter asymmetry (the so-called baryogenesis) is just a
CP-violating charge separation process which occurs as a
result of a coherent CP-odd axion field over the whole
Universe. The unobserved antibaryons in this framework
come to comprise the DM in the form of the dense heavy
nuggets, similar to Witten’s strangelets [3].
This work is the continuation of our previous studies [4]

with the main focus on the evolution of a single nugget. A
related but distinct question on the global CP-violating
separation of baryonic charge was mentioned in Ref. [4]
without any quantitative computations.
The main goal of the present work is to present robust

arguments (supported by the detail analytical and numerical
computations) that a sufficiently strong global CP violation
in form of the fundamental axion field θðxÞ inevitably leads
to such a separation of baryon charges. This phenomenon
of separation precedes the QCD transition.1 As we argue in
the present work, this axion θðxÞ field can be thought of as

Berry’s phase, which is coherently accumulated on the
largest possible scales of the visible Universe. Precisely this
coherence leads to a preferential evolution of the nuggets
when one type of visible baryons (not antibaryons) prevails
in the system. This source of strong CP violation is no
longer available at the present epoch as a result of the axion
dynamics; see the original papers [6–8], recent reviews
[9–16], and recent results/proposals on the axion search
experiments [17–29].
The basic consequence of this framework is that the

visible and dark matter densities are of the same order of
magnitude [4]:

Ωdark ≈ Ωvisible: ð1Þ

This is a very generic consequence of the entire framework,
and it is not sensitive2 to the parameters of the system, such
as the axion mass ma. In our framework, the relation (1)
emerges in a very natural way because both types of matter
(visible and dark) are proportional to a single dimensional
parameter of the system, ΛQCD.
The very generic relation (1) of this framework is also

not sensitive to the initial value θ0 of the coherent axion
field when it starts to oscillate. This should be contrasted
with conventional mechanisms (such as production of the
axions due to the misalignment mechanism or due to the1It is known that the QCD transition is actually a crossover

rather than a phase transition [5] at θ ¼ 0. At a nonvanishing
θ ≠ 0, the phase diagram is not known. However, in context of
the present paper, the important factor is the scale Tc ∼ 170 MeV
where transition happens rather than its precise nature. This
region on the QCD phase diagram is denoted by blue dashed line
in the vicinity of Tc shown in Fig. 1.

2The axion’s mass maðTÞ as a function of the temperature at
T > Tc has been computed using the lattice simulations by
different groups [30–33] with somewhat contradicting results. As
we argue in Sec. IV, our main claim (1) is insensitive to a precise
value of the axion mass ma.
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domain-wall network decay) which are highly sensitive to
these parameters as Ωaxion ∼ θ20m

−7=6
a ; see reviews [9–16].

In particular, the observed ratio Ωdark ≃ 5 ·Ωvisible would
correspond to a slight asymmetric excess of antinuggets
compared to the nuggets by a factor of∼0.5 at the end of the
nugget’s formation, if one assumes that the nuggets saturate
the dark matter density today. Thus, the approximate
observed ratio Ωdark ≃ 5 · Ωvisible roughly corresponds to

jBvisiblej∶jBnuggetsj∶jBantinuggetsj≃ 1∶2∶3; ð2Þ

such that the net baryonic charge is zero.
The quark nuggets at zero temperature satisfy the main

criteria to be the DM candidates as they are absolutely stable
configurationsmade of quarks and gluons surrounded by the
axion domain wall as described in the original paper [1].
However, unlike conventional dark matter candidates, such
as weakly interacting massive particles (WIMPs), the dark-
matter/antimatter nuggets aremacroscopically large objects,
and they strongly interact with visible matter. The quark
nuggets do not contradict the observational constraints on
dark matter or antimatter for three main reasons [34]:

(i) They carry very large baryon charge jBj≳ 1025, and
so their number density is very small ∼B−1. As a
result of this unique feature, their interaction with
visible matter is highly inefficient, and therefore the
nuggets perfectly qualify as DM candidates. In
particular, the quark nuggets essentially decouple
from Cosmic Microwave Background (CMB)
photons, and therefore they do not destroy the
conventional picture for the structure formation.

(ii) The core of the nuggets have nuclear densities.
Therefore, the relevant effective interaction is very
small σ=M ∼ 10−10 cm2=g. Numerically, it is com-
parable with conventional WIMPs values. There-
fore, it is consistent with the typical astrophysical
and cosmological constraints which are normally
represented as σ=M < 1 cm2=g.

(iii) The quark nuggets have very large binding energy
due to the large gap Δ ∼ 100 MeV in superconduct-
ing phases. Therefore, the baryon charge is so
strongly bounded in the core of the nugget that it
is not available to participate in big bang nucleo-
synthesis at T ≈ 1 MeV, long after the nuggets had
been formed.

We emphasize that the weakness of the visible-dark matter
interaction in this model is due to a small geometrical
parameter σ=M ∼ B−1=3 which replaces the conventional
requirement of sufficiently weak interactions for WIMPs.
We conclude this Introduction with the following remark.

We consider the model which has a single fundamental
parameter (the mean baryon number of a nugget hBi ∼ 1025,
corresponding to the axionmassma ≃ 10−4 eV). It has been
shown that this model is consistent with all known obser-
vations, including the satellite and ground-based constraints.

It has been also shown that there is a number of frequency
bandswhere some excess of emissionwas observed, and this
model may explain some portion or even the entire excess of
the observed radiation in these frequency bands. We refer to
the recent short review [35] with a large number of
references on original computations which have been
carried out for each specific frequency band where some
excess of radiation has been observed.
The paper is organized as follows. In Sec. II, we overview

the big picture of our framework when the “baryogenesis” is
replaced by the baryon charge separation scenario, and the
DM is represented by quark nuggets and antinuggets.We list
the crucial ingredients of the entire framework by paying
special attention to the role the coherent CP-odd axion field
discussed in details in Sec. II E.
Essentially, the main objective of the present work is to

elaborate on this specific key element of the proposal which
has not received sufficient attention in the previous paper
[4]. Our goal of this work is to present solid quantitative
computations suggesting that this coherent CP-odd axion
field generates the disparity between nuggets and anti-
nuggets. This asymmetry automatically leads to the relation
(1) which we claim is a very generic consequence of the
entire framework.
The readers who are not interested in any technical

details may skip the next two sections (Secs. III and IV) and
jump directly to the concluding Sec. V.
In Sec. III, we argue that the nuggets and antinuggets

behave in a drastically different way as a result of interaction
with this CP-odd coherent cosmological axion field. Finally,
in Sec. IV, we argue that the difference in the evolution of the
nuggets and antinuggets is always of the order 1 effect, being
insensitive to initial conditions and to the dynamical
parameters of the system. As a result, the main claim of
this proposal represented by Eq. (1) is a very robust
consequence of the framework and is not a result of any
fine-tuning adjustments.

II. BIG PICTURE AND THE CRUCIAL
ELEMENTS OF THE PROPOSAL

In this section, we summarize the crucial elements of the
proposal which describe the formation of the nuggets.
These ingredients determine the basic properties of the
nuggets, such as the size, local accretion of baryonic
charge, abundance, stability, and global CP-violating
charge separation leading to the disparity between nuggets
and antinuggets. Most of these basic elements of the
proposal have been discussed previously in the original
papers [1,4]. We include them in the present work to make
it self-contained. One crucial ingredient of the proposal
which was mentioned in Ref. [4] but has not been fully
elaborated there is related to the CP-violating processes
leading to the asymmetry between nuggets and antinuggets.
We highlight the basic idea on CP violation in Sec. II E,
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while the detailed analysis of this ingredient of the proposal
is carried out in “technical” Secs. III and IV.

A. NDW = 1 domain walls

The first important element, the axion domain wall
[36,37], determines the size of a nugget as originally
suggested in Ref. [1]. The axion field θ is an angular variable
and therefore supports various types of the topological
domain walls (DW), including the so-called NDW ¼ 1
domain walls when θ interpolates between one and the same
physical vacuum state with the same energy θ → θ þ 2πn.
It is important to emphasize that, while the axion string

formation happens during the Peccei-Quinn (PQ) phase
transition, the domain-wall formation occurs at the QCD
temperature at T ∼ 1 GeV when the axion potential gets
tilted. In other words, the formation of the DW-string
network is the two-stage process, rather than a single event;
see Ref. [37] for review. Furthermore, the DW energy
density per unit volume is characterized by a typical QCD
scale, rather than the PQ scale. Therefore, the closed DW
surfaces, without attached strings, could be formed during
the QCD transition, though the number density of such
objects is suppressed with increasing the size of the objects
[37,38]; see Sec. II C with a few more comments and
estimates on this suppression.
One should also add that the numerical simulations [38]

support this picture by observing the formation of the large
DW at the QCD temperature and their decay due to the
attached strings. The closed DW without attached strings
have been also observed in numerical simulations [37,38],
though the probability to find the closed walls is suppressed
according to (4). Due to this suppression, the role of these
closed DWs is normally ignored in the analysis of the DW
decays to the DM axions. However, precisely these closed
DW surfaces formed at the QCD scale play the key role in
our proposal [1]; see additional comments at the end of this
subsection.
One should remark here that it is normally assumed that

for the topological defects to be formed, the PQ phase
transition must occur after inflation. This argument is valid
for a generic type of domain walls with NDW ≠ 1. The
conventional argument is based on the fact that few
physically different vacua with the same energy must be
present inside of the same horizon for the domain walls to
be formed. TheNDW ¼ 1 domain walls are unique and very
special in the sense that θ interpolates between one and the
same physical vacuum state. Such NDW ¼ 1 domain walls
can be formed even if the PQ phase transition occurred
before inflation and a unique physical vacuum occupies the
entire Universe [4].
In other words, while in our proposal the inflation is

assumed to occur after the PQ phase transition and the
axion field θðtÞ is coherent in the entire visible Universe,
nevertheless the NDW ¼ 1 closed domain walls can still be
formed. The nonzero θ would essentially lead to a global

CP-violating separation of baryonic charge as discussed in
Sec. II E.
The axion domain walls normally start to form once the

axion field gets tilted at temperature Ta. As the tilt becomes
more pronounced (at the transition when the chiral con-
densate forms at Tc), the DW formation becomes much
more efficient. We should expect, in general, that the
NDW ¼ 1 domain walls form at any moment between Ta
and Tc. The width of the domain wall depends on the mass
of the axion, which would ultimately determine the size of
the nugget being formed.
One next comment is as follows. It was realized many

years after theoriginal publication [36] that the axiondomain
walls generically demonstrate a sandwichlike substructure
on the QCD scale Λ−1

QCD ≃ fm. Such a substructure is
supported by analysis [39] of QCD in the large N limit with
the inclusionof theη0 field. It is also supportedby the analysis
[40] of supersymmetric models where a similar θ vacuum
structure occurs. The same structure also occurs in the color
superconducting (CS) phase where the corresponding
domain walls have been explicitly constructed [41].
The significance of the QCD substructure is that it is

capable of squeezing the quarks to bring the system into the
CS state, as originally suggested in Ref. [1]. The fact that
the CS phase representing the lowest energy state might be
realized in nature in the core of neutron stars has been
known for quite sometime. A less known application of the
CS phase is that the axion DW with the QCD substructure
may replace the gravity and play the role of a squeezer to
produce an absolutely stable quark nugget at T ¼ 0 as
suggested in Ref. [1].
The time evolution of these nuggets at T ≠ 0 is a much

more involved problem than the study of the equilibrium
configurations at T ¼ 0 carried out in Ref. [1]. The
corresponding problem of the time evolution at T ≠ 0
has been recently addressed in Ref. [4]. In particular, in that
paper, it was shown that the nuggets assume the equilib-
rium at low temperature with the lowest possible state if the
initial size of the nugget is sufficiently large. These results
fully support the earlier studies of Ref. [1] devoted to the
equilibrium configurations at T ¼ 0.
To conclude this subsection, the formation of the axion

DW at the QCD transition is an extremely generic phe-
nomenon which inevitably occurs as a result of θ → θ þ
2πn periodicity. These axion DWs typically have the QCD
substructure as mentioned above. Furthermore, the forma-
tion of the closed surfaces at the QCD transition (which
eventually may produce the quark nuggets) also represents
a very generic feature of the system, which will be further
elaborated in Sec. II C.

B. Spontaneous breaking of C
symmetry on small scale of order ξðTÞ

The second important element of the formation mecha-
nism can be explained as follows. There is another
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substructure with a similar QCD scale (in addition to the
known substructures expressed in terms of the η0 and gluon
fields as explained in Sec. II A above) which carries the
baryon charge. This additional substructure is a novel
feature of the axion domain walls which has been explored
only recently in Ref. [4]. As (anti)quarks being trapped in
the core of the domain wall, the nuggets themselves slowly
accrete the baryonic charge as a result of evolution. Exactly
this new effect is eventually responsible for the local
accretion of the baryonic charge by the nugget.
Indeed, in the background of the domain wall, the

physics essentially depends on two variables, ðt; zÞ. One
can show that in these circumstances, the total baryon
charge B accumulated on a nugget is determined by the
degeneracy factor in the vicinity of the domain wall [4],

B ¼ N · g ·
Z

d2x⊥d2k⊥
ð2πÞ2

1

expðϵ−μT Þ þ 1
: ð3Þ

In this formula, the induced baryon numberN per degree of
freedom may randomly assume any integer value, positive
or negative; the coefficient g describes the degeneracy
factor, e.g., g≃ NcNf in the CS phase, and μ is the
chemical potential in the vicinity of the domain wall.
Thus, the size distribution for quark and antiquark nuggets
will be identically the same size if the external environment
is CP even, which is the case when fundamental θ ¼ 0.
The crucial element here is that the domain walls will

acquire the baryon or antibaryon charge as a generic feature
of the system. This is because the domain-wall tension is
mainly determined by the axion field while the QCD
substructure leads to a small correction factor of order
∼ΛQCD=fa ≪ 1. Therefore, the presence of the QCD
substructure with nonvanishing N ≠ 0 increases the
domain-wall tension only slightly. Consequently, this
implies that the domain-wall closed bubbles carrying the
baryon or antibaryon charge will be copiously produced
during the transition as they are very generic configurations
of the system. Furthermore, the baryonic charge cannot
leave the system during the time evolution as it is strongly
bound to the wall due to the topological reasons. The
corresponding binding energy per quark is of order μ and
increases with time as shown in Ref. [4]. One can interpret
this phenomenon as a local spontaneous breaking of C
symmetry, when on the scales of order the correlation length
ξðTÞ ∼m−1

a ðTÞ the nuggets may acquire the positive or
negative chemical potential μwith equal probability. This is
because the sign ofN in Eq. (3) may assume any positive or
negative values with equal probabilities.

C. Kibble-Zurek mechanism

The Kibble-Zurek (KZ) mechanism gives a generic
picture of formation of the topological defects during a
phase transition. We refer to the original papers [42], a
review [43], and the textbook [37] for a general overview.

For our specific purposes of the DW formation, the KZ
mechanism suggests that once the axion potential is
sufficiently tilted, the NDW ¼ 1 closed domain walls form
at the QCD scale. Some time after Ta the system is
dominated by a single, percolated, highly folded, and
crumple domain-wall network of very complicated top-
ology. In addition, there will be a finite portion of the
closed walls (bubbles) with typical size of order the
correlation length ξðTÞ, which is defined as an average
distance between folded domain walls at temperature T.
Parametrically, the correlation length ξðTÞ ∼m−1

a ðTÞ is
determined by the axion mass and obviously varies with
time during the network evolution. Precisely these bubbles
are capable of forming the nuggets and play the crucial role
in our analysis. It is known that the probability n of finding
closed walls with very large size R ≫ ξ is exponentially
small, see Ref. [37] for a review,

n ∼ exp

�
−

R2

ξ2ðTÞ
�
: ð4Þ

The key point for our proposal is the mere existence of
these finite closed bubbles made of the axion domain walls.
Normally, it is assumed that these closed bubbles collapse
as a result of the domain-wall pressure and do not play any
significant role in the dynamics of the system because
the total area of these bubbles is sufficiently small in
comparison with the area of the dominant percolated
domain-wall network. However, as we already mentioned
in Sec. II A, some of these closed bubbles do not collapse
due to the Fermi pressure acting inside of the bubbles. The
equilibrium is achieved when the Fermi pressure from
inside due to the degenerate quarks equals the pressure
from outside due to the axion domain wall. This is precisely
the condition of the stability analyzed in Ref. [1].
There are many papers devoted to analysis of the

network made of the domain walls bounded by the strings.
There are also many papers devoted to the problem (and
its possible resolutions) on the domain-wall dominance
of the Universe. We have nothing new to add to these
subjects, and we refer to the original literature [38,44–47]
and reviews [11,37] on this matter. Those axions (along
with the axions produced by the conventional misalignment
mechanism [44,48]) will contribute to the dark matter
density today. The corresponding contribution to DM
density is highly sensitive to the axion mass as
Ωdark ∼m−7=6

a , and it is not part of our framework.
Instead, our proposal focuses on the dynamics of the

closed bubbles (4), which are formed during the QCD
transition. These closed bubbles are normally ignored in
computations of the axion production. Precisely these
closed bubbles will eventually become absolutely stable
quark nuggets and may serve as the dark matter candidates
according to the proposal [1,4].
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The efficiency of the production of these bubbles has
been estimated in Ref. [4], based on the assumption that
this mechanism saturates the observed ratio nB=nγ ∼ 10−10.
We shall not discuss this model-dependent estimate in the
present work as the main goal of the present analysis is to
demonstrate that cðTÞ ∼ 1 in Eq. (8).

D. Color superconductivity

The existence of the CS phase in QCD is the crucial
element for the stability of quark nuggets. In astrophysics, a
CS is known to be the plausible phase in the neutron star
interiors and in the violent events associated with the
collapse of massive stars or collision of neutron stars;
see the review papers [49,50] on the subject. The CS phase
becomes energetically favorable when quarks are squeezed
to a few times of nuclear density.
Analogous to the gravitational squeezing in a neutron star,

the CS phase might be realized in quark nuggets due to the
surface tension of the axion domain wall as advocated in
Ref. [1]. The domain-wall bubbles after formation will
undergo a large number of bounces with typical frequency
ω ∼ma until they settle down at the equilibrium configura-
tion [4]. As the temperature cools down, the oscillations and
squeezing will turn the bulk of quarks into an equilibrium
position with the ground state being in the CS phase.
The corresponding time evolution of an oscillating

bubble can be approximated3 as follows,

RðtÞ ¼ Rform þ ðR0 − RformÞe−t=τ cosωt; ð5Þ
where the initial radius of a bubble R0 ∼ ξðTÞ is assumed to
be of order the correlation length ξðTÞ. The final size Rform
of a bubble represents the equilibrium configuration when
formation is almost complete. In formula (5), parameter τ
represents a typical damping time scale which is expressed
in terms of the axion mass ma and the QCD parameters
such as viscosity. It turns out the numerical value of τ is of
order the cosmological scale τ ∼ 10−4s. This numerical
value is fully consistent with our anticipation that the
temperature of the Universe drops approximately by a
factor of ∼3 or so during the formation period. During the
same period of time, the chemical potential μ inside the
nugget reaches a sufficiently large value when the CS phase
sets in [4].

E. Coherent CP-odd axion field

The key element to be investigated in the present work is
the CP asymmetric charge separation originating from the
globally coherent axion field θðtÞ. In this subsection, we
outline the basic ideas, while all technical details will be
elaborated in Secs. III and IV.
It is well known that the axion dynamics at sufficiently

large temperature T > Tc is determined by the coherent
state of axions at rest, see e.g., the review paper [11],

θðtÞ∼ C

t3=4
cos

Z
t
dt0ωaðt0Þ; ω2

aðtÞ¼m2
aðtÞþ

3

16t2
; ð6Þ

where C is a constant and t ¼ 1
2H is the cosmic time. This

formula describes the dynamics of the axion field after the
moment t1 determined by the conditionmaðt1Þt1 ¼ 1 when
the axion mass ma effectively turns on at t1. Precisely this
moment is relevant for our studies as the domain walls start
to form after t1. For sufficiently large t when maðtÞt ≫ 1,
the second term in the expression for ω2

aðtÞ can be ignored,
and the frequency of the oscillations ωaðtÞ is determined by
the axion mass at time t,

_θðtÞ ∼ ωaðtÞ≃maðtÞ: ð7Þ

The key point in what follows is the observation that θðtÞ
is one and the same in the entire visible Universe. One
should also emphasize that this assumption on the coher-
ency of the axion field on very large scales is consistent
with the formation of NDW ¼ 1 domain walls as explained
in Sec. II A.
Similar to the case of formation temperature Tform

discussed in details in Ref. [4], precise dynamical compu-
tation of this CP asymmetry due to the coherent axion field
θðtÞ is a hard problem of strongly coupled QCD at θ ≠ 0
when even the phase diagram, schematically shown on
Fig. 1, is not yet known. It depends on a number of specific
properties of the nuggets, their evolution, their environ-
ment, modification of the hadron spectrum at θ ≠ 0, and
corresponding cross sections as mentioned in Ref. [4]. All
these factors equally contribute to the difference between
the nuggets and antinuggets. One can effectively account
for these coherent CP-odd effects by introducing an
unknown coefficient cðTÞ of order 1 as follows [4]:

Bantinuggets ¼ cðTÞ · Bnuggets; where jcðTÞj ∼ 1. ð8Þ

The main goal of the present work is to provide the
quantitative numerical analysis supporting the basic
assumption (8). We shall argue that jcðTÞj ∼ 1 is indeed
very likely to be of order 1 as a result of the CP-violating
processes which took place coherently on the enormous
scale of the entire visible Universe before the QCD
transition. We shall argue below that this very generic
outcome of this framework is not very sensitive to initial

3One should emphasize that the simple analytical expression
(5) is presented here for illustrative purposes to demonstrate the
oscillating and damping features of the nugget’s evolution.
Numerically, it is only justified at the very end of the evolution
when the amplitude of the oscillations is small, and a complicated
effective potential can be expanded around its minimum as
discussed in Ref. [4]; see also related discussions after
Eq. (27). In other words, formula (5) properly describes the
dynamics of the nugget only when the nugget’s formation is
almost complete. In our numerical studies given in Appendix D,
we use the original potential without assuming that the oscil-
lations are small.
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conditions (such as the magnitude of θ0 at the moment
of formation), nor to a precise value of the axion mass
maðTÞ at T > Tc when the domain-wall network only
started to form. The fundamental ration (1) is the direct
consequence of jcðTÞj ∼ 1. Therefore, the arguments sup-
porting (8) are essentially equivalent to the basic claim of
this framework (1).
What is the significance of Eq. (8)? The most important

and unambiguous consequence of the Eq. (8) is that the
baryon charge in the form of the visible matter can be also
expressed in terms of the same coefficient cðTÞ ∼ 1 as
follows Bvisible ¼ −ðBantinuggets þ BnuggetsÞ. Using Eq. (8),
the expression for the visible matter Bvisible can be rewritten
as [4]

Bvisible ≡ ðBbaryons þ BantibaryonsÞ

¼ −½1þ cðTÞ�Bnuggets ¼ −
�
1þ 1

cðTÞ
�
Bantinuggets:

ð9Þ
This is a very important relation which we would like to
represent in terms of the measured observables Ωvisible and
Ωdark at late times when the visible matter consists of the
baryons only [4]:

Ωdark ≃
�
1þ jcðTÞj
j1þ cðTÞj

�
· Ωvisible at T ≤ Tform: ð10Þ

An important comment here is that the relation (9) holds
as long as the thermal equilibrium is maintained.
Furthermore, the thermal equilibrium implies that each
individual contribution jBbaryonsj ∼ jBantibaryonsj entering (9)
is many orders of magnitude greater than the baryon charge
hidden in the form of the nuggets and antinuggets at earlier

times when Tc > T > Tform. However, the net baryon
charge which is labeled as Bvisible in Eq. (9) is the same
order of magnitude as the net baryon charge hidden in the
form of the nuggets and antinuggets.
For a specific value of cðTformÞ≃ −1.5, the relations (9)

and (10) assume the form

Bvisible ≃ 1

2
Bnuggets ≃ −

1

3
Bantinuggets;

Ωdark ≃ 5 ·Ωvisible: ð11Þ

These numerical values coincide with approximate relation
(2) presented in the Introduction. The coefficient ∼5 in
relation Ωdark ≃ 5 · Ωvisible is obviously not universal, but
relation (10) is universal and a very generic consequence of
the entire framework, which was the main motivation for
the proposal [1,2].
We shall argue in Secs. III and IV that jcðTÞj ∼ 1 is

indeed of order 1. Furthermore, we shall argue that this
feature of the system is universal and not very sensitive to
the axion massmaðTÞ nor to the initial value of θ0 when the
bubbles start to oscillate and slowly accrete the baryon
charge. The only crucial factor in our arguments is that the
axion field θðtÞ can be represented by the coherent super-
position of the axions at rest (6).

III. EVOLUTIONOF THE (ANTI)NUGGETS IN THE
BACKGROUND OF THE AXION FIELD

In this section, we study the profound consequences of
the coherent axion phase on the nugget’s formation.
Essentially, the main goal of this section is to present
analytical and numerical arguments suggesting that small
CP-violating effects will produce a large disparity (of order
1) between the nuggets and antinuggets.
We start with Sec. III A where we present some quali-

tative explanation of how a relatively small fundamental
coupling between quarks/antiquarks and the coherent axion
θðtÞ field given by (6) may, nevertheless, produce a large
asymmetry in properties between the nuggets and anti-
nuggets. In Secs. III B and III C, we develop the technical
tools to address these questions, while in Sec. III D, we
present our estimates supporting the main claim of this
work that jcðTÞj ∼ 1.

A. Qualitative analysis

Before we start our specific quantitative studies in
this section, we want to formulate a few generic relations
which characterize the system and which depend exclu-
sively on symmetric features of the system, rather than on
some specific dynamical model-dependent computations
which follow.
First of all, let us remind the reader that if hθi ¼ 0, the

baryon charge hidden in nuggets on average is equal to the
baryon charge hidden in antinuggets, of course with sign

FIG. 1. The conjectured phase diagram. The plot is taken from
Ref. [4]. Possible cooling paths are denoted as path 1, 2, or 3. The
phase diagram is in fact much more complicated as the depend-
ence on the third essential parameter; the θ is not shown as it is
largely unknown. It is assumed that the final destination of
the nuggets is the CS region with Tform ≈ 41 MeV, μ > μc,
and θ ≈ 0.
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minus. Indeed, the studies of the antinuggets can be
achieved by flipping the sign of the chemical potential
μ → −μ in the analysis of Ref. [4]. One can restore the
original form of the effective Lagrangian by flipping the
sign for the axion θ field as discussed in Ref. [4]. These
symmetry arguments imply that, as long as the pseudo-
scalar axion field θ fluctuates around zero hθi ¼ 0 as
conventional pseudoscalar fields (such as π; η0 mesons, for
example), the theory remains invariant under P and CP
symmetries, and on average, an equal number of nuggets
and antinuggets carrying equal baryon (antibaryon) charges
would form.
However, if hθi ≠ 0, there are many strong processes

taking place inside and outside the nuggets (such as
annihilation, evaporation, scattering, etc.), which are
slightly different4 for nuggets and antinuggets, as reviewed
in Appendix A. Furthermore, the vacuum energy itself and
the density of states in all these regions are also slightly
different because the vacuum condensate (A4) assumes
slightly different numerical values in all these regions as it
depends on μ, T, and θ.
Precise computations of all these coherent CP-violating

QCD effects are hard to carry out explicitly as they require
the solution of many body effects in an unfriendly
environment with nonvanishing θ, μ, T when even the
phase diagram is not yet known; see Fig. 1. However, the
estimation of the effect is a very simple exercise as it must
be proportional to θðtÞ at the moment when the domain
walls start to form. Numerically, this parameter jθðtÞ=θ0j ∼
10−2–10−3 could be quite small and naively may lead only
to minor effects ≤ 10−2. However, the crucial point here is
that, while this coupling is indeed small on the QCD scale,
it is nevertheless effectively long ranged and long lasting, in
contrast with conventional random QCD processes. As a
result, these coherent CP-violating effects will produce
large effects of order 1 as explicit computations carried out
below show.
The crucial element in making such an assessment is the

observation that these small coherent changes occur in the
entire volume of a nugget. In other words, the generation of
the chemical potential, accumulation of the phase differ-
ence (which eventually leads to the accretion of the baryon
charge), etc., are proportional to the volume of the nugget,

ΔB ∼ θðtÞV; jθðtÞ=θ0j ∼ 10−2–10−3; ð12Þ

where ΔB is the baryon charge difference in accumulation
between the nuggets and antinuggets. This expression

should be contrasted with effect due to the local sponta-
neous violation of the C symmetry (as discussed in Ref. [4]
and reviewed in Sec. II B) which is proportional to the
surface of a nugget, B ∼ S; see Eq. (3).
While all individual events are proportional to small

parameter θ ≪ 1, and therefore numerically small, this
difference (between a typical size for nuggets vs antinug-
gets) eventually will be of order 1 as a result of long lasting
evolution, as is shown in the next subsections. This strong
effect of order 1 has been phenomenologically accounted
for by parameter cðTÞ in formula (8), which automatically
leads to the main consequence of this framework expressed
by relation (1).

B. Basic equations

We start with a brief overview of the work [4], where it
was assumed that the CP symmetry is globally conserved,
i.e., hθðtÞi ¼ 0 when averaged over the entire Universe. In
that paper, the effective interaction of the axion domain
wall with Fermi fields was approximated as follows,

L4 ¼ Ψ̄ði=∂ −mei½θðxÞ−ϕðxÞ�γ5 − μγ0ÞΨ; ð13Þ

where parameter m should not be interpreted as the quark’s
mass. Rather, it is much more appropriate to interpret
parameter m as the expectation value of the hdet ψ̄f

Lψ
f
Ri

from Eq. (A4) which has a typical QCD scale and which
will always be generated even in the deconfined regime at
T > Tc. The Fermi fieldΨ should be interpreted as the low-
energy (soft) component of the original quark fields, while
a high-energy component has been integrated out to
generate parameter m entering (13). Equation (13) is the
standard form for the interaction between the pseudoscalar
fields [axion θðxÞ and η0 field parametrized by ϕðxÞ] and
the fermions (quarks and antiquarks) which respect all
relevant symmetries in the presence of nonzero chemical
potential μ.
Another key element from Ref. [4] which is relevant for

our present studies is the effective Lagrangian describing
the dynamics of an oscillating domain-wall bubble,

L ¼ 4πσR2ðtÞ
2

_R2ðtÞ − 4πσR2ðtÞ

þ 4πR3ðtÞ
3

ΔPðμÞ þ ½other terms�: ð14Þ

Equation (14) describes the time evolution of the closed
spherically symmetric domain-wall bubble of radius
RðtÞ. The pressure term ΔP ¼ PðFermiÞ þ PðBagÞ − PðoutÞ
in Eq. (14) can be parametrized as [4]

ΔP ¼ ginT4

6π2
I4ðbÞ − EBθðb − b1Þ

�
1 −

b21
b2

�
−
π2goutT4

90
;

4In particular, a slight difference of the ground states charac-
terized by the condensate (A4) leads to the different properties of
the quasiparticles and scattering amplitudes inside and outside the
nuggets due to μ dependence of the θ-dependent condensate
(A4). The same effects also contribute to some disparity in
transmission/reflection coefficients, minor differences in viscos-
ity, annihilation and evaporation rates, etc.

COSMOLOGICAL CP-ODD AXION FIELD AS … PHYSICAL REVIEW D 96, 063514 (2017)

063514-7



where gin ≃ 2NcNf and gout ≃ ð7
8
4NcNf þ 2ðN2

c − 1ÞÞ are
degeneracy factors for inside and outside of the bubble,
respectively; b ¼ jμj=T is the dimensionless parameter to
be used frequently in what follows; I4ðbÞ is a specific type
of Fermi integrals (see Appendix E); and finally EB ∼
ð150 MeVÞ4 is the famous “bag constant” from the MIT
bag model, which turns on in the hadronic phase at small
μ < μ1, while it vanishes in the CS phase at large μ > μ1.
The evolution of the bubble is governed by the following

differential equations [4],

d
dt

Bwall ¼ 0; Bwall ¼
ginST2

2π
I2ðbÞ ð15aÞ

σR̈ ¼ −
2σ

R
−
σ _R2

R
þ ΔPðbÞ − 4η

_R
R
; ð15bÞ

where σ ≃ 9f2ama is the domain-wall tension, while η≃
m3

π is the QCD viscosity. The baryonic charge for nuggets
can be expressed in terms of the Fermi integral I2ðbÞ given
in Appendix E. Equation (15a) describes an implicit
dependence of the chemical potential on the size of the
nugget, μðRÞ. It should be substituted to Eq. (15b) to arrive
at the differential equation which describes the time
evolution of the nugget RðtÞ. The corresponding analysis
has been performed in Ref. [4] with the basic result that the
solution can be well approximated by slow damping
oscillations with typical frequency ma around Rform as
presented by Eq. (5).
As we already mentioned, in the preceding studies [4] on

the bubble evolution, we had assumed that the CP
symmetry is conserved as no interaction with the coherent
axion field θðtÞ was included in the consideration. Now, we
wish to include the coherent axion field θðtÞ, given by
Eq. (6) in the equations. The most important change which
occurs as a result of the interaction of the Fermi fields with
the background axion field is the accumulation of the phase
(A2) as a result of the couplingΨ field with axion field θðtÞ,
which can be interpreted as the coherent Berry’s phase, as
explained in Appendix A.
To proceed with the computations, one could follow

the procedure developed in Ref. [4], rewrite the Fermi
fields in 2D notations (accounting for the domain-wall
background), and represent the extra term to the effective
Lagrangian due to the coupling with external axion field
as follows,

ΔS ¼ −
1

π

Z
dzμðzÞ∂zθðtÞ;

A≡ −
δΔS
δμ

¼ 1

π

Z
Rout

Rin

dz ·

�∂θ
∂t
�
1

_R
; ð16Þ

where the end points of the integral z ¼ ðRin; RoutÞ
should be interpreted as the typical distances describing

the regions inside and outside the bubble of a typical
size z≃ R.
A few comments are in order. First, one can explicitly see

from Eq. (16) that the effect is different for nuggets and
antinuggets as the sign of μ is opposite in these cases, while
the background field θðtÞ remains the same in the entire
visible Universe. Secondly, parameter A can be interpreted
as an additional baryon charge (per degree of freedom)
accumulated by a nugget during a single nugget’s cycle.
This coefficient can be approximated as follows,

A≃ Δθ
π

; ð17Þ
where Δθ can be interpreted as the variation of the axion
field during a single-nugget’s cycle. One should emphasize
that the correction (17) is not the only source leading to the
disparity between nuggets and antinuggets. In fact, many
other CP-violating processes may also contribute to the
differences in accumulating baryon charges for nuggets and
antinuggets. We expect that all these effects mentioned in
footnote 4 are equally important as they must be propor-
tional to the CP-violating parameter θðtÞ. Therefore, the
corresponding effects may be effectively accounted for by a
modification of the numerical coefficient A entering (17).
As we argue below, the outcome of the calculations is not
very sensitive to a specific value of coefficient A. There-
fore, neglecting a large number of different CP-violating
processes mentioned in footnote 4 (which can be accounted
for by modifying the numerical coefficient A) does not
affect the main result of our analysis.
Our next remark is the observation that the phase (6) and

corresponding extra energy (16) are accumulated coher-
ently by a large portion of quarks inside of a nugget of
volume V, while the corresponding correction to the
vacuum energy obviously vanishes outside the nuggets
where μ≃ 0. To compute the correction to the baryon
charge of a nugget due the coupling to the axion θ field, one
should multiply (17) to the degeneracy factor, i.e.,

Bð�Þ
θ ¼ �ginAV

Z
d3k
ð2πÞ3

1

expðkT − bÞ þ 1

¼ �
�
ginST2

2π
Ið�Þ
2 ðbÞ

�
·

�
ART
3π

Ið�Þ
3 ðbÞ
Ið�Þ
2 ðbÞ

�
; ð18Þ

where we assume that the chemical equilibration is suffi-
ciently fast such that one can use one and the same μwithin
the entire volume of the nugget. Furthermore, in writing
down Eq. (18), we assumed that the majority of quarks in
volume V move coherently during the bubble oscillations.
In fact, the coherence might not be so perfect, and only
some portion of the quarks inside the nuggets might move
coherently as a macroscopical system. It is very hard to
estimate the corresponding suppression factor within our
framework formulated in terms of a single macroscopical
variable RðtÞ. The corresponding suppression factor may
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be effectively accounted for by some modification of the
numerical coefficient A entering (18). As we already
previously mentioned, our results are not very sensitive
to an absolute value of the numerical value of A as long as it
is not exceedingly small. Therefore, we assume that all
correction factors mentioned previously in footnote 4 and
the suppression factor due to not perfect coherent motion
are implicitly included in coefficient A in the analysis
which follows.
Our next remark goes as follows. In Eq. (18), we

presented the expression for Bð�Þ
θ as a combination of

two factors. The first factor is precisely the expression for
the baryon charge Bwall from Eq. (15a) generated sponta-
neously as described in Ref. [4]. The second factor
represents the correction to the accumulated baryon charge
due to the coupling of the CP-odd axion field with quarks
inside the nugget. It is important to emphasize that it is
numerically suppressed due to the small CP-violating
phase (6) parametrized by small numerical coefficient A.
However, it is strongly enhanced by a large numerical
factor proportional to the size of the system. In contrast to
the baryon accumulation in Eq. (15a) which is proportional

to the surface, the Bð�Þ
θ contribution is proportional to the

volume of the system (18), in agreement with qualitative
arguments (12) of the previous section.
Our next comment is as follows. Naively, one could think

that the accumulation of the baryon charge by a nugget due
to the coherent interaction with the axion field θwill be very
fast since it is proportional to the volume V of the nugget
according to (18). However, the accumulation is in fact quite
slow. The point is that the axion θ field oscillates with time,
∼ cosðmatÞ, and the accumulated baryon charge is almost
washed out during a complete cycle of the axion θðtÞ field.
Nevertheless, the cancellation is not quite complete because
the axion field slowly reduces its amplitude. The main
reason for this amplitude’s decay is the emission of real
physical axions (due to themisalignmentmechanism)which
is the source of some nonequilibrium dynamics. Precisely
this slow decrease of the axion amplitude leads to a non-
vanishing Δθ entering (17) and eventually generates the
disparity between nuggets and antinuggets.
To recapitulate, a tiny portion of the accumulated baryon

charge remains in the nuggets after every single complete
cycle such that the disparity between nuggets and anti-
nuggets will be accumulated but at very slow pace as a
result of very large number of oscillations. Based on this
fact, we can therefore assume A as an adiabatic “constant”
for each given cycle in the analysis in the following
Secs. III C and III D.
Our final remark regarding Eq. (18) is as follows. This

formula was derived by considering the coherently moving
quarks of the nuggets in the background of the axion field
(6). This approximation is only justified as long as the
effect due to the background field is sufficiently small.
Formally, the effect (18) due to the axion field must be

much smaller than the initial accumulation of the baryon
charge (15a) due to the spontaneous local symmetry
breaking when the original chemical potential μ is gen-
erated. Such a condition must be imposed on our system to
avoid any complications related to accounting for the
feedback (backreaction) of the coherent Fermi field on
the background field. We satisfy this condition by requiring
that the expression in the second bracket in (18) is
(marginally) smaller than unity, i.e.,

Bð�Þ
θ

Bwall
∼
�
ART
3π

Ið�Þ
3 ðbÞ
Ið�Þ
2 ðbÞ

�
≲ 1: ð19Þ

This condition can be also understood as the requirement

that the accreted baryon charge Bð�Þ
θ due to the background

field does not change the original boundary conditions
imposed on the quark’s fields in the domain-wall back-
ground. Precisely these boundary conditions determine the
sign of the Bwall as a result of the local spontaneous
symmetry breaking effect as discussed in Ref. [4].
Furthermore, precisely these boundary conditions gen-

erate the initial chemical potential of a nugget which enters
(16). The requirement (19) states that the influence of Bð�Þ

θ
on the initial axion domain-wall background should be
sufficiently small. Although condition (19) is exact, it is not
technically useful to implement in the following analysis
because it contains complicated functions of R and μ. To
get rid of such cumbersome dependence, we use the fact
I3ðbÞ=I2ðbÞ can be approximated for small μ with suffi-
ciently high accuracy as I3ðbÞ=I2ðbÞ≃3=2 at b ¼ jμj=T ≪
1; see Appendix E. With this approximation, we obtain a
much more useful, practical, and transparent condition,

aðtÞ≡ AR0T
2π

≃
���� B

ð�Þ
θ

Bwall

����; jaðtÞj≲ 1: ð20Þ

Note that we define this simplified condition in terms of a
single parameter aðtÞ. By monitoring the value of aðtÞ≲ 1,
we can precisely determine whether our analysis is valid
and justified or if it is about to break down. In what follows,
we will express the formula in terms of aðtÞ up to the linear
order since we are only interested in the region of
sufficiently small a≲ 1 where our analysis is marginally
justified. It is quite obvious that aðtÞ can be treated as an
adiabatic parameter slowly changing with time as the
typical time scale for variation aðtÞ is determined by
changing of the axion field during a single cycle (17).
After these comments, we can now follow the procedure

developed in Ref. [4] to account for the CP-violating
effects by replacing Eq. (15a) by its generalized version in
the form

d
dt

ðBwall þ Bð�Þ
θ Þ ¼ 0: ð21Þ
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Similarly to Ref. [4], we treat Eq. (21) as an implicit
relation between μðtÞ and RðtÞ which should be substituted
into Eq. (15b) to arrive at a single differential equation
which governs the dynamics of RðtÞ as a function of
time t,

σR̈ðtÞ ¼ −
2σ

R
−
σ _R2

R
þ ΔP�½R� − 4η

_R
R
; ð22Þ

where the pressure term is now a function of bubble radius
RðtÞ, rather than μ. It can be approximated as follows,

ΔPð�Þ½R�≃ ginT4

6π2
½2πfð�ÞðRÞ þ ðfð�ÞðRÞÞ2�

−
π2gout

90
T4 − EBθðb − b1Þ

�
1 −

b21
b2

�
; ð23Þ

where functions fð�ÞðRÞ entering (23) have been computed
in Appendix C and can be approximated as follows:

fð�ÞðRÞ≃ π2

12

T2
0R

2
0

T2R2

�
1 ∓ a

�
4

9

T0

T

ffiffiffiffiffi
π2

12

r
þ R
R0

��
: ð24Þ

The new element in comparison with our previous
studies [4] is that the pressure ΔPð�Þ½R� is now different
for nuggets and antinuggets because the functions fð�ÞðRÞ
which determine their dynamics are quite distinct. The
corresponding difference is determined by the coefficient
(20) which is explicitly proportional to the CP-odd para-
meter A as defined by Eqs. (16) and (17). Precisely this
difference, as we discuss below, determines the imbalance
in the evolution of the nuggets and antinuggets.
In what follows, we keep the temperature T to be

constant, and furthermore we shall assume T0=T ≃ 1 to
simplify our numerical analysis. The justification for the
first assumption (the temperature T is kept constant) is that
all relevant processes (including the nugget’s oscillations)
have the time scales which are much shorter than a typical
cosmological time scale when temperature T and the axion
mass maðTÞ slowly vary.
Indeed, as the temperature scales with cosmic time as

T ∼ t−1=2, the corresponding variations of the temperature
during a single axion oscillation, determined by time
Δt ∼m−1

a , are very tiny, ΔT=T ∼ Δt=t ∼ ðmatÞ−1.
Numerically, it represents extremely small correction
ΔT=T ∼ 10−5 for ma ∼ 10−6 eV as the cosmic time t
corresponding to the temperature T0 is of order t ∼ 10−4s.
It is known that the axion mass maðTÞ experiences very
sharp changes with the temperature maðTÞ ∼ T−n with
exponent n ∼ 8; see Refs. [30–33]. Nevertheless, the axion
mass does not vary much during a single axion oscillation.
Indeed, during time Δt ∼m−1

a , the axion mass receives a
very tiny correction, Δma=ma∼nðΔT=TÞ∼nðmatÞ−1≪ 1.

Furthermore, one can argue that the nuggets make a very
large number of oscillations during a few cycles of the
axion field θ when the axion mass maðTÞ and the temper-
ature T experience very insignificant relative corrections.
This justifies our assumption that maðTÞ and T can be kept
constant in our studies of the nugget’s dynamics. We refer
to Appendix D with corresponding estimates and details.
One can rephrase these arguments in slightly different

way as follows. A slow change of the temperature T and the
axion mass maðTÞ is accompanied by slow variation of the
axion amplitude θðtÞ. Precisely this θ variation eventually
leads to the slow accumulation of the disparity between
nuggets and antinuggets as argued below. The effects of
variation of the dynamical equations such as (22) due to
tiny changes of the temperature and the axion mass
ΔT;Δma do not affect our analysis because the main
source of the disparity is explicitly proportional to the
chemical potential μ according to Eq. (16), while the small
changes of temperature and the axion mass ΔT;Δma
during the evolution contribute equally to both types of
species and play the subleading role.
Another assumption (T0=T ≃ 1) represents a pure tech-

nical simplification in our analysis to demonstrate that the
disparity in evolution for different species is of the order 1
effect. In fact, one can argue that this imbalance (between
the nuggets and antinuggets) becomes even more pro-
nounced if one accounts for the decrease of temperature
with time.
In principle, Eq. (22) can be solved numerically (without

a large number of simplifications and assumptions men-
tioned above), which would determine the dependence of
RðtÞ and μðtÞ on time. The corresponding results of these
numerical studies are presented in Appendix D. These
numerical results are fully consistent with our analytical
(simplified) treatment of the problem, which is the subject
of Secs. III C and III D.

C. Time evolution

First, we find the equilibrium condition when the “poten-
tial” energy in Eq. (22) assumes its minimal value, similar to
the procedure carried out in Ref. [4]. The corresponding
minimum condition is determined by the equation

2σ

Rform
¼ ΔPð�Þ½Rform�; ð25Þ

whereΔPð�Þ is defined by Eq. (23). The difference with the
previously studied case [4] is thatΔPð�Þ is now different for
nuggets and antinuggets. Therefore, the equilibrium solu-

tionRð�Þ
form will be also different for twodifferent species. This

is the key point of the present studies. Another distinct

feature is that Rð�Þ
form slowly varies with time because the

axion background adiabatically changes with time. The
corresponding variation explicitly enters Eq. (21) and
implicitly enters Eq. (22).
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For the next step, we want to see how these different
equilibrium solutions are approached when time evolves.
We follow the conventional technique and expand (22)
around the equilibrium values Rð�Þ

form to arrive at an equation
for a simple damping oscillator,

d2δRð�Þ

dt2
þ 2

τð�Þ
dδRð�Þ

dt
þ ðωð�ÞÞ2δRð�Þ ¼ 0; ð26Þ

where δRð�Þ ≡ ½RðtÞ − Rð�Þ
form� describes the deviation from

the equilibrium position, while new parameters τð�Þ and
ωð�Þ describe the effective damping coefficient and fre-
quency of the oscillations. Both new coefficients are
expressed in terms of the original parameters entering
(22) and are given by

τð�Þ ¼ σ

2η
Rð�Þ
form ð27aÞ

ðωð�ÞÞ2 ¼ −
1

σ

dΔPð�ÞðRÞ
dR

����
Rð�Þ
form

−
2

½Rð�Þ
form�2

: ð27bÞ

The expansion (26) is justified, of course, only for small
oscillations about the minimum determined by Eq. (25),
while the oscillations determined by original equation (22)
are obviously not small. However, our simple analytical
treatment (26) is quite instructive and gives a good
qualitative understanding of the system. The difference
with previously studied case [4] is, of course, the
emergence of two different solutions for two different
species characterized by parameters (27) which also
slowly vary with time. Our numerical studies presented
in Appendix D fully support the qualitative picture
presented in this subsection.
The most important conclusion of these studies is that

nuggets and antinuggets oscillate in very much the same
way as we observed in our previous studies and well
approximated by Eq. (5). However, their evolution pro-
ceeds in a somewhat different manner now as a result of
CP-violating terms as discussed above.
To analyze this difference in a quantitative way, we

introduce parameter ΔRðtÞ≡ jRþðtÞ − R−ðtÞj which mea-
sures this difference between nuggets’ and antinuggets’
sizes, assuming that the same initial conditions are imposed,
i.e., R�

0 ¼ R0 ∼m−1
a . The parameter ΔRðtÞ is the most

important quantitative characteristic for our present studies
as it shows how the sizes of nuggets and antinuggets evolve
with time. We shall demonstrate that ΔR=R becomes of
order 1 when the condition (20) is still marginally satisfied.
Our simplified computations (by neglecting the backreac-
tion which modifies the background) obviously break down
when the ratio (20) approaches 1. However, once a suffi-
ciently large effect is generated, we do not expect that it can
be completely washed out by further evolution. Rather, it is
expected that, once a large effect is generated, it remains to

be a sufficiently large effect of order 1, though a precise
numerical coefficient might be different from our qualitative
analysis. In fact, the precisemagnitude ofΔR=R is very hard
to compute as there are many other effects mentioned in
footnote 4 which influence the time evolution and equally
contribute to ΔR=R.
Therefore, the key result of our analysis is that ΔRðtÞ

fluctuates with time but always approaches a nonvanishing
magnitude of order 1 during the long cosmological evo-
lution. The fluctuations for R�ðtÞ are well approximated by
Eq. (5), where key parameters (27) now are different for
different species. Numerical results presented in Fig. 2
support this qualitative analysis presented above.

D. Disparity in sizes for nuggets and antinuggets

While numerical results presented in Fig. 2 explicitly
show that the difference between typical sizes of nuggets
and antinuggets becomes of the order 1 effect during the
time evolution, we would like to understand this important
feature of the system using analytical, rather than numeri-
cal, arguments. This subsection is devoted precisely to such
an analysis.
In what follows, we would like to estimate ΔRðtÞ≡

jRþðtÞ − R−ðtÞj at t → ∞ when the system approaches its
equilibrium; i.e., we are interested in the difference
ΔRform ≡ jRþ

form − R−
formj between nuggets and antinuggets.

The equilibrium values for each species can be approxi-
mated as

2σ

Rform
≃ ginT4

6π2
½fð�ÞðRformÞ�2; ð28Þ

where we simplified the original equations (23) and (25) by
keeping the numerically dominant terms in the region
where a typical radius of a nugget is considerably dropped
from its initial value, i.e., Rform ≲ 0.5R0; see Appendix D
for details. For further simplifications and for illustrative
purposes, we keep only the leading terms ∼a, similar to
Eq. (24). Precisely these terms eventually lead to the
disparity between nuggets and antinuggets, as we already
discussed. With these simplifications, the formation radius
for nuggets and antinuggets can be approximated as
follows,

R�
form ≃ hRformi ·

�
1 ∓ 2ac

3

�hRformi
R0

þ 2π

9
ffiffiffi
3

p
��

; ð29Þ

where hRformi is defined as the average size of different
species,

hRformi≡ 1

2
jRþ

form þ R−
formj≃ R0

�
π2ginT4

123
R0

σðTÞ
�
1=3

; ð30Þ

while ac is defined as the critical value at so-called
decoherence time, tdec, when the axion field is losing
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its coherence5 on the scale of the Universe, such that the
disparity between nuggets and antinuggets does not further
evolve after tdec,

ac ≡ aðt → tdecÞ; ac < 1: ð31Þ

In Eq. (31), we also assumed that ac < 1 is sufficiently
small when the condition (20) is marginally satisfied.
A few comments regarding (29) and (30) are in order.

First of all, as we already mentioned, we kept the temper-
ature T to be constant in our computations. We can now
treat T in (30) as an adiabatic parameter which slowly
decreases with time as the temperature slowly approaches
the QCD transition temperature Tc from above. During this
evolution, the domain-wall tension σðTÞ approaches its
final value σ → 9f2ama at the QCD transition point T ¼ Tc
where the chiral condensate forms. This slow change of the
formation radius hRformi is perfectly consistent with the
numerical results presented in Fig. 2.
Second, using Eq. (29) and our estimate (30) for

hRformi≃ 0.6R0, one can approximate the disparity in sizes
ΔRform between two different species as follows:

ΔRform

hRformi
≃ 4

3
· ac: ð32Þ

This estimation suggests that the difference in baryon
charges between the nuggets and antinuggets can be
approximated as follows:

ΔB
hBi≃

�
ΔR

hRformi
�

3 ≃ 3
ΔR

hRformi
≃ 4ac: ð33Þ

In other words, even for relatively small ac ≃ ð0.1 − 0.2Þ
where our background approximation remains marginally
valid according to condition (20), the disparity in baryon
charges (33) between nuggets and antinuggets could be
quite large and can easily satisfy the basic assumption (8)
with jcðTÞj ∼ 1.
Our last comment is to elaborate on the physical meaning

of parameter aðtÞ which is defined by (20). This parameter
enters (33) and plays an important role in our discussions
and estimates which follow. The phenomenological param-
eter aðtÞ has been introduced into our analysis to describe a
very small variation (17) of the axion field after each single
cycle during the nuggets’ evolution. If the axion field were
perfectly periodic with the original amplitude θ0 being kept
constant, then our parameter aðtÞ would be identically zero
as every consequent cycle of the axion field would wash out
the asymmetry it produces during a previous cycle, as we

already mentioned at the end of Sec. III B. However, the
axion coherent field decays as a result of the production of
the real propagating axions (as well as a result of many
other processes mentioned in footnote 4). We parametrize
these changes of the system by a function aðtÞ assuming
that initially aðt ¼ 0Þ ¼ 0 vanishes but slowly increases its
value during the nugget’s evolution. It reaches the maxi-
mum value ac when the largest possible disparity between
nuggets and antinuggets is achieved6 as determined by
Eq. (33). The disparity (33) cannot be washed out after tdec,
as we discuss in the Sec. IV, because the axion field has lost
its coherence on the scale of the Universe and cannot wash
out the previously generated imbalance (33).
We conclude this section with the following remark. The

main goal of this section was to demonstrate that even
relatively small CP-violating coupling (16), (17) of the
coherent axion field with quarks (antiquarks) inside the
nuggets (antinuggets) generically produces a large effect of
order 1 as a result of a coherent long lasting influence of the
axion field on the dynamics of the nuggets. We presented
some semianalytical estimates expressed by Eq. (33) sup-
porting this claim. The numerical results, obtained without
a large number of simplifications and presented in
Appendix D (see specifically Fig. 2) also reinforce the
analytical analysis of this subsection.
The significance of the result (33) is that the disparity

between nuggets and antinuggets unambiguously implies
that our main assumption formulated as Eq. (8) is strongly
supported by the computations of this section. Needless to
say, Eq. (8) is essentially equivalent to our generic
fundamental consequence (1) of this framework, sug-
gesting that the visible and dark matter densities are of
the same order of magnitude Ωdark ≈Ωvisible irrespectively
of the parameters of the system.

IV. ROBUSTNESS OF THE IMBALANCE
BETWEEN NUGGETS AND ANTINUGGETS

In this section, we would like to argue that the results of
Sec. III are very robust in the sense that they are not very
sensitive to the fundamental parameters of the system such
as the axion mass ma or initial misalignment angle θ0. In
particular, we shall argue in Sec. IVA that the results of the
previous section are also insensitive to a large number of
technical simplifications we have made in the previous
section. Furthermore, we also present some arguments in
Sec. IV B that the imbalance (33) survives the subsequent

5The decoherence time, tdec, is determined by a number of
different processes, including the time scale for the axion field to
decay into the randomly distributed DM axions; see footnote 13
in Ref. [4] for comments on this matter.

6In our numerical studies, we also assume that aðtÞ never
becomes too big, which would violate our approximations and
would change the boundary condition imposed by the sign of the
chemical potential μ as expressed by Eq. (19). We shall make a
few technical comments in Sec. IV B on how to proceed with
computations if parameter aðtÞ becomes numerically large and
our treatment of aðtÞ as a small correction obviously breaks
down.
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evolution of the system at t > tdec after the axion field loses
its coherence.

A. Insensitivity to the axion mass ma and
initial misalignment angle θ0

First of all, we want to argue that the disparity between
nuggets and antinuggets expressed by Eq. (33) is not very
sensitive to the axion mass ma which itself varies with the
temperature in the range Ta ≤ T ≤ Tc and approaches its
final value at the QCD transition at Tc, as explained in
Sec. II. As a result of this “insensitivity” of Eq. (33) to ma,
the main consequence of the entire framework expressed as
Eqs. (1) and (8) is also insensitive to the axion mass.
The main reason for this claim is that we are interested in

the relative ratio (33) between nuggets and antinuggets
rather than in the absolute value hRformi of a nugget, which
is obviously sensitive to the axion mass as it scales as
hRformi ∼m−1

a according to (30). The ratio (33), on other
hand, is not very sensitive to the absolute value of the axion
mass. This feature is manifestly seen in Fig. 2 where two
plots for ma ¼ 10−4 eV and ma ¼ 10−6 eV are almost
identically the same.
To summarize the argument regarding the axion mass,

the size of a nugget and its total baryon charge are highly
sensitive to axion mass ma. However, their relative ratio
(33), which is equivalent to the basic relation (8), is always
of order 1 and largely ma independent. This basic feature
eventually leads to a fundamental prediction of this
framework, Ωdark ≈ Ωvisible, which is insensitive to the
axion mass ma, in contrast with conventional mechanisms
of the axion production when Ωdark ∼m−7=6

a ; see recent
reviews [9–16].
Consequentially, we want to argue that the disparity

between nuggets and antinuggets expressed by Eq. (33) is
not very sensitive to the initial conditions of the misalign-
ment angle θ0. This is because the disparity (33) is
determined by parameter A≃ Δθ=π from Eq. (17), which
has a meaning of the accumulated changes during a single
cycle. The total accumulation of the changes during a large
number of cycles is determined by the relation (20) which
slowly approaches some constant value ac irrespectively of
what the original misalignment angle θ0 at the initial
time was.
In other words, if the initial θ0 was quite small, then it

might take a longer period of time before the coefficient
aðtÞ assumes its final value ac. If the initial θ0 was
sufficiently large, it might take a slightly shorter period
of time to get to the point when aðtÞ approaches its finite
value (31). However, in all cases, the coefficient aðtÞ
approaches the constant value (31) of order 1 due to the
parametrically enhanced factor ∼R0T in Eq. (20) such that
even a very tiny initial magnitude of aðtÞ generates an order
1 effect due to the long lasting coherent axion field as
explained in the text after Eq. (33). This behavior should be
contrasted with conventional mechanisms of the axion

production when Ωdark ∼ θ20 is highly sensitive to initial
misalignment angle θ0; see recent reviews [9–16].
The same argument also applies to the initial T0. To be

more specific, the final result for the disparity is not very
sensitive to the initial temperature T0 as the relative
imbalance (33) is essentially determined by the final
value ac rather than by some dynamical features of the
system.7

Another important dimensional parameter of the system
is viscosity η which, in particular, enters Eq. (27) and
determines the frequency of oscillations ωð�Þ and effective
damping coefficient τð�Þ during the evolution. The sizes of
the nuggets R�ðtÞ are obviously very sensitive to these
parameters ωð�Þ and τð�Þ and, therefore, to viscosity η.
However, as in our previous discussions, the disparity (33),
which is a dimensionless parameter measuring the relative
sizes on different species, is not sensitive to this parameter
when computed at the very end of the evolution. In other
words, it might take a longer (or shorter) period of time for
different values of η to get to the final destination
determined by Eq. (33). However, the numerical value
of the disparity (33) always remains the same and deter-
mined by parameter ac when the axion (initially coherent)
field has lost its conference. To demonstrate this feature, we
present the behavior of the system for two different values
of the viscosity η in Fig. 3. As one can see from the plot, the
results are identically the same at the end of the evolution.
Formally, it is due to the fact that the viscosity enters the
equation with _R, and therefore it is not really a surprise that
the dependence on η diminishes when the system
approaches the equilibrium.
It is important to emphasize that the large imbalance in

Eq. (33) is expressed in terms of ac, which, by definition,
represents the difference between the initial value of
aðt ¼ 0Þ and the finite value of aðtdecÞ at decoherence
time tdec when the axion field loses its coherence. It does
not depend on the rate at which the axion field _aðtÞ evolves,
as discussed in Appendix D, where corresponding varia-
tions are parametrized by parameter sc. As one can see from
Fig. 2, the changes of the parameter sc do not produce any
visible modifications in the final expression for disparity
between nuggets and antinuggets.
This is quite typical behavior for all phenomena related

to Berry’s phase when the effects normally depend on
initial and final conditions rather than on specific dynami-
cal properties of the system. The key element in all our
discussions in this subsection is that we are interested in the
dimensionless ratio (33) between nuggets and antinuggets

7To avoid confusion, one should comment here that acðTÞ
itself implicitly depends on the temperature as the axion dynamics
is highly sensitive to the temperature. Our claim on the “inde-
pendence” on T0 refers to explicit independence of the disparity
(33) on T0. Implicit dependence of (33) on temperature through
acðTÞ always remains.
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at the end of the evolution, when the sensitivity to all these
dimensional parameters diminishes. The adiabatic approxi-
mation for the coherent axion field is also an important
element in demonstration of this insensitivity of the final
formula (33) to the parameters of the system.

B. Survival of the imbalance between
nuggets and antinuggets

In the previous subsection, we argued that disparity (33),
which is generated during long lasting evolution of
the coherent axion field, is not sensitive to the initial
conditions nor to the axion mass ma. In this subsection, we
want to argue that the imbalance (33) survives the sub-
sequent evolution of the system at t > tdec after the axion
field loses its coherence on the scale of the Universe as
defined in Eq. (31); see also footnote 5 with the related
comment.
The basic argument is that the intensity of the axion field

is drastically diminished after tdec. However, the most
important fact is not the amplitude of the remaining axion
field but rather its decoherence due to the emission of a
large number of randomly propagating axions with typical
correlation length λ ∼ ℏ=ðmavaÞ rather than the Universe
scale as in case (6). At this moment, the coefficient a≡ 0 in
all our previous formulas. However, the previously gen-
erated imbalance (33) does not disappear, and it cannot be
washed out because the coherent axion field (6) ceases to
exist after tdec. In other words, the nuggets and antinuggets
will continue to interact with the environment by annihilat-
ing or accreting the quarks and antiquarks from outside.
However, all these processes are not coherent on the scale
of the Universe and will equally influence both types of
species.
We want to elaborate on another question which was

previously mentioned in footnote 6 and related to our
technical assumption that ac < 1 during the evolution (20).
In this case, our treatment of aðtÞ as a marginally small
correction is justified. However, our approach obviously
breaks down when aðtÞ becomes large. There is nothing
wrong in terms of the physics of this evolution with
aðtÞ > 1. It is just a technical treatment of the problem
which requires extra care.
The increase aðtÞ > 1 with time can be interpreted in

terms of the original parameter A≃ Δθ=π from Eq. (17) to
become numerically large (close to 1) as a result of the
accumulation of this phase during the long lasting influence
of the background axion field. As we mentioned in the text,
this Uð1Þ phase of the quark field is directly related to the
baryon charge; see Ref. [4] for further technical details.
When this phase becomes of order 1, the spectrum of states
is completely reconstructed, which effectively corresponds
to the modification of the boundary conditions when the
integer coefficient N in formula (3) is replaced by (N þ 1).
After removing the integer portion from A to redefine N,

the coefficient A≃ Δθ=π from Eq. (17) can be treated as a
small parameter again.
In all respects, this procedure is like the conventional

treatment of the angular field ϕðxÞ when ϕðxÞ makes a full
cycle. The complete description of the system is accom-
plished by representing ϕðxÞ in terms of the integer number
N and fractional portion 0 ≤ ϕ < 2π as a result of the
periodicity of the angular variable ϕðxÞ. If variable ϕðxÞ
corresponds to a quantum field in quantum field theory
(QFT) supporting the topological solitons, this analogy
becomes very precise as parameter N corresponds to a
specific soliton sector in this QFT model. The fractional
portion Δθ=π corresponds to the so-called fractionally
charged soliton, which is a well-known construction in
QFT; see e.g., Ref. [4] with references on the original
literature in the given context.
For our specific problem on the imbalance between

nuggets and antinuggets, one should emphasize that the
disparity (33) holds irrespectively of the behavior aðtÞ
during the evolution. If aðtÞ becomes large at some moment
of the evolution, the corresponding portion of aðtÞ counts
as a conventional baryon charge N in formula (3), which
obviously produces an additional imbalance between dif-
ferent species.
To summarize this section, our main claim here is that the

results obtained above (showing the disparity between
nuggets and antinuggets) are very robust in the sense that
they are not very sensitive to the parameters of the theory,
such as the axion mass ma or the misalignment angle θ0.
Furthermore, these results are not very sensitive to the
detailed behavior of the system. We also argued that the
generated imbalance cannot be washed out by the conse-
quent evolution of the system. Therefore, the computations
of the present work strongly support the assumption (8),
which is essentially equivalent to Eq. (1), which is a generic
consequence of the framework.

V. CONCLUSION AND FUTURE DEVELOPMENT

This work is a natural continuation of the previous
studies [4]. The crucial element which was postulated there
(without much computational support) is represented by
Eq. (8). In the present work, we investigate the evolution of
domain-wall bubbles in the presence of a coherent CP-odd
axion field. We conclude that the coupling with the
coherent axion eventually leads to significant disparity
(33) in size between the quark and antiquark nuggets. This
provides an essential numerical and analytical support of
Eq. (8). We summarize the main results and assumptions of
present work as follows:
(1) We assume the PQ transition happens before (or

during) the inflation, such that the vacuum is unique
and the axion field θ is correlated on the scales of the
entireUniverse.While the domainwallswithNDW>1
cannot be formed in this case, the so-called NDW¼1
domain walls, interpolating between one and

GE, LIANG, and ZHITNITSKY PHYSICAL REVIEW D 96, 063514 (2017)

063514-14



the same physical vacuum, still can be formed, as
argued in Ref. [4]. This option has been overlooked
somehow in previous studies because it had been
previously assumed that the all types of the domain
walls cannot be formed if the PQ transition happens
before the inflation. This element plays a key role in
our analysis because the CP-odd axion field is
coherent on enormous scales of the entire Universe
when the NDW ¼ 1 domain-wall bubbles can be also
formed.

(2) In the presence of a global coherent axion field θ, we
argued that a significant disparity (33) between
nuggets and antinuggets will be generated. In other
words, we argued that the baryon charges separation
effect inevitably occurs as a result of the mere
existence of the coherent axion field in the early
Universe. These studies essentially represent an
explicit analytical and numerical support of the
basic assumption (8), which is equivalent to the
fundamental consequence of the framework (1).

(3) The accumulated disparity (33) is insensitive to the
initial conditions, such as θ0 and T0, and to the
parameters of the system such as the axion massma,
as argued in Sec. IVA.

(4) Furthermore, the imbalance (33) between nuggets
and antinuggets is not very sensitive to many
dynamical parameters of the system. Rather, it is
only sensitive to initial and final values of the
axion field when it starts to tilt at t ¼ 0 and loses
its coherence at moment t ¼ tdec, as argued in
Sec. IV B; see also the relevant comment in
footnote 5. Such behavior is, in fact, a typical
manifestation of the accumulated Berry’s phase in
condensed matter physics. We also argued in
Sec. IV B that the subsequent evolution of the
system cannot wash out the previously generated
imbalance between nuggets and antinuggets.

(5) We avoid any fine-tuning problems as a result of the
features of the system listed in items 3 and 4 above.
It further supports our basic claim that the ratio
Ωdark ≈Ωvisible is a very natural and universal out-
come of this framework as both types of matter (DM
and visible) are proportional to a single dimensional
parameter of the system, ΛQCD. This claim is not
sensitive to any specific details of the system.

(6) The baryogenesis in this framework is replaced by
the “charge separation” effect as reviewed in Ref. [4].
All criteria but one, Sakharov’s criteria [51], are
present in our framework (with exception of an
explicit baryon charge violation). Indeed, the C
symmetry is broken spontaneously on the scale of
an individual nugget when the chemical potential μ
(which is an odd value under the C transformation) is
locally generated, as explained in Sec. II B. The CP
symmetry is broken globally as a result of the

coherent axion field (which is odd under CP trans-
formation), which generates the imbalance (33)
between nuggets and antinuggets as highlighted in
Sec. II E and explained in great details in the present
work. The generated disparity (33) cannot be
washed out at the later times as a result of the
nonequilibrium dynamics when the (originally co-
herent) axion field produces a large number of
random DM axions and loses its coherence at time
tdec as explained in Sec. IV B.

We want to conclude with few additional thoughts on the
future directions within the framework advocated in
present work.
It is quite obvious that a much deeper understanding of

the QCD phase diagram at θ ≠ 0 is essential for any future
progress; see Fig. 1. Due to the known “sign problem,” the
conventional lattice simulations cannot be used at θ ≠ 0.
The relevant recent studies [32,52–55] use a number of
“lattice tricks” to evade the sign problem. Still, the problem
with a better understanding of the phase diagram at θ ≠ 0
remains.
Another problem which is worth mentioning is related to

a deeper understanding of the formation of closed domain-
wall bubbles. Presently, very few results are available on
this topic. The most relevant for our studies is the
observation made in Ref. [11] that a small number of
closed bubbles are indeed observed in numerical simula-
tions. However, their detailed properties (their fate, size
distribution, etc.) have not been studied yet. A number of
related questions such as an estimation of correlation length
ξðTÞ, the generation of the structure inside the domain
walls, the baryon charge accretion on the bubble, etc., can
hopefully also be studied in such numerical simulations.
One more possible direction for future studies from the

“wish list” is a development of the QCD-based technique
related to the evolution of the nuggets, cooling rates,
evaporation rates, annihilation rates, viscosity, transmis-
sion/reflection coefficients, etc., in an unfriendly environ-
ment with nonvanishing T, μ, θ. All these and many other
effects, in general, equally contribute to our parameters like
Tform and cðTÞ at the ΛQCD scale in strongly coupled QCD.
Precisely these numerical factors eventually determine the
coefficients in the observed relation Eq. (1).
One more possible direction for future studies from the

wish list is the improvement of our current understanding
by including the CS gap in computations of the nugget’s
evolution. Such an inclusion can result in a much more
precise restriction on the phenomenological parameter cðTÞ
in Eq. (8) relating the baryon to nugget ratio (10).
As we mentioned in Sec. I, this model is consistent

with all known astrophysical, cosmological, satellite, and
ground-based constraints. The same (anti)nuggets are also
the source for the solar neutrino emissions. A very modest
improvement in the solar neutrino detection may also lead
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to a discovery of the nuggets; see the recent paper [56]. One
can also argue that the same (anti)nuggets may explain the
long standing problem of the extreme UV and soft x-ray
emission from the Solar corona [57].
Last but not least, the discovery of the axion would

conclude a long and fascinating journey of searches for this
unique and amazing particle conjectured almost 40 years
ago; see the recent reviews [9–16] and recent proposal [58]
on the axion search experiment which is sensitive to the
axion amplitude θ itself, in contrast with conventional
proposals which are sensitive to _θ.
If the PQ symmetry is broken before or during inflation

(which is assumed to be the case in our framework as stated
in item 1 at the beginning of this section), then a sufficiently
large axion mass ma ≳ 10−4 eV is unlikely to saturate the
dark matter density observed today. Indeed, in this case,
the corresponding contribution to Ωdark resulting from the
misalignment mechanism [48] is given by (see e.g., the
review [15])

Ωaxion ≃
�
6 · 10−6 eV

ma

�7
6

: ð34Þ

This formula essentially states that the axion of mass
ma ≃ 2 · 10−5 eV saturates the dark matter density
observed today, while the axion mass in the range of
ma ≳ 10−4 eV contributes very little to the dark matter
density. Formula (34) accounts only for the axions
directly produced by the misalignment mechanism
and neglects the axions produced as a result of decay
of the topological defects, which becomes the dominant
mechanism if the PQ phase transition occurs after the
inflation.8

In the present work, we advocate the idea that, even if
ma ≳ 10−4 eV is large and the PQ symmetry is broken
before or during inflation, still there is another comple-
mentary mechanism contributing to Ωdark due to the “quark
nuggets” formation. We argue that precisely this novel
additional mechanism could provide the principle contri-
bution to dark matter of the Universe as the relation Ωdark ∼
Ωvisible in this framework is not sensitive to the axion mass
ma nor to the misalignment angle θ0 as advocated in the
present work.
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APPENDIX A: COHERENT AXION FIELD (6)
AS BERRY’S PHASE

In this Appendix, we shall argue that the tiny phase
difference proportional to θðtÞ for quarks and antiquarks
trapped inside the nuggets and antinuggets might be
interpreted as Berry’s phase for the Fermi fields. These
tiny changes lead to small differences in every individual
QCD process as shown in Sec. III. However, these small
variations are eventually translated into a large accumulated
effect expressed in terms of global properties of the nuggets
and antinuggets (such as their typical sizes). This large
effect formally expressed as (8) is the direct consequence
of the very long lasting accumulation of these tiny
CP-odd effects due to the fundamental coherent axion
θðtÞ field. Eventually, the generation of jcðTÞj ∼ 1 leads to
the model-independent prediction of this framework
expressed as (1).
The results of this adiabatic evolution are not sensitive to

the parameters of the system but rather sensitive to the
initial and final configurations of the system. Such behavior
is very typical for many phenomena related to the accu-
mulation of Berry’s phase in condensed matter physics
when the effects are sensitive to the global rather than local
characteristics of the system. Therefore, it is quite natural to
expect that the behavior of our system described in Secs. III
and IV can be also interpreted as a result of accumulation of
Berry’s phase which can be identified with the axion
background field (6).
Our starting point is the θ term in the QCD Lagrangian

Lθ where θðtÞ in this work is identified with the axion field

Lθ ¼ −θðtÞ g2

32π2
~Ga
μνGa

μν: ðA1Þ

As is well known, one can rotate the θ term away by
rotating the quark fields. Assuming that we have Nf light
quarks with equal small masses, one can represent this
Uð1ÞA chiral rotation in the path integral formulation as
follows:

ψ → exp

�
−iγ5

θðtÞ
Nf

�
ψ : ðA2Þ

There is a number of important consequences of this
transformation. We want to mention here just few of them.
First of all, the phase (A2) can be interpreted as Berry’s

phase, which is coherently accumulated by all quark
fields in the entire Universe as long as the field θðtÞ given
by (6) is coherent. This phase is obviously numerically
much smaller than conventional phases related to the QCD
fluctuations which are normally of order ΛQCD. However,
the most important feature of this phase is that it is coherent
on the scale of the entire Universe and can be accumulated
during a long period of time ∼m−1

a ðtÞ, much longer than
typical QCD processes with typical time scales ∼Λ−1

QCD.

8There is a number of uncertainties and remaining discrepan-
cies in the corresponding estimates. We shall not comment on
these subtleties by referring to the original papers [38,45–47].
According to these estimates, the axion contribution to Ωdark as a
result of decay of the topological objects can saturate the
observed DM density today if the axion mass is in the range
ma ∼ 10−4 eV.
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Berry’s phase entering (A2) can be interpreted as a result
of the acting of an auxiliary (fictitious) magnetic field in the
HamiltonianHBerry ¼ σ⃗ · B⃗Berry where the so-called Berry’s
curvature B⃗Berry assumes the form

B⃗Berry ∼ ðm cos θ; m sin θ; _θÞ: ðA3Þ

The parameter m enters the effective Lagrangian (13) and
has a physical meaning of a QCD scale as explained in the
text. The additional term ∼ _θ in Eq. (A3) is a result of
the Uð1ÞA chiral rotation (A2) in the path integral when the
parameter of the rotation θðtÞ depends on time. The
corresponding Lagrangian generating this term has the form
L5 ¼ _θ ψ̄ γ0γ5ψ . The _θ in this expression can be interpreted
as axial chemical potential μ5 ¼ _θ, which normally enters
the Lagrangian as L5 ¼ μ5ψ̄γ0γ5ψ .
In writing down an explicit expression for Berry’s

curvature B⃗Berry, we used a specific frame determined by
γμ- representation as given in Ref. [4]. In this representa-

tion, the auxiliary Berry’s curvature B⃗Berry can be thought
of as a vector rotating along the equator in the xy plane
(neglecting the small Bz

Berry ∼ _θ component) in this specific
frame when time evolves. It is important to emphasize that
this auxiliary field never returns to its original position after
a complete cycle because the axion field reduces its
amplitude during the evolution. The corresponding energy
of the coherent axion field eventually goes to the produc-
tion of the propagating dark matter axions as a result of the
conventional misalignment mechanism. After the energy of
the original field (6) is transferred to the propagating
axions, the large scale coherence (with the size of the
Universe) is lost, and the typical coherence length is
determined by λD, which is a much smaller scale.
The idea that the axion field can be thought of as an

auxiliary (fictitious) magnetic field is not a new idea and
has been discussed in a number of papers in the past; see
e.g., recent articles [18,22,25,28] devoted to the axion
search experiments. A novel element advocated in the
present work is that this field (6) is coherent on enormous
scales of the Universe before it decays to the propagating
dark matter axions.
Another important consequence of the accumulated

phase (A2) is that the ground state (the QCD vacuum)
in the background of the coherent axion field (6) explicitly
violates CP invariance as can be explicitly seen by
computing the hdet ψ̄f

Lψ
f
Ri; see below. The corresponding

computations can be carried out in a theoretically control-
lable way at sufficiently high temperature T > Tc when the
instanton approximation is justified. This region of temper-
atures is precisely when the domain-wall network only
starts to form and the axion field just starts to roll.
The corresponding technical computations are well

known and presented in Appendix B,

hdet ψ̄f
Lψ

f
Ri ∼ eiθðtÞ · Λ3Nf

QCD

�
ΛQCD

T

�11
3
ðN−NfÞ

; ðA4Þ

where f stands for the flavor of a light quark. A few
comments about this important formula are in order. First of
all, the vacuum condensate (A4) does not vanish even in the
deconfined phase (well above the transition at T ≫ Tc
shown on Fig. 1), in the region where the chiral symmetry
is restored and the chiral condensate itself vanishes, i.e.,
hψ̄ψi ¼ 0. This is because the vacuum condensate (A4) is
formed due to the explicit violation of the Uð1ÞA symmetry
rather than due to spontaneous SUð3ÞL × SUð3ÞR chiral
symmetry. Furthermore, hdet ψ̄f

Lψ
f
Ri does not vanish in the

chiral limit mq → 0; see discussions in Appendix B.
Another important comment is that formula (A4) is

derived in the dilute instanton gas approximation, which is
known to become a theoretically justifiable approximation
at sufficiently high temperature of order a few times ΛQCD;
see the detailed discussions on this matter in Appendix B.
An important comment we would like to make here is that
the decreasing of the condensate (A4) with increasing the
temperature is much slower than in the case of topological
susceptibility χðTÞ ∼ f2am2

aðTÞ which determines the axion
mass dependence on temperature maðTÞ; see recent
numerical studies in Refs. [30–33].
Furthermore, the condensate (A4) also depends on the

chemical potential [not shown explicitly in estimate (A4) to
simplify notations]; see Appendix B with relevant com-
ments. This feature has an important implication for our
discussions in Secs. III and IV as the μ dependence of the
vacuum condensate (A4) implies that the ground states
inside and outside the nuggets would be different.
The key element for the present work is that the vacuum

condensate (A4) explicitly depends on the axion phase θðtÞ
as a result of Uð1ÞA transformation (A2). The presence of
this phase unambiguously implies that the ground state
violates CP invariance even in the deconfined quark-gluon
plasma well above the transition temperature Tc. This CP
violation occurred when T > Tc, which happens long
before the axion field settles down at the origin θ ¼ 0
when the chiral phase transition occurs at T ≃ Tc. This
remark has some profound cosmological consequences
discussed in the main text in Secs. III and IV as the phase
(6) is correlated on enormous scales at this early stage of
evolution.

APPENDIX B: COMPUTATIONS
OF THE hdet ψ̄ f

Lψ
f
Ri

The main goal of this Appendix is to derive formula (A4)
for the vacuum expectation value hdet ψ̄f

Lψ
f
Ri in the

deconfined phase where the instanton base computations
are under complete theoretical control for sufficiently large
T, which is precisely the region where the axion field starts
to roll and the domain-wall network starts to form. In the
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context of the present work, the generation of this con-
densate unambiguously implies that the ground state is P
and CP odd as a result of the axion field θ given by (6),
which is coherent on an enormous scale at this period
of the time evolution. One should emphasize that the θ
dependence enters through the nonperturbative dynamics
in the deconfined regime. As is well known, the θ
dependence cannot enter the dynamics on the level of
perturbation theory.
We use the standard formula for the instanton density at

one-loop order [59–61],

nðρÞ ¼ CNðβðρÞÞ2Nρ−5 exp½−βðρÞ�

× exp

�
−
�
Nfμ

2 þ 1

3
ð2N þ NfÞπ2T2

�
ρ2
�
; ðB1Þ

where

CN ¼ 0.466e−1.679N1.34Nf

ðN − 1Þ!ðN − 2Þ! ;

βðρÞ ¼ −b logðρΛQCDÞ; b ¼ 11

3
N −

2

3
Nf:

This formula contains, of course, the standard instanton
classical action expð−8π2=g2ðρÞÞ ∼ exp½−βðρÞ� which,
however, is hidden as it is expressed in terms of ΛQCD

rather than in terms of coupling constant g2ðρÞ. This
nonanalytical dependence expð−8π2=g2Þ explicitly shows
the nonanalytical and nonperturbative nature of the con-
densate hdet ψ̄f

Lψ
f
Ri to be computed below based on

expression (B1).
We inserted the chemical potential μ ¼ μB=N along with

temperature T into this expression to demonstrate that the
instanton density becomes exponentially small for suffi-
ciently large T, which explains the justification of the dilute
instanton gas approximation in this regime.
The computation of condensate hdet ψ̄f

Lψ
f
Ri is reduced to

the following expression,

hdet ψ̄f
Lψ

f
Ri ¼ eiθðtÞ

Z
dρnðρÞd4x

YNf

i

2ρ3

π2½x2 þ ρ2�3 ; ðB2Þ

where we keep only zero modes in the chiral limit,9

assuming that in the dilute gas approximation (which is
justified for sufficiently large T as we mentioned above) all
other mode contributions are suppressed by factor mq → 0.
The integration over d4x corresponds to the integration over
the instanton center at point x.

The important point here is that the axion field θ
explicitly enters the expression (B2), such that the con-
densate violates P and CP symmetries in the ground state.
Another important comment is that the integral

R
dρ is

convergent, and for sufficiently large T, the expression (B2)
represents the dominant contribution for this nonperturba-
tive vacuum condensate. It is important to emphasize that
the condensate hdet ψ̄f

Lψ
f
Ri does not vanish10 in the chiral

limit mq → 0, in contrast with the partition function itself,

Z, which vanishes as Z ∼m
Nf
q . The topological suscep-

tibility χ ∼ ∂2Z=∂θ2 as well as the axion mass m2
a ∼ χ ∼

m
Nf
q also vanish in the chiral limit.11

After integration over d4x, one arrives at the following
expression,

hdet ψ̄f
Lψ

f
Ri¼

π2 ·eiθðtÞ

ð3Nf−1Þð3Nf−2Þ
Z

dρnðρÞρ4
�

2

π2ρ3

�
Nf

;

where nðρÞ is defined as before by Eq. (B1). The combi-
nation

R
dρnðρÞρ4 is dimensionless, while the dimension

of the operator hdet ψ̄f
Lψ

f
Ri ∼ hρi−3Nf ∼ ðMeVÞ3Nf as it

should. After integration over the instanton sizes dρ, one
arrives at

hdet ψ̄f
Lψ

f
Ri ∼ eiθðtÞΛ3Nf

QCD

�
ΛQCD

T

�11
3
ðN−NfÞ

; ðB3Þ

where for simple estimates we neglect all ðlog ρÞn and all
numerical factors in the integrand as they do not play any
essential role in the present work. This formula is precisely
the expression (A4) we used in the previous Appendix.

APPENDIX C: TECHNICAL DETAILS

This Appendix is devoted to the derivation of the
pressure term given by Eq. (23). It plays an important
role in our analysis in Sec. III B. The basic idea is to use
the net baryon charge conservation given by in Eq. (21)
and relate the radius of a domain-wall bubble to its
chemical potential, similar to the procedure we used in
our previous studies in Ref. [4]. The new element now is
the extra term ∼a due to the background axion filed, which
has different signs for the nuggets and antinuggets. The
relevant formula reads

9It is known that the zero modes explicitly depend on the
chemical potential; see e.g., the review [61]. We neglect these
minor corrections for our estimates in the present work.

10In fact, this unique feature for this condensate hdet ψ̄f
Lψ

f
Ri in

the chiral limit motivated a proposal to view the vacuum
condensate hdet ψ̄f

Lψ
f
Ri as an order parameter to study the phase

transition to the conformal window in the limit of large N and
finite Nf=N ∼ 1; see Ref. [62] for references and details.

11At low temperatures T ≃ 0, the corresponding features are
quite different because the chiral condensate hψ̄f

Lψ
f
Ri ≠ 0 and

also because in the Uð1ÞA channel there are no massless degrees
of freedom as the η0 is a massive state.
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x2 ≃
�
T0

T

�
2 Ið�Þ

2 ð0Þ
Ið�Þ
2 ðbÞ

�
1 ∓ AR0T

3π
x ·

Ið�Þ
3 ðbÞ
Ið�Þ
2 ðbÞ

�

≃
�
T0

T

�
2 Ið�Þ

2 ð0Þ
Ið�Þ
2 ðbÞ

�
1 ∓ 2

3
ax

�
3

2
þ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ið�Þ
2 ðbÞ

q ��
;

ðC1Þ

where x ¼ R=R0, and a ¼ AR0T=2π as defined in Eq. (20).
In the second step, we use the approximated relation
I3ðbÞ=I2ðbÞ≃ 3

2
þ 2

3

ffiffiffiffiffiffiffiffiffiffiffi
I2ðbÞ

p
; see Appendix E.

Our next step is to approximate and simplify Ið�Þ
2 ðbÞ by

expanding it with respect to small parameter a. We keep the
linear terms only as a is assumed to be a numerically small
parameter, i.e.,

FIG. 2. Numerical solutions of (anti)nuggets evolving in the background of axion field before QCD transition. The blue and orange
lines represent the evolutions of R−ðsÞ and RþðsÞ, respectively. We plot the upper four subfigures in (a) with sc ¼ 10−2 and the lower
four subfigures in (b) with sc ¼ 10−5. The numerical values of parameters ma and ac that we use in calculating each subfigure can be
seen in the upper edge and right edge of the graph.
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Ið�Þ
2 ½bðRÞ�≃

�
T0

T

�
2 I2ð0Þ

x2

�
1 ∓

�
4

9

T0

T

ffiffiffiffiffi
π2

12

r
þ x

�
a

�

≡ fð�ÞðRÞ: ðC2Þ

We introduce special notations for this combination of
ðR; a; TÞ by introducing a function fð�ÞðRÞ, which enters
formula Eq. (23) in the main text. This function is very
useful because every higher order Fermi integral InðbÞ (and
some simple polynomial functions) can be well approxi-
mated in terms of the function of I2ðbÞ; see Appendix E.
This property allows us to rewrite all terms of chemical
potential b ¼ jμj=T into a simple function of radius R using
the relation (C2).
To conclude this Appendix, we want to alert the readers

that the definition of fð�ÞðRÞ introduced above is slightly
different from fðRÞ introduced in our previous work [4].
While the two functions play a similar role in the analysis,
they are not identically the same even in the limit a ¼ 0. In
the present work, fð�ÞðRÞ is defined as I2½bðRÞ�, while in
the previous work, it is defined as fðRÞ≡ I2½bðRÞ� − π2=6.
We opted to use a new definition (C2) in the present work
because it produces much better accuracy with the approx-
imations and simplifications for the Fermi integrals adopted
in the present work. In fact, the accuracy of the present
work is order�5%, which should be compared with typical
accuracy ∼20% from the previous work [4] when similar
approximations are made.

APPENDIX D: NUMERICAL RESULTS
SUPPORTING (33)

Our goal here is to solve Eq. (22) without using a large
number of simplifications and approximations of Sec. III.
Let us remind the reader that the goal of Sec. III was to

make a qualitative analysis leading to (33), rather than a
precise quantitative description. In this Appendix, we use
the exact form of Fermi integrals. In addition, we also keep
the contribution ∼EBθðb − b1Þ in (23), which was
neglected in our qualitative analysis in Sec. III.
Furthermore, as we mentioned in Sec. III B, we use the

adiabatic approximation in the computations of the nug-
get’s dynamics (oscillations with slow damping). This
adiabatic approximation is technically achieved by assum-
ing that maðTÞ and T are the constants in the course of
computations. This assumption can be only justified if the
typical time scales of the relevant processes such as
nugget’s oscillations are much shorter than the time scale
when the external parameters ½θðTÞ; maðTÞ; T� vary. To
justify our approximation, we compute the ratio ωR=ωθ. In
this formula, ωR represents a typical frequency of the
nuggets oscillation, while ωθ represents the frequency of
oscillations of the axion field.
The computation of ωθ ≃ma is based on the interpo-

lation formula (between low and high temperatures) for the
topological susceptibility derived in Ref. [44]:

m2
af2a ¼ 1.46 × 10−3

Λ4ð1þ 0.5 T
ΛÞ

1þ ð3.53 T
ΛÞ7.48

;

Λ≃ 0.4 GeV: ðD1Þ

It is known that this expression deviates from the lattice
results [30–33]. Nevertheless, it obviously reflects all the
crucial elements in the behavior of the topological suscep-
tibility and the axion mass maðTÞ as a function of the
temperature T. It is certainly a sufficiently good approxi-
mation for our qualitative estimates of the ratio ωR=ωθ.
The computation of ωR is based on the numerical

solution12 of Eq. (22) for a few consecutive oscillations
of RðtÞ for different values of the temperature
170 MeV ≤ T ≤ 500 MeV. The corresponding ratio
ωRðTÞ=ωθðTÞ as a function of the temperature is shown
on Fig. 4. The most important lesson from these compu-
tations is that this ratio is always much larger than unity,
even in the vicinity of the chiral phase transition at T ≃
170 MeV when the chiral condensate forms and the axion
mass assumes its final maximum value. This estimate
unambiguously implies that our adiabatic approximation
is justified as the nuggets make a large number of
oscillations, while the axion field varies only slightly as
the relation ωR ≫ ωθ states.
As we shall see below, the numerical studies of this

Appendix strongly support the qualitative analysis pre-
sented in Sec. III and specifically the basic result (33)

0 10 20 30 40

0.2

0.4

0.6

0.8

1.0

FIG. 3. Dependence on viscosity η. Amplitudes of R− (blue)
and Rþ (orange) are plotted. The solid lines correspond to
η ¼ 8.4m3

πð×109Þ, and the dashed lines correspond to
η ¼ 1.0m3

πð×109Þ. Here, parameters ma ¼ 10−4 eV and sc ¼
10−5 are chosen.

12In the corresponding numerical computations, we do not
assume the smallness of the oscillations. Therefore, we do not use
expansion around the minimum of the potential leading to
approximate linearized equation (26).
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demonstrating the disparity between nuggets and antinug-
gets due to the interaction with the coherent axion field.
The parameter aðtÞ was introduced in Eq. (20) to

describe the accumulation of CP-odd effects as the result
of the evolution of the nuggets in the background of axion
field. As discussed in Sec. III B, aðtÞ is a monotonically
increasing function of time. Essentially, this behavior
corresponds to the axion potential, which becomes more
and more tilted with time as the axion mass maðTÞ is
increasing when the temperature slowly approaches the
transition value Tc from above. When the axion potential
becomes more tilted, the corresponding rate of the axion’s
emission also increases. It obviously leads to the decay of the
axion amplitude θ as the energy from the coherent axion
field (6) is transferred to the propagating axions. This effect
of the diminishing of the axion field is parametrized by A in
Eq. (17), which precisely describes the decreasing of the
axion amplitude during a single cycle. At some moment tdec
in this evolution, the axion field loses its coherence
approaching its critical value ac as described in the text;
see Eq. (31) and footnote 5. At this moment, the axion field
may still produce the axions, but it cannot lead to any
coherent (on the scale of the Universe) changes such as (33).
In the numerical studies below, we concentrate only on

computation of the disparity (33), while the background
approximation (20) remains valid. The generalization of
this result on the case when the critical value ac becomes
large is straightforward and discussed in Sec. IV B.
Therefore, we model aðtÞ to be increasing with time

from zero and (smoothly) stopping at some cutoff value
ac ≤ 1 corresponding to the decoherence moment tdec, i.e.,

aðsÞ ¼ ac tanh

�
s
sc

�
; s≡ t=R0; ðD2Þ

where ac and sc serve as two free parameters. For
convenience in numerical computation, we use the
“rescaled” time s≡ t=R0 in this Appendix. The parameter
ac is defined by (31) and corresponds to the moment when
the axion field loses its coherence as explained above and in
footnote 5. The parameter sc describes the rate at which the
parameter aðtÞ changes with time.
As manifested in numerical evaluation, the final effects

of the disparity (33) do not depend on what the exact model
for aðtÞ is. More specifically, the rate of the variation of
aðtÞ does not affect the final magnitude of the disparity
between two species. Here, we model it as the hyperbolic
tangent form just for the convenience of numerical calcu-
lations. In the model (D2), we describe the critical point
using the cutoff ac. As one can see from Fig. 2, the final
disparity effects do not depend on parameter sc but only
depend on the value of ac when the coherence of the axion
field is lost. Figure 2 also shows that the disparity effects do
not depend on the axion mass ma, in agreement with our
arguments in Sec. IVA.

The disparity effects also do not depend on the viscosity
η. To support this claim, we did two different computations
with different values of viscosity. The first choice was
motivated by our previous studies [4] where we used
η≃m3

π , which has been computed in different models
under different conditions in Refs. [63,64]. It is known that
the viscosity is in fact is somewhat larger in the region of
sufficiently high temperature. Therefore, for the second
choice, we use the holographic arguments of Ref. [65],
suggesting that η could be 1 order of magnitude larger than
conventional perturbative QCD predictions (we use factor
8.4 in our numerical computations). One can explicitly see
from Fig. 3 that the final destination for the disparity effects
does not depend on the viscosity, in agreement with the
general arguments of Sec. IVA.
We summarize the numerical values of other parameters

and constants needed in calculations in Table. I. We choose
initial temperature T0 as 200 MeV. The (anti)nuggets
evolve in the background axion field from 200 MeV to
the QCD transition temperature 170 MeV, and we can
safely take the temperature as a constant, T=T0 ≃ 1.
In Fig. 2(a), we draw 2 × 2 subfigures,13 for

ma ≃ ð10−4; 10−6Þ eV, ac ¼ ð0.1; 0.5Þ, and we set the

TABLE I. Table for some numerical parameters.

Quantity Value QCD units
(mπ ¼ 1Þ

Flavors Nf 2 2
Colors Nc 3 3
Degeneracy factor (in) gin 12 12
Degeneracy factor (out) gout 37 37
Bag constant EB ð150 MeVÞ4 1.5
“Squeezer” parameter μ1 330 MeV 2.4
Initial temperature T0 200 MeV 1.5
QCD viscosity η [63,64] 0.002 GeV3 1
QCD viscosity η [65] 0.02 GeV3 8.4
Axion decay constant fa 1010 GeV 7.4 × 1010

Mass of axion ma 10−4 eV 7 × 10−13

Mass of axion ma 10−6 eV 7 × 10−15

Domain-wall tension
σðma ∼ 10−4 eV)

9 × 105 GeV3 3.7 × 108

Domain-wall tension
σðma ∼ 10−6 eV)

9 × 107 GeV3 3.7 × 1010

Initial radius R0 ∼m−1
a 0.2 cm 1.4 × 1012

Initial radius R0 ∼m−1
a 20 cm 1.4 × 1014

13To make the numerical computations solvable and the pattern
of oscillations in Fig. 2 visible, here we adopt the rescaled QCD
viscosity ~η ¼ 109η, following Ref. [4]. This will not change any
important results that we care about, like the formation radius of
(anti)nuggets R�

form. The advantage is that this adoption will
greatly “shorten” the evolution time and therefore make the
numerical computations feasible. Correspondingly, we add an
extra factor 10−9 in the horizontal label in Fig. 2. Otherwise, if we
directly use the value of η, Fig. 2 should be 9 orders of magnitude
longer than shown.

COSMOLOGICAL CP-ODD AXION FIELD AS … PHYSICAL REVIEW D 96, 063514 (2017)

063514-21



parameter sc ¼ 10−2. We set the viscosity as η ¼ 8.4m3
π .

Figure 2(b) is the same as the Fig. 2(a) but with a different
parameter sc ¼ 10−5. The blue and orange lines represent
the evolution of R−ðsÞ and RþðsÞ, respectively. The differ-
ence between these two kinds of lines is the accumulated
disparity effects. Comparing Fig. 2(a) with Fig. 2(b), we see
that changing sc will not affect the disparity effects. This
verifies that the difference between two kinds of nuggets is
insensitive to how a increases, fast or slow. In Fig. 2(a) or
Fig. 2(b), comparing the four subfigures horizontally with
ac fixed and ma varied, we see that the disparity effects
are independent of ma. This supports the arguments in
Sec. IVA that the disparity effects are insensitive to the
mass of the axion. Then, we compare the four subfigures
vertically with ac varied and ma fixed. We see that the
disparity effects are determined by ac rather than other
parameters. For ac ¼ 0.1, we see that ΔRform¼
jRþ

form−R−
formj≃0.06 and hRformi¼1

2
jRþ

formþR−
formj≃0.6,

consistent with the analytical relation (32) in Sec. III.
For ac ¼ 0.5, ΔRform ≃ 0.3 and hRformi≃ 0.6, again con-
sistent with the relation (32).
We also notice that the oscillations shown in Fig. 2 are

very sharp. But this seemingly cuspy behavior is in fact
quite smooth on the QCD scale. To see this, we zoom in on
the first few oscillations of Rþ in the lower left subfigure of
Fig. 2(a) and plot this in Fig. 5. We see that the duration of
the “cusp” is δtcusp ∼ 10−3R0, which is much longer than
the QCD scale δtcusp ≫ Λ−1

QCD. One should also add that the
oscillation frequency is not sensitive to the viscosity η
according to Eq. (27b). Therefore, our comment about
“noncuspy” behavior remains unaffected as the time scale
of a single oscillation (and therefore δtcusp) is not sensitive
to the viscosity η.

APPENDIX E: FERMI INTEGRALS

We now study some more details on the Fermi integral of
the following form:

InðbÞ ¼
Z

∞

0

dx · xn−1

ex−b þ 1
: ðE1Þ

Such integrals can be exactly solved in terms of the so-
called “polylog” function of degree n:

LinðzÞ ¼
X∞
k¼1

1

kn
zk: ðE2Þ

Specifically, we obtain the following exact solution,

InðbÞ ¼ −ΓðnÞLinð−ebÞ; ðE3Þ

where ΓðnÞ is the gamma function. Also, one may find the
polylog function satisfies following property when doing
derivation:

d
db

Linð−ebÞ ¼ Lin−1ð−ebÞ: ðE4Þ

This property implies a useful relation between different
In’s:

d
db

InðbÞ ¼ ðn − 1ÞIn−1ðbÞ: ðE5Þ

For b ≥ 0, we sometimes prefer to approximate InðbÞ in
terms of “basic” functions:

I1ðbÞ ¼ lnð1þ ebÞ ðexactÞ ðE6aÞ

I2ðbÞ≃ π2

6
þ 1

2
b2 −

π2

12
e−b ð�2%Þ ðE6bÞ

I3ðbÞ≃ π2

3
bþ 1

3
b3 þ 3

2
ζð3Þ · e−b ð�2%Þ ðE6cÞ
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FIG. 4. This plot shows that ωR=ωθ is always much larger than
unity. This behavior justifies our adiabatic approximation in
numerical analysis when the axion mass maðTÞ and the axion
field θðTÞ are kept constant. This plot essentially shows that the
nuggets make a very large number of oscillations, while the axion
field θðTÞ slowly varies.
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FIG. 5. The first few oscillations of Rþ in the lower left
subfigure of Fig. 2. We choose this as an example to show that
there is no cuspy problem.
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I4ðbÞ≃ 7π4

60
þ π2

2
b2 þ 1

4
b4 −

7π4

120
e−b ð�3%Þ: ðE6dÞ

All approximations are highly accurate within �3%
uncertainty. Other useful approximations can be writing
higher order InðbÞ in terms of I2ðbÞ. For examples,

I3ðbÞ
I2ðbÞ

≃ 3

2
þ 2

3

ffiffiffiffiffiffiffiffiffiffiffi
I2ðbÞ

p
ð�5%|{z}

b≤5

;�10%|{z}
b≤10

Þ: ðE7Þ

Note that μmax ≃ 500 MeV is the critical upper limit of the
QCD cutoff and T ≳ 170 MeV before QCD transition;

thus, b≲ 3 is the full applicable domain in the present
study. A similar approximation for I4ðbÞ is

I4ðbÞ≃ 2πI2ðbÞ þ ðI2ðbÞÞ2 ð�3%|{z}
b≤10

Þ: ðE8Þ

Also, before transition, T ≳ 170 MeV. Thus, this approxi-
mation is within 5% of error since b≲ 3. Also, near the
transition T ≲ 220 MeV, we can also approximate

b2 ≃ 2.92þ 2I2ðbÞ ð�3%|{z}
b≥1.5

Þ; ðE9Þ

which is a valid approximation for μ > μ1 ≃ 330 MeV.
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