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We consider the possibility that the Universe, viewed as a three-brane, originated in a region of strong
external field strength due to a four-form gauge field in the bulk. It is shown that in a scenario of this kind
inflation is generic for a wide range of initial conditions. This is true even for small field inflation with a
simple quadratic inflaton potential, as well as for Higgs potentials with the initial field well away from the
local maximum, not necessarily starting from rest. The power spectrum, spectral index, and r parameter
help to constrain parameters in this scenario, and r < 0.1 favors Higgs potentials.
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I. INTRODUCTION

The view that our Universe should be viewed as a
three-brane in higher dimensions has been advocated,
in various forms, by many authors, e.g. [1–7]. But three
branes couple in a natural way to an Abelian four-form
gauge field in the bulk. If the embedding coordinates of
the brane are denoted ϕaðxÞ, and the brane is charged
with respect to the gauge field, then the corresponding
interaction term is

SA ¼ q0
4!

Z
d4xAabcd½ϕðxÞ�εαβγδ∂αϕ

a∂βϕ
b∂γϕ

c∂δϕ
d: ð1Þ

It is interesting to ask what effect a strong external four-
form gauge field might have had on the dynamics of the
early Universe, if the Universe were exposed to such a
field at that early time.
Of course such a question can only be answered in the

context of a specific model. The model I will consider here
was proposed in [8]. It consists of SA plus the usual action
of the standard model fields. In addition, there is the
Einstein-Hilbert action, where the metric depends on the
embedding, and an inflaton action. What is a little non-
standard is that the inflaton fields are regarded as a subset
of the Dþ 1þ N embedding coordinates, while the
induced metric gμν is taken to depend only on the remaining
embedding coordinates. Explicitly,

S ¼ SSM þ SA þ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
R

− σ4
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ

s∂νϕ
s þ UðϕÞ

�
; ð2Þ

where SSM is the action of standard model (and possibly
beyond-standard-model) fields, and

gμν ¼ ∂μϕ
AηAB∂νϕ

B; A; B ¼ 0; 1;…; D ð3Þ

is the induced metric of a three-brane in a (Dþ 1)-
dimensional Minkowski space. The constant σ has the
dimensions of mass. The remaining N coordinates

fϕs; s ¼ Dþ 1;…; Dþ 1þ Ng ð4Þ

are identified with inflaton fields. We adopt the convention
that upper case Latin indices run from 0 to D, indices r, s
run from Dþ 1 to Dþ N, and all other lower case Latin
indices run from 0 to Dþ N. It is convenient to define

φs ¼ σ2ϕs and VðφÞ ¼ σ4UðϕÞ; ð5Þ

so that the inflaton field and the potential have the
conventional dimensions. We will consider in detail two
specific examples, namely a simple quadratic potential

VðφÞ ¼ 1

2
m2φsφs; ð6Þ

and a Higgs potential

VðφÞ ¼ λðφsφs −m2Þ2; ð7Þ

where, in the latter case, the inflaton starts out at
φsφs < m2.
In Sec. II below we review, following Ref. [8], the

equations of motion of this system, and then specialize to
the simplest nontrivial case of a two-component inflaton
and a constant external field strength, leading to early-
universe dynamical equations for the inflaton zero mode
and the metric scale factor. In Sec. III these equations are
simplified to something analogous to slow-roll equations,
although in contrast to a slow roll down a potential hill
the dynamics results in a kind of spiral motion in inflaton
field space towards the minimum of the inflaton potential.
What is going on is that while the inflaton potential tends
to pull the inflaton field towards the minimum of the
potential, the external field provides a counterbalancing
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velocity-dependent force analogous to a υ × B force,
orthogonal to gravitational friction, away from the mini-
mum. It is shown that inflation in this model does not
require fine-tuning of either couplings or initial conditions,
even in the small-field case, as illustrated by numerical
solutions in Sec. IV. Scalar field perturbations are consid-
ered in Sec. V, and the power spectrum, spectral index ns,
and r parameter are expressed in terms of the parameters of
the model and the initial state. It has been inferred from the
Planck data that the tensor-to-scalar ratio is r < 0.1. This
fact favors the Higgs potential over the quadratic potential
in the external field scenario, although both are inflationary
at small fields. Other aspects of this scenario are discussed
in Secs. VI through VIII, with conclusions in Sec. IX.
It should be mentioned that ours is not the only infla-

tionary scenario that has been proposed involving a kind
of orbital or spiral motion. There is, e.g. the “Spinflation”
picture [9] which considers the angular motion of a
braneworld in the extended throat of a Calabi-Yau mani-
fold, and a “Spiral Inflation” scenario [10] which intro-
duces a potential which is nonperiodic in an angular
variable in inflaton field space. These scenarios are very
different from the one presented here, where there is a flat
metric in the bulk, inflaton potentials of a standard form,
and an external four-form gauge field, but they do share the
idea that orbital motion of some kind may be an important
component in the inflationary process.

II. EQUATIONS OF MOTION

Variation of the action (2) with respect to the embedding
coordinates ϕA leads to equations of motion

2ηAB∂μðEμν∂νϕ
BÞ−q0

4!
FAabcdε

αβγδ∂αϕ
a∂βϕ

b∂γϕ
c∂δϕ

d¼0;

ð8Þ

where

Eμν ≡ 1

2

ffiffiffiffiffiffi
−g

p �
−

1

8πG
Gμν þ Tμν

�
; ð9Þ

with Gμν; Tμν the Einstein and stress-energy tensors of
S − SA. Variation of the action with respect to the inflaton
fields φs leads to the equations of motion

∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νφ

sÞ − ffiffiffiffiffiffi
−g

p ∂V
∂φs

þ q0
4!σ2

Fsabcdε
αβγδ∂αϕ

a∂βϕ
b∂γϕ

c∂δϕ
d ¼ 0; ð10Þ

where Ffabcd is the field strength

Ffabcd ¼
∂Aabcd

∂ϕf −
∂Afbcd

∂ϕa þ ∂Afacd

∂ϕb −
∂Afabd

∂ϕc þ ∂Afabc

∂ϕd

ð11Þ

corresponding to the four-form gauge field. These equa-
tions are of course supplemented by the usual equations
of motion of the standard model fields, which we ignore
for now.
For the purposes of simplified cosmology it is sufficient

to assume that the induced metric on the three-brane has
the usual Friedmann-Lemaitre form with scale factor aðtÞ,
which requires a minimum of five coordinates ϕA in the
bulk. For zero spatial curvaure, we can choose the
embedding [11,12]

ϕ0 ¼ 1

2

�
aðtÞ þ

Z
t dt0

da=dt0
þ aðtÞr2

�
ϕ1 ¼ aðtÞr cosðθÞ
ϕ2 ¼ aðtÞr sinðθÞ cosðχÞ
ϕ3 ¼ aðtÞr sinðθÞ sinðχÞ

ϕ4 ¼ 1

2

�
aðtÞ −

Z
t dt0

da=dt0
− aðtÞr2

�
; ð12Þ

and the remaining inflaton coordinates are numbered
ϕ5;ϕ6.
Next we suppose that there is a constant field strength in

the bulk oriented orthogonal to the inflaton plane, with the
gauge field taken to have components

A5123½ϕ� ¼ −
1

2
Bϕ6;

A6123½ϕ� ¼
1

2
Bϕ5: ð13Þ

The four-form gauge field Aabcd is antisymmetric under
permutations of indices, but apart from (13) and compo-
nents obtained from (13) by permutation, it is assumed that
all other components vanish.
For an initial discussion of inflation in this scenario, we

make the usual simplifying assumptions of spatial homo-
geneity and isotropy, taking, in particular,

ϕ5;6ðx; y; z; tÞ ¼ ϕ5;6ðtÞ; ð14Þ

and ϕa ¼ 0 for a > 6. In conjunction with (13), this has the
consequence that

FAabcdε
αβγδ∂αϕ

a∂βϕ
b∂γϕ

c∂δϕ
d ¼ 0: ð15Þ

This is because two of the indices abcd must be 5 and 6,
so the expression necessarily includes at least one space
derivative of φs, which vanishes according to (14). Then the
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equation of motion (8) is satisfied by Eμν ¼ 0, which are
the standard Einstein field equations. For a Friedmann-
Lemaitre metric, disregarding the other standard model
fields, the Einstein equations are just the conventional
expressions for the aðtÞ scale factor coupled to a pair of
scalar fields,

_a2

a2
¼ 8πG

3

�
1

2
∂tφ

s∂tφ
s þ VðφÞ

�
;

ä
a
¼ 8πG

3
ð−∂tφ

s∂tφ
s þ VðφÞÞ: ð16Þ

The equations of motion for the φs, however, involve the
field strength

∂2
tφ

5 − qB∂tφ
6 þ 3

_a
a
∂tφ

5 þ ∂V
∂φ5

¼ 0;

∂2
tφ

6 þ qB∂tφ
5 þ 3

_a
a
∂tφ

6 þ ∂V
∂φ6

¼ 0; ð17Þ

where q ¼ q0=σ4. It is not hard to verify the consistency
of (16) and (17).

III. THE SLOW SPIRAL

Numerical solutions of (16) and (17), a sample of which
are presented in the next section, show that for a very wide
range of initial conditions φsð0Þ; ∂tφ

sð0Þ, field strength qB,
and parameters m, λ in the potential, the evolution of φsðtÞ
rapidly settles into a spiral in the φ5 − φ6 plane, drifting
slowly towards the origin in the case of the quadratic
potential, and towards φ2 ¼ m2 in the case of the Higgs
potential. It is the drift towards the minimum, rather
than the magnitude of ∂tφ itself, which is “slow” in this
scenario.
The spiral motion in the φ5;6 plane, with a gradual drift to

the minimum, is best understood as a balance of forces in a
plane. Define

φ≡

2
664
φ5

φ6

0

3
775; B≡

2
64
0

0

B

3
75; ∇≡

2
64
∂=∂φ5

∂=∂φ6

0

3
75; ð18Þ

and H ¼ _a=a as usual. Then the inflaton equations of
motion can be written as

∂2
tφþ qB × ∂tφþ 3H∂tφþ ∇V ¼ 0; ð19Þ

which can be thought of as the equations of motion of a
particle in a plane. There are three forces on this “particle”:
a force −∇V towards the minimum of the potential, a
gravitational drag force in a direction opposite to the
velocity ∂tφ, and a “Lorentz force” in the plane which

is perpendicular to the velocity. In the standard slow-roll
approximation with a single inflaton field, the second time
derivative of the inflaton field is neglected. In our case the
slow roll is in the radial direction, so the approximation is
that the second time derivative can be equated to the
centripetal acceleration required for circular motion.
Referring to Fig. 1 and defining

ρ≡ jφj; υ≡ j∂tφj; V 0ðρÞ ¼ ∂V
∂ρ

β ¼
�
1 Higgs potential

−1 quadratic potential
; ð20Þ

the equations of motion in this “slow spiral” approximation
are

V 0 þ βðqB cos θ þ 3H sin θÞυ ¼ υ2cos2θ
ρ

; ð21Þ

qBυ sin θ − 3Hυ cos θ ¼ 0: ð22Þ

Solving (21) for υ, we have

FIG. 1. “Force” diagrams for the slow spiral approximation,
where the spiral is counterclockwise inward towards the origin
for the quadratic potential (a), and clockwise outward towards
ρ ¼ m for the Higgs potential (b). The approximation is that ∂2

tφ
towards the origin (solid dot) is simply the centripetal accel-
eration required for circular motion in the φ plane, neglecting any
acceleration beyond that.
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υ ¼ ρβ

2cos2θ

�
ðqB cos θ þ 3H sin θÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqB cos θ þ 3H sin θÞ2 þ 4V 0cos2θ=ρ

q �
; ð23Þ

and from (22)

tan θ ¼ 3H
qB

: ð24Þ

For the cases that we will be concerned with,

θ ≪ 1; qB ≫ H; ðqBÞ2 ≫ V 0=ρ; ð25Þ

so that (23) simplifies to

υ ≈ −β
V 0

qB
: ð26Þ

In polar coordinates, where

φ5 ¼ ρ cos α; φ6 ¼ ρ sin α; ð27Þ
the equations of motion are

dρ
dt

¼ −υ sin θ ≈ −3H
V 0

ðqBÞ2 ; ð28Þ

dα
dt

¼ β
υ cos θ

ρ
≈ −

V 0

qBρ
: ð29Þ

Assuming that the fractional variation of H is negligible in
a period υ=ð2πρÞ, the solution of these equations is a spiral
in the φ plane towards the minimum of the potential, i.e.
inwards towards ρ ¼ 0 for the quadratic potential or, if
ρ < m initially, outwards to ρ ¼ m for the Higgs potential.

IV. NUMERICAL SOLUTIONS

Next we compare the slow spiral equations to numerical
solutions of (16) and (17), which make no assumptions
about force balance or the time-dependence of H. In a
conventional treatment with qB ¼ 0, slow roll inflation
in a quadratic potential requires a strong initial field ρ0
above the Planck scale, ρ0 > MP, while small field infla-
tion in a Higgs potential calls for an initial ρ0 fine tuned
to be extremely close to the local maximum, with υ0
very close to zero. However, only taking qB ≫ m, the
equations of motion in the external field scenario predict
inflationary behavior in either potential without these
special conditions.
We begin with the quadratic potential (6). Inflationary

behavior is generic, requiring only that qB ≫ m and
ρ0 > m. For purposes of illustration we choose parameters
to be motivated (for the Higgs potential) in the next section
as follows:

m ¼ 0.0083; qB ¼ 0.22 ð30Þ

in Planck units. For the initial condition, we take

ρ0 ¼ 3m; υ0 ¼ 0: ð31Þ

The trajectory in the space of φ5;φ6; VðρÞ, obtained from
these initial conditions by solving (16) and (17) numeri-
cally for Planck times 0 ≤ tP ≤ 2 × 106, is displayed in
Fig. 2. There is some initial transient behavior which is
shown in Fig. 3. This behavior can be understood quali-
tatively: From rest, the charged “particle” tends to fall
towards the minimum of the potential, but as it falls there is
a force orthogonal to the motion due to the external B field.
The combination of forces induces the transient oscillatory
behavior seen in Fig. 3, which dies out after tP ¼ 2000
Planck times, i.e. the transient behavior is a very small
fraction of the trajectory, and dies out rapidly.
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FIG. 2. Numerical solution of the equations of motion (16)
and (17) in a quadratic potential with initial ρ0 ¼ 3m; υ0 ¼ 0,
over a period of 2 × 106 Planck times.
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FIG. 3. The initial trajectory of the previous figure, projected
into the φ5 − φ6 plane, which illustrates the initial transient
behavior that dies out after roughly 2000 Planck times.
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If the Universe starts out at nonzero ρ0, then there is no
particular reason that it also starts out at rest, so we may
also consider initial conditions with some random choice
of υ0. A solution of this kind, with ð∂tφ5; ∂tφ6Þ ¼
ð8.4; 15.6Þ × 10−4 in Planck units, and all other parameters

as above, is shown in Fig. 4, over a period of 2 × 106

Planck times. The transient behavior is much more notice-
able in this case, but again it dies out after about 10,000
Planck times and the evolution settles into the slow spiral
described in the previous section. The behavior ofH ¼ _a=a
is shown in Fig. 5(a), and we compare, in Figs. 5(b)
and 5(c), the behavior of the computed θðtÞ, υðtÞ to the
predictions of the slow spiral equations, (24) and (26),
respectively. The slow spiral equations clearly agree very
well with the numerical solutions for tP > 10; 000, i.e. after
the transient behavior has died out. The number N of
e-foldings of course depends on the initial conditions and
the assumed start of reheating. For the trajectory shown in
these figures, N ¼ 483.
Inflation is also generic for the Higgs potential when

qB ≫ m and m > ρ0, without much tuning beyond those
conditions, for any coupling λ. As an illustration we carry
out the computation for the Higgs potential with the same
parameters m ¼ 0.0083; qB ¼ 0.22 as above, and an arbi-
trary choice of coupling λ ¼ 1. The initial configuration is
taken to be at ρ0 ¼ 0.2m, with a random choice of initial
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FIG. 4. Same as Fig. 2, but with a random initial velocity υ0.
The transient behavior is clearly seen in this example.
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FIG. 5. For the example of the quadratic potential with a random initial υ0: (a) The expansion rate H ¼ _a=a. (b) Comparison of the
computed θðtÞ in the φ5 − φ6 plane with the slow spiral prediction (24). (c) Comparison of the speed υðtÞ in the φ5 − φ6 plane with the
slow spiral prediction (26).
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velocity ð∂tφ5; ∂tφ6Þ ¼ ð−1.37; 1.50Þ × 10−4 in Planck
units. The result, for a duration of 1 × 106 Planck times,
is shown in Fig. 6, with the transient and later behaviors
shown in different colors. Again the transient behavior
dies out beyond 10,000 Planck times. The Hubble variable

H ¼ _a=a vs time, is shown in Fig. 7(a), and the computed
θðtÞ, υðtÞ, compared to the slow spiral predictions (24)
and (26), are shown in Figs. 7(b) and 7(c), respectively.
Once again it is clear that the slow spiral is an attractor, at
least under the stated conditions qB ≫ m and m > ρ0. For
the evolution shown, where the trajectory is computed up to
ρfinal ¼ 7

8
m, the number of e-foldings is N ¼ 104.

V. FLUCTUATION SPECTRUM

We now consider the equations of motion to first
order in fluctuations around the homogeneous isotropic
background. Denote

φsðx; tÞ ¼ φs
0ðtÞ þ δφsðx; tÞ; ð32Þ

where φs
0ðtÞ; aðtÞ are solutions of the spatially homo-

geneous equations (16) and (17). In a standard slow-roll
scenario with a single inflaton field, it is possible to choose
a gauge (essentially a choice of time coordinate) such that
δφ ¼ 0. The transformed inflaton field is
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FIG. 6. Numerical solution of the equations of motion (16)
and (17) in a Higgs potential with initial ρ0 ¼ 0.2m and random
υ0, over a period of 1 × 106 Planck times. The initial transient
behavior is shown in green.
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φ0ðx0; t0Þ ¼ φðx; tÞ; ð33Þ
where x0 ¼ x and

t0ðx; tÞ ¼ φ−1
0 ½φðx; tÞ�: ð34Þ

Since t0ðx; tÞ is, by definition, the time at which φ0ðt0Þ ¼
φðx; tÞ, it is clear that φ0ðx0; t0Þ ¼ φ0ðt0Þ and therefore, by
construction, δφðx; tÞ ¼ 0 in this (comoving) gauge.
With two inflaton components, it is not possible to

transform to δφ ¼ 0 exactly. However, in the slow spiral
regime it is possible to come close to this, under certain
conditions. The reason one cannot find a time coordinate
such thatφ0ðx0; t0Þ ¼ φ0ðt0Þ is simply becauseφ0ðtÞ defines
a linelike object, i.e. a spiral, while φðx; tÞ lies in a
plane. But one can still choose t0ðx; tÞ to be such that
the modulus of

δφðx; t0Þ≡ φðx; tÞ − φ0ðt0Þ ð35Þ
is minimized. In this “minimal” gauge jδφðx0; t0Þj is the
distance in the φ plane between ðφ5ðx; tÞ;φ6ðx; tÞÞ and the
nearest point on the spiral. This distance can be no greater
than half the distance between neighboring arcs of the
spiral. From Eqs. (28) and (29), this upper bound on the
minimal distance is

Δρ ¼ 1

2

				 dρdα
				2π ¼ 3πH

qB
ρ: ð36Þ

So in minimal gauge the magnitude of δφ is as small as it
can be, with a fractional deviation δρ=ρ of order H=qB. If
the Hubble expansion rateH is very much smaller than qB,
then in this gauge the fluctuations away from φ0ðtÞ can be
neglected by comparison to the δϕA, which give rise to
fluctuations in the metric. Wewill assume that thisH ≪ qB
condition is satisfied, and that in an expansion of the action
S ¼ S0½φ0;ϕA

0 � þ δS to second order in the fluctuations
the terms involving δφ can be ignored relative to terms
quadratic in δϕA.
At this point we can simply follow the approach of

Maldacena [13], who derives the power spectrum in a
comoving gauge where the fluctuations of a single inflaton
field vanish. The only modification is to replace the single
inflaton field expression ð∂tφ0Þ2 by υ2 ¼ ∂tφ

s
0∂tφ

s
0. Of

course, in quantizing perturbations around the Friedmann-
Lemaitre metric one must keep in mind that gμν is the
induced metric (3). However, in a minimal gauge with
δφ ≈ 0, the fluctuation δS in the action depends on the
fluctuations of ϕA ¼ ϕA

0 þ δϕA only through the induced
metric, and therefore we have

Z ¼
Z

DδϕC exp½−ðS0 þ δS½∂μϕ
AηAB∂νϕ

B�Þ�

¼
Z

DδϕC

Z
Dgαβδ½gμν − ∂μϕ

AηAB∂νϕ
B�e−ðS0þδS½gμν�Þ

¼
Z

DgαβM½g�e−ðS0þδS½gμν�Þ; ð37Þ

where

M½g� ¼
Z

DδϕCδ½gμν − ∂μϕ
AηAB∂νϕ

B�: ð38Þ

The measure factorM½g� will not contribute at the quadratic
order in metric fluctuations considered here. Then, follow-
ing [13], we obtain the familiar result for the dimensionless
power spectrum of the scalar curvature fluctuations

PRðkÞ ¼
1

4π2
H4

υ2
: ð39Þ

For the spectral index ns, with NðtÞ ¼ R
dtH the number of

e-foldings, we have [14]

ns−1¼d lnPR

dlnk

≈
�
2
d lnH2

dN
−
dlnυ2

dN

��
1−

1

2

d lnH2

dN

�

¼ 1

H

�
2
dlnH2

dt
−
dlnυ2

dt

��
1−

1

2H
dlnH2

dt

�
; ð40Þ

and for the r parameter

r ¼ Pgrav

PR
¼

2
π2

H2

M2
P

1
4π2

H4

υ2

¼ 8
υ2

M2
PH

2
; ð41Þ

whereMP is the Planck mass. Nowwe apply the slow spiral
equations (26) and (28), using also the approximation to the
Friedmann equation H2 ≈ VðρÞ=3MP. Then we have

P1=2
R ¼ 1

6π

qB
M2

P

VðρÞ
jV 0ðρÞj

ns − 1 ¼ −
6

ðqBÞ2
�
V 02

V
− V 00

��
1þ 3

2

1

ðqBÞ2
V 02

V

�

r ¼ 24

ðqBÞ2
V 02

V
; ð42Þ

and from the Planck 2015 [15] and earlier data it is known
that

P1=2
R ≈ 4.6 × 10−5 ns − 1 ≈ −0.04 r < 0.1 ð43Þ

at the pivot scale k ¼ 0.05 Mpc−1.

A. Quadratic potential

For the quadratic potential VðρÞ ¼ 1
2
m2ρ2 these expres-

sions become
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P1=2
R ¼ 1

12π

qB
M2

P
ρ; ns−1¼−

6m2

ðqBÞ2 ; r¼48

�
m
qB

�
2

:

ð44Þ

But from the Planck data on the spectral index,
ns − 1 ≈ −0.04, these equations imply that r ≈ 0.32, which
is incompatible with the Planck data for r. On these
grounds, the quadratic potential is ruled out.

B. Higgs potential

For the Higgs potential VðρÞ ¼ λðρ2 −m2Þ2 the corre-
sponding expressions are

P1=2
R ¼ 1

24π

qB
M2

P

jρ2 −m2j
ρ

ns − 1 ≈ −
24

ðqBÞ2 λðρ
2 þm2Þ

r ¼ 384
λρ2

ðqBÞ2 : ð45Þ

The coupling λ can be entirely eliminated from these
equations by writing

m ¼ m0λ
−1=4; qB ¼ ðqBÞ0λ1=4; ρ ¼ αm; ð46Þ

and then the constants m0, ðqBÞ0, and α at the pivot scale
are determined, given PR, ns and r. Unfortunately, we only
have an upper bound for r, so the best one can do so far is to
determine μ, b, α as a function of r < 0.1. For sufficiently
small r we find the approximate solution

m ≈
ffiffiffiffiffiffiffiffi
24π

p �
PR

384

�
1=4

�
r
λ

�
1=4

MP

ρ� ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24r

384ð1 − nsÞ

s
m

¼ 24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

384ð1 − nsÞ
r �

PR

384

�
1=4 r3=4

λ1=4
MP

qB ≈ 24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ð1 − nsÞ
r �

PR

384

�
1=4

r1=4λ1=4MP; ð47Þ

where ρ� is ρ at the pivot scale. To get some numerical
feeling for this, suppose r is at the experimental upper
limit r ¼ 0.1 and λ ¼ 1. Then, using the data (43), we find
from (45)

ρ� ¼3.6×10−3MP; m¼8.3×10−3MP; qB¼0.22MP:

ð48Þ

We can also compute the running of the spectral index

dns
d ln k

¼ dns
dN

dN
d ln k

¼ 1

H
dns
dt

ð1þ εÞ ≈ −
1

H
96λ

ðqBÞ2 ρ
dρ
dt

¼ 288λ2
ρ2ðρ2 −m2Þ

ðqBÞ4 ð49Þ

which, evaluated at ρ ¼ ρ� in our r ¼ 0.1 example, is

dns
d ln k

¼ −0.9 × 10−4: ð50Þ

Note that, from (47), this value is λ-independent, and can be
compared to the Planck 2015 [15] estimate of

dns
d ln k

¼ −ð3.3� 7.4Þ × 10−3: ð51Þ

VI. e-FOLDINGS IN THE HIGGS SLOW SPIRAL

We have seen that after a brief transient, the solution of
the homogenous equations of motion (16) and (17) settles
into a trajectory which is well described by the slow spiral
equations of motion derived in Sec. III. We have also seen,
in the previous section, that the constants m and qB are
determined, for the Higgs potential, from the CMB data for
PR, ns, r, and the Higgs coupling λ. Moreover, m and qB
depend on simple fractional powers of λ, r, shown in (47).
From this power dependence, and the slow spiral equations
of motion, it is quite easy to see that the number N of e-
foldings is independent of λ and r. For the Higgs potential,
with the minimum at ρ ¼ m, this number is determined
by the known values of PR, ns, and the (as yet unknown)
fractions of ρ=m at the beginning and end of inflation.
Let m0, ðqBÞ0 denote the values of m; qB shown in (48),

which were determined from the Planck data assuming
λ ¼ 1, r ¼ 0.1. Then from (47)

m ¼ m0λ
−1=4

�
r
0.1

�
1=4

; qB ¼ ðqBÞ0λ1=4
�

r
0.1

�
1=4

ð52Þ

and also denote

ρ ¼ Rλ−1=4
�

r
0.1

�
1=4

: ð53Þ

Substituting these expressions into the slow spiral equa-
tions of motion, we find

H2 ¼ 1

3MP
ðR2 −m2

0Þ2
�

r
0.1

�
¼ H2

0

�
r
0.1

�

υ ¼ 4RðR2 −m2
0Þ

ðqBÞ0

�
r
0.1

�
1=2

¼ υ0

�
r
0.1

�
1=2

dR
dt

¼ −3H0

4RðR2 −m2
0Þ

ðqBÞ20

�
r
0.1

�
: ð54Þ
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Then the number of e-foldings from the beginning of
inflation at t ¼ 0; R ¼ R0 to the end of inflation at t ¼ tf;
R ¼ Rf is

N ¼
Z

tf

0

dtH ¼
Z

Rf

R0

dR

�
dR
dt

�
−1
H

¼ ðqBÞ20
12

Z
Rf

R0

dR
Rðm2

0 − R2Þ

¼ ðqBÞ20
24m2

0

log

�
R2
fðm2

0 − R2
0Þ

R2
0ðm2

0 − R2
fÞ
�
: ð55Þ

Note that both λ and r have dropped out of this expression.
Since ðqBÞ0 and m0 are determined from the Planck data,
the number of e-foldings depends entirely on the fractions

f0 ¼
ρinitial
m

¼ R0

m0

; ff ¼
ρfinal
m

¼ Rf

m0

; ð56Þ

in terms of which

N ¼ ðqBÞ20
24m2

0

log

�
f2fð1 − f20Þ
f20ð1 − f2fÞ

�

¼ 29.3 log

�
f2fð1 − f20Þ
f20ð1 − f2fÞ

�
: ð57Þ

Although the number of e-foldings is λ, r-independent, the
period of inflation does have an r dependence, increasing
as r decreases like 1=

ffiffiffi
r

p
as follows:

tf ¼
Z

Rf

R0

dR

�
dR
dt

�
−1

¼ ðqBÞ20
4

ffiffiffi
3

p MP

�
r
0.1

�
−1=2 Z Rf

R0

dR
Rðm2

0 − R2Þ

¼ ðqBÞ20
8

ffiffiffi
3

p MP

m4
0

�
r
0.1

�
−1=2

�
log

�
R2
fðm2

0 − R2
0Þ

R2
0ðm2

0 − R2
fÞ
�
m

−
m2

0ðR2
f − R2

0Þ
ðm2

0 − R2
0Þðm2

0 − R2
fÞ
�
: ð58Þ

Finally, although we do not know the initial and ending
points ρinitial; ρfinal, it is clear that ρinitial must be less than ρ
at the pivot momentum. From (47)

ρ� ¼ R�λ−1=4
�

r
0.1

�
3=4

ð59Þ

where R� ¼ 3.6 × 10−3MP is the value of ρ� shown in (48)
for λ ¼ 1, r ¼ 0.1. Then defining, for r ≤ 0.1,

f� ¼
ρ�
m

¼ R�
m0

�
r
0.1

�
1=2

¼ 0.43

�
r
0.1

�
1=2

; ð60Þ

it is necessary that f0 < f�. The number of e-foldings N vs
the fractions f0, ff are displayed in Fig. 8.

VII. EXCITATIONS

It is worth mentioning, for the sake of completeness,
some intriguing effects of the external four-form gauge
field if the field strength persists into the late universe. It is
found, when the inflaton field is quantized in the presence
of the constant background four-form field strength, that
there is an analogy to ordinary Landau levels, and the
spectrum of the quantized field is

E ¼
X
k

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

4
q2B2 þm2

r
ðn1ðkÞ þ n2ðkÞÞ

þ 1

2
qBðn1ðkÞ − n2ðkÞÞ

)
þ E0; ð61Þ

where n1ðkÞ; n2ðkÞ are occupation numbers, E0 is the
ground-state energy, and the sum runs over momenta
with nonzero occupation numbers. Excitations with defi-
nite energy and momentum satisfy one of two dispersion
relations

E1ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2 þm2

p
þM; and

E2ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2 þm2

p
−M; ð62Þ

where M ¼ 1
2
qB. It can be shown that these two types

of heavy/light excitations propagate like ordinary massive
particles with inertial mass M0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þm2

p
, i.e. with

group velocity υ ¼ k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2 þm2

p
, but interact gravi-

tationally with gravitational massesM0 �M. Thus, there is
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FIG. 8. The number of e-foldings N, in the Higgs potential
case, as a function of the inflaton field ρ ¼ jφj at the start
and end of inflation. The latter are displayed as fractions
f0 ¼ ρinitial=m and ff ¼ ρfinal=m of the minimum of the Higgs
potential at ρ ¼ m.
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an apparent violation of the Principle of Equivalence, due
to the interaction with the external field strength of the four-
form gauge field. For details, cf. [8].

VIII. MANY BRANEWORLDS

Having introduced a braneworld scenario in which the
braneworld can interact with an external four-form Abelian
gauge field, one can of course formulate the obvious
generalization: a higher-dimensional universe containing
many braneworlds, interacting with one another via the
four-form gauge field, which itself has dynamics and wave
propagation in the bulk. The action would be

S ¼
Z Y

a

dϕaFbcdef½ϕ�Fbcdef½ϕ�

þ
X
n

�
q0
4!

Z
dϕa ∧ dϕb ∧ dϕc ∧ dϕdAabcd½ϕðxnÞ�

þ Sinfl
h
fϕsðxnÞg;

ffiffiffiffiffiffiffiffiffiffiffi
gðxnÞ

p i
þ SEH½gμνðxnÞ�

þ SSM
h
fΦðxnÞg;

ffiffiffiffiffiffiffiffiffiffiffi
gðxnÞ

p i�
; ð63Þ

where the sum is over braneworlds, ϕaðxnÞ are the
coordinates of the nth braneworld in the bulk,
Sinfl; SEH; SSM are the inflaton, Einstein-Hilbert, and stan-
dard model actions, with fΦðxnÞg the set of standard
model fields living on the nth braneworld, and

gμνðxnÞ ¼ ∂μϕ
AðxnÞηAB∂νϕ

BðxnÞ the induced metric of
the nth braneworld. At the quantum level one could even
speculate, going well beyond the conjecture raised in this
article, that ourD ¼ 4 dimensional Universe was created in
a strong external gauge field via pair production of a three
brane–antibrane pair.
We are content to make these speculations, but will not

pursue them here. A consistent formulation would probably
require making some connection to string theory.

IX. CONCLUSIONS

We have pointed out that if the Universe is to be thought
of as a three-brane propagating in a higher-dimensional
space, then it is natural for that three-brane to couple to a
four-form gauge field in the bulk. If the very early Universe
were exposed to a strong external field strength due to the
four-form gauge field, then it seems that the resulting “slow
spiral” of the inflaton field would solve one of the main
problems associated with small field inflation in a Higgs (or
other hilltop) potential, namely, the need for fine-tuning the
initial value of the inflaton field and its time derivative. We
reserve questions regarding reheating and non-Gaussianity
in this scenario for later investigation.
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