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Quantum gravity computations suggest the existence of an ultraviolet and an infrared fixed point where
quantum scale invariance emerges as an exact symmetry. We discuss a particular variable gravitymodel for
the crossover between these fixed points which can naturally account for inflation and dark energy, using a
single scalar field. In the Einstein-frame formulation, the potential can be expressed in terms of Lambert
functions, interpolating between a power-law inflationary potential and a mixed-quintessence potential. For
two natural heating scenarios, the transition between inflation and radiation domination proceeds through a
“graceful reheating” stage. The radiation temperature significantly exceeds the temperature of big bang
nucleosynthesis. For this type of model, the observable consequences of the heating process can be
summarized in a single parameter, the heating efficiency. Our quantitative analysis of compatibility with
cosmological observations reveals the existence of realistic models able to describe the whole history of the
Universe using only a single metric and scalar field and involving just a small number of order 1
parameters.
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I. INTRODUCTION

A dynamical scalar field with a sufficiently flat potential
and at most tiny couplings to ordinary matter is often
advocated as a promising alternative to the cosmological
constant [1,2]. This idea, usually named quintessence, can
partly be viewed as a late-time implementation of the
successful inflationary paradigm. Since inflation and dark
energy share many essential properties, it is natural to seek
for a unification of these two mechanisms into a common
framework [3–5]. In this paper, we postulate that inflation
and dark energy are intimately related to an underlying
symmetry: scale invariance.
When dealing with scale invariance, one can take two

different perspectives: (i) assume that scale invariance
remains an exact symmetry even when quantum corrections
are taken into account [6] or (ii) assume that scale
invariance is broken by quantum effects but will be
approximately realized close to fixed points [1].
Cosmological models based on the first line of reasoning
and their associated phenomenology can be found in
Refs. [7–17]. Cosmological models of the second type
resulting in a dilatation anomaly that vanishes asymptoti-
cally in the infinite future led to the first proposal of
dynamical dark energy or quintessence [1,18].
In this work, we will adopt the second point of view. In

particular, we will assume that scale invariance is generi-
cally broken by the conformal anomaly, but it reemerges as
an exact quantum symmetry in the early- and late-time
evolution of the Universe. The resurgence of the symmetry

can be related to the presence of UVand IR fixed points in
the renormalization group flow. In the vicinity of these
points, any information about the mass scales in the theory
is lost [19]. This idea can be easily implemented in a
variable gravity scenario [19–21].
In this paper, we present the complete cosmological

history for a particular crossover variable gravity model
with a singlet scalar field. In the scaling frame, the field is
coupled nonminimally to gravity and to the Standard
Model, supplemented by some unspecified dark matter
candidate and potentially by heavy particles as in grand
unification. The model contains no tiny or huge dimension-
less quantities put in by hand. The four parameters
appearing in the effective action are all of order 1. The
first three describe the approach to the UV and IR fixed
points in the scalar sector and the position on the crossover
trajectory. The last parameter describes the present growth
rate of neutrino masses, which is associated to the coupling
between the scalar field and neutrinos. For early cosmol-
ogy, the net effect of the interactions between the scalar
field and the Standard Model particles (and possible sectors
beyond that) can be summarized in a heating efficiency Θ.
These few parameters are sufficient for a quantitative
account of the history of the Universe from inflation to
the present accelerated expansion era. Our simple model
seems so far compatible with cosmological observations.
Neither tiny or fine-tuned parameters are introduced to
explain the small value of the present dark energy density,
which is rather a consequence of the long age of the
Universe in Planck units.
The comparison of our model with cosmological obser-

vations is performed in the Einstein frame with a canonical
kinetic term for the scalar field. This allows us to find
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explicit analytic solutions and facilitates the comparison
with other quintessential inflation models in the literature;
see for instance Refs. [3–5] for well-known examples and
Refs. [22–25] for recent discussions. We follow here the
general approach in which the inflationary epoch is
followed by a transition to a scaling or tracker solution
of which the long duration is responsible for the tiny value
of the present dark energy density. The end of this scaling
era is triggered by neutrinos with growing masses that
become nonrelativistic in the recent cosmological history.
This general scenario, originally proposed in Refs. [21,26],
has been recently followed by several groups [22–25]. The
explicit Einstein-frame formulation presented in this paper
allows us to replace arguments for approximate solutions
by exact analytical results, which substantially extends the
range of validity of the scenario in parameter space.
Beyond the explicit and convenient solutions in the

Einstein frame, our investigation contains several new
results. We propose for the heating or entropy production
preceding the radiation dominated epoch a general mecha-
nism that is neither gravitational particle production nor
instant preheating. Only the latter two mechanisms have
been previously discussed within models of quintessential
inflation. The mechanism presented in this paper is based
on the general framework for particle production in the
presence of time-varying fields but adapted to the situation
in which the potential does not have a minimum. The
absence of a minimum is required for the transition from
inflation to a tracker solution and typical for a variable
gravity framework containing a single crossover at early
times. For this scenario, all features relevant for observa-
tions can be summarized into a single parameter: the
heating efficiency Θ. The duration of the kination epoch
between the end of inflation and the onset of the radiation
dominated epoch can be rather short, leading to a high
heating temperature. We find that the (almost massless)
cosmon excitations generated during the heating stage do
not significantly contribute to the effective number of
neutrino species at big bang nucleosynthesis.
This paper is organized as follows. In Sec. II, we present

the effective action of the model in a scaling frame where
the Planck mass is given by a scalar field. We describe the
properties of the UVand IR fixed points responsible for the
early- and late-time acceleration of the Universe. In Sec. III,
we reformulate the variable gravity scenario into the more
common, although completely equivalent, Einstein frame.
This formulation is used in the following sections to study
the cosmological implications of the model. Section IV
contains the details of inflation. We show that the UV fixed
point gives rise to a power-law Einstein-frame potential and
derive the associated inflationary observables. The spectral
tilt and the tensor-to-scalar ratio are shown to be related and
to depend only on the UV fixed-point anomalous dimen-
sion. The initial stages of the postinflationary dynamics are
discussed in Sec. V. The crossover to the IR fixed point

translates into the appearance of a field region where the
Einstein-frame potential becomes steep. This triggers the
onset of a kinetic domination regime. The kinetic regime
must be limited in time for the model to be cosmologically
viable. In particular, part of the energy density of the
inflaton field must be transmitted to the Standard Model
particles, which must become the dominant energy com-
ponent before big bang nucleosynthesis (BBN). In Sec. VI,
we discuss two natural heating mechanisms and determine
the associated radiation temperature (“reheating” temper-
ature). We argue that a total decay of the inflaton field is not
possible and is neither necessary nor even preferable. The
evolution after heating and the onset of the dark energy
dominated era are discussed in Sec. VII. Section IX
contains our conclusions. Appendix A summarizes several
properties of Lambert functions that are useful for the
derivation of the analytic solutions presented in this paper.
Appendixes B and C contain details of our heating scenario
and of the creation of cosmon excitations during this
period.

II. VARIABLE GRAVITY SCENARIO

The variable gravity scenario is usually formulated in a
scaling frame in which not only the Planck scale but also
the dimensionless couplings and masses of elementary
particles are allowed to depend on the expectation value of
a scalar field χ. We consider here a simple real scalar which
plays simultaneously the role of the inflaton, the cosmon, or
the dilaton. The effective Lagrangian density for the
graviscalar sector of the theory reads [19–21]

Lffiffiffiffiffiffi
−~g

p ¼ χ2

2
~R −

Bðχ=μÞ − 6

2
ð ~∂χÞ2 − μ2χ2; ð1Þ

where the tilde denotes quantities in the scaling frame and
we have suppressed Lorentz indices. The implicit contrac-
tions in this paper should be understood in terms of the
metric associated with the frame under consideration.
The cosmon field χ in Eq. (1) defines the effective

variable Planck mass. We will see that for the cosmological
solutions of the field equations derived from the action (1)
it increases with time, with χðt → −∞Þ → 0 and
χðt → ∞Þ → ∞. The only fixed scale not proportional to
the cosmon field is the scale μ, which is associated to the
scale or dilatation anomaly. The value of μ has no intrinsic
meaning and can be used to set the mass scales. We will
take

μ−1 ¼ 1010 yr ¼ 1.2 × 1060M−1
P : ð2Þ

For this choice, the present value of the variable Planck
mass in Eq. (1) amounts to MP ¼ χðt0Þ ¼ 2.48 ×
1018 GeV [21]. In other words, the increasing ratio χ=μ
has reached today a value 1.2 × 1060.
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We have chosen to normalize the scalar field by its
coupling to curvature in the scaling frame, i.e., by the first
term in the right-hand side of Eq. (1). With this normali-
zation, the scalar kinetic term has typically a nonstandard
normalization, as reflected by the dimensionless function
Bðχ=μÞ. In order to have a well-defined kinetic term during
the whole cosmological evolution, we will require the
function B to be a positive function of χ=μ. For μ ¼ 0 and
constantB, the associated action is scale invariant, while for
B ¼ μ ¼ 0, the action is also conformally invariant, and the
cosmon field χ no longer propagates.
For the matter and radiation sectors, we take the Standard

Model of particle physics with possible extensions includ-
ing dark matter. We assume that at large χ the values of all
the (renormalizable) dimensionless couplings in the
Standard Model become independent of χ, as required
by scale symmetry. In practice, this implies that the Fermi
scale and the confinement scale of strong interactions are
proportional to χ. The masses and binding energies of all
elementary particles are then proportional to the dilaton
expectation value, while cross sections scale as χ−2. In
consequence, our setting is compatible with the equivalence
principle tests and the severe bounds on the variation of
fundamental constants [27].
A recent quantum gravity computation based on func-

tional renormalization has indeed found for variable gravity
a quadratic increase of the scalar potential for large χ [28].
A strong enhancement of the effect of long-distance
graviton fluctuations avoids a potential instability of the
graviton propagator that would arise for a potential increas-
ing faster than χ2. More generally, large classes of effective
actions containing no more than two derivatives can be
brought to the form (1) by appropriate nonlinear field
redefinitions [19]. For example, this concerns potentials of
the form V ¼ αμ4 þ μ2χ2.
A given model is specified by a choice of Bðχ=μÞ. For

successful quintessential inflation, one needs large B
during the inflationary epoch and small B after the end
of inflation. Large B ensures slow-roll dynamics during
inflation, while inflation ends once B gets small. In this
paper, we will concentrate on a particular scenario where B
satisfies the flow equation

μ
∂B
∂μ ¼ κσB2

σ þ κB
: ð3Þ

This equation contains an infrared fixed point B� ¼ 0,
approached for B → 0 with a quadratic term

μ∂μB ¼ κB2: ð4Þ

The ultraviolet fixed point for B → ∞,

μ∂μB ¼ σB; ð5Þ

is characterized by an anomalous dimension σ.
No quantum gravity computation for the flow of B is

available so far. Equation (3) should be therefore under-
stood as an educated guess, or an assumption, on the exact
quantum gravity dynamics. As suggested by the first
investigations in Ref. [29], we assume the renormalization
flow of quantum gravity to admit both an UV and an IR
fixed point. The enhanced conformal symmetry for B ¼
μ ¼ 0 implies that the β-function for B vanishes for B ¼ 0.
If the β-function in the IR limit is analytic in B around
B ¼ 0, i.e., B ¼ σIRBþ κB2, the assumption of a vanishing
infrared anomalous dimension σIR ¼ 0 motivates the limit
(4). A simple way of achieving large B in the UV limit is an
anomalous dimension of the scalar wave function renorm-
alization, leading to the limit (5). The precise interpolation
between the UV and IR fixed points in Eq. (3) is not
important for the observable consequences of the model.
A reason for the selection of the particular crossover in
Eq. (3) is its simplicity. The scalar-gravity sector contains
only three order 1 parameters: two constants σ and κ and an
integration constant ct selecting a particular trajectory in
the flow. The resulting tensor-to-scalar ratio of primordial
perturbations turns out to be comparatively large, r≃
0.05–0.1 [19] (see also Ref. [22]). Smaller values of r
can be obtained by modifying the behavior of B at small χ,
for example by assuming a fixed point of the flow at some
large but finite B� [26], instead of the limit (5).
Since the main points of this paper will not be affected by

the details of the function B, we will take advantage of the
simplicity of Eq. (3) for finding explicit solutions. Indeed,
Eq. (3) can be easily integrated to obtain

σ

κB
þ ln

σ

κB
¼ ln

�
σ

κ

�
χ

m

�
σ
�
; ð6Þ

or equivalently [cf. Eq. (A2)]

σ

κBðχÞ ¼ W
�
σ

κ

�
χ

m

�
σ
�
; ð7Þ

with W the Lambert function [30] and

m≡ μ expðctÞ; ð8Þ

a crossover scale related to the integration constant ct via
dimensional transmutation.

III. EINSTEIN-FRAME FORMULATION

Most of the literature on inflation and on dynamical dark
energy employs a canonically normalized scalar field in the
Einstein frame. In order to permit an easy access and
comparison of models for a wider community, the inves-
tigations and results of the present paper will be performed
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in this setting. The transformation of our variable gravity
scenario to the Einstein frame will be done in two steps.
The first realizes the Einstein frame with a fixed Planck
massMP and a noncanonically normalized scalar field. The
second step proceeds to a canonical normalization of the
scalar kinetic term.
Performing a conformal transformation gμν ¼

ðμ2=M2
PÞV−1ðχðφÞÞ~gμν, with dimensionless scalar potential

VðχðφÞÞ ¼
�
μ

χ

�
2

¼ e−αφ=MP; ð9Þ

and reduced Planck mass MP ¼ 2.435 × 1018 GeV, we
obtain

Lffiffiffiffiffiffi−gp ¼ M2
P

2
R −

1

2
k2ðφÞð∂φÞ2 −M4

PVðφÞ; ð10Þ

with

k2ðφÞ ¼ α2

4
BðφÞ; ð11Þ

BðφÞ ¼ σ

κ
W−1

�
σ

κ

�
m
μ

�
−σ

exp

�
ασφ

2MP

��
: ð12Þ

The constant α in Eq. (11) can be chosen to get the standard
normalization (k2 ¼ 1) in the present cosmological epoch
[26],

α2 ¼ 4

Bðχ ¼ MPÞ
≈ 4κ lnðMP=mÞ: ð13Þ

One could also take α ¼ 1. As we will see below, the
constant α will completely disappear after canonically
normalizing the scalar kinetic term.
Due to the positive definite choice of B in Eq. (1), the

Einstein-frame Lagrangian (10) is ghost free. In this basis,
the cosmon potential VðφÞ decays exponentially to zero
[1,18], and the dynamical information is encoded in the
kinetial k2ðφÞ [20,26]; see also Ref. [31]. The kinetic term
can be made canonical by performing an additional field
redefinition,

dϕ
dφ

¼ kðφÞ: ð14Þ

The relation between ϕ and χ is given by (see also Fig. 1)

V ¼
�
μ

χ

�
2

¼ V0

�
exp ð−YÞ

Y

�
2=σ

; ð15Þ

with

Y ¼ σ

κBðχÞ ¼ 1þ 1

2

"
ϕ2

ϕ2
t
þ ϕ

ϕt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ϕ2

ϕ2
t

s #
: ð16Þ

Here,

V0 ¼
�
μ

m

�
2
�
σ

κ

�
2=σ

; ð17Þ

and

ϕt ≡ 2MPffiffiffiffiffi
κσ

p ð18Þ

denotes a transition field value lying between the UV and
IR fixed points. Indeed, Eq. (15) implies

YeY ¼ σ

κ

�
χ

m

�
σ

: ð19Þ

This equation allows us to identify Y with the Lambert
function in Eq. (7) and establishes the first equality in
Eq. (16). For the relation between Y and ϕ, we take into
account that

dϕ
dY

¼ dϕ
dφ

dφ
dχ

dχ
dY

¼ MP

χ

ffiffiffiffi
B

p dχ
dY

ð20Þ

¼ ϕt

2
ðY−1=2 þ Y−3=2Þ: ð21Þ

Integrating this expression, we get the identity

ϕ

ϕt
¼ Y1=2 − Y−1=2; ð22Þ

FIG. 1. The relation between χ and ϕ given by Eq. (15). For this
figure, we took σ ¼ 4, κ ¼ 1, and m ¼ 105μ with μ given by
Eq. (2). The black-dashed line corresponds to χ ¼ MP. For
reference, we indicate the values of the field ϕ (in MP units) at
N ¼ 20 e-folds before the end of inflation (ϕN¼20), at the
inflationary exit (ϕend), and at the onset of the kinetic domination
regime (ϕkin).
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which can be easily inverted to obtain the second equality
in Eq. (16). The relation between φ and ϕ follows from
φðχÞ in Eq. (9) and χðYðϕÞÞ as given by Eqs. (15) and (16).
In the canonical basis, the action takes the standard form

Lffiffiffiffiffiffi−gp ¼ M2
P

2
R −

1

2
ð∂ϕÞ2 −M4

PVðϕÞ: ð23Þ

All dynamical information is now encoded in the effective
potential M4

PVðϕÞ, as given by Eqs. (15) and (16). The
second term in Eq. (16) contains a linear piece in ϕ. The
potential VðϕÞ in Eq. (15) is therefore nonsymmetric for
arbitrary σ. For ϕ ≪ −ϕt, one gets Y ≈ ϕ2

t =ϕ2, and Eq. (15)
becomes a power-law (chaotic) potential,

VðϕÞ≃ V0

�
ϕ2

ϕ2
t

�
2=σ

¼ A

�
ϕ2

M2
P

�
2=σ

; ð24Þ

with

A≡
�
μ

m

�
2
�
σ

2

�
4=σ

: ð25Þ

On the other hand, for ϕ ≫ ϕt, one has Y ≈ ϕ2=ϕ2
t þ 2, and

VðϕÞ can be approximated by a mixed-quintessence
potential,

VðϕÞ≃ V0

�expð− ϕ2

ϕ2
t
− 2Þ

ϕ2

ϕ2
t
þ 2

�2=σ
: ð26Þ

The comparison between the exact cosmon potential (15)
and the approximated expressions (24) and (26) is shown
in Fig. 2.

We recall that ratio μ=m in Eq. (25) is related to the
integration constant ct determining the particular trajectory
in the flow [cf. Eq. (8)]. Order 1 values of ct translate
naturally into values of A that are exponentially smaller
than one, A ∼ expð−2ctÞ. This provides for a natural
explanation of the small amplitude of the primordial
fluctuations.

IV. INFLATIONARY ERA

We can now proceed to discuss the observable conse-
quences of our model by using the standard methods
developed for a canonically normalized scalar field in
the Einstein frame. If correctly defined and computed,
the observable predictions cannot depend on the particular
frame under consideration nor on the precise scalar-field
normalization. This is indeed verified by the following
independent computations. These computations put our
variable gravity framework in direct contact with the
known properties of inflationary potentials and dynamical
dark energy scenarios existing in the literature.
The approximate power-law form of the potential

at ϕ ≪ −ϕt allows for inflation with the usual chaotic
initial conditions. The Einstein-frame equation of motion
for the cosmon field in a flat Friedmann-Lemaître-
Robertson-Walker Universe,

ds2 ¼ −dt2 þ a2ðtÞdx2; ð27Þ

is given by

ϕ̈þ 3H _ϕþM4
PV;ϕ¼ 0; ð28Þ

with dots denoting derivatives with respect to the coor-
dinate time t andH ¼ _aðtÞ=aðtÞ. The Universe undergoes a
phase of accelerated expansion if

ϵH ≡ −
_H
H2

< 1: ð29Þ

The evolution of the acceleration parameter (29) can be
determined by numerically solving Eq. (28) together with
the Friedmann equations and standard slow-roll initial
conditions. Depending on the value of ϕt, the end of
inflation for the inflationary potentials (15) and (24) can
take place at slightly different field values (the smaller the
transition scale ϕt, the smaller the difference). This change
translates into a small variation in the number of e-folds for
the values of κ and σ we are interested in. Having this in
mind, we will estimate the inflationary observables using
the simple power-law approximation (24). Following the
standard procedure, we obtain the following expressions
for the spectral tilt and the tensor-to-scalar ratio,

1 − ns ¼
2þ σ

σN þ 1
; r ¼ 16

σN þ 1
; ð30Þ

FIG. 2. The cosmon potential for σ ¼ 4 and κ ¼ 1. The blue
line corresponds to the exact expression (15), while the orange-
dotted line and red-dashed lines are associated to the approxi-
mated expressions (26) and (24) respectively. For reference, we
indicate the values of the cosmon field ϕ (inMP units) at N ¼ 20
e-folds before the end of inflation (ϕN¼20), at the inflationary exit
(ϕend), and at the onset of the kinetic domination regime (ϕkin).
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with

N ¼ σ

8M2
P
½ðϕhcÞ2 − ðϕendÞ2�; ð31Þ

the number of e-folds between the horizon crossing of
the relevant fluctuations (ϕ ¼ ϕhc) and the end of inflation
(ϕend=MP¼ 2

ffiffiffi
2

p
=σ). These Einstein-frame results improve

the estimates in Ref. [19] by properly identifying the end
of inflation with ϵH ≈ ϵV ¼ 1.1 The comparison of (30)
with the latest cosmic microwave background (CMB)
results is shown in Fig. 3. For an anomalous dimension
σ ≳ 4, the inflationary predictions lay within the 2σ Planck/
BICEP2 contour [32,33].
The amplitude of scalar perturbations

A ¼ VðϕhcÞ
rM4

P
¼ 3.56 × 10−8; ð32Þ

together with Eqs. (24) and (30) evaluated at horizon
crossing (ϕ ¼ ϕhc), determine the ratio

m
μ
¼ 2

1
σ−2ðσN þ 1Þ12þ1

σA−1
2 ð33Þ

and the associated trajectory in the flow. For σ ¼ 4 and
N ¼ 60, one obtains m≃ 105μ. Our results agree with
Ref. [19].
Once we have determined the Einstein-frame inflation-

ary dynamics, we can always reinterpret our results in terms
of the original variable gravity formulation. In particular, it

is interesting to compare the value of the cosmon field χ
during inflation with the scales μ and m. Combining
Eqs. (9) and (32), we get

χhc
μ

¼ 1ffiffiffiffiffiffi
Ar

p ; ð34Þ

meaning that horizon crossing happens when χ ≫ μ. This
value is, however, much smaller than m, as can be easily
seen by combining Eqs. (24) and (25) and taking into
account Eq. (15),

χ

m
¼

�
4M2

P

σ2ϕ2

�
1=σ

: ð35Þ

Evaluating the result at horizon crossing, we get

χhc
m

¼
�
4M2

P

σ2ϕ2
hc

�
1=σ

¼
�

r
32

�
1=σ

; ð36Þ

with r the tensor-to-scalar ratio in Eq. (30). The scale m is
indeed associated to the end of inflation,

χend
m

¼
�

4M2
P

σ2ϕ2
end

�
1=σ

¼ 1

21=σ
: ð37Þ

A simple overall picture of inflation arises. The infla-
tionary phase corresponds to the vicinity of the UV fixed
point for χ ≲m. Close to a fixed point, approximate scale
symmetry is manifestly realized. This approximate sym-
metry is the origin of the almost scale invariant primordial
fluctuation spectrum. For χ ≈m, one observes the cross-
over from the vicinity of the UV fixed point to the vicinity
of the IR fixed point. Scale invariance is substantially
violated in this crossover region. This violation triggers the
end of inflation. The scalem is an integration constant of an
almost logarithmic flow. Small values of μ=m arise there-
fore naturally, similarly to the small ratio of the confine-
ment scale in quantum chromodynamics as compared to
some “unification scale.” This provides for a small fluc-
tuation amplitude,

A ¼ 1

32
½2ðσN þ 1Þ�1þ2

σ
μ2

m2
; ð38Þ

without the necessity for tuning.

V. KINETIC DOMINATED ERA

After inflation, the inflaton rolls down into the steep
potential (26), leading to a substantial decrease of the
potential energy density. The evolution of the cosmon field
becomes dominated by its kinetic energy, and the heating of
the Universe sets in. In this section, we consider the initial
epoch in which the energy density into radiation is still
small as compared to the energy density of the cosmon.

FIG. 3. Comparison between the inflationary predictions (30)
and the latest Planck/BICEP2 data at 68% and 95% C.L. [32,33].
The arrows go from the values obtained assuming N ¼ 55 e-folds
to those for N ¼ 65 (cf. Sec. VII B for a more precise estimation
of the number of e-folds). For σ ≳ 4, the predicted spectral tilt and
tensor-to-scalar ratio lay inside the 2σ contour.

1The estimates in Ref. [19] replace the denominators σN þ 1
in Eq. (30) by σN þ 3, due to a small change in the precise
definition of the end of inflation. While in the present work, the
offset of inflation is defined to occur at Bend ¼ 2, Ref. [19] takes
Bend ¼ 6.
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Such a period is usually referred as kination or deflation
[4]. During this epoch, we can continue to use the cosmon-
field equation (28). Neglecting the potential energy density
in the first approximation, the equation ϕ̈þ 3H _ϕ≃ 0 with
H ¼ 1=ð3tÞ admits a solution,

ϕðtÞ ¼ ϕkin þ _ϕkintkin log

�
t
tkin

�
; ð39Þ

with ϕkin and _ϕkin the value of the field and its derivative at
the onset of the kinetic era at tkin. During this regime, the
cosmon energy density scales as a−6. This behavior is
reflected by the cosmon equation of state

wϕ ¼ pϕ

ρϕ
¼

1
2
_ϕ2 −M4

PV
1
2
_ϕ2 þM4

PV
≈ 1: ð40Þ

In Fig. 4, we show the numerical solution of the field
equations for wϕ as a function of the number of e-folds N.
The equation of state evolves rapidly toward wϕ ¼ 1 after
the end of inflation.
For a realistic cosmology, the kinetic domination regime

has to end before big bang nucleosynthesis. For this era to
begin, the energy density of the cosmon field must be
(dominantly) transmitted to the Standard Model degrees of
freedom. In a nonoscillatory model like the one under
consideration, a total decay of the inflaton field is not
expected since _ϕ ¼ 0 is not a solution of the equations of
motion in the absence of a minimum. Also, highly effective
processes such as parametric resonance cannot take place in
a nonoscillatory model.
Although an incomplete inflaton decay would constitute

a serious drawback for most inflationary models, it does not
in the variable gravity scenario. To understand this, let us
assume that a given heating mechanism is able to produce a
partial depletion of the cosmon condensate by the creation
of relativistic particles. Even if the energy density of this

component is initially very small, it will inevitably domi-
nate the energy budget at later times. Indeed, during the
kinetic dominated regime, the energy density of the created
particles scales as ρr ∼ a−4, while that of the cosmon field
evolves as a−6. The rapid decrease of the cosmon energy
density will inevitably give rise to a late-time domination of
the radiation component.
The radiation temperature Trad at which the energy

density of the created particles equals that of the cosmon
(ρradr ¼ ρradϕ ) can be defined as

Trad ≡
�
30ρradr

π2grad�

�
1=4

; ð41Þ

with grad� the effective number of relativistic degrees of
freedom at that temperature. The quantity Trad should be
interpreted as the typical energy scale for the onset of
radiation domination. It coincides with the heating temper-
ature (usually called the reheating temperature) in the fast
thermalization limit.
For a simplified scenario, we may assume particle

production to take place instantaneously at the onset of
the kinetic regime. This motivates the introduction of a
heating efficiency, defined in this limit as

Θ≡ ρkinr

ρkinϕ

: ð42Þ

We will later extend the definition of Θ to smoother
transitions. For the types of heating or entropy production
mechanisms considered in this paper, the parameter Θ is
sufficient for a quantitative description of the cosmological
history.
For instant particle production, the heating efficiency can

be easily related to the radiation temperature Trad by taking
into account that

Θ ¼ ρkinr

ρkinϕ

¼
�
akin
arad

�
2

: ð43Þ

We get

Trad ¼
�
30Θ3ρkinϕ

π2grad�

�1
4

¼ Θ1
2

�
gkin�
grad�

�1
4

Tkin; ð44Þ

with

Tkin ≡
�
30ρkinr

π2gkin�

�
1=4

; ð45Þ

the temperature of the created particles at the onset of
kinetic domination. The longer the kinetic regime, the
smaller the radiation temperature Trad is. The heating
efficiency (43) must be large enough to avoid conflicts

FIG. 4. The cosmon equation of state in the potential (15) with
σ ¼ 4 and κ ¼ 1 as a function of the number of e-folds N. The
end of inflation after 60 e-folds is indicated with a black dot. The
limit wϕ ¼ 1 corresponds to a kinetic dominated regime.
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with BBN. For the power-law inflationary potential (24),
the Hubble rate at the end of inflation/onset of kinetic
domination is of order 1011–1013 GeV (cf. Table I), with a
slight dependence on the precise value of σ. Taking this into
account, Eq. (44) becomes

Trad

1014 GeV
≃ aΘ3=4

�
Hkin

1011

�
1=2

; ð46Þ

with a ¼ 8.65ðgrad� Þ−1=4.
The inflationary dynamics not only excites cosmon

fluctuations but also generates primordial gravitational
waves (GW). In the postinflationary era, the amplitude
of GW with superhorizon wavelengths remains constant
until it reenters the horizon. When that happens, the
logarithmic GW spectrum scales as [34]

ΩGWðkÞ ¼
1

ρc

dρGW
d ln k

∝ k2ð
3w−1
3wþ1

Þ; ð47Þ

with w the effective equation of state. For a radiation
dominated expansion, the GW spectrum remains flat.
However, for a kinetic dominated regime, the spectrum
becomes blue tilted and may eventually dominate the total
energy budget.
Nucleosynthesis constraints set an integral bound on the

GW density fraction at BBN, namely [35]

h2
Z

kend

kBBN

ΩGWðkÞd ln k≲ 10−5; ð48Þ

with h ¼ 0.678 and kend and kBBN the momenta associated
respectively to the horizon scale at the end of inflation and
at BBN. The dominant contribution to this integral comes
from momenta that left the horizon before the end of
inflation and reentered during kinetic domination. For these
modes (krad < k < kkin) [36] (see also Refs. [34,37]),

ΩGWðkÞ ¼ εΩγh2GW

�
k
krad

�
ln2

�
k
kkin

�
; ð49Þ

with

h2GW ¼ 1

8π

�
Hkin

MP

�
2

ð50Þ

the dimensionless amplitude of gravitational waves. The
present radiation content in critical units ρc ¼ 1.05 ×
10−5h2 GeVcm−3 is given by

Ωγ ≡ ργðt0Þ
ρcðt0Þ

¼ 2.6 × 10−5h−2: ð51Þ

The factor

ε ¼ 81

16π3

�
gdec
gth

�
1=3

ð52Þ

takes into account the variation on the number of massless
degrees of freedom between thermalization and decoupling
[36]. For the Standard Model content (gth ¼ 106.75,
gdec ¼ 3.36), we have ε≃ 0.05.
Combining Eqs. (48) and (49), and neglecting a sub-

leading logarithmic correction in the kkin ≫ krad limit, we
obtain

2εh2Ωγh2GW

�
kkin
krad

�
≲ 10−5: ð53Þ

The ratio kkin=krad in this expression can be easily related to
Eq. (43) by taking into account that

kmin

krad
¼ akinHkin

aradHrad
¼ 1ffiffiffi

2
p

�
ρkinϕ

ρradr

�1=3

¼ 1ffiffiffi
2

p
Θ
: ð54Þ

Using these results, the integral bound on the GW density
fraction at BBN can be translated into a lower bound on the
heating efficiency,

Θ≳ 105εh2Ωγ

4π
ffiffiffi
2

p
�
Hkin

MP

�
2

: ð55Þ

For the typical values of Hkin in Table I (and assuming
ε≃ 0.05), we get

Θ≳ 10−17
�

Hkin

1011 GeV

�
2

: ð56Þ

Using Eq. (46), this translates into a lower bound on the
radiation temperature,

ðgrad� Þ1=4Trad ≥ 225 GeV: ð57Þ

TABLE I. Approximate values of the Hubble rate at the end of
inflation and at the onset of the kinetic dominated era. The
numbers displayed were obtained by numerically solving the
equations of motion for κ ¼ 1 and different values of σ. The end
of inflation is defined by the condition ϵH ¼ 1 with ϵH given by
Eq. (29). The beginning of the kinetic era is defined by the time at
which the effective equation-of-state parameter wϕ equals 1, up to
one percent accuracy.

σ ϕt=Mp Hend (GeV) Hkin (GeV)

2
ffiffiffi
2

p
6.2 × 1012 5.8 × 1010

3 2=
ffiffiffi
3

p
8.9 × 1012 1.2 × 1011

4 1 1.1 × 1013 1.6 × 1011
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VI. HEATING

Among the different heating mechanisms that have been
proposed in the literature (see, for instance, Refs. [3,22,38–
44]), there are two that can be naturally realized in a
variable gravity framework: heating via gravitational inter-
actions and heating via matter couplings involving strong
adiabaticity violations. In the following, we will estimate
the contribution of these heating scenarios to the heating
efficiency (43) and the associated radiation tempera-
ture (44).

A. Heating via gravitational interactions

The simplest and most minimalistic heating mechanism
is particle creation via gravitational interactions [4,45,46].
Scalar fields nonconformally coupled to the metric tensor
are inevitably produced in an expanding background,2

provided that they are light enough as compared to the
Hubble rate. In our scenario, the scalar sector contains the
Higgs doublet and the cosmon, but it can also include
additional scalars as those appearing in extensions of the
Standard Model such as grand unification.
During a Hubble time, the gravitationally induced

variation of the (relativistic) scalar energy density Δρr ∼
T4
H is associated to an effective (Hawking) temperature

TH ¼ H=ð2πÞ. This effect has to compete with the dilution
due to the expansion of the Universe, ρr ∼ a−4. During
kinetic domination, H ∼ a−3 and Δρr ∼ a−12. In conse-
quence, gravitational particle production is dominated by
times close to the onset of the kinetic epoch, while later
particle production becomes negligible. On the other hand,
during the inflationary epoch, H is almost constant, and
Δρr ∼ expð−4NÞ, with N the numbers of e-folds. Particle
creation during the early stages of inflation is therefore
exponentially diluted and can be also neglected. We
conclude that sizable entropy production due to gravita-
tional interactions concerns only the epoch immediately
after inflation.
As seen in Fig. 4, the kinetic dominated era starts soon

after the end of inflation. The energy scale of the relativistic
scalars created at the onset of this regime is of order

Tkin ¼ δ ×
Hkin

2π
; ð58Þ

withH2
kin ¼ ρkinp =ð3M2

PÞ and δ ∼Oð1Þ an efficiency param-
eter [4,45]. Taking this expression into account, Eq. (43)
becomes

Θ ¼ δ4gkin�
1440π2

�
Hkin

MP

�
2

¼ 10−19δ4gkin�

�
Hkin

1011 GeV

�
2

; ð59Þ

resulting in a radiation temperature,

Trad ¼
δ3

24π2

ffiffiffiffiffiffiffi
gkin�
10

r �
gkin�
grad�

�
1=4H2

kin

MP
; ð60Þ

with gkin� the effective number of (scalar) relativistic
degrees of freedom at the transition from inflation to the
kinetic epoch.
If the created scalar particles are allowed to interact after

production via nongravitational interactions,3 they will
rapidly generate a thermalized plasma that should contain,
at least, the Standard Model degrees of freedom. In that
case, the radiation temperature Trad can be associated to the
heating temperature. The effects of partial thermalization
can be incorporated into a modification of the efficiency
parameter δ.
Note that, although Trad is typically above the BBN

temperature TBBN ≃ 0.5 MeV, it is not high enough to
satisfy the bound (56) for a moderate number of scalar
fields. Indeed, combining Eqs. (55) and (59) (and assuming
ε≃ 0.05), we get

δ4gkin� ≳Oð102Þ: ð61Þ

Thus, even for Oð1Þ efficiency, a large number of scalar
fields is required in order to satisfy the GW constraints.
Independently of the plausibility of Eq. (61), gravita-

tional particle production should not be considered a
completely satisfactory heating mechanism. As argued in
Ref. [47], the presence of light fields during inflation could
give rise to unwanted effects, such as the generation of
secondary inflationary periods or the production of large
isocurvature perturbations. As we will show in the next
section, these problems, together with the inefficiency of
gravitational particle production, can be easily solved in the
presence of direct couplings between the cosmon field and
matter.

B. Heating via matter interactions

After Weyl rescaling, the coefficients in the quadratic
part of the effective action for matter fields generically
depend on ϕ (see Ref. [48] for the Higgs doublet). For a
scalar field h, this dependence can be parametrized as2Note, however, that this mechanism does not apply to gauge

bosons and chiral fermions since their evolution equations in a
conformally flat geometry as Friedmann-Robertson-Walker are
invariant under Weyl rescalings.

3Note that this does not apply to gravitational waves, which
cannot thermalize below the Planck scale [37].
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LIffiffiffiffiffiffi−gp ¼ −
1

2
½ð∂hÞ2 þ γðϕÞð∂h2∂ϕÞ þM2

hðϕÞh2�: ð62Þ

The ϕ-dependence of the effective action induces particle
production if the coefficients M2

hðϕÞ or γðϕÞ change
substantially with time. Rapid variations of these functions
are expected to occur during the crossover, where the
dimensionless couplings and mass ratios of matter fields
must evolve from their UV fixed-point values to those
associated to the IR fixed point.4

To understand how a change in the effective couplings
translates into particle production, let us consider the
Einstein-frame equation of motion for the h-field,

ð−∇μ∇μ þM2
hðϕÞÞh ¼ νðϕÞh; ð63Þ

with

νðϕÞ ¼ gμν∇μ½γðϕÞ∂νϕ�: ð64Þ

For γðϕÞ ≠ 0, the field equation for h contains derivative
interactions. For the sake of simplicity, we will neglect this
coupling in the following considerations and set γðϕÞ ¼ 0.5

For a homogeneous cosmon field [ϕ ¼ ϕðtÞ], the mode
equation in Fourier space reads

ḧk þ 3H _hk þ
�
k2

a2
þM2

h

�
hk ¼ 0: ð65Þ

The friction term in this expression can be eliminated by
performing a field redefinition h → a−3=2h. Doing this, we
get a time-dependent harmonic oscillator equation,

ḧk þ ω2
kðtÞhk ¼ 0; ð66Þ

with

ω2
kðtÞ ¼

k2

aðtÞ2 þM2
hðtÞ þ Δa; ð67Þ

and

Δa ¼ −
3

4

_a2

a2
−
3

2

ä
a
: ð68Þ

The term Δa is responsible for the gravitational particle
production discussed in Sec. VI B. In the presence of direct
couplings between the inflaton and matter fields, this term

is expected to be subdominant, and it will be neglected in
what follows.
The solutions of the mode equation (66) could be used

to compute the propagator for the h-field in the time-
dependent background ϕðtÞ, along the lines of Ref. [51].
From this, particle creation can be directly extracted. We
will follow here the more conventional approach based on
the operator formalism.
Let us describe the solutions of the mode equation (66) in

terms of positive- and negative-frequency adiabatic
solutions ∼ expð�i

R
t
0 dt

0ωkðt0ÞÞ, namely

hkðtÞ ¼
1ffiffiffiffiffiffiffiffi
2ωk

p ½AkðtÞ þ BkðtÞ�; ð69Þ

with

AkðtÞ≡ αkðtÞe−i
R

t

0
dt0ωkðt0Þ; ð70Þ

BkðtÞ≡ βkðtÞei
R

t

0
dt0ωkðt0Þ: ð71Þ

The time dependence of the functions αkðtÞ and βkðtÞ has to
ensure that the mode equation (66) is obeyed. We will
require αkðtÞ and βkðtÞ to satisfy the differential equations

_αkðtÞ ¼
_ωk

2ωk
e2i

R
t

0
dt0ωkðt0ÞβkðtÞ; ð72Þ

_βkðtÞ ¼
_ωk

2ωk
e−2i

R
t

0
dt0ωkðt0ÞαkðtÞ: ð73Þ

These conditions induce the following evolution equations
for AkðtÞ and BkðtÞ:

_AkðtÞ ¼
_ωk

2ωk
BkðtÞ − iωkAkðtÞ; ð74Þ

_BkðtÞ ¼
_ωk

2ωk
AkðtÞ þ iωkBkðtÞ: ð75Þ

The insertion of these equations into Eq. (69) yields indeed
the mode equation (66).
By virtue of Eqs. (72) and (73), one obtains the

conservation equation

∂tðjαkðtÞj2 − jβkðtÞj2Þ ¼ 0: ð76Þ

In particular, the Wronskian condition

jαkðtÞj2 − jβkðtÞj2 ¼ 1 ð77Þ

is preserved in time. The condition (77) arises in the operator
formalism from the commutation relations of creation and
annihilation operators for free fields. Extracting the propa-
gator as the inverse of the second functional derivative of the

4In the Einstein frame, the matter fields must eventually
decouple from the cosmon to avoid violations of the equivalence
principle [27,49]. This is realized if an IR fixed point is
approached.

5Derivative interactions give rise to similar particle production
effects; see, for instance, Ref. [50].
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effective action, this condition is induced by the inhomo-
geneous term in the propagator equation [51].
The occupation number of particles at time t can be

identified with

nk ¼ jBkðtÞj2: ð78Þ

The number and energy density of the created particles is
therefore given by

nhðtÞ ¼
1

a3ðtÞ
Z

d3k
ð2πÞ3 nk; ð79Þ

ρhðtÞ ¼
1

a3ðtÞ
Z

d3k
ð2πÞ3 ωknk: ð80Þ

Using

_hkðtÞ ¼ −i
ffiffiffiffiffiffi
ωk

2

r
ðAkðtÞ − BkðtÞÞ; ð81Þ

one infers the relation

jAkðtÞj2 þ jBkðtÞj2 ¼
1

ωk
j _hkðtÞj2 þ ωkjhkðtÞj2: ð82Þ

This, together with the condition jAkj2 − jBkj2 ¼ 1, trans-
lates for the occupation numbers to

nk ¼
1

2ωk
ðj _hkj2 þ ω2

kjhkj2Þ −
1

2
: ð83Þ

Vacuum initial conditions correspond to αkðtinitÞ ¼ 1 and
βkðtinitÞ ¼ 0 and therefore to nkðtinitÞ ¼ 0. In terms of hk,
these initial conditions become

hkðt → tinitÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðtÞ
p e−i

R
t

0
dt0ωkðt0Þ: ð84Þ

For particle production to be efficient, the adiabaticity
condition j _ωkj ≪ ω2

k must be significantly violated [52], as
clearly visible in Eq. (75). The energy density of the
produced particles obeys

ð∂t þ 3HÞρh ¼
1

2a3

Z
d3k
ð2π3Þ _ωkð2ωkjhkj2 − 1Þ:

The production term on the right-hand side is indeed
proportional to _ωk. It has to compete with the Hubble
damping on the left-hand side.
In the absence of derivative interactions [i.e., for

γðϕÞ ¼ 0 in Eq. (62)], the cosmon field ϕ couples to the
matter field h only through the effective mass function
M2

hðϕÞ. In a natural and phenomenologically successful
scenario, this function should satisfy the following criteria:

(i) It should be large enough during inflation to retain
the single-field inflationary picture and avoid the
generation of large isocurvature perturbations.

(ii) It should rapidly vary at the end of inflation
(ϕ≳ ϕend) to heat the Universe via violations of
the adiabaticity condition j _ωkj ≪ ω2

k.
(iii) It should eventually become independent of ϕ if the

field h is the Higgs doublet. This reflects scale sym-
metry in the Standard Model sector as required by the
bounds on the variation of the ratio of the Fermi scale
over the Planck scale since nucleosynthesis.

We assume here that the crossover from the UV to the IR
fixed point, which is reflected in the change of the cosmon
kinetic term and associated to the end of inflation, leaves
also its traces in the matter sector. In the field range χ ≈m,
the couplings of h to χ, and correspondingly to ϕ, are
therefore expected to undergo significant changes. This
provides for a natural scenario where M2

hðϕÞ can change
rapidly from large to small values at the end of inflation.
The conditions i–iii can be viewed as the imprint of the
crossover in the matter sector.

C. Workout example

A possible parametrization of M2
hðϕÞ satisfying the

above requirements is M2
hðϕÞ≡ ϵðϕÞM2

P with

ϵðϕÞ ¼ ϵ∞ þ ϵ1

�
exp ð−YϵðϕÞÞ

YϵðϕÞ
�
σh=2

: ð85Þ

Here,

YϵðϕÞ ¼ 1þ 1

2

"
ϕ2

ϕ2
ϵ
þ ϕ

ϕϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ϕ2

ϕ2
ϵ

s #
; ð86Þ

and σh, ϵ∞, ϵ1, and ϕϵ are taken to be positive constants.
The shape of ϵðϕÞ − ϵ∞ mimics the form of the cosmon
potential (15), with σh, ϕϵ, and the amplitude ϵ1 left free.
The detailed structure of this parametrization is chosen for
illustration purposes only. Alternative choices sharing the
features described in i, ii, and iii could be used without
modifying the conclusions below.
The behavior of Eq. (85) for different values of ϕϵ is

shown in Fig. 5. It describes the evolution from a UV fixed
point,6

ϕ∂ϕϵðϕÞ ≈ σhϵðϕÞð1 − ϕ2
ϵ=ϕ2Þ; ð88Þ

6In the far UV (ϕ ≫ ϕt;ϕϵ), this corresponds in the scaling
frame to a flow equation,

μ∂μϵðχÞ ≈ σ̄hϵðχÞ; ð87Þ

with σ̄h ¼ σhσ=2.
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approached for ϕ → −∞ with anomalous dimension σh, to
an IR fixed point where ϵ ≈ ϵ∞. The constant ϕϵ encodes
the location of the transition. The smaller the value of ϕϵ,
the longer the effective coupling stays in the vicinity of the
UV fixed point.
For large values of ϕϵ, we can make use of Eq. (35) to

relate this parameter to the crossover scale m signaling the
end of inflation,

χϵ
m

¼
�
κ

σ

ϕ2
t

ϕ2
ϵ

�
1=σ

: ð89Þ

Values of ϕ2
ϵ larger than ϕ2

t correspond to values of χϵ
smaller than the crossover scale m. For ϕϵ=ϕt ≪ 1, the
transition in MhðϕÞ occurs within a short period before the
end of inflation. In this region, the size of ϕϵ mainly
determines the sharpness of the crossover, with small ϕϵ

leading to a more abrupt transition. We could introduce and
additional parameter ϕl for the timing of the transition, e.g.,
by replacing ϕ in Eq. (85) by ϕ − ϕl. All our models can
account for a gauge hierarchy if ϵ∞ ≪ 1 with ϵ≳ 1 for
ϕ → −∞ (χ → 0) and ϵ → ϵ∞ for ϕ → ∞ (χ → ∞).
The occupation numbers and the energy density of

created particles for a given set of parameters
ðσh; ϵ∞; ϵ1;ϕϵÞ can be computed by numerically solving
the mode equation (66) with vacuum initial conditions. Let
us consider for concreteness an anomalous dimension
σh ¼ 2 in an inflationary model with σ ¼ 4 and κ ¼ 1.
For this choice of parameters, the interaction Lagrangian
during inflation (ϕ ≪ −ϕϵ) contains a quartic term
−ð1=2Þg2ϕ2h2with g2 ≡ ϵ1M2

P=ϕ
2
ϵ . To retain the predictions

of single-field inflation, we will require the effective mass
gjϕj of the scalar field h during inflation to be larger than the
mass of the cosmon. In the leading order approximation (24),
the squared cosmon mass M2

c ≡M4
P∂2V=∂ϕ2 reads

M2
c ¼

4Að4 − σÞ
σ2

�
ϕ2

M2
P

�2
σ−1

M2
P: ð90Þ

This expression vanishes for σ ¼ 4 and is generically sup-
pressed by the small factorA, cf. Eqs. (25) and (33). Unless g
is tiny, the effectivemass of theh field during inflationwill be
significantly larger than the cosmon mass. For our practical
example, we choose g2 ¼ 0.1, while keeping ϕϵ as a free
parameter. For ϵ∞, we take ϵ∞ ¼ 10−10, which translates into
an asymptotic h mass of order ϵ1=2∞ MP ≃Oð1013 GeV) at
ϕ → ∞. Smaller values of ϵ∞, as those required if h is the
Higgs doublet, will not change our discussion.
The numerical results for different values of ϕϵ are

summarized in Fig. 6 and Table II. All cases are evaluated
at the onset of the kinetic domination regime. At that time,
Hkin ≃ 1.63 × 1011 GeV, and ρkinϕ ≃ ð8.4 × 1014 GeVÞ4.
In agreement with the analytical estimates presented in
Appendix B, smaller choices of ϕϵ translate into more
significant particle production.

FIG. 5. The effective coupling ϵðϕÞ for σh ¼ 2, ϵ∞ ¼ 10−10,
ϵ1M2

P ¼ ϕ2
ϵ , and different values of ϕϵ. All cases share the same

asymptotic behavior during inflation. The red-solid, blue-
dashed, and orange-dotted lines correspond respectively to
ϕϵ ¼ MP; 0.75MP, and 10−1MP. In the inset, we plot ϵðϕÞ
logarithmically in order to better resolve the approach to zero
and to facilitate the comparison with Fig. 2.

FIG. 6. The spectra of produced h particles for σh ¼ 2,
ϵ∞ ¼ 10−10, ϵ1 ¼ 10−1ϕ2

ϵ=M2
P, and different choices of

ϕϵ. All cases are evaluated at the onset of the kinetic
domination regime. At that time, Hkin ≃ 1.63 × 1011 GeV,
and ρkinϕ ≃ ð8.4 × 1014 GeVÞ4.

TABLE II. Heating efficiency Θ, as defined by the ratio (43)
between the radiation and cosmon energy densities at the onset of
kinetic domination and the associated radiation temperature (44)
for different values of ϕϵ. Parameters are taken as σh ¼ 2,
ϵ∞ ¼ 10−10, and ϵ1 ¼ 10−1ϕ2

ϵ=M2
P. At the onset of

kinetic domination, one has Hkin ≃ 1.63 × 1011 GeV and
ρkinϕ ≃ ð8.4 × 1014 GeVÞ4.

ϕϵ=MP Θ ðgrad� Þ14Trad (GeV)

1 × 10−1 2.5 × 10−9 3.9 × 108

1 × 10−2 9.7 × 10−8 6.1 × 109

5 × 10−3 3.3 × 10−7 1.5 × 1010

1 × 10−3 1.2 × 10−6 4.0 × 1010

1 × 10−4 1.4 × 10−6 4.4 × 1010
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The energy density of the produced particles can be
compared with the energy density of the cosmon at the
onset of radiation domination. The resulting heating effi-
ciency (43) determines the radiation temperature Trad via
Eq. (44). As shown in Table II, this temperature is well
above the BBN temperature (TBBN ≃ 0.5 MeV) and sig-
nificantly exceeds the energy scale associated to gravita-
tional particle production. Note also that the GW bound
(56) can be easily satisfied even if only one matter field
violates the adiabaticity condition. If this condition is
violated in na channels, the ratio (43) and the associated
radiation temperature are enhanced by a factor Θ → naΘ
and Trad →

ffiffiffiffiffi
na

p
Trad. Since the main aspects of particle

creation due to a single violation of adiabaticity are
independent of the spin of the particle, the above results
can be extended to fermionic species [53,54].
We finish this section by noticing that the heating

scenario presented here is conceptually different from
the instant reheating mechanisms [47,55] appearing in
most quintessential inflation models [22,39,40]. Instant
reheating is usually formulated in terms of ϕ-symmetric
interactions among the inflaton field ϕ and some scalar
particle X which is itself coupled to fermions via Yukawa
interactions,

LIffiffiffiffiffiffi−gp ¼ −
1

2
g2ϕ2X2 − yψXψ̄ψ : ð91Þ

As in our case, a small fraction of X particles is automati-
cally generated at the end of inflation via the violation of
the adiabaticity condition at ϕ ≈ 0. After particle produc-
tion, the inflaton field rolls down the quintessence potential
(15). This rolling increases the effective mass of the X field
(mXðϕÞ ¼ gjϕj) and amplifies its energy density and the
probability to decay into fermions [ΓX→ψ̄ψ ∝ mXðϕÞ]. As
argued in Ref. [47], to avoid significant backreaction
effects into the inflaton evolution equation

ϕ̈þ 3H _ϕþ V;ϕ ¼ −g2ϕhXi2; ð92Þ

the decay into fermions should take place soon after
particle production. This requirement translates into a mild
condition relating the couplings yt and g2 [47].
Although instant reheating is a highly efficient mechanism

that could give rise to radiation temperatures well above
those displayed in Table II, we find it difficult to implement
in a variable gravity scenario like the one under consid-
eration. For a simple crossover, a monotonic dependence of
M2

hðϕÞ on ϕ seems more natural. We emphasize that an
instant feeding of the created particles is not necessary in our
scenario. If the fraction of energy depleted out of the cosmon
component exceeds the GW bound (56), the Universe will
become safely dominated by radiation before BBN. Our
scenario does not suffer from backreaction problems since

the mass of the h-field is a monotonically decreasing
function of the inflaton field ϕ.

VII. HOT BIG BANG ERA

In the Einstein frame, the evolution during the hot big
bang era can be described in terms of the Friedmann
equations and the Klein-Gordon equation for the cosmon
field,

H2 ¼ 1

3M2
P
ðρϕ þ ρR þ ρMÞ; ð93Þ

_H ¼ −
1

2M2
P

�
_ϕ2 þ 4

3
ρR þ ρM

�
; ð94Þ

ϕ̈þ 3H _ϕþM4
PV;ϕ ¼ 0; ð95Þ

with ρϕ ¼ _ϕ2=2þM4
PV and ρR and ρM the energy

densities of radiation and nonrelativistic matter with
conservation equations

_ρR þ 4HρR ¼ 0; _ρM þ 3HρM ¼ 0: ð96Þ

A. Onset of radiation domination

The evolution of the dark energy equation of state
wϕ ¼ pϕ=ρϕ and the (normalized) energy densities Ωi ≡
ρi=ð3M2

PH
2Þ with i ¼ ϕ; R, and M can be obtained by

numerically solving the cosmological equations (93)–(96).
We assume a number of production channels of the order of
the number of degrees of freedom in the Standard Model,
Oð102Þ. The results for σ ¼ 4, κ ¼ 1, and Θ ¼ 10−4 are
shown in Figs. 7, 8, and 9. The qualitative behavior of the
observables in these figures can be understood as follows:
(a) At the end of inflation, the radiation component ΩR

is very small, ΩR ∼ Θ. The cosmon evolution is

FIG. 7. Evolution of the dark energy equation of state wϕ ¼
pϕ=ρϕ from the inflationary era to the matter dominated era as a
function of the number of e-folds. The end of inflation corre-
sponds to N ¼ 0. For this plot, we chose σ ¼ 4, κ ¼ 1 and
assumed a heating efficiency Θ ¼ 10−4.
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dominated by its kinetic energy density. This domi-
nation is reflected in the dark energy equation-of-state
parameter wϕ, which is close to 1 for the kinetic epoch.
The rapid rolling of the cosmon field down the
quintessence potential translates into a substantial
decrease of VðϕÞ. Once ρR becomes comparable with
ρϕ, a rapid decrease of the density parameter Ωϕ

takes place.
(b) When ρR become dominant, the Hubble parameter

changes its behavior to H ¼ 1=ð2tÞ. As long as the
kinetic energy of the cosmon dominates over the
potential energy, ϕ̈þ 3H _ϕ≃ 0, the evolution (39)
switches to

ϕðtÞ ¼ ϕrad þ 2 _ϕradtrad

�
1 −

ffiffiffiffiffiffiffi
trad
t

r �
; ð97Þ

with ϕrad and _ϕrad the value of the field and its velocity
at the onset of radiation domination trad. For t ≫ trad,

the field approaches the constant value ϕf ≃ ϕradþ
2 _ϕradtrad. This freezing of the cosmon field translates
into a substantial decrease of the cosmon kinetic
energy density and an eventual resurgence of the
potential counterpart, which is, however, subdominant
with respect to the radiation component. During this
period, the equation-of-state parameter approaches
wϕ ≃ −1, and the dark energy fraction Ωϕ starts to
grow.

(c) Once ρϕ approaches ρR again, the evolution settles to a
scaling or tracker solution. After some oscillations, the
dark energy equation of state attains a nearly constant
value wϕ ≃ 1=3, which evolves toward wϕ ≃ 0 after
matter-radiation equality. In both periods, the dark
energy density parameter Ωϕ tracks the dominant
energy component.

B. Heating efficiency

The details of the heating process are not important for
observational consequences. The only thing relevant is that
the heating terminates before the end of the kination epoch.
We can then use the ratio of energy densities in radiation
and the scalar field at any moment after the end of the
heating process in order to give a generalized definition of
the heating efficiency Θ. During the early stages of the
kinetic epoch, the radiation energy density is so small that it
does not influence the cosmological evolution. For instant
particle production, we can compute ρR=ρϕ at any given
time during this period in terms of the scaling efficiency Θ
in Eq. (43),

ρRðaÞ
ρϕðaÞ

¼ Θ
�

a
akin

�
2

: ð98Þ

We can employ this expression as a practical definition ofΘ
for scenarios with an extended heating period. For any time
or scale factor a in the region where the heating is not
efficient any longer, but radiation is still subdominant, the
heating efficiency can be defined by the radiation fraction at
that moment multiplied by ðakin=aÞ2. Defined in this way,
the parameter Θ is sufficient for the description of the later
evolution. The details of the heating process beyond the
determination of Θ are not needed in practice.
In particular, we can use Eq. (98) at the beginning of

radiation domination a ¼ arad, where ρϕðaradÞ ¼ ρRðaradÞ
and

�
akin
arad

�
2

¼ Θ: ð99Þ

Given a heating efficiency, the number of e-folds needed to
explain the approximate flatness and homogeneity of the
observable Universe is completely determined. The horizon
crossing of the pivot scale khc is defined as

FIG. 8. Postinflationary evolution of the density parametersΩϕ,
ΩR, and ΩM as a function of the number of e-folds. The end of
inflation corresponds to N ¼ 0. Parameters are chosen as in
Fig. 7.

FIG. 9. Detailed view of the density parameters ΩR, ΩM, and
Ωϕ during matter and radiation domination as a function of the
number of e-folds using the same parameters in Fig. 7. The
expression (112) with n ¼ 4 and n ¼ 3 is depicted with black
dashed lines. Nucleosynthesis corresponds to N ≃ 41.
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khc ¼ ahcHhc ¼ aende−NðkhcÞHhc; ð100Þ

with NðkhcÞ the number of e-folds before the end of
inflation. Assuming the kinetic regime to start immediately
after the end of inflation (aend ≃ akin, ρend ≃ ρkin) and
taking into account the scaling of the different energy
components, we can rewrite Eq. (100) as

N ¼ − ln

�
khc
a0H0

�

þ ln

�
Hhc

H0

�
þ 1

4
ln

�
ρmat

ρhc

�
þ ln

�
amat

a0

�

−
1

2
ln

�
akin
arad

�
þ 1

4
ln

�
ρhc
ρkin

�
; ð101Þ

where the subindices kin, rad, mat, and 0 denote respec-
tively the onset of kinetic, radiation, and matter dominated
eras and the present cosmological epoch. Equation (101) is
universal and valid for any inflationary potential. The
precise shape of the potential is needed to relate the energy
density at the end of inflation (ρend ≃ ρkin) to the energy
density at horizon crossing (ρhc). Neglecting the small
energy density variation between these two epochs
(ρhc ≃ ρend ≃ ρkin), we can approximate Eq. (101) by
(a0 ¼ 1)

N ≃ − ln

�
khc
T0

�
þ 1

4
ln

�
π2gmatA
135

�

þ 1

4
ln r −

1

4
lnΘ; ð102Þ

where we have made use of Eqs. (32) and (99) together with
the standard relations

ρmat ≃ π2gmat

15
T4
mat;

amat

a0
¼ T0

Tmat
: ð103Þ

Here, gmat ¼ 3.36 stands for the number of relativistic
degrees of freedom at matter-radiation equality.
Taking into account the pivot scale khc ¼ 0.002Mpc−1 ¼

1.27×10−32 eV used in the derivation of the combined
Planck/BICEP2 results [32,33], Eq. (102) becomes7

N ≃ 62þ 1

4
ln

�
r

0.05

�
−
1

4
ln

�
Θ

10−4

�
: ð104Þ

The behavior of the number of e-folds as a function of the
heating efficiency Θ is shown in Fig. 10. As clearly
appreciated in this figure, our highly efficient heating
scenario translates into a rapid onset of radiation domina-
tion and into a number of e-folds rather close to the
standard value N ∼ 60.

C. Scaling solution

During the radiation dominated epoch, the dark energy
density decreases according to a scaling solution [1]. The
behavior of the scaling solution can be easily understood by
considering the evolution equations for the cosmological
observables during matter and radiation domination in terms
of suitable variables. For ρ ¼ ρR þ ρM, _ρþ nH _ρ ¼ 0, and
constant n (n ¼ 4 for radiation domination, n ¼ 3 for matter
domination), one has [49,56,57]

w0
ϕ

1 − wϕ
¼ −3ð1þ wϕÞ þ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wϕÞΩϕ

q
; ð105Þ

Ω0
ϕ ¼ −Ωϕð1 −ΩϕÞð3ð1þ wϕÞ − nÞ; ð106Þ

λ0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wϕÞΩϕ

q
ðΓ − 1Þλ2; ð107Þ

where the primes denote derivatives with respect to the
number of e-folds. The slow-roll parameters

λ≡ −MP
V;ϕ

V
; Γ≡ VV;ϕϕ

V2
;ϕ

ð108Þ

characterize the slope and curvature of the quintessence
cosmon potential.
A simple inspection of Eqs. (105) and (106) reveals for

constant λ a fixed point at

Ωϕ ¼ n
λ
; wϕ ¼ n − 3

3
: ð109Þ

FIG. 10. The number of e-folds (104) as a function of the
heating efficiency Θ. The blue region stands for variations of the
tensor-to-scalar ratio r within the range [0.01, 0.08]. The vertical
lines indicate the typical values of the heating efficiency
associated to gravitational and matter interactions. For these
lines, we assume a number of production channels of the order of
the number of degrees of freedom in the Standard Model,Oð102Þ
[cf. Eq. (59) and Table II]. Enhanced particle contents as those
appearing in Standard Model extensions such as grand unification
would translate into a larger heating efficiency and therefore into
a smaller number of e-folds N.

7We use T0 ≃ 2.73K≃ 2.35 × 10−4 eV.
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This case corresponds to an exponential potential, for
which a scaling or tracker solution is well known to exist
and to be stable [1,2,18,58].
For the potential (15), the slow-roll parameters (108)

become

λ ¼ 2

ffiffiffiffiffiffi
κY
σ

r
; Γ ¼ 1 −

σ

4ð1þ YÞ ; ð110Þ

with Y given by Eq. (16). Combining these expressions, we
obtain a relation between Γ and λ,

ΓðλÞ ¼ 1 −
κσ

4κ þ σλ2
; ð111Þ

that closes the system of autonomous equations (105)–(107).
Since Γ ≠ 1, the λ parameter must evolve on time,

cf. Eq. (107). Note, however, that at large field values
(ϕ ≫ ϕt), the function Y becomes approximately
Y ≈ ϕ2=ϕ2

t þ 2 ≫ 1, which translates into a value of Γ
that tends asymptotically to 1. In this limit, the relations
(109) may still be considered as some fixed trajectory with
slowly varying λ. Taking into account the first equation in
(110), this asymptotic behavior can be written as

Ωϕ ¼ nσ
4κYðϕÞ ¼

nBðϕðχÞÞ
4

; ð112Þ

which coincides with the approximate expression at large χ
found in Ref. [19].
The relation (112) can be used to obtain bounds on κ

from early dark energy constraints. Using Eq. (7), we can
rewrite Eq. (112) as

Ωϕ ≃ nσ
4κ

W−1
��

V0

V

�
σ=2

�
; ð113Þ

with W the Lambert function and V0 given by Eq. (17),
withm=μ satisfying the inflationary constraint (33). For the
epoch of nucleosynthesis, we may employ M4

PV ≈ T4
BBN.

The dependence of ΩBBN
ϕ on σ and κ is illustrated in

Fig. 11 for typical values N ¼ 60 and TBBN ¼ 1 MeV. As
is clearly seen in this figure, the early dark energy fraction
strongly depends on κ, while it is rather insensitive to the
precise value of the UV anomalous dimension σ, provided
that this is not very close to zero. The current observations
[33,59–61] restrict ΩBBN

ϕ to be smaller than 2%, which can
be easily satisfied for κ > 0.5.
The time when Ωϕ reaches the scaling solution (N ≈ 32

in Fig. 9) depends on the heating efficiency Θ. The smaller
the Θ, the later the radiation domination sets in, the smaller
the V is when the evolution of the scalar field stops and
therefore the later the onset of the scaling solution is. Only
after the onset of the scaling solution, a non-negligible
fraction of early dark energy is present. In particular, the

BBN constraint applies only if the cosmon field reaches the
attractor solution before BBN. This is not guaranteed for
very long kinetic regimes, even if the GW bound in Eq. (56)
is satisfied. For the particular parameters considered in this
section, the attractor solution is not reached before BBN if
the heating efficiency is below Θ≃ 10−13. Further con-
straints on early dark energy arise from the detailed
properties of the CMB spectrum, which depend on Ωϕ

at the time of CMB emission. The bounds [62] are strength
similar to the BBN bounds. The presence of early dark
energy during structure formation reduces the presently
observable structure as compared to the CMB prediction in
the standard cold dark matter scenario. As a rough rule, 1%
Ωϕ reduces σ8 by 5% [63].
At the end of this section, we may recall that the hot big

bang picture is a property of the Einstein frame. In the
scaling frame, both the particle masses and the Planck scale
increase with time. The Universe shrinks during radiation
and matter domination eras, and the temperature of the
Universe increases [19–21]. Only dimensionless ratios such
as temperature over particle mass or distance between
galaxies over atom size show the same behavior in both
frames.

VIII. LATE DARK ENERGY DOMINATION

An exit mechanism from the scaling regime is needed in
order to obtain late-time acceleration. A rather natural setup
arises if the neutrino-to-electron-mass ratio increases with
increasing ϕ in the present cosmological epoch [64,65]. In
our scenario, this effect can be induced by a second
crossover stage in the beyond the Standard Model sector,
which manifests itself through the nonrenormalizable
neutrino mass operator. A decrease of the mass of the
right-handed neutrinos or of a heavy scalar triplet (seesaw I
or II mechanism) in units of χ results in an increase of the
mass ratio between the light left-handed neutrinos and the
electron. More quantitatively, we may define in the scaling
frame

FIG. 11. The fraction of early dark energy (112) at BBN as a
function of the model parameters κ and σ. For this plot, we set
TBBN ¼ 1 MeV and wϕ ≃ 1=3.
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~γðχÞ ¼ 1

2
χ
∂
∂χ ln

mνðχÞ
χ

; ð114Þ

with mνðχÞ the average of the masses of the left-handed
neutrinos. For the particular example

mνðχÞ ¼
cνχ

ln
�
χ2
0

χ2

� ; ð115Þ

one has

~γ ¼ 1

ln
�
χ2
0

χ2

� : ð116Þ

In the Einstein frame with fixed electron mass, only the
neutrino mass depends on the cosmon field, defining the
effective neutrino-cosmon coupling

β ¼ −MP
∂
∂ϕ lnmνðϕÞ: ð117Þ

A typical behavior of this quantity, corresponding to
Eq. (115), is parametrized by

β ¼ MP

ϕ − ϕc
: ð118Þ

Only finite values of β ≈ 100 will occur, such that the
singularity in Eq. (118) is never reached and can be
removed by a different behavior at small jϕ − ϕcj. The
cosmon-neutrino coupling modifies the Klein-Gordon
equation for the scalar field [18,66,67]

ϕ̈þ 3H _ϕ ¼ −V;ϕ þ
β

MP
ðρν − 3pνÞ ð119Þ

and the conservation equation for the neutrino energy
density

_ρν þ 3Hðρν þ pνÞ ¼ −
β

MP
ðρν − 3pνÞ _ϕ: ð120Þ

These modifications are negligible as long as neutrinos are
relativistic, pν ¼ ρν=3. As soon as neutrinos become non-
relativistic, a negative coupling β effectively stops the
evolution of ϕ, ending the scaling solution and leading to a
cosmology that looks rather close to a cosmological
constant afterward. More precisely, the ratio of dark energy
to neutrino energy density quickly approaches the value

Ωϕ

Ων
¼ ~γ ¼ −

β

MP

�∂ lnV
∂ϕ

�
−1
: ð121Þ

Neutrinos become nonrelativistic at redshift zNR ≈ 5
[68], and the present dark energy density corresponds to

Ωϕρc at zNR. The resulting relation between the present
dark energy density and neutrinos involves a dimensionless
parameter γν for the growth rate of the neutrino mass [65],

ρϕðt0Þ1=4 ¼ 1.27

�
γνmνðt0Þ

eV

�
1=4

10−3 eV; ð122Þ

with γν ¼ ~γðt0Þ and mνðt0Þ the average of the present
neutrino masses. This is of the same order as the observed
value ρϕðt0Þ1=4 ¼ 2 × 10−3 eV. The equation of state is
close to −1,

wðt0Þ ¼ −1þmνðt0Þ
12 eV

: ð123Þ

For γν of order 1, the scenario is rather successful for the
range of neutrino masses compatible with observations.
Realistic setups taking into account backreaction effects
can be built on this mechanism [69].

IX. CONCLUSIONS

At the UV and IR fixed points of a variable gravity
scenario, scale invariance becomes an exact symmetry of
the quantum theory. Such a simple setup can remarkably
give rise to inflation and dark energy using a single scalar
field. Approximate scale symmetry near the UV fixed point
manifests itself in the approximate scale invariance of the
primordial fluctuation spectrum. Approximate scale sym-
metry near the IR fixed point produces an almost massless
cosmon field responsible for present dynamical dark
energy. In the limit of exact scale symmetry, this field
becomes the massless Goldstone boson of spontaneously
broken scale invariance (dilaton). A simple quadratic
potential and a moderately varying kinetic term in the
scaling frame produce a rich cosmological history, the
sequence of epochs of which is summarized in Fig. 12.
The graviscalar sector of our model involves only a small

number of dimensionless parameters of order 1: σ, κ,
ct ¼ lnðm=μÞ, and γν. In particular, it explains the tiny
value of the present dark energy density (in the unit ofMP)
without involving any tiny or large coupling and without
any tuning of couplings. If quantum gravity generates
indeed an effective action of the type (1), this solves the
cosmological constant problem. If, furthermore, there
exists a second crossover stage leading to a growing
neutrino to electron mass ratio, this solves the why now
problem of dark energy. The main characteristics of our
model are not taken completely ad hoc. They are rather
directly related to general properties at the fixed points.
We derived a compact Einstein-frame formulation of the

model in terms of Lambert functions and proved that it can
support inflation via a power-law inflationary potential. The
spectrum of primordial fluctuations turned out to depend
only on the UV anomalous dimension σ, while the
amplitude is set by the integration constant of the running
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kinetic term or the ratio μ=m. The crossover to the IR fixed
point manifests itself as a steep potential in the Einstein
frame. This ends inflation and triggers the onset of a kinetic
domination regime. By considering two natural heating
scenarios within the variable gravity framework, we
showed that this kination era is limited in time. The
cosmologically relevant properties of the heating process
can be summarized in a single parameter, the heating
efficiency Θ. Kinetic domination is naturally followed by a
standard hot big bang era, where the (subdominant) dark
energy component tracks the (dominant) radiation/matter
content. By comparing this tracking solution with early
dark energy constraints, we derived a lower bound on the
IR parameter κ. The end of the scaling behavior and
the beginning of the present accelerated expansion of the
Universe can be induced by an additional crossover in
sectors beyond the Standard Model. This determines the
last free parameter γν related to the present growth rate of
the neutrino mass.
With all parameters determined or constrained by present

observations, our model is rather predictive. We will see if
its simplest form can survive the next round of cosmo-
logical tests.
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APPENDIX A: THE LAMBERT FUNCTION

The Lambert functionW [30] is defined as the inverse of
the function fð~xÞ ¼ ~xe~x, i.e.,

~x ¼ f−1ð~xe~xÞ ¼ Wð~xe~xÞ: ðA1Þ

Substituting x ¼ ~xe~x in this expression, we obtain the
defining equation for WðxÞ,

x ¼ WðxÞeWðxÞ: ðA2Þ

Note that

WðxÞ þ lnWðxÞ ¼ ln x for x > 0: ðA3Þ
By implicit differentiation, one can show that the Lambert
function satisfies the differential equation

dW
dx

¼ 1

xþ eWðxÞ for x ≠ −1=e: ðA4Þ

Other useful relations areZ
Wdx ¼ xWðxÞ − xþ eWðxÞ þ c; ðA5Þ

and Wð0Þ ¼ 0, WðeÞ ¼ 1, orZ
e

0

WðxÞdx ¼ e − 1: ðA6Þ

APPENDIX B: PARTICLE PRODUCTION:
ANALYTICAL ESTIMATES

In this Appendix, we estimate the range of parameters
giving rise to significant particle production through the
field-dependent coupling (85) in Eq. (65). For this purpose,
we evaluate the adiabaticity violation parameter

δω ≡ j _ωkj
ω2
k

: ðB1Þ

Substantial particle production occurs if δω ≫ 1. For the
sake of simplicity, we neglect the expansion of the
Universe. In this approximation, the adiabaticity violation
parameter reads

δω ¼ σhj _ϕj
2

M2
PðϵðϕÞ − ϵ∞Þ

ðk2 þ ϵðϕÞM2
PÞ3=2

ð1 − YϵðϕÞÞ
ϕ

: ðB2Þ

For ϵ∞ ≠ 0 and/or k ≠ 0, particle production is restricted to
a compact field range. The maximum violation of adiaba-
ticity for a given k happens at a field value ϕmax satisfying

ϵðϕmaxÞ − ϵ∞ ¼ 2

�
ϵ∞ þ k2

M2
P

�
ϒ; ðB3Þ

with

ϒ ¼ 1 −
3

2þ σhð1þ YϵðϕmaxÞÞ
: ðB4Þ

This equation cannot be generically solved for ϕmax.
In the limit σhð1þ YϵðϕmaxÞÞ ≫ 1, we can extract an
approximate field value,

FIG. 12. Evolution of the cosmon field χ and the dimensionless
cosmon potential (15) as a function of the number of e-folds. The
end of inflation corresponds to N ¼ 0. For this plot, we chose
σ ¼ 4, κ ¼ 1 and assumed a heating efficiency Θ≃ 10−4.
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ϕmax
a

ϕϵ
≈
1 − Ymax

affiffiffiffiffiffiffiffiffiffi
Ymax
a

p ; ðB5Þ

with Ymax
a the Lambert function

Ymax
a ≡W

��
ϵ1M2

P

2ðk2 þ ϵ∞M2
PÞ
�

2=σh
�
: ðB6Þ

At this field value, we have

δω

				
ϕmax
a

≈
σhj _ϕðϕmax

a Þj
3

ffiffiffi
3

p
ϕϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ymax
a

k2 þ ϵ∞M2
P

s
: ðB7Þ

The typical values of the adiabaticity violation parameter
δω for σh ¼ 2, a typical field velocity j _ϕðϕmax

a Þj ¼ 6 ×
10−6M2

P and k ¼ 10−4MP are illustrated in Fig. 13. The red
solid line corresponds to ϵ1M2

P ¼ ϕ2
ϵ . As is clearly appre-

ciated in this figure, a significant production of highly
energetic particles requires small values of ϕϵ=MP.

APPENDIX C: COSMON PRODUCTION

As any other particle coupled to the background field ϕ,
cosmon excitations can be created via violations of the
adiabaticity condition in the heating stage after inflation. If
significantly produced, the small mass of the cosmon
makes it a potential candidate for contributing to the
effective number of relativistic degrees of freedom at
BBN and later.
In Fourier space, the cosmon perturbations δϕ satisfy a

mode equation,

δ̈ϕk þ
�
k2

a2
þM2

cðϕÞ
�
δϕk ¼ 0; ðC1Þ

with M2
cðϕÞ ¼ M4

PV;ϕϕ an effective mass term constructed
out of the exact cosmon potential (15). During the infla-
tionary stage, the main contribution to this mass term is
given by Eq. (90). Due to the crossover, it changes more
rapidly at the end of inflation and in the early kinetic
domination period. From Eq. (C1), the energy density
transferred into cosmon excitations at the onset of the
kinetic regime can be computed by the techniques pre-
sented in Sec. VI B. We obtain

ρkinδϕ

ρkinϕ

≃ 7 × 10−17: ðC2Þ

Taking into account the results in Table II and associating
them to the production of Standard Model degrees of
freedom (ρkinh ≃ ρkinSM), Eq. (C2) translates into a ratio,

3 × 10−8 ≥
ρkinδϕ

ρkinSM

≥ 5.3 × 10−11; ðC3Þ

for values of ϕϵ in the range 10−4 ≤ ϕϵ ≤ 10−1.
Additional relativistic degrees of freedom on top of the

Standard Model ones are typically parametrized in terms of
an effective number of neutrinos at BBN,

ΔNeff ≡
ρBBNϕ

ρBBNν
; ðC4Þ

with ρν ¼ π2

30
gνT4

f the energy density associated to a single
neutrino species. Assuming complete thermalization at the
onset of kinetic domination and taking into account the
scaling of the different components, this quantity can be
easily related to ρkinδϕ =ρ

kin
SM up to an order 1 numerical factor

associated to the change of relativistic degrees of freedom
from the onset of kinetic domination to the BBN era (for
details see Ref. [11]),

ΔNeff ∝
ρkinδϕ

ρkinSM

: ðC5Þ

We conclude therefore that the contribution of cosmon
excitations (C3) to the effective number of neutrinos at
BBN is tiny, well within the cosmological bound ΔNeff ≲
0.15� 0.23 provided by the Planck Collaboration [33].
The cosmon remains an elusive particle that cannot be
detected by any astrophysical or particle physics experi-
ment. Only its field value at large scales, from the horizon
perhaps down to cluster scales, is accessible to observation.

FIG. 13. Contour plot of the adiabaticity violation parameter δω
according to Eq. (B7) in the plane of parameters ϕϵ and ϵ1. For
the other parameters, we employ σh ¼ 2, ϵ∞ ¼ 10−10, a typical
field velocity j _ϕðϕmax

a Þj ¼ 6 × 10−6M2
P, and k ¼ 10−4MP. The

violation of adiabaticity increases toward smaller ϕϵ. The red
solid line corresponds to ϵ1M2

P ¼ ϕ2
ϵ .
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