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We study production of primordial black holes (PBHs) during an early matter-dominated phase. As a
source of perturbations, we consider either an inflaton field with a running spectral index or a spectator field
that has a blue spectrum and thus provides a significant contribution to PBH production at small scales.
First, we identify the region of the parameter space where a significant fraction of the observed dark matter
can be produced, taking into account all current PBH constraints. Then, we present constraints on the
amplitude and spectral index of the spectator field as a function of the reheating temperature. We also derive
constraints on the running of the inflaton spectral index, dn=d ln k≲ 0.001, which are comparable to those
from the Planck satellite for a scenario where the spectator field is absent.
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I. INTRODUCTION

Recently, primordial black holes (PBHs) have received
much attention [1–10]. In particular, there have been many
studies of PBH constraints on the primordial power
spectrum associated with the inflationary scenario since
this provides an efficient way to probe different models of
inflation and reheating [11–18]. There has also been
interest in constraints on PBHs formed during an early
matter-dominated era, when PBHs form more easily. This
was originally considered in Refs. [19,20] and more
recently in Refs. [3,5–7,21].
In this work, we use the most up-to-date astrophysical

and cosmological constraints to consider whether PBHs
produced during an early matter-dominated phase can
constitute all the dark matter (DM) and what PBHs can
tell us about the curvature perturbation spectrum on small
scales. We will first assume that only one component, the
inflaton field, determines the perturbation spectrum on all
scales and take the amplitude and spectral index of its
power spectrum to be given by the best fit to the Planck
data. Studying PBH production provides important con-
straints on different models of inflation and reheating.
To demonstrate this, we will allow a positive value for the
running of the inflaton spectral index, corresponding to a
“blue” spectrum, and show that the constraints on this can
be comparable to those from the Planck data. For earlier
studies of PBH formation in scenarios with a running
spectral index, see Refs. [22,23].
Next we will assume that there are two scalar fields,

which together determine the perturbation spectrum: the
inflaton field, which gives the dominant component to the

curvature spectrum at large scales, and a spectator field,
which gives the dominant component at small scales. By
the term “spectator field” we mean a scalar field which
was energetically subdominant during cosmic inflation
and played no role in driving or ending inflation. If such
a scalar field were sufficiently light, it would have acquired
a spectrum of perturbations uncorrelated with perturbations
in the inflaton sector and with a potentially large amplitude.
The scenario is well motivated, as spectator fields are a

generic ingredient if one goes beyond the Standard Model
(SM) of particle physics. They can affect the physics of the
early universe in a number of ways, including the gen-
eration of the curvature power spectrum [24–27], matter-
antimatter asymmetry [28], and dark matter [29,30]. A
well-known example is the SM Higgs field, whose cos-
mological implications have been studied in detail in a
number of works [31–35]. As another example, the gen-
eration of PBHs for a specific type of spectator, a curvaton
field [24–26], has been considered in Refs. [1,36–39].
Spectator fields can also produce a matter-dominated

period in the early universe. For example, if they are very
massive and sufficiently long lived, they may come to
dominate the energy density before decaying into SM
radiation. For two recent examples of such a scenario, see
Refs. [40,41]. An early matter-dominated period can also
arise in scenarios where there are no additional fields which
dominate the energy density, as in the case of slow
reheating [11,42]. For a recent study of PBH formation
in such a scenario, see Ref. [43]. In this paper our treatment
is very general in that we do not specify the cause of the
matter-dominated phase.
Understanding the properties of spectator fields can have

far-reaching implications for different phenomena, includ-
ing those unrelated to PBH formation. Placing constraints
on the DM abundance, the duration of the early matter-
dominated phase and the reheating temperature is important
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in addressing long-standing questions in physics, such as
the origin of the DM and matter-antimatter asymmetry. In
this paper, we use the most recent constraints on PBHs to
present new limits on PBH DM, running of the inflaton
spectral index, and spectral features of generic spectator
fields.
The paper is organized as follows. In Sec. II we set up the

scenario and discuss how the curvature power spectrum
arises at different scales and relates to the free parameters
of the model. In Sec. III we discuss the formation of PBHs
during an early matter-dominated era. In Sec. IV we
consider their role as dark matter, and in Sec. V we place
associated constraints on the parameters of the model. We
summarize our key conclusions in Sec. VI.

II. THE CURVATURE POWER SPECTRUM

As is well known, perturbations crossing the horizon
during a matter-dominated phase grow linearly with the
scale factor a until the end of matter domination. This
opens up new possibilities for the formation of PBHs, as
their production rate can be vastly enhanced compared to
the usual radiation-dominated scenario [19,20,44]. If this
happened prior to big bang nucleosynthesis (BBN), one
can ask whether these PBHs could constitute a significant
fraction of the observed DM abundance or whether they
could probe the curvature perturbations at scales which are
otherwise unobservable.1

As an example of such a scenario, one can consider a
scalar field which dominated the energy density of the very
early universe and subsequently decayed into SM radiation
[40,41]. Wewill also consider a scenario where a prolonged
period of reheating gives an effectively matter-dominated
period even if there were no additional fields which
dominated the energy density of the Universe. However,
our conclusions do not depend on what causes the matter
domination.
Let us assume that the total curvature power spectrum is

given by the sum of the perturbations produced from the
inflaton φ and the spectator s,

PRðkÞ ¼ hjRkj2i ¼ PR;φðkÞ þ PR;sðkÞ: ð1Þ

The first term is assumed to dominate on large scales (small
Fourier mode k) and the second on small scales (large k).
Here Rk is the comoving curvature perturbation, which
for modes k outside the horizon is related to the metric
perturbation ΦðkÞ via

Rk ¼ −
ð5þ 3wÞΦðkÞ

3þ 3w
; ð2Þ

where w is the equation of state parameter, p ¼ wρ.
Throughout this paper we use the longitudinal gauge,

ds2 ¼ −ð1þ 2ΦÞdt2 þ aðtÞ2ð1 − 2ΦÞdx2; ð3Þ

where we assume vanishing anisotropic stress and use
natural units with ℏ ¼ c ¼ 1.
The inflaton perturbations are assumed to produce a

nearly flat spectrum at small k in accordance with the
observations of the cosmic microwave background (CMB),

PR;φðkÞ ¼ A

�
k
k�

�
n−1þ1

2
α lnð k

k�Þ
; ð4Þ

where k� ¼ 0.05 Mpc−1 is the Planck pivot scale,
logð1010AÞ ¼ 3.062� 0.029 is the power spectrum ampli-
tude, and n ¼ 0.968� 0.006 is the scalar spectral index
[45]. We also allow for the running of the spectral index, the
Planck measurements indicating [45]

α≡ dn
d ln k

¼ −0.0033� 0.0074: ð5Þ

We will show below that the current constraints on running
from PBH formation can be comparable to this in certain
circumstances. For simplicity, we assume the running of the
running is negligible.
At large k, perturbations in the s field can dominate

the power spectrum and generate sufficiently large metric
perturbations to produce a significant PBH abundance
during an early matter-dominated phase. Let us assume
that the s perturbation spectrum is given by

PR;sðkÞ ¼ As

�
k
k�

�
ns−1þ1

2
αs lnð k

k�Þ
; ð6Þ

where As is the amplitude of the s power spectrum, ns is the
s spectral index, and we again allow for a nonzero running,
αs ≡ dns=d ln k. Further, we assume that As ≪ A, ns > 1,
and αs ≤ 0. The total power spectrum is illustrated in Fig. 1.
The scenario involves five extra free parameters: the

reheating temperature2 Treh, which relates to the s decay
width via

Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3

45
g�ðTrehÞ

r
T2
reh

MP
; ð7Þ

whereMP ¼ ffiffiffiffiffiffiffiffiffi
1=G

p
is the Planck mass; the duration of the

early matter-dominated phase; the amplitude of the per-
turbation spectrum of s; the corresponding spectral index

1The PBHs could themselves be a source of large-scale
fluctuations as a result of the Poisson fluctuations in their number
density, but these are distinct from the primordial fluctuations.

2By reheating temperature we mean the temperature of the
baryon-photon fluid at the time it becomes the dominant energy
density component. This temperature may be unrelated to the
energy scale of cosmic inflation.
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and its running. For successful BBN the reheating temper-
ature has to satisfy Treh ≳ 4 MeV [46–49].
Before presenting the PBH yield in this scenario, let us

briefly motivate these parameter choices and discuss some
possible issues. First, the spectral index of s is given by

ns − 1 ¼ 3 − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

9
λ

r
× ; ð8Þ

where λ is a parameter controlling the effective mass of the
spectator field during inflation,

Vs ¼
λ

2
H2s2; ð9Þ

H being the Hubble scale. In the case of a nonminimal
coupling to the curvature scalar, ξs2R appearing in the total
Lagrangian, one has λ ¼ 12ξ during a de Sitter inflationary
phase, so λ ∼ 1 is a natural choice if one takes ξ≲ 1. The
spectral index can therefore be large, 4 ≥ ns ≳ 1. This case
is not only of interest for PBH formation because this type
of nonminimal gravitational coupling has been shown to
arise due to quantum corrections in a curved spacetime
even if it is initially set to zero [50]. Indeed, for the SM
Higgs field, a coupling in the range Oð10−2Þ≲ ξ≲Oð10Þ
is necessary to avoid catastrophic collapse of the universe
due to the SM vacuum instability [33–35,51,52]. However,
in this paper our approach is more general, in the sense
that both during and after inflation we specify neither the
potential governing the dynamics of the spectator field
nor the inflaton field itself, but treat ns and αs as free
parameters.
Second, because the contribution of the spectator field

to PR is assumed to be negligible at small k, the
associated isocurvature mode is unobservable in the CMB
or large-scale structure measurements. Also the possible

non-Gaussianity arising in multifield models, which may
affect constraints on PBH production in certain cases
[39,53,54], is not an issue here. This is because PBH
formation does not occur on the tail of the distribution of
curvature fluctuations in the matter-dominated case, as we
now discuss.

III. PBH FORMATION

An overdense region on scale k in the early universe is
characterized by its density contrast δ ¼ ðρ − ρ̄Þ=ρ̄. In a
radiation-dominated period an overdense region can col-
lapse against the pressure to form a black hole if the density
contrast at horizon crossing, k ¼ aH, exceeds some critical
value which was originally taken to be δc ≈ 1=3 [55]. Later
numerical studies have refined this estimate [56–60] and
here we adopt the value δc ¼ 0.45 found in Ref. [57].
We first illustrate PBH formation in the usual radiation-

dominated case, assuming that the fluctuations at horizon
crossing are Gaussian with variance σ2ðkÞ ¼ 4hjΦðkÞj2i=9.
The fraction of the Universe collapsing into PBHs of mass
M is then [55]

βðMÞ ¼ 2ffiffiffiffiffiffi
2π

p
σðMÞ

Z
∞

δc

dδ exp

�
−

δ2

σðMÞ2
�

¼ Erfc

�
δcffiffiffi

2
p

σðMÞ

�
; ð10Þ

where Erfc is the complementary error function. The horizon
mass M and the scale k are related by M ∝ 1=k. The
production of PBHs is exponentially suppressed because
they only form from the tail of the density fluctuation
distribution. This also means that any region collapsing to a
PBH is likely to be nearly spherically symmetric [61,62].
One would expect the width of the PBH mass distribu-

tion to be at least ΔM ∼M, and in many scenarios it would
be much more extended than this [1]. Thus, following
Ref. [7], we define the PBH mass function as

ψðMÞ≡ 1

ρDM

dρPBHðMÞ
dM

; ð11Þ

where ρDM is the observed DM abundance, so that the
fraction of the DM density in PBHs in the mass interval
ðM;M þ dMÞ is ψðMÞdM.
Since the PBH and radiation densities scale as a−3 and

a−4, respectively, there is a simple relationship between
βðMÞ and ψðMÞ at the present epoch,

ψðMÞdM ¼ aeq
aðMÞ

βðMÞ
M

dM; ð12Þ

where aðMÞ corresponds to the time when PBHs of
mass M are formed and aeq ¼ aðz ¼ 3365Þ to the time
of matter-radiation equality (i.e., we assume there is no

FIG. 1. Contributions of the inflaton (black dashed line) and the
spectator field (gray dashed line) to the total curvature power
spectrum (black solid line). The thick and thin lines correspond to
ðns;αs;As=AÞ¼ð1.6;0;0.01Þ and ðns; αs; As=AÞ ¼ ð2.1;−0.034;
0.01Þ, respectively.
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matter-dominated period before then). Since PBHs are
expected to have roughly the horizon mass at formation,

M ≈
4πρtot
3H3

¼ M2
P

2H
; ð13Þ

this gives

ψðMÞdM ≈ 5 × 108
�
M⊙
M

�
1=2 βðMÞ

M
dM; ð14Þ

where ρtot ¼ 3H2M2
P=ð8πÞ is the total energy density.

In an early matter-dominated era, we have p ¼ 0 (or
w ¼ 0), so the situation is different in several respects.
First, the density contrast grows linearly, δ ∝ a, after
horizon crossing, whereas in a radiation-dominated era it
stops growing because of the effect of pressure below the
Jeans length. This means that a PBH can be formed from
a density contrast which is much smaller than δc at the
horizon crossing. However, it also means that the region
must collapse a lot before forming a PBH, so any
appreciable initial asphericity will be amplified and this
could prevent black hole formation. The probability of
PBH formation therefore depends upon the fraction of
regions which are sufficiently spherically symmetric.
According to the analysis of Ref. [3], this is given by

βðMÞ≃ 0.056σðMÞ5: ð15Þ

The factor σðMÞ5 was first derived in Refs. [19,20],
and these papers also included an extra suppression factor
σðMÞ3=2 in order to take into account inhomogeneity
effects, which might decrease the probability of PBH
formation.3 As discussed in Ref. [3], there is some
uncertainty about this factor, so in Sec. V we show the
results with and without the factor of σðMÞ3=2.
Second, the relationships (13) and (14) no longer apply

since the ratio ρPBH=ρtot remains constant during the matter-
dominated era. For PBHs forming in this period, we can
therefore identify the fraction of the Universe in PBHs at
formation with the fraction at the reheating epoch, so the
PBH DM fraction in the mass interval ðM;M þ dMÞ at the
present epoch is

ψðMÞdM ¼ aeq
areh

βðMÞ
M

dM

≃ 7 × 1027
�

Γ
MP

�
1=2 βðMÞ

M
dM; ð16Þ

and there is no M1=2 factor in the relationship between
βðMÞ=M and ψðMÞ.
The smallest and largest scales which become nonlinear

during the matter-dominated era (i.e., such that δ≃ σ
reaches 1 when a ≤ areh) are given by

Mmin ¼
M2

P

2Γ

�
amd

areh

�
3=2

; Mmax ¼
M2

P

2Γ
σ3=2max: ð17Þ

Here σ2max is the variance of the density contrast distribution
at the time the scale related to Mmax enters the horizon and
amd is the scale factor at the beginning of matter domi-
nance. The first expression in Eq. (17) is the horizon mass
at this time, and the second expression is the horizon mass
at the epoch when the regions which bind at the end of the
matter dominance, a ¼ areh, enter the horizon.
For the case in which the spectator field perturbations

dominate over the ones of the inflaton field, the variance of
the s density contrast corresponding to the mass Mmax can
be solved from the equation

σ2max ¼
�
2

5

�
2

As

�
kmax

k�

�
ns−1þ1

2
lnðkmax

k� Þ
; ð18Þ

which follows from Eqs. (1), (2), and (6). Here kmax ¼
kreh=

ffiffiffiffiffiffiffiffiffi
σmax

p
is the mode corresponding to the mass Mmax,

where we define kreh as the mode which reenters the
horizon at the reheating temperature, kreh ¼ arehΓ. For
the power spectrum (6) Eq. (15) then gives

βðMÞ ¼ 5.7 × 10−4A5=2
s

�
M
Mc

�
−5ðns−1Þ=6

× exp

�
5

36
αsln2

�
M
Mc

��
; ð19Þ

where

Mc ¼
�
kreh
k�

�
3 M2

P

2Γ
: ð20Þ

A similar result can be derived for the case in which the
spectator field is absent and the dominant contribution to
the power spectrum is due to the inflaton field.

IV. PBHS AS DARK MATTER

The PBHmass function produced during the early matter
dominance is given by Eq. (16) with the minimum and
maximum masses given by Eq. (17),

ψðMÞ ¼
� aeq

areh
βðMÞ
M ðMmin < M < MmaxÞ

0 ðotherwiseÞ
: ð21Þ

3Note that in Refs. [19,20] the variance at the beginning of
the matter-dominated era is denoted by δ2, so an extra factor
ðM=M0Þ13=3 appears, where M0 is the horizon mass at the
beginning of matter dominance, due to the growth of the density
perturbation in the synchronous gauge. In our case, σðMÞ is the
value at horizon crossing, so this factor is absent.
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The function βðMÞ is given by Eq. (19). The fraction of DM
consisting of PBHs, f ¼ ρPBH=ρDM, is then obtained by
integrating the PBH mass function,

f ¼
Z

Mmax

Mmin

ψðMÞdM: ð22Þ

If αs is small, then the mass function has a power-law
form with cutoffs at Mmin and Mmax. In Fig. 2 the mass
function (21) is shown for the parameters given in the
caption. The most important difference in the mass function
produced during matter dominance compared to the one
produced during radiation dominance with a similar power
spectrum is the cutoffs arising from the finite duration of
the matter dominance. This allows for larger PBH abun-
dance, in better agreement with the constraints.
The PBH DM scenario is very strongly constrained.

The main constraints arise from evaporation, lensing, and
accretion effects; see Refs. [1,7] for a recent summary. The
constraints for a monochromatic PBH mass function are
shown in Fig. 3. For the evaporation constraint, we take
ϵ ¼ 0.2 [63] where ϵ gives the slope of the extragalactic
γ-ray background; for the neutron-star capture constraint,

we assume a DM density ρDM ¼ 2 × 103 GeV cm−3 in the
core of globular clusters [65]; and for the Planck accretion
constraint, we show the most conservative bound [70]. PBHs
with M < M� ≡ 4 × 1014g ¼ 10−18.6 M⊙ (i.e., left of the
vertical dashed line in Fig. 3) have evaporated by now [74].
The strongest constraints on their abundance come from
BBN [63] and anisotropies in the CMB; the latter arise
because heating associated with the evaporation of PBHs
between recombination and reionization would dampen
small-scale anisotropies, contrary to observation [63].
Also discussed in Ref. [1] are various dynamical con-

straints, including those associated with the Poisson fluctua-
tions in the PBH number density [75]. These limits are
important for largeM but usually depend upon additional and
possibly contentious astrophysical assumptions. They are
therefore shown by dashed lines in Fig. 3, the Poisson limit
being omitted because it is weaker than the others. On large
mass scales there are also constraints from limits on the μ
distortions in the CMB generated by the damping of
fluctuations in the period before decoupling. However, these
only correspond to PBH limits if one assumes some relation-
ship between the fluctuations and PBH formation [76].
Following the method introduced in Ref. [7], the con-

straints for monochromatic mass function can straightfor-
wardly be adapted for extended mass functions. Each
constraint can be expressed in the form

FIG. 2. The upper panel shows the power spectrum for
ns ¼ 3.22, αs ¼ −0.131, A=As ¼ 0.1, Treh ¼ 6 MeV, and
areh=amd ¼ 40. The lower panel shows the corresponding PBH
mass function. The smallest and largest modes which produce
PBHs during the matter-dominated era are indicated in the upper
panel by the vertical lines.

FIG. 3. The lines show the different constraints for mono-
chromatic PBH mass function. The purple region on the left is
excluded by evaporation [63], the red region by femtolensing of
gamma-ray bursts [64], the brown region by neutron-star capture
[65], the green region by white dwarf explosions [66], the blue,
yellow, and purple regions by microlensing results from Subaru
[67], EROS [68], and MACHO [69], respectively, and the dark
blue region by Planck [70]. The regions to the right of the dashed
lines are excluded by survival of a stars in Segue I [71] and
Eridanus II [72], and distribution of wide binaries [73]. PBHs to
the left of the gray vertical line have evaporated before today.
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Z
dM

ψðMÞ
fmaxðMÞ ≤ 1; ð23Þ

where fmaxðMÞ is the constraint for a monochromatic mass
function, shown in Fig. 3. As shown in Ref. [7], the wider
the PBH mass function, the smaller the allowed PBH
abundance. If the dynamical constraints are neglected, the
observed DM abundance can be obtained in the region
M ∼ 10 M⊙ with a sufficiently narrow PBH mass function.
In our scenario the width of the PBH mass function

depends not only on ns but also αs. More importantly, even
if the top of the power spectrum is very wide, the mass
function can be narrow if the duration of matter dominance
is short and close to the time when the top of the power
spectrum enters the horizon, so that PBH production during
any radiation-dominated era before or after the matter-
dominated period is negligible. For example, choosing the
parameters used in Fig. 2 gives the observed DM abun-
dance, and the resulting mass function is nearly flat from
Mmin ¼ 16.5 M⊙ toMmax ¼ 72.2 M⊙. This mass function
is in agreement with the lensing and accretion constraints
but not with the dynamical constraints from Eridanus II,
Segue I, and wide binaries.4

In Fig. 4 the effects of changing parameters around the
ones used in the previous example are shown. First, in the
top plot, the gray regions show the mass range in which
PBHs are formed during matter dominance. Obtaining
PBH mass M ∼ 10 M⊙ requires a relatively low reheating
temperature, Treh ∼ 10 MeV. The bottom panel shows how
the PBH abundance, the constraints, and the maximum
PBH mass change as a function of ns and αs.

V. CONSTRAINTS ON SCALAR FIELD SPECTRA

For a monochromatic PBH mass function, the PBH
constraints can be converted into an upper limit on the
amplitude of the power spectrum at a given scale k. If the
scale k reenters the horizon during a matter-dominated era,
the upper bound on PRðkÞ is obtained from

a3rehρtotðarehÞβ
�
σ ¼ 2

5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PRðkÞ

p �
< ρmax

PBH; ð24Þ

where β is given by Eq. (15) and the maximum PBH energy
density today, ρmax

PBH, can be read off from Fig. 3. If the
mode k reenters the horizon during a radiation-dominated
era, the constraint on PRðkÞ is obtained from

aðMÞ3ρtotðaðMÞÞβ
�
σ ¼ 4

9

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PRðkÞ

p �
< ρmax

PBH; ð25Þ

where aðMÞ corresponds to the horizon reentry epoch,
k ¼ aðMÞHM, and the fraction β of energy density in PBHs
at aðMÞ is given by Eq. (10).
The maximum PRðkÞ is shown in Fig. 5. The gray

dashed line shows the upper limit in the radiation-
dominated case. The red lines show the limits in a
matter-dominated case for different reheating temperatures,
calculated assuming the matter dominance begins suffi-
ciently early that the smallest constrained scales cross the
horizon during matter dominance. These scales correspond
to PBHs which evaporate during BBN. The left ends of
the red lines correspond to the largest scales for which the
perturbations become nonlinear before the end of the

FIG. 4. Top panel: Minimum and maximum PBH masses.
Black and gray lines correspond to areh=amd ¼ 40 and
areh=amd ¼ 100, respectively. The red region is excluded by
the BBN constraint on the reheating temperature. Bottom panel:
The red contours correspond to 100% (upper) and 1% (lower) of
PBH DM. The dark and light gray regions are excluded without
and with dynamical constraints, respectively. The dashed con-
tours from left to right correspond to Mmax ¼ 30 M⊙, 100 M⊙,
and 300 M⊙. In both plots the values used in Fig. 2 are depicted
by the solid gray lines and other parameters are fixed to the same
values.

4The accretion constraint is subject to large uncertainties,
including its effect on the thermal history of the Universe. The
most recent analysis [77], which appeared after the first version of
this paper, claims much stronger constraints than the ones from
Ref. [70] and would close the PBH DM window around
M ∼ 10 M⊙ even if the dynamical constraints were neglected.
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matter-dominated era. The lowest peak in the red lines
corresponds to the PBH constraint from CMB anisotropies
associated with PBH evaporation [63].5

We now use the constraints on the power spectrum for a
monochromatic PBH mass function to constrain the run-
ning of the inflaton spectral index and the spectator scalar
spectral index. The mass function is not monochromatic,
but the use of constraints for a monochromatic mass
function is still justified in this case for the following
reasons. First, the constraint for low reheating temperature,
Treh ≲ 106 GeV, arises from the CMB anisotropy, and this
is both dominant and very peaked. Thus the integral on the
left-hand side of Eq. (23) is dominated by the contribution
at M ≃ 10−20 M⊙. Second, for reheating temperatures
Treh ≳ 106 GeV, the constraint arises from BBN. In that
case, for the values of As=A used, even a very small change
in the running of the inflaton spectral index α, or the
spectator field spectral index ns, implies a large change in

the PBH abundance in the constrained mass region. Thus,
assuming a monochromatic mass function causes only a
very small error even for high reheating temperatures.

A. Inflaton field with a running spectral index

We first consider a scenario in which the inflaton
perturbations determine the total power spectrum at all
relevant scales. For example, the universe may have been
matter dominated due to a prolonged period of reheating
after inflation [11,42]. In this case, we can study how PBH
production constrains the running of the inflaton spectral
index. The thick solid line in Fig. 5 illustrates the power
spectrum for positive running, dn=d ln k ¼ 0.005; this
crosses the darkest red line, and so Treh ¼ 105 GeV is
excluded.
In Fig. 6 the constraints on the running of the inflaton

spectral index are shown. If there was an early matter-
dominated era, the constraint on dn=d ln k depends on the
reheat temperature. As in Fig. 5, we have assumed that
matter dominance begins before the smallest constrained
scales cross the horizon. For Treh ≲ 106 GeV, the con-
straints arise from the CMB anisotropies and correspond to
the lowest peaks of the red lines in Fig. 5. For larger Treh,
the constraints get weaker because the scale corresponding
to the peak only crosses the horizon after reheating and
PBHs do not form at scales constrained by CMB anisot-
ropies. The most stringent limit, dn=d ln k < 0.001, which
is comparable to the Planck limit (5), is obtained for
Treh ∼ 106 GeV. The fact that even some negative values
for the running of the inflaton spectral index are excluded

FIG. 5. Constraints on the amplitude of power spectrum. The
gray dashed line corresponds to PBH production in a radiation-
dominated era and the red lines in a matter-dominated era for
reheating temperatures 105 GeV, 30 GeV, and 0.01 GeV from
darkest to lightest. The red dashed lines show the smallest k
which become nonlinear during the matter-dominated era, and
the vertical black dashed lines the largest k which cross the
horizon after reheating. The black solid lines show the power
spectrum with (thin line) and without (thick line) the spectator
field. For the thin line the running of both the inflaton and
spectator spectral indices are fixed to zero and the amplitude
of the spectator field power spectrum to As ¼ 0.1A. Here the
constraints in the matter-dominated era are calculated without the
factor σ3=2.

FIG. 6. Constraints on the running of the inflaton spectral
index. The thin black line shows the constraint as a function of
the reheating temperature from PBH production during an
early matter-dominated phase. The thick line shows the same
constraint calculated with the extra factor σ3=2. The horizontal
gray line in the upper right corner shows the constraint from PBH
production during radiation dominance. The red lines show the
Planck result dn=d ln k ¼ −0.0033� 0.0074.

5These constraints have been recently reanalyzed in Ref. [78].
Although the data are significantly improved, the resulting
constraints are very similar to the ones obtained in Ref. [63]
because the latter overestimated them. We use the constraints
from Ref. [63] because they are more easily represented.
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demonstrates how efficient PBH formation is during a
matter-dominated epoch.
As discussed in Sec. III, we also show the constraints

from PBH formation during an early matter-dominated
era with the σ3=2 factor in β. Obviously, the constraints
become less stringent in this case because formation of
PBHs becomes more suppressed. If the suppression factor
σ3=2 is taken into account, we find dn=d ln k < 0.007 for
Treh ∼ 106 GeV.
For radiation dominance the upper limit on the running

is dn=d ln k < 0.016. This is also the constraint on the
running for Treh ≳ 1010 GeV, because in this case all PBHs
produced during a matter-dominated era have evaporated
before BBN. However, the running is still constrained
by PBHs produced during the radiation-dominated era
at T < Treh.

B. Generic spectator field

Finally, we consider the scenario introduced in Sec. II,
where the total power spectrum is dominated by spectator
field perturbations at large k. This is illustrated by the thin
solid line in Fig. 5. The constraints on the spectator field

spectral index ns for different amplitudes As are shown in
Fig. 7. For simplicity we have neglected the running of
both the inflaton and spectator field spectral indices. The
constraints can be understood as in the previous case. In the
absence of a matter-dominated era, the constraint on ns
from PBH formation during a radiation-dominated era is

ns < 1.34 − 0.02 log10ðAs=AÞ: ð26Þ

VI. CONCLUSIONS

We have studied the production of PBHs during an
early matter-dominated phase. We have considered two
possible sources of perturbations: a spectator field with
a blue spectrum, which allows significant PBH produc-
tion at small scales, and an inflaton field with a running
spectral index. If the running of spectral indices is
small, the resulting PBH mass function has a power law
form characterized by cutoffs at Mmin and Mmax, related
to the times when the matter-dominated period starts
and ends.
We have identified the region of parameter space where a

significant fraction of the DM can be produced, taking into
account all current PBH constraints. Whether one can
obtain all the DM with a nearly flat mass function depends
on the validity of dynamical constraints. We have also
presented constraints on the amplitude and spectral index of
the spectator field as a function of the reheating temperature
and on the running of the inflaton spectral index,
dn=d ln k≲ −0.002. The latter is comparable to that from
the Planck satellite for a scenario where the spectator field
is absent.
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Note added in proof.—After the first version of this
paper appeared, Ref. [79] pointed out that our expression
for σðkÞ was missing a factor of 1=3. This has now been
included.

FIG. 7. Constraints on the spectral index of a generic spectator
field. The thin black lines show the constraint as a function of the
reheating temperature arising from PBH production during an
early matter-dominated phase for As ¼ 0.1A (solid line) and As ¼
0.005A (dashed line). The thick lines show the same constraints
calculated with the factor σ3=2. The horizontal gray lines in the
upper right corner show the constraint arising from PBH
production during radiation dominance.
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