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Oscillating scalar fields are useful to model a variety of matter components in the Universe. One or more
scalar fields participate in the reheating process after inflation, while at much lower energies scalar fields
are robust dark matter candidates. Pertaining to structure formation in these models, it is well known that
inhomogeneities of the Klein-Gordon field are unstable above the characteristic de Broglie wavelength.
In this paper we show that such instability implies the existence of a threshold amplitude for the collapse of
primordial fluctuations. We use this threshold to correctly predict the cutoff scale of the matter power
spectrum in the scalar field dark matter model. Furthermore, for a Klein-Gordon field during reheating we
show that this same threshold allows for abundant production of structure (oscillons but not necessarily
black holes). Looking at the production of primordial black holes (PBHs) in this scenario we note that the
sphericity condition yields a much lower probability of PBH formation at the end of inflation. Remarkably,
even after meeting a such stringent condition, we find that PBHs may be overproduced during reheating.
We finally constrain the epochs at which an oscillating Klein-Gordon field could dominate the early
universe.
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I. INTRODUCTION

Scalar fields are ubiquitous in the interpretation of
dominant components of the Universe at several stages
of its evolution. A single minimally coupled and potential-
dominated scalar field, the inflaton, stands as the most
plausible source for the primordial accelerated expansion of
the Universe (see e.g. [1] for recent reviews). At a
subsequent stage, when the kinetic energy of the inflaton
becomes significant, the scalar field may develop oscil-
lations with instabilities which produce a swift transfer of
energy to the standard model of particles (see [2,3] for
reviews). This is one of many possibilities of the reheating
process.
At later stages, and at much lower energy scales, a

coherently oscillating scalar field has proved to be a good
candidate for dark matter [4–7]. The so-called scalar field
dark matter (SFDM) may dominate the matter content of
the Universe from the time of matter-radiation equivalence
(at redshift z ≈ 3361) up to dark energy domination
(z≃ 0.7). The simplest model of SFDM is a free scalar
field minimally coupled to gravity and with a light mass in
its potential: the Klein-Gordon field (K-G). This provides a
falsifiable model with characteristic observables. In par-
ticular, in the process of structure formation the matter
perturbations show instabilities only above a characteristic

scale. Such instability was first interpreted as a Jeans
instability in [8,9] and is associated, as we shall see, with
the de Broglie wavelength of the scalar field. The instability
scale for inhomogeneities implies the existence of a cutoff
in the matter power spectrum, which has historically
provided a plausible solution to the missing satellite
problem on galactic scales [10,11].
In the nonperturbative regime the growth of instabil-

ities in oscillating field cosmologies has been mostly
studied numerically (see [12–14] for the SFDM case and
[15,16] for the reheating scenario), confirming the per-
turbative result that the inhomogeneities dissipate at small
scales compared with the instability scale, while at large
scales the nonlinear evolution of an oscillating scalar
field inhomogeneities follows closely that of cold dark
matter structures. Furthermore, in the cosmological envi-
ronment, the formation of virialized structures from an
oscillating scalar field is expected at the perturbative level
[17], as well as the formation of solitonic nonlinear
structures (oscillons for the reheating fields, or boson
stars in the case of SFDM).
In this paper we show that the presence of an instability

scale for perturbations of an oscillating scalar field, Rinst,
implies the existence of a nonvanishing threshold ampli-
tude for the collapse of primordial perturbations. We find
such a threshold with the aid of the spherical collapse
model, where the maximum radius of an overdensity is
related to the amplitude of the density contrast. Applying
the three-regions model of spherical collapse [18,19] to the
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universe dominated by a K-G field we derive analytic
expressions for the threshold amplitude required for gravi-
tational collapse.
For the case of SFDM, the de Broglie wave number

determines the cutoff scale in the linear regime of the matter
power spectrum. This prediction normalizes the spherical
collapse criterion to determine the amplitude threshold of
inhomogeneities and we extend the cutoff value into the
nonlinear scales.
In the reheating scenario, we compute the nonlinear

threshold to form a structure after the end of inflation find
that most primordial inhomogeneities should collapse even
if we extrapolate the observed (red) spectrum to the
smallest scales. This is interpreted as an efficient produc-
tion of oscillons [20]. However, looking at the formation of
primordial black holes (PBHs) in the reheating era, our
result leads us to adopt a more conservative approach by
considering the sphericity condition of primordial fluctua-
tions to collapse into a black hole [21,22]. We find that
despite such restrictions PBHs could be overproduced in
light of the known bounds to the PBH abundance (e.g.
[23]). In turn, we argue that the production of PBHs limits
the energy scales at which an oscillating reheating scalar
field permeates the early universe and compute bounds to
thermalization values for reheating models via an oscillat-
ing scalar field.
The paper is organized as follows: In Sec. II we review

the spherical collapse model and discuss Carr’s criterion for
the existence of a threshold amplitude of collapse in
barotropic fluids [24]. In Sec. III we identify the unstable
regime of an oscillating Klein-Gordon field and adapt
Carr’s criterion to determine the threshold amplitude
required for scalar field inhomogeneities to collapse at
linear and nonlinear levels. In Sec. IV we look at scenarios
where the derived threshold finds an application as
described above. We discuss our results and sketch direc-
tions of future work in Sec. V.

II. SPHERICAL COLLAPSE

The spherical collapse model is a useful tool to
characterize the fate of inhomogeneities in cosmology
(see [25,26] for seminal works). In this model, a spheri-
cally symmetric overdensity corresponds to a positive
curvature region, embedded in a flat background. The
nonlinear evolution of these inhomogeneities provides
information of the collapse (or virialization) times for dark
matter/dark energy models. This is useful to discriminate
models via the abundance of collapsed (virialized) objects
as a function of redshift (e.g. [27–29]). On the other hand,
for suitable matter contents one can compute the range of
amplitudes of primordial fluctuations that undergo a
complete gravitational collapse and get to form black
holes ([30]).
The simplest version of the spherical collapse model is

the top-hat model, and from it we can derive basic

equations, useful for our analysis.1 This model considers
the homogeneous and isotropic Friedmann-Lemaître-
Robertson-Walker (FLRW) metric,

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − Kr2
þ r2dΩ

�
; ð1Þ

where r is the comoving areal radius and dΩ accounts for
the differential angular displacement. K is the curvature
characterizing a closed (K ¼ 1), flat (K ¼ 0), or open
(K ¼ −1) universe. An alternative expression for the metric
of the closed universe is given in terms of the comoving
radial coordinate χ as

ds2 ¼ −dt2 þ a2ðtÞðdχ2 þ sin2χdΩÞ: ð2Þ

The radial coordinate χ can adopt values in the range
½0; π�, and we denote the maximum comoving radius of the
closed universe as χa. The evolution of the scale factor aðtÞ
is given by the Friedmann equation, which in terms of the
Hubble factor, H ≡ dðln aÞ=dt, is written as

H2 ¼ κ

3
ρ − K

c2

a2
; ð3Þ

where ρ accounts for the homogeneous matter density of
the universe, and where κ ¼ 8πG.
A top-hat universe configuration is constituted by an

overdense central region represented by a closed universe
(described by quantities labeled with subindex a) and
surrounded by a flat background universe (whose quantities
are denoted with subindex b). By definition the matter
densities are related through the overdensity δρ, that is,

ρa ¼ ρb þ δρ ¼ ρbð1þ δÞ; ð4Þ

which implicitly defines the density contrast δ. As an initial
condition, at time ti, we demand both regions to expand at
the same rate; then HaðtiÞ ¼ HbðtiÞ and

H2
b ¼

κ

3
ρb ¼

κ

3
ρbð1þ δÞ − κ

3
δρ

¼ κ

3
ρa − Ka

c2

aðtiÞ2
¼ H2

a: ð5Þ

Identifying terms in the last equality with those describ-
ing a closed universe in Eq. (3), the positive curvature finds
a natural interpretation in terms of the matter overdensity.
A more suitable interpretation of the above is to adopt the
conventional unit value for the curvature Ka ¼ 1 and
demand a uniform expansion at all times within the
perturbative regime. This condition defines a gauge for

1Most of this section is a synthesis of the thorough analysis
developed in [18,19].
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the matter perturbation, the uniform expansion, or the
uniform Hubble gauge, and implies that

8πG
3

δρUH ¼ H2
aδUH ¼

�
c

aðtÞ
�

2

; ð6Þ

where the subscript UH denotes the uniform expansion
gauge. We can thus express the matter density contrast in
terms of the areal radius of the overdense region Ra ¼
aðtÞ sinðχaÞ and the Hubble radius RH ¼ c=H, as

δUH ¼
�
RH

Ra

�
2

sin2χa: ð7Þ

Finally, evaluating the above at the time of horizon
crossing one finds

δHUH ¼ sin2χa: ð8Þ

One of the limitations of the top-hat model is that the
total density is increased by the addition of the fluctuation
δρ without compensation, in a universe where total average
density should match the background ρb. This issue is
addressed in the three-regions model here described and
developed by Kopp et al. [18]. This provides a suitable
framework for the collapse of primordial fluctuations with
null contribution, on average, to the background density.
The internal patch represents the overdense region, with
density ρþ and positive spatial curvature, surrounded by an
underdensity that compensates the matter contribution to
match the average density ρb of a third, background flat
universe.
The evolution of the overdense region is equivalent to the

solution to the scale factor in a closed Friedmann universe,
with the maximum expansion reached beyond the pertur-
bative regimewhenHaðtmaxÞ ¼ 0. At maximum expansion,
the scale factor can be written as

amax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3c2

κρaðtmaxÞ

s
¼

�
1 −

1

Ωa

�
−1
aðtÞ

¼ Ωa

ðΩa − 1Þ3=2
c
H
; ð9Þ

where Ωa ¼ κρaðtÞ=3H2
a is the matter density parameter in

the overdense region evaluated at a time t < tmax. At
maximum expansion, the maximum areal radius of the
overdensity is related to the comoving radius through the
scale factor

Rmax ¼ amax sinðχaÞ;

Rmax ¼
Ωa

ðΩa − 1ÞRaðtÞ: ð10Þ

Finally, using Eq. (8) and writing the particle horizon
radius RHa

¼ c=Ha we arrive at the relation between the

matter density perturbation and the radius of maximum
expansion,

δHUH ¼
�
Rmax

amax

�
2

¼ ðΩa − 1Þ R2
a

R2
Ha

: ð11Þ

Let us now use this result to identify cosmologically
unstable configurations. Carr’s argument for gravitational
collapse [24] can be interpreted in the three-regions
collapse as follows [19]: If the radius of maximum
expansion Rmax lies above a characteristic instability scale
R̂J (a suitable rescaling of the Jeans length in a perfect
fluid), the inhomogeneity will be gravitationally unstable
and collapse. Mathematically,

Rmax=amax > R̂J=amax ¼ f; ð12Þ

where the rescaling factor is chosen such that [19,24]

R̂J ¼
3

8π2
RJðtmaxÞ ¼

ffiffiffiffi
w

p
amax; ð13Þ

and therefore

f ¼ 1

amax

csffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρmax

p ¼ ffiffiffiffi
w

p
; ð14Þ

Equation (11) indicates that the condition for the instability
scale in Eq. (12) implies the existence of a threshold value
for the density contrast at the time of horizon crossing in the
uniform expansion gauge, that is,

f2 ¼ w < δUHH < 1: ð15Þ

Here the upper limit is imposed by the maximum ratio of
the areal to comoving radius at χa ¼ π=2. (We take values
in the range 0 < χa < π=2 that represents configurations of
type I according to the classification of [18]; the value of
the areal radius at χa ¼ π is zero, and this denotes a
separate universe configuration.)
In [19] a refinement of this criterion is proposed for the

case of barotropic fluids with equation of state w. It consists
on a precise determination of the nonlinear instability scale
derived from the balance of the propagation time of a sound
wave in the radius of an initially expanding overdensity and
the collapse time of the overdensity. The resulting insta-
bility scale at the maximum expansion is

Rinst ¼ amax sin

�
π

ffiffiffiffi
w

p
1þ 3w

�
: ð16Þ

This new value corrects the linear instability scale (Jeans
length) R̂J ¼ amax

ffiffiffiffi
w

p
. The corresponding threshold ampli-

tude for collapse changes from δc ¼ w to the more precise
form
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δc ¼
�
Rinst

amax

�
2

¼ sin2
�

π
ffiffiffiffi
w

p
1þ 3w

�
: ð17Þ

This accurately reproduces the numerical value derived
from simulations of primordial black hole formation [30].
Note that the improved prescription for the instability scale
can be expressed in terms of the ratio f. We can generalize
the prescription for the threshold amplitude in Eq. (15) to
the form

δc ¼
�
Rinst

amax

�
2

¼ sin2
�

πf
1þ 3f2

�
: ð18Þ

We interpret this last equation as the correspondence
between the perturbative and the nonperturbative instability
scales in the three-regions spherical collapse model. The
critical value for the collapse fixes a critical value for the
coordinate radius in virtue of Eq. (8),

χc ¼
πf

1þ 3f2
: ð19Þ

In the following we apply this prescription to derive
the instability threshold amplitude of scalar field inhomo-
geneities.
For completeness, let us end this section presenting the

relation between the comoving radial coordinate and
the average value of ζ, the curvature perturbation in the
comoving density gauge [18]. The threshold amplitude ζ̄c
is related to the comoving radius as

ζ̄c ¼
1

3
ln

�
3χc − sinðχcÞ cosðχcÞ

2sin3ðχcÞ
�
: ð20Þ

We shall use this value to test the collapse of primordial
curvature inhomogeneities.

III. AMPLITUDE FOR COLLAPSE OF AN
OSCILLATING SCALAR FIELD

While the spherical collapse model is exact only for the
case of a pressureless fluid, the three-regions model of
spherical collapse has been successfully employed to derive
the threshold amplitudes for barotropic fluids with non-
vanishing equations of state [19]. The case of an oscillating
scalar field must be treated separately. A naive fluid
interpretation of the scalar field would lead to the erroneous
conclusion that Jeans length exists and is either zero
(if determined from the equation of state) or equal to the
Hubble radius (if guided by the adiabatic sound speed), and
either all or no scales and amplitudes should collapse
(the incompleteness of a fluid description is discussed in
[31]). The gravitational instability of perturbations around
the cosmological solution has a different nature as we shall
see here.

The evolution equation for the Klein-Gordon field is that
of a minimally coupled canonical scalar field with potential
V ¼ m2φ2=2,

gαβφ;αβ −m2φ ¼ 0: ð21Þ

In a flat FLRW space-time, the homogeneous field thus
obeys the equation

φ̈þ 3H _φþm2φ ¼ 0: ð22Þ

Our interest is in the regime in which the dynamical time
for the field is much smaller than the cosmological
expansion rate (m ≫ H). As a result, the solution to
Eq. (22) is given by

φðtÞ ¼ φ0a−3=2
�
sinðmtÞ þO

��
H
m

�
2
��

: ð23Þ

In the homogeneous space-time, the energy-momentum
tensor in the comoving frame can be matched to that of an
homogeneous perfect fluid. In the proper frame, the
components of the scalar field stress-energy tensor are
interpreted as the homogeneous density ρφ ¼ −T0

0 ¼
_φ2=2þm2φ2=2 and isotropic pressure pφ ¼ Tj

j=3 ¼
_φ2=2 −m2φ2=2. When we average the above solution over
a single period of oscillation 1=m, we find that

hρi ¼ 1

2
h _φ2i þ 1

2
m2hφ2i ≈m2hφ2i;

⇒ hρi ¼ φ2
0

2
m2a−3 þO

��
H
m

�
2
�
; ð24Þ

hpi ¼ 1

2
h _φ2i − 1

2
m2hφ2i ≈ 9φ2

0H
2

16a3
;

⇒ hpi ¼ Ofa−6g: ð25Þ

As a consequence of this behavior, if the oscillating
scalar field dominates the Universe for a sufficiently long
time, it effectively behaves as pressureless dust in the
background.
In the perturbative regime, field fluctuations present an

instability scale explicit in the evolution equation of the
(modified) Mukhanov-Sasaki variable ν [32,33], but not so
evident in the evolution equation of the perturbed K-G field
(21). This function can be written in terms of the curvature
perturbation ζ as

μ̂≡ −2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3
�
1 −

H0

H2

�s
ζ; ð26Þ

where H is the Hubble factor defined in conformal time.
The evolution equation for this variable is, in Fourier
space [34],
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̈~μs þ
�
k2c2

a2
þ d2V

dφ2
þ 3κ _φ2 −

κ2

2H2
_φ4

þ 3κ

4

�
_φ2

2
− V

�
þ 2κ

_φ

H
dV
dφ

�
~μs ¼ 0: ð27Þ

Inserting the solution (23) for the background field and
its quadratic potential, the reduced equation, up to order
Oða−3Þ, is
�
k2c2

a2
þm2 þ 2

ffiffiffiffiffi
6κ

p
m2φ0a−3=2 sinðmtÞ cosðmtÞ

�
~μs

þ ̈~μs ¼ 0: ð28Þ

Finally, with the aid of trigonometric identities and the
change of variable z ¼ mtþ π=4, we arrive at an expres-
sion close to a Mathieu equation,

d2 ~μk
dz2

þ ½Ak − 2q cosð2zÞ�~μk ¼ 0; ð29Þ

where

q ¼ 1

2

ffiffiffiffiffi
6κ

p
φ0a−3=2 ¼ 3

H
m

þO
��

H
m

�
2
�

ð30Þ

and

Ak ¼ 1þ k2c2

m2a2
: ð31Þ

The Mathieu equation has been analyzed for the oscillating
K-G field in previous works (see e.g. [35,36]) noting that
the above values yield a single instability band for the
perturbations inside the Hubble horizon, namely

1 − q < Ak < 1þ q;↔ −q <
k2c2

m2a2
< q: ð32Þ

Together with Eq. (30), this yields the instability wave
number

klin ¼
a

ffiffiffiffiffiffiffiffiffiffi
3mH

p

c
: ð33Þ

The corresponding instability radius, which is propor-
tional to the de Broglie radius for the field, is given by

R̂dB ¼ ηa
klin

¼ ηcffiffiffiffiffiffiffiffiffiffi
3mH

p ð34Þ

(where a hat denotes a rescaling of the de Broglie
wavelength required for our nonlinear analysis). In the
perturbative regime, all scales above this radius and below
RH ¼ c=H are gravitationally unstable. Following Harada
et al. [19], we have introduced a constant η to normalize the

instability scale to the linear prescription of Eq. (33). In
their case this constant modifies the linear Jeans scale in
order to recover Carr’s threshold criteria with a value given
by

ffiffiffiffiffiffiffiffiffiffi
3=8π

p
. In our case, this constant modifies the linear de

Broglie scale, and its numerical value will be determined in
the next section in order to recover the correct cutoff in the
linear regime of the matter power spectrum. In the spherical
collapse model the corresponding nonlinear instability
scale from Eq. (18), at the time of maximum expansion,
is given by

Rinst ¼ amax sin

�
πfdB

1þ 3f2dB

�
; ð35Þ

with

fdB ¼ RdB

amax
¼ η

ffiffiffiffiffiffiffiffiffiffi
Hmax

3m

r
: ð36Þ

where we have used Eq. (9), and where Hmax ¼ HbðtmaxÞ.
We here propose that, in analogy to the fluid case and in

the spirit of Carr’s criterion, the instability scale in Eq. (35)
implies the existence of a critical amplitude for the
instability of scalar field inhomogeneities. Following the
prescription of the spherical collapse model, the critical
amplitude of the average ζ̄c for the gravitational collapse of
an oscillating K-G field, at horizon crossing time, is derived
from Eqs. (10), (19), and (20),

ζ̄c ¼
1

3
ln

�
3χdB − sinðχdBÞ cosðχdBÞ

2sin3χdB

�
; ð37Þ

where χdB ¼ πfdB=ð1þ 3f2dBÞ is read directly from
Eqs. (35) and (36).
It is important to mention that the existence of an

instability of the scalar field fluctuations does not imply
their complete collapse and the ultimate formation of a
black hole. As seen in Eq. (25), the cosmological oscillat-
ing scalar field does not present a significant isotropic
pressure; however, the formation of an apparent horizon for
matter with a small equation of state is conditioned by the
sphericity of the primordial fluctuations. This issue was
first addressed by [21] and explored in further depth by
[22]. The sphericity condition and its relevance in the
determination of primordial black hole formation during
reheating will be discussed below.

IV. COLLAPSED OBJECTS AND FORMATION
OF STRUCTURE

Let us look at environments where the result of the
previous section finds an application. Our results are valid
in the limit m ≫ H. There are at least two well-known
scenarios in which a K-G field in this limit may dominate in
the history of our Universe:
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Reheating: the inflaton field may present a long-lasting
period of coherent oscillations, while transferring its energy
to the fields of the standard model. The oscillating scalar
field may survive down to energy scales of order E ¼
107 GeV [37] (the energy scale required for thermalization
if reheating is to avoid the overproduction of gravitinos)
or even at all values above the electroweak scale at
E ¼ 100 GeV if supersymmetry is ignored [38]. This lies
well below the typical values for the inflaton mass
minf ≈ 1016 GeV, and thus the condition minf ≫ H is met.
The scalar field dark matter2: A single Klein-Gordon

field with mass in the range mDM ¼ 10−24 − 10−22 eV
could play the role of dark matter. Dark matter dominates
the Universe from the time of matter-radiation equivalence,
at zeq ≈ 3361, when Heq ≈ 10−29 eV. Thus, in the relevant
epochs m ≫ H and the conditions leading to the threshold
of collapse are met.
We shall first look at the consequences of our collapse

threshold for the formation of a large scale structure in the
scalar field dark matter scenario, and subsequently look at
the probability of PBH formation in the reheating scenario.

A. The cutoff in the power spectrum
of scalar field dark matter

For more than three decades, the Klein-Gordon scalar
field (K-G field) has been a standing candidate for dark
matter (SFDM). The gravitational stability of the K-G field
has been addressed as a problem for static configurations
[8] or from the evolution of linear cosmological perturba-
tions [5,43], and only a few studies have considered the
nonlinear collapse of the K-G field [17]. More recently,
detailed numerical studies at the perturbative level [44], as
well as through numerical simulations of the full GR
spherically symmetric system [14,45] and N-body cosmo-
logical simulations [13] have been performed.
A characteristic feature of this model is a cutoff in the

spectrum of density perturbations, which stems from a
nonzero instability scale of the cosmological K-G field.
This feature helps to alleviate the “missing satellite”
problem by downturning the matter power spectrum at
small scales [10,46]. Let us show how the threshold value
for gravitational instability derived above predicts, to a
good approximation, the SFDM cutoff not previously
derived analytically.
The average amplitude for primordial curvature fluctua-

tions in Fourier space is parametrized by a power law, with
the amplitude As and the spectral index ns, as

ζ2primðkÞ ¼ PðkÞ ¼ As

�
k
k0

�
ns−1

; ð38Þ

where k0 ¼ 0.05 Mpc−1, and observations from the Planck
satellite yield A1=2

s ¼ 4.63 × 10−5 and ns ¼ 0.9681, as the
best fit values for these parameters [47]. When we equate
this amplitude to the threshold value in (37) for a given
mass of the K-G field, we obtain the threshold wave
number kth, corresponding to the scale of the smallest
fluctuations allowed to collapse, as well as the cosmic time
(1=H ¼ a=kth) when they enter the Hubble horizon (in the
radiation era).3 An analytic approximation to the value of
the threshold wave number (for small ζ) is given by

kth ¼
�
900η4

π4
ρr0
3M2

Pl

m2Ask
1−ns
0

�
1=ð5−nsÞ

: ð39Þ

This is simplified if we introduce the central values from
Planck 2015 [47] to

kth
0.0687 Mpc−1

¼
�

m
10−22 eV

�
2=ð5−nsÞ

η4=ðns−5Þ: ð40Þ

Now we proceed to determine η in order to have a closed
analytic expression for the threshold scale. To this purpose
we use the linear instability scale (33) which at the horizon
crossing should be equal to kh ¼ aH. This gives an
expression for this scale as a function of the scalar field
mass if we assume that the horizon crossing occurs within
the radiation dominated era,

klin ¼
ffiffiffiffiffiffiffi
3m

p �
8πG
3

ρr0

�
1=4

: ð41Þ

Substituting the value of the radiation density at the present
epoch we find

klin
1.006 Mpc−1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
10−22 eV

r
: ð42Þ

This can be used to obtain the value of η if we demand the
nonlinear scale to be equal to the linear scale in the
limit when m ¼ 10−26 eV and klin ≈ 0.1 Mpc−1. We obtain
η ¼ 6.8 × 10−3 and the expression (40) simplifies to

kth
9.7 Mpc−1

¼
�

m
10−22 eV

�
2=ð5−nsÞ

: ð43Þ

From this we obtain a series of threshold values for the
range of masses presented in Table I. This set of values is
close to those resulting from Hu et al. [39] in the range of
validity of the model (the latter itself consistent with
numerical simulations of this feature [44]), for which the

2Several names have been associated with this single model:
Fuzzy Dark Matter [39], Wave Dark Matter (ΨDM) [13,40],
Bose-Einstein Condensate Dark Matter [41,42], and Axion- or
Ultra-light Axion Dark Matter (see a review in [6]).

3When adapting our analytic prescription for the threshold ζ̄c,
we must take on account the dominating background component
and consider the factor Ωm in equations like (30) evaluated at the
horizon crossing.
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power drops to zero with respect to the matter power
spectrum in the ΛCDM model at the threshold values
given by

kHu
6.5 Mpc−1

¼
�

m
10−22 eV

�
4=9

: ð44Þ

While the exponent in the power law differs slightly
[4=9 ∼ 0.444 in Hu’s formula while 2=ð5 − nsÞ ∼ 0.496 in
our formula], the numerical values for the relevant dark
matter models are quite similar. The specific values of kth
for a range of masses of SFDM are displayed in Table I.
The comparison with the semianalytical values of the cutoff
of the curvature power spectrum (given in [39]) are shown
in Fig. 1.
Our successful match of cutoff scales for the SFDM

power spectrum provides a novel interpretation for the
existence of this feature. The fluctuations that lie above the
instability threshold ζc at the horizon crossing given in

Eq. (37) will collapse, while those with a smaller amplitude
will dissipate. While inaccuracies may be due to the
fluctuations entering the horizon at the radiation era, the
rough consistency with numerical studies gives us con-
fidence to look further into implications of our result at
other cosmological stages dominated by oscillating scalar
fields. In particular, the next subsection is devoted to the
implications of our threshold amplitude in the formation of
structure at reheating stages.

B. Primordial black holes in a reheating scenario

In the cosmological stages following the inflationary era,
the energy stored in the inflationary field(s) must be
transferred to the standard model fields by the time of
big bang nucleosynthesis. Reheating models seek an
effective process for such energy transfer. One of such
models, preheating, relies on resonant oscillations between
the inflaton and other matter fields, e.g. a second scalar
field (for a recent review see [3]) to reach an efficient
energy transfer. This is usually modeled with the inflaton
oscillating at the bottom of its potential, for which a good
approximation is the Klein-Gordon field VðφÞ ¼ m2φ2=2.
In large field models, the mass of the field can be inferred
from the normalization of the amplitude of fluctuations
measured by the Planck satellite. The standard value is
roughly m≃ 3.4 × 1012 GeV (see e.g. [36]). The oscilla-
tory phase can last for a significant period until the
Universe reaches an equilibrium temperature Trh, at the
thermalization time, giving way to the standard hot big
bang. It is thus not unrealistic to consider a long period
when the matter density is dominated by the oscillating
inflaton, and where the condition H=m ≪ 1 is met, so that
our results in the previous sections are valid. In particular,
from Eq. (37) the threshold amplitude for curvature
perturbations to collapse and form structures could be of
order

ζc ¼ 10−16; ð45Þ

for an oscillating inflaton at the energy scale4

E ¼ 1010 GeV. Comparing this value to the primordial
amplitude of Eq. (38), one would infer that most of the
primordial inhomogeneities should collapse gravitationally
in this era. The instability of fluctuations at the preheating
era result in the formation of bound structures, solitons, or
boson stars of the oscillating field called “oscillons” [3].
Numerical simulations are consistent with the formation of
such objects which quickly dominate the energy budget.
Oscillons subsequently decay into relativistic particles, and
their effects impact observables at several subsequent
stages. Long-living oscillons can delay the thermalization

TABLE I. Fourier modes for the cutoff in the power spectrum
for several masses of the ΛSFDM model. The second column
corresponds to the linear cutoff (42), the third column corre-
sponds to the nonlinear threshold obtained in Eq. (43), while the
last column corresponds to the Hu et al. cutoff obtained in
Ref. [39] and written in Eq. (44).

Field mass klin
Mpc−1

kth
Mpc−1

kHu
Mpc−1

10−20 eV 101 95.2 50.3
10−22 eV 10.1 9.7 6.5
10−24 eV 1.01 0.99 0.84
10−25 eV 0.32 0.32 0.30
10−26 eV 0.10 0.10 0.108

FIG. 1. Power spectrum for the ΛSFDM model for several
masses of a Klein-Gordon field. The colored curves follow the
prescription of Hu et al. in [39] (the concordance ΛCDM power
spectrum is shown in black). The cutoff predicted from Eq. (39)
for a few SFDM models are represented by vertical lines
reproducing the numerical values of Table I.

4Even lower values than (45) for the threshold amplitude ζc
can be obtained if the oscillating inflaton dominates the matter
density at scales below E≲ 108 GeV.
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and extend the number of e-foldings in the reheating phase.
Oscillons can also interact and generate an observable
gravitational waves background. The threshold proposed in
this paper could be useful to count the matter density in
terms of solitons and to compute numbers of solitons with
the Press-Schechter formula.
Looking at the formation of PBHs in the reheating

environment, previous works have shown that the
conservative approach of adopting the radiation era thresh-
old for collapse (ζc ≳ 0.71) could overproduce PBHs in
some particular preheating models [16]. However, contrary
to the situation of a universe dominated by a fluid with a
hard equation of state, in an environment with negligible
average pressure not all of the inhomogeneities above the
critical value would collapse. Black hole formation is
prevented by the deviations from the spherical symmetry
of fluctuations. The geometry of inhomogeneities can be
computed from the random variables that parametrize the
amplitude of matter density perturbations in each spatial
direction. A black hole will form only when all of the mass
M of a given inhomogeneity lies within a region internal to
a ball of radius smaller than or equal to the associated
Schwarzschild radius 4πGM=c2. In Ref. [22], a recent
calculation of this requirement results in a formula for the
initial matter density fraction of PBHs βðMÞ

βðMBHÞ ¼ b0σ5ðMÞ; ð46Þ

where σðMÞ is the variance of the matter fluctuations
of mass M and the coefficient b0 was determined numeri-
cally as b0 ¼ 0.056 or semianalytically in the range
0.1280 < b0 < 0.01338. PBHs are formed with a fraction
γ of the Hubble mass at the time of horizon entry, for
which the associated radius is the comoving Hubble scale
rH ¼ ðaHÞ−1. The variance is, on the other hand, related to
the primordial power spectrum Pζ by [48]

σ2ðMÞ ¼ 16

3

Z
ðkrHÞ2j21

�
krHffiffiffi
3

p
�
e−k

2r2HPζðkÞ
dk
k
; ð47Þ

where j1ðxÞ is the spherical Bessel function and where we
have assumed a Gaussian window function. As a result, the
dominant contribution to the integral comes from wave
numbers k ∼ 1=rH. For a primordial power spectrum of the
form (38) the integral can be performed analytically in
terms of the generalized hypergeometric functions and the
Γ function as

σ2 ¼ 2

9

As

ðrH=20 MpcÞns−1 I; ð48Þ

where

I ¼ Γ
�
3þ ns

2

�
2F2

��
3

2
;
3þ ns

2

�
; f2; 3g;− 1

3

�
: ð49Þ

Substituting the central value of the spectral index reported
by Planck [47] of ns ¼ 0.9681 the factor I yields the
numerical value I ¼ 0.84498.
The above results are a function of the black hole mass

MBH which is related to the Hubble mass at the time of
horizon crossing by MBH ¼ γMH. This in turn is related
to the comoving Hubble scale rH by MH ¼ 4πðarHÞ3ρ=3.
We consider that during reheating the oscillating scalar
field dominates the energy density of the Universe evolv-
ing, as we have seen, as a pressureless perfect fluid on
average, ρ ¼ ρrhða=arhÞ−3, where the subindex rh indicates
the quantities evaluated at thermalization, corresponding to
the end of the reheating period and the onset of the radiation
dominated period.
Assuming an instantaneous transfer of energy from the

field to the radiation density, and the subsequent conser-
vation of total entropy in the radiation component, we can
relate the thermalization parameters to the current radiation
values as

a3rhρrh ¼ a30ρr0
Trh

Tr0
: ð50Þ

Combining Eqs. (46)–(50) we can write an expression for
the fraction of primordial black holes formed at the
thermalization time as�

β

b0

�
2=5

¼ 2

9
AsI

��
3MBH

4πγ

Tr0

ρr0Trh

�
1=3

k0

�
1−ns

: ð51Þ

One of the main goals in the study of PBHs is to constrain
the fraction of these objects as a function of its mass in
order to impose bounds on the primordial power spectrum
at small scales [23,48]. However, the parameter to be
constrained is usually dependent on the fraction of the
Hubble mass to the black hole mass γ, and the number of
degrees of freedom of the radiation during the formation of
the black hole g�i. Therefore, it is customary to constrain
the rescaled mass fraction parameter β0ðMÞ defined as

β0ðMBHÞ ¼ γ1=2
�

g�i
106.75

�
−1=4

βðMBHÞ: ð52Þ

Assuming that the black holes are formed close to the
thermalization time, and adopting central values of ns from
Planck, we obtain an expression for the mass fraction in
terms of the black hole mass

β0 ¼ 3.16 × 10−27
b0

0.056

×

�
g�
230

�
−0.24

�
γ

0.2

�
0.46

�
MBH

1015gr:

�
0.040

: ð53Þ

This expression can be contrasted against the set of
observational constraints at the relevant masses. It is also
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useful to write this expression in terms of the thermalization
temperature using the relation

MBH

108 GeV
¼ 1.287

γ

0.2

ffiffiffiffiffiffiffiffi
230

g�

s �
Trh

108 GeV

�
−2
: ð54Þ

Equation (53) thus becomes

β0 ¼ 3.20 × 10−27
b0

0.056

×

�
g�
230

�
−0.26

�
γ

0.2

�
1=2

�
Trh

108 GeV

�
0.080

: ð55Þ

Let us now show that for black holes in the mass range
1012 to 1016 g produced at thermalization, the value of β0
inferred from the sphericity condition is very small; never-
theless it is still comparable to current constraints from
cosmological and astrophysical observations. In Fig. 2 we
compare the predictions of black hole production from
Eq. (53) to up-to-date constraints in the relevant mass range:
From Ref. [49] the fraction of black holes of mass 1011 to
1013 g. is constrained to be β0 > 10−21; otherwise the
evaporating black holes before recombination would have
noticeable effects in the Cosmic Microwave Background
(CMB) thermal spectrum (blue horizontal line in Fig. 2).
Meanwhile, in the mass range 2.5 × 1013g < MBH < 2.4 ×
1014 g the black holes will evaporate between the epoch of

recombination and up to redshift z ≈ 6, radiating a small
fraction of the mass in electrons and positrons which can
damp the high l CMB anisotropies, unless its fraction is
smaller than β0 < 3 × 10−30ðMBH=1013gÞ3.1 as reported in
[23]. For black holes with mass greater than 2.5 × 1013 g
another constraint comes from the fact that their radiation
can contribute to the diffuse x-ray and γ-ray backgrounds;
according to Carr et al. [23] the black holes that would
evaporate between the recombination time and the current
epoch, which correspond to 2.5 × 1013g < MBH < M� with
M� ¼ 5.1 × 1014 g should approximately satisfy β0 < 3 ×
10−27ðMBH=M�Þ−2.9 while the black holes with masses
above M� which are yet to evaporate completely should
satisfy β0 < 4 × 10−26ðMBH=M�Þ3.3. Furthermore for black
holes in the range 1015 to 1017 grams, Ref. [50] computed an
update on the effects of the evaporating PBHs on the history
of reionization and on the damping of CMB anisotropies
obtaining tighter bounds than those from the γ-ray back-
ground given by β0 < 2.4 × 10−26ðMBH=M�Þ4.3.
All the above constraints are plotted in Fig. 2 together

with the predictions from the black hole mass fraction
β0ðMBHÞ produced at a range of admissible thermalization
energies. We see that the observational constraints are
violated for black holes produced in an interval of masses
from 2.5 × 1013 g up to around 1014 g and also for PBHs of
mass just below 5.1 × 1014 g.
Our analysis requires confirmation that the sphericity

condition is the most stringent criterion of PBH formation
in a reheating environment. This should come from
numerical simulations of PBH formation under such
conditions. If the sphericity condition results in smaller
values of βðMBHÞ, our results then rule out thermalization
at energy scales compatible with the featured masses, that is
in the range 3.75 × 108 ≤ Trh ≤ 7.18 × 108 and at the value
Trh ≈ 1.59 × 108 GeV.5 Our results constrain the reheating
period reducing the admissible energy densities at which a
model with an oscillating K-G field dominates the early
universe. Obviously, future observations will improve the
bounds to PBH abundance and consequently constrain
further the reheating scenarios.

V. SUMMARY AND DISCUSSION

In this paper we have used the well-known instability
scale of a cosmological Klein-Gordon scalar field to derive
the threshold amplitude for the collapse of its overdensities.
We arrived at this threshold following the spherical collapse
model, and in particular borrowing the methods to derive
the threshold for PBH formation in barotropic fluid
environments [19,24]. We have checked the validity of
our result by correctly reproducing the well-known cutoff

FIG. 2. Mass fraction of primordial black holes at the time of
formation. The orange bar corresponds to the prediction from the
sphericity condition, valid for an oscillating inflaton, while the
blue and red regions are forbidden by observational constraints.
There are two intervals where the reheating scenario saturates the
observational bound. The constraints come from observations of
the CMB thermal spectrum (blue horizontal line), damping of
large l CMB anisotropies (green line), direct detection of x rays or
γ rays from evaporating black holes (brown lines), and modifi-
cation on the reionization history and CMB power spectrum (red
line) as described in the text.

5Another possibility is that an excess of tiny PBHs produced
after the end of inflation may trigger the reheating process
through the evaporation products [51].
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of the matter power spectrum in the SFDM) also dubbed
fuzzy or ultralight axion dark matter. Specific values of our
analytic cutoff are contrasted with those derived from the
perturbative treatment in Fig. 1 showing reasonable
accuracy.
This first result is promising. Our analysis can be

extended to the study of structure formation in more
intricate dark matter models with a clear instability scale.
For example, more convolved axion dark matter models
predict gravitational instabilities analogous to the Jeans
wavelength. Our analysis provides a straightforward
method to derive the cutoff of the matter power spectum,
and furthermore, an estimate of the mass fraction of scalar
field dark matter in the form of collapsed objects in the
context of the Press-Schechter formalism.
The consistency of the threshold amplitude motivates us

to consider the structure formation in the reheating sce-
nario. Recent articles looking at PBH formation, inspired
by the detection of gravitational waves by pairs of black
holes, prompt us to look at the probability of primordial
black hole formation employing our threshold amplitude
for collapse. We have found, however, that the structures
resulting from gravitational instability are oscillons and the
collapse to a black hole is prevented by the geometry of the
collapse, in a situation equivalent to that of a matter
component with negligible average pressure. Our threshold
value is therefore not directly applicable to compute the
probability of primordial black hole formation. (The thresh-
old of PBH formation is yet to be determined for a universe
dominated by an oscillating scalar field.) The formation of
PBHs is, however, subject to the sphericity condition,
which yields very low values for the mass fraction of
PBHs βðMÞ.

We have computed the probability of PBH forma-
tion βðMÞ for PBHs formed in a K-G field (reheating)
scenario, in the black hole mass range 1012 to 1016 g. This
corresponds to thermalization scales of an oscillating
K-G field in the range 8 × 109 ≳ Trh=GeV≳ 3 × 107.
For some of the masses in this range, PBHs are produced
more abundantly than the associated observational con-
straint (mostly violating observations of CMB spectral
distortions).
It is important to note the lack of numerical studies of

PBH formation from scalar fields, and the consequent
absence of a PBH formation threshold to determine the
PBH mass fraction precisely. Developing a relativistic
simulation of PBH formation during reheating is the subject
of future work. At the moment, following the sphericity
condition seems to be the only alternative to compute the
formation of PBHs in a universe dominated by oscillating
scalar fields. If the resulting βðMÞ stands as the most
stringent value for a PBH mass fraction, the overproduction
of PBHs displayed in Fig. 2 would rule out the existence of
an oscillating scalar field thermalizing the Universe at
energy temperatures of order Trh ¼ ð3.7–7.2Þ × 108 GeV.
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