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The bulk viscosity is studied in a thermodynamically enhanced perturbative QCD (EPQ) model that
includes the running of both the strong coupling and the strange quark mass. Similar to the results in
other effective models, the bulk viscosity in the EPQ model is larger by 1–2 orders of magnitude compared
with that in the MIT bag model. Comparison among the different models indicates that the similarity in
orders is mainly due to the inclusion of interactions between quarks. When the temperature is relatively low
and enters the equation of state of quark matter, the bulk viscosity can be enormously enlarged. For the
analytical expression of bulk viscosity, a reasonable range of model parameters is found. Moreover, due to
the enlarged bulk viscosity, the damping time of a strange star with about 2 times the solar mass can be as
short as 10−3 second, showing that massive quark stars could reach stability quickly after some radial
unstable activities.

DOI: 10.1103/PhysRevD.96.063016

I. INTRODUCTION

It is generally believed that strange quark matter (SQM)
composed of comparable numbers of up (u), down (d),
and strange (s) quarks could be the true ground state of
quantum chromodynamics (QCD) [1–6]. SQM may be
produced in supernovae explosions [7], or be found in high-
energy cosmic rays [8] and in the inner part of neutron stars.
If it is absolutely stable at zero pressure and temperature,
some or most of the known neutron stars could turn out to
be the so-called strange stars; or if it is only metastable,
then neutron stars could be hybrid stars with a strange-
matter core covered by a nuclear-matter shell [9–12].
Because compact stars with masses between 1 and 2

times the solar mass are bound mainly by gravity rather
than strong interactions, they have similar radii, and it is
thus difficult to distinguish strange stars, hybrid stars, and
neutron stars observationally [6,9,10,13]. It was thought
that if a pion, kaon condensate, or quark matter is present
in a neutron star, neutrino emission is faster than by the
modified Urca process. However, in Ref. [14], it was
demonstrated that the direct Urca process would lead to
more rapid cooling than any other process.
One possible way to distinguish these three kinds of

compact stars could be the studies of phenomena related
to stellar rotations. It has been shown that the emission of
gravitational radiation due to the r-mode instabilities in hot,

young neutron stars severely limits the rotation period of
these stars, but the r-mode does not play any role in young
strange stars [15]. Another way is concerned with stellar
vibration. The important issue for both ways is the time
scale for the damping of vibrations, and of the gravitational
radiation reaction instability. The time scale for the damp-
ing of these mechanisms is strongly influenced by the bulk
viscosity of the component matter.
The bulk viscosity in quark matter, which stems from

the strangeness-changing weak interaction or nonleptonic
interaction uþ d ↔ sþ u, was investigated by Wang and
Lu [16]. The results, using a method similar to previous
papers [17,18], showed that the damping of vibrations in
quark matter is more efficient than in π condensate. Sawyer
found that the bulk viscosity arising from nonleptonic
strangeness-changing quark-quark interactions is orders of
magnitude larger than that for ordinary nuclear matter [19].
With a new rate expression for the reaction uþ d ↔ sþ u,
Madsen calculated the bulk viscosity in the conventional bag
model [20]. In recent decades, the bulk viscosity of SQMhas
been extensively investigated in many kinds of phenomeno-
logicalmodels; e.g., the density-dependent quarkmassmodel
[21,22], the quasiparticle model [23,24], and so on [25–30].
Due to the asymptotic freedom of the strong interaction

at very high densities, perturbative QCD models had
been very useful in studying the properties of SQM and
strange stars [2,31–34]. If the density is not that high, the
perturbative method needs to be extended. However, naive
extension to comparatively lower densities of the pertur-
bation approach is questionable due to quark confinement.
Recently, according to the fundamental requirement of
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thermodynamic consistency, we put forward an enhanced
perturbative QCD model (EPQ) [35,36]. In the present
paper, we derive the formula for bulk viscosity in the EPQ
model and make comparisons among the different models.
It is found that the bulk viscosities in the EPQ and
quasiparticle models are similar in magnitude. The sim-
ilarity is mainly due to the inclusion of the interactions
between quarks. Moreover, on application of the obtained
bulk viscosity, we calculate the damping time of massive
quark stars.
The paper is organized as follows: In Sec. II, we first

introduce the EPQ model and derive the expression of the
bulk viscosity. In Sec. III, we give the numerical results
for the bulk viscosity and explore the implication on the
damping time of a massive strange quark star. Finally, a
summary is given in Sec. IV.

II. FORMULA OF THE BULK VISCOSITY
IN THE EPQ MODEL

A. Brief introduction to the EPQ model

In the EPQ model, the perturbative contributions to the
thermodynamic potential density from u and d quarks at the
first order of strong running coupling are, respectively,

Ωu ¼ −
μ4u
4π2

ð1 − 2αÞ; Ωd ¼ −
μ4d
4π2

ð1 − 2αÞ; ð1Þ

and that from the massive strange quarks is [32,37]

Ωs ¼
−1
4π2

�
μsνs

�
μ2s −

5

2
m2

s

�
þ 3

2
m4

s ach
μs
ms

�

þ α

2π2

�
3

�
μsνs −m2

s ach
μs
ms

�
2

− 2ν4s

þm2
s

�
6 ln

u
ms

þ 4

��
μsνs −m2

s ach
μs
ms

��
: ð2Þ

Here μu, μd, and μs are the chemical potentials of u, d, and s
quarks, respectively; α≡ αs=π ¼ g2=ð4π2Þ is the running
coupling; and achx≡ lnðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
Þ is the inverse hyper-

bolic cosine function. Because the mass of a u=d quark is
much smaller than that of an s quark, we consider only the
mass effect of strange quarks. For simplicity, we have used
the notation νs ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2s −m2

s

p
, which can be regarded as the

fermion momentum of s quarks. Because the electron does
not participate in the strong interactions, its contribution to
the thermodynamic potential density is simply

Ωe ¼ −
μ4e

12π2
: ð3Þ

At one-loop level, the running coupling and running
strange quark mass are, respectively, given by

αðuÞ ¼ 1

β0 lnðu2=Λ2Þ ; ms ¼ m̂sα
γ0=β0 ; ð4Þ

where β0 ¼ 11=4 − Nf=6, γ0 ¼ 1, and Λ and m̂s are the
QCD scale parameters for the coupling and strange quark
mass, respectively. In the following numerical calculations,
we take Λ ¼ 146 MeV and m̂s ¼ 280 MeV [36].
The number densities of u and d quarks and electrons

are, respectively,

ρu ¼
μ3u
π2

ð1− 2αÞ; ρd ¼
μ3d
π2

ð1− 2αÞ; ρe ¼
μ3e
3π2

; ð5Þ

while that of s quarks is

ρs ¼
ν3s
π2

−
2α

π2
νs

�
μsνs þ 2m2

s − 3m2
s ln

μs þ νs
u

�
: ð6Þ

In the EPQ model, an additional term Ω0, determined by
the thermodynamic consistency requirement, is included
to consider the nonperturbative interactions among quarks.
The details can be found in Ref. [36]. Another important
thing in the EPQ model is the relation between the
renormalization substraction point u and quark chemical
potentials, which is usually given arbitrarily. However, in
the EPQ model the expression for u is given as an implicit
function of quark chemical potentials, i.e.

8π2

9
f1;0ðμu; μd; μs; uÞ −

Nf

C4
u4 ¼ 0; ð7Þ

where Nf ¼ 3, C is an EPQ model parameter in the range
0 < 1=C < 1 [36], and

f1;0 ¼
9

8π2
ðμ4u þ μ4d þ μ4s Þ þ

75m4
s

8π2
ach2

�
μs
ms

�

þ m2
s

8π2

�
41μ2s − 50m2

s þ 44μsνs

þ 6 ln
u
ms

�
17μsνs − 25m2

s ach
μs
ms

�

− 2ach
μs
ms

ð38m2
s þ 51μsνsÞ

�
: ð8Þ

Now, taking into account the weak equilibrium

μu þ μe ¼ μd ¼ μs; ð9Þ

the charge neutrality

2

3
ρu −

1

3
ρd −

1

3
ρs − ρe ¼ 0; ð10Þ

and the baryon-number conservation
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nb ¼
1

3
ðρu þ ρd þ ρsÞ; ð11Þ

one can get the chemical potentials μiði ¼ u; d; s; and eÞ,
and further obtain the energy density and pressure of
SQM by

P ¼ −Ω; ð12Þ

E ¼ Ωþ
X

i¼u;d;s;e

μini; ð13Þ

where the total thermodynamic potential density of the
whole system is

Ω ¼
X

i¼u;d;s;e

Ωi þΩ0: ð14Þ

B. The bulk viscosity in the EPQ model

In this section, we deduce the expression of the bulk
viscosity of strange quark matter in the EPQmodel with the
method used in mid-1980s [16,19] and later developed by
many authors [20–24].
First, we assume the volume per unit mass of quark

matter is v, which, due to vibration, changes periodically in
time according to the following relation:

vðtÞ ¼ v0 þ Δv sin
�
2πt
τ

�
; ð15Þ

where v0 is the equilibrium volume, Δv is the vibration
amplitude, and τ is the oscillation period. Because of the
smallness of the relative volume vibration amplitude, i.e.
Δv=v0 ≪ 1, the pressure P can be expanded near the
equilibrium pressure P0, i.e.

PðtÞ ¼ P0 þ
�∂P
∂v

�
0

δvþ
�∂P
∂nd

�
0

δnd þ
�∂P
∂ns

�
0

δns:

ð16Þ

Here only the leading terms are considered. The changes
in particle number in the volume v due to the reaction
uþ s ↔ uþ d can be expressed as

δnd ¼ −δns ¼
Z

t

0

dnd
dt

dt: ð17Þ

If the reaction rate dnd=dt is given, the mean dissipa-
tion rate of the vibration energy per unit mass can be
obtained by

�
dw
dt

�
av
¼ −

1

τ

Z
τ

0

PðtÞ dv
dt

dt: ð18Þ

As to the reaction rate dnd=dt, we still adopt the
expression given in Ref. [20], viz.

dnd
dt

≈GCμ
5
dδμðδμ2 þ 4π2T2Þv0; ð19Þ

where the constant quantity GC can be connected to the
weak-coupling constant GF and the Cabibbo angle θC by

GC≡ 16

5π5
G2

Fsin
2θCcos2θC ¼ 6.76×10−26 MeV−4: ð20Þ

The chemical potential difference δμ≡ μs − μd in
Eq. (19) stems from the change of the Fermi surface of
strange and down quarks. It can be derived with a
process similar to that of obtaining the pressure in
Eq. (16), giving

δμðtÞ ¼
�∂δμ
∂v

�
0

δvþ
�∂δμ
∂nd

�
0

δnd þ
�∂δμ
∂ns

�
0

δns; ð21Þ

where ∂δμ
∂x ¼ ∂μs∂x −

∂μd∂x ; ðx ¼ v; nd; or nsÞ. When calculating
the energy dissipation rate in Eq. (18), the first two terms
on the right-hand side of Eq. (16) can be ignored [16]. Then
the third and fourth terms of PðtÞ can be obtained from the
standard thermodynamic relation, i.e.

∂P
∂ni ¼ −

∂μi
∂v ði ¼ d; sÞ: ð22Þ

According to the particle-number density in Eq. (5), the
particle number per unit mass for d quarks is

nd ¼
μ3d
π2

ð1 − 2αÞv; ð23Þ

which immediately gives the differential form as

dnd ¼
μ2dv
π2

�
3ð1 − 2αÞ − 2μd

dα
du

∂u
∂μd

�
dμd þ

μ3d
π2

ð1 − 2αÞdv;

ð24Þ

where

dα
du

¼ −
2β0α

2

u
;

∂u
∂μd ¼

∂f1;0=∂μd
9Nfu3

2π2C4 −
∂f1;0
∂u − ∂f1;0

∂ms

dms
dα

dα
du

; ð25Þ

with

dms

dα
¼ 4m̂s

9
α−5=9: ð26Þ
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The partial derivative of f1;0 with respect to μd in the
second equation of Eq. (25) can also be calculated from
Eq. (8) without much difficulty.
Letting Cd ¼ 3ð1 − 2αÞ − 2μd

dα
du

∂u
∂μd, one can obtain a

more tightknit form of Eq. (24):

dnd ¼
μ2dCdv
π2

dμd þ
μ3d
π2

ð1 − 2αÞdv; ð27Þ

from which we immediately have

�∂μd
∂nd

�
0

¼ π2

μ2dv0Cd
;

�∂μd
∂v

�
0

¼ −
π2ρd

μ2dv0Cd
: ð28Þ

Similarly, starting from the number of s quarks per unit
mass

ns ¼
�
ν3s
π2

−
2α

π2
νs

�
μsνs þ 2m2

s − 3m2
s ln

μs þ νs
u

��
v; ð29Þ

one can get

�∂μs
∂ns

�
0

¼ π2

μ2sv0Cs
;

�∂μs
∂v

�
0

¼ −
π2ρs

μ2sv0Cs
; ð30Þ

where Cs is defined to be

Cs ≡ 1

μ2s

�
Cνsμs
νs

þ Cμs −
�
Cνsms

νs
þ Cms

�
dms

dα
dα
du

∂u
∂μs

− Cα
dα
du

∂u
∂μs − Cu

∂u
∂μs

�
; ð31Þ

with

Cα ≡ 2μsν
2
s þ 4νsm2

s − 6νsm2
s ln

μs þ νs
u

;

Cνs ≡ 3ν2s − 4αμsνs − 4αm2
s þ

6ανsm2
s

μs þ νs

þ 6αm2
s ln

μs þ νs
u

;

Cms
≡ 8ανsms − 12ανsms ln

μs þ νs
u

;

Cμs ≡
6ανsm2

s

μs þ νs
− 2αν2s ; and Cu ≡ 6ανsm2

s

u
: ð32Þ

The partial derivatives in Eq. (31) are similar to Eqs. (25)
and (26), only with the replacement of μd by μs in the
second equation of Eq. (25).
According to Eqs. (16), (22), (28), and (30), one can get

the pressure contributing to the dissipation energy δPðtÞ,

δPðtÞ ¼
�∂P
∂nd

�
0

δnd þ
�∂P
∂ns

�
0

δns

¼ π2

μ2dv0

�
ρd
Cd

−
ρs
Cs

�Z
t

0

dnd
dt

dt; ð33Þ

and the chemical difference δμðtÞ in Eq. (21)

δμðtÞ ¼ π2

μ2d

�
ρd
Cd

−
ρs
Cs

�
Δv
v0

sin

�
2πt
τ

�
−

π2

μ2dv0

×

�
1

Cd
þ 1

Cs

�Z
t

0

dnd
dt

dt; ð34Þ

which is equivalent to

dδμðtÞ
dt

¼ π2

μ2d

�
ρd
Cd

−
ρs
Cs

�
Δv
v0

2π

τ
cos

�
2πt
τ

�

−
π2

μ2dv0

�
1

Cd
þ 1

Cs

�
dnd
dt

: ð35Þ

Further, the mean dissipation rate of the vibration energy
per unit mass reads

�
dw
dt

�
av
¼ −

�
Δv
v0

��
2π

τ

�
π2

μ2dτ

�
ρd
Cd

−
ρs
Cs

�Z
τ

0

dt

×

�Z
t

0

dnd
dt

dt

�
cos

�
2πt
τ

�
:

The bulk viscosity can then be written as [16,20]

ζ ≡ 2
ðdw=dtÞav

v0

�
v0
Δv

�
2
�

τ

2π

�
2

: ð36Þ

Accordingly, we obtain the bulk viscosity in the EPQ
model by

ζ ¼ −2
�
v0
Δv

��
τ

2π

�
π2

μ2dv0

�
ρd
Cd

−
ρs
Cs

�
1

τ

×
Z

τ

0

dt

�Z
t

0

dnd
dt

dt

�
cos

�
2πt
τ

�
: ð37Þ

If the temperature is high enough, i.e. 2πT ≫ δμ, the
cubic term in Eq. (19) can be safely ignored. Therefore,
the bulk viscosity can be solved analytically, giving

ζa ¼ 2π3GCμ
3
dT

2

�
v0
Δv

��
ρd
Cd

−
ρs
Cs

�
Aτ3

4π2 þ B2τ2

×

�
1 −

2Bτ
4π2 þ B2τ2

ð1 − e−BτÞ
�
; ð38Þ

where we have used the symbol definitions
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A≡ π2

μ2d

�
ρd
Cd

−
ρs
Cs

�
Δv
v0

2π

τ
ð39Þ

and

B≡ 4π4GCμ
3
dT

2

�
1

Cd
þ 1

Cs

�
: ð40Þ

At low temperature, however, the term proportional to δμ3

becomes important and thus cannot be neglected. Generally
in this case, to calculate the bulk viscosity, one has to
simultaneously solve Eqs. (19), (35), and (37) numerically.
The numerical results will be given in the following section.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Properties of bulk viscosity

In order to investigate the bulk viscosity of SQM in
the EPQ model, we have to choose the values of the
model parameter C, the relative volume vibration amplitude
Δv=v0, the oscillation period τ (in seconds), the density nb
(in fm−3) or quark chemical potentials μq (in MeV), and
the temperature T (in MeV). In Fig. 1, we show the bulk
viscosity of SQM as a function of Δv=v0 for the fixed
τ ¼ 10−3 s and C ¼ 1.25 (solid curve), 2.0 (dashed curve),
and 2.5 (dotted curve) at T ¼ 10−4 MeV and
μd ¼ μs ¼ 400 MeV.

From Fig. 1, one can see that with the increasing model
parameter C, the bulk viscosity slightly decreases at the
same Δv=v0, which implies that the uncertainty in the EPQ
model parameter C does not influence the bullk viscosity
significantly on one hand. On the other hand, due to large C
corresponding to small strong coupling α, it can be well
understood that the bulk viscosity of SQM decreases with
increasing C. In addition, the bulk viscosity as a function of
Δv=v0 can be notably divided into three regimes. At small
Δv=v0, the bulk viscosity is almost constant. Then there is
an increasing part where the bulk viscosity increases
rapidly with increasing Δv=v0. Finally, at high enough
Δv=v0, the bulk viscosity decreases with increasingΔv=v0.
It is obvious that the last decreasing part should not be
taken seriously, because the expansion method should be
valid at Δv ≪ v0.
At different baryon-number densities (or quark chemical

potentials), the bulk viscosity is also different, as shown
in Fig. 2. At relatively low temperatures, the difference of
bulk viscosity at different densities is almost negligible,
but at relatively high temperatures, the difference becomes
large. Another important feature is that at relatively low
Δv=v0, as the temperature increases, the bulk viscosity first
stays almost constant, then becomes large as well, but
decreases when temperature gets too high. This situation
can be more clearly illustrated from Fig. 3. Moreover, in the
EPQ model, when temperature becomes high enough, the
bulk viscosities are almost the same even if the relative

FIG. 1. Bulk viscosity as a function of the relative volume
vibration amplitude Δv=v0 at C ¼ 1.25 (solid curve), 2.0 (dashed
curve), and 2.5 (dotted curve) for μd ¼ μs ¼ 400 MeV. For all
curves, the oscillation period is τ ¼ 10−3 s, and the temperature is
T ¼ 10−4 MeV.

FIG. 2. Bulk viscosity as a function of the relative volume
vibration amplitude for μd ¼ μs ¼ 400 MeV (solid line, baryon-
number density nb¼0.568 fm−3) and μd¼μs¼362MeV (dashed
line, baryon-number density nb ¼ 0.400 fm−3) with the model
parameter C ¼ 2 and the vibration period τ ¼ 10−3 s.
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volume vibration amplitudes are very different. This seems
different from the results given by Ref. [23]. The reason for
this deviation stems from the fact that in Ref. [23] discrete
values of the running coupling had been employed to
calculate the temperature behavior of bulk viscosity, while
in Fig. 3 all curves are plotted with the same running
coupling.
Compared with the previous results in different models,

the bulk viscosity in our model is analogous in the order of
magnitude with that in those models including interactions
(perturbative and/or confinement) between quarks, such as
the quasiparticle model [22,23] and density-dependent
quark mass model [24], which means that the bulk viscosity
in the EPQ model is also much larger than that in the
noninteracting quark-gas model, i.e. the conventional bag
model [20].
Actually, in calculating the bulk viscosity, one usually

has to solve the related equations at fixed chemical
potentials. Therefore, to analyze the similarities shown
in different effective models, we plot, in Fig. 4, the energy
density on the left axis and pressure on the right axis as
functions of the chemical potential μd. The quasiparticle
model has various versions [38–41], and the one we adopt
here for comparison purposes was suggested in Ref. [42]
with thermodynamic improvement, and was applied to
study the bulk viscosity in Ref. [23]. All the effective
models in Fig. 4 have a bag constant B, and we take
B1=4 ¼ 135 MeV in numerical calculations. Additionally,
in the bag model and quasiparticle model, the current mass

of strange quarks is taken as ms0 ¼ 100 MeV. The cou-
pling constant in the quasiparticle model [24] is taken as
g ¼ 3. In the EPQ model, the additional model parameter is
given as C ¼ 2.
From Fig. 4, one can easily find that at the same

chemical potential μd, the energy density and pressure in
the quasiparticle model and EPQ model are very close. In
the bag model, however, both the energy density and
pressure deviate obviously from those in the quasiparticle
model and EPQ model. As is well known, the effective
mass in the quasiparticle model includes the medium
effets, and in EPQ model, the running effect is taken into
consideration. Moreover, in order to maintain thermody-
namic consistency, an additional chemical-potential-
dependent term is usually added to the thermodynamic
potential density in both the quasiparticle model and the
EPQ model. This extra term generally plays an important
role at low densities, which, in some sense, reflects the
confinement interactions between quarks. At relatively
higher density, the perturbative interaction sets in. The
quasiparticle and EPQ models contain the first-order
perturbative interaction by considering the strong inter-
action coupling. The difference is that the EPQ model
also includes the running of the strange quark mass. It is
the interactions that lead to the similarities of the bulk
viscosity shown in different effective models. These
similarities are understandable with a view to the fact
that, at the fixed chemical potential μd, the energy density
and pressure in those models including the interactions

FIG. 3. Bulk viscosity as a function of temperature for μd ¼
μs ¼ 400 MeV with the fixed C ¼ 2, τ ¼ 10−3 s, and the
respective Δv=v0 values as 10−7, 10−6, 10−5, 10−4, 10−3, 100,
10−2, and 10−1 for the curves from bottom to top.

FIG. 4. Energy density and pressure as functions of chemical
potential given in different models. Except for the bag model,
the quasiparticle model used in Ref. [23] and the EPQ model
employed in this paper all include the interactions between
quarks in some way.
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among quarks are much more similar than those in the
bag model without interactions.
Naturally, the bulk viscosity depends on the temperature.

There are two ways to achieve this temperature dependence.
One way is by the reaction rate through Eq. (19), which has
nothing to do with the strong-interaction models. The other
way is crucially dependent on the EOSs of different models
or on the derivatives in Eq. (22). Because the present EPQ
model is limited at zero temperature, we tentatively inves-
tigate the temperature effect entering the EOS of quark
matter on the bulk viscosity by plotting the bulk viscosity as
a function of the temperature T in three different cases in
Fig. 5. Case 1 (solid line) is the result of the currently
employed EPQ model with the first-order interaction at zero
temperature. Trying to investigate the effect of temperature
entering the EOS on bulk viscosity, we first simplify the
EPQ model by ignoring the interaction between quarks, i.e.
setting α ¼ 0, and we refer to this case as case 2 (dashed
line). Then, based on this case, the temperature effect is taken
into consideration in the EOS of quark matter when the
temperature is much smaller than the typical chemical
potential, and we refer to this case as case 3 (the dotted
line in Fig. 5). In this case, the contributions to the
thermodynamic potential density from u, d, and s quarks
are, respectively,

Ωu ¼ −
1

4π2
½μ4u þ 2π2T2μ2u�; ð41Þ

Ωd ¼ −
1

4π2
½μ4d þ 2π2T2μ2d�; ð42Þ

Ωs ¼ −
1

4π2

�
μs

�
μ2s −

5

2
m2

s0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2s −m2

s0

q

þ 3

2
m4

s0 ln
μs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2s −m2

s0

p
ms0

þ 2π2T2μs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2s −m2

s0

q �
;

ð43Þ

where ms0 is the current mass of strange quarks, rather
than the running strange quark mass in the EPQ model.
Equations (41)–(43) can be obtained from the model in
Ref. [43] by ignoring terms containing the density- and
temperature-dependent term mI (the interaction part of the
equivalent mass), then expanding to a logarithmic series, and
finally taking the second order in temperature. They are
consistent with the corresponding expressions via setting
αc ¼ 0 in Eq. (2) of Ref. [44]. Therefore, the case 3 model
contains the temperature effect with no quark interactions
involved. Repeating the procedure of calculating the bulk
viscosity in Sec. II B, we can obtain the bulk viscosity in
case 3 without much difficulty. The difference from case 2 to
case 1 is the addition of quark interactions via running
coupling and running strange quark mass. The bulk viscosity
in case 1 is thus much larger than that in case 2. Comparing
case 2 with case 3, we find that the temperature effect
entering the EOS of quark matter can enormously enlarge
the bulk viscosity. As just mentioned or directly seen from
Eqs. (41)–(43), however, the case 3 model contains no
interaction between quarks. If one would like to do full
calculations with quark interaction included at finite temper-
ature, the current EPQ model should be generalized self-
consistently to finite temperature, which is beyond the scope
of the current paper, but interestingly, a meaningful work in
the future.
As mentioned once before, in order to obtain the

bulk viscosity of SQM, one has to simultaneously solve
Eqs. (19), (35), and (37) numerically, which is much more
complicated than solving the analytical expression in
Eq. (38) when the validity condition 2πT ≫ δμ is satisfied.
So, in order to use Eq. (38) correctly, one has to find the
reasonable range of δμ=2πT. For this purpose, we define a
new parameter Θ,

Θ ¼ ζ − ζa
ζ

; ð44Þ

where ζa is the bulk viscosity in Eq. (38). Obviously Θ
reflects the accuracy of ζa compared with ζ.
In Fig. 6, we show Θ as a function of Δv=v0 on the right

axis by a dashed curve with different temperatures labeled
on the curves. On the left axis, jδμmaxj=2πT is also shown
as a function of Δv=v0 by solid lines with different
temperatures labeled on the curves. Here jδμmaxj represents

FIG. 5. Bulk viscosity as functions of temperature for
three cases described in the text. In the numerical calculations,
we use the chemical potential μd ¼ 400 MeV, the oscillation
time τ ¼ 10−3 s, and the relative volume vibration amplitude
Δv=v0 ¼ 10−4.
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the maxima of δμ, from Eq. (35), which actually can be
seen as a sinelike function of time t with a given Δv=v0.
From Fig. 6, one can readily find that with increasing
Δv=v0, Θ first stays almost zero, and after a critical Δv=v0
increases (decreases) sharply, which means at low Δv=v0,
ζa is an excellent approximation of ζ, but it deviates from ζ
quickly after the critical Δv=v0. Meanwhile, in each case
with different temperature, the critical Δv=v0 corresponds
to almost the same jδμmaxj=2πT, which is about 0.1. At
the same time, the error caused by using the analytical
expression instead of the integral expression is smaller than
2%, which is nearly negligible. So we conclude from this
figure that the reasonable range of jδμmaxj=2πT is

jδμmaxj=2πT ≲ 0.1 ð45Þ

when temperature is lower than 10−1 MeV, and the
corresponding reasonable maxima of Δv=v0 can be
roughly determined by

log10ðΔv=v0Þ≲ log10ðT=MeVÞ − 1; ð46Þ

which means that the higher the temperature is, the larger
the applicable range of Δv=v0. Besides that, the model
parameterC and densities interested in astrophysics affect ζ
slightly, and we also find that the variation of bulk viscosity
keeps within 1 order of magnitude when τ changes from
10−4 s to 10−2 s. Therefore, this relation is not only valid in
the EPQ model but is also correct in many other effective
models [20–24]. In fact, because ζa is independent of

Δv=v0, the flat part of each curve in Figs. 1–3 actually
represents ζa. And Eq. (46) can be easily verified by the
values of Δv=v0 and T of the inflection points, which
are between the flat part and the increasing part in all
curves. So, in practical concrete calculations, if both
Eqs. (45) and (46) are satisfied, the analytical expression
for bulk viscosity Eq. (38) can be safely used instead of
solving the complicated integral expression Eq. (37).

B. Astrophysical application of bulk viscosity
in the EPQ model

Recently, since two massive compact stars have been
observed [45,46], a lot of works have been devoted to
refining the EOSs of quark matter or hadronic matter to
accommodate such massive compact stars [12,35,36,38,
47–50]. In our previous work [36], we proposed an
enhanced perturbative QCD model, and in this model
we found that with proper model parameters, strange quark
matter can be absolutely stable, and accordingly the
maximum of strange quark stars can be as large as 2 M⊙.
In the previous studies, a strange quark star with 1.4 M⊙

has been used to study the damping time in different
models, such as the density-dependent quark mass model
[21,24] and the quasiparticle model [20]. All the results
indicated that the damping time of a strange quark star is
about 2–3 orders of magnitude lower, which implies
that the quark star can reach stability earlier than in the
MIT bag model. In what follows, we will roughly calculate
the damping time for a massive strange quark star with
about 2 M⊙.
From Ref. [36], we know that in the EPQ model,

when we choose the model parameters C ¼ 2 and
B1=4 ¼ 135 MeV, we can obtain the massive strange star
with 1.968 M⊙ and 11.2 km in radius. Therefore, the
average mass density ρ of the strange star can be roughly
given by

ρ ¼ M
V

¼ 3M
4πR3

≈ 6.652 × 1014 g cm−3: ð47Þ

Here we have taken the mass of the Sun as
M⊙ ¼ 1.9891 × 1033 g.
The typical damping time for a strange star of constant

density (an excellent approximation for a strange star,
except very close to the gravitational instability limit)
is [20]

τD ¼ 30−1ρR2ζ−1; ð48Þ

where ρ is the mass density and R is the radius of a
quark star. On application of the obtained bulk viscosity
in the preceding section, we can get the damping time
of the massive quark star, and the results are shown
in Fig. 7.

FIG. 6. Θ and jδμmaxj=2πT as functions of Δv=v0. The
parameters used here are completely the same as those in Fig. 1
with C ¼ 2.
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From Fig. 7, one can see that the lowest damping time
can be shorter than 10−3 s, and if the vibration amplitude
is around a unit, a quark star can reach stability in
fractions of second after some radial unstable activities,
such as the starquake. Even if the temperature of the star is
very low and the vibration amplitude is tiny, the heat
released by the viscous dissipation may enlarge the
temperature and make the damping time go from the flat
part to the decline part in Fig. 7, which means that after a
relatively long time of weak oscillation, the star may reach
stability in a short time.
It should be emphasized that the discussion here is based

on rather crude estimates. The real situation could be much
complicated. In Fig. 8, we give the bulk viscosity as a
function of the distance from the center of the quark star.
From this figure, it is easy to find that the bulk viscosity
strongly depends on the temperature and Δv=v0. When the
temperature is high and Δv=v0 is large, the bulk viscosity
increases from the center to the surface of the star (solid line
on the left axis). When both the temperature and Δv=v0
are relatively small, the bulk viscosity decreases from the
center to the surface of the star (dashed line on the right
axis). Moreover, the order of magnitude of the bulk
viscosity in these two cases varies widely. But for either
case, the difference of the bulk viscosity between the center
and the surface is small, within 1 order of magnitude. So the
qualitative discussion about the damping time above is
reliable.

IV. SUMMARY

We have calculated the bulk viscosity in the fully self-
consistent EPQ model with running coupling and running
strange quark mass. Similar to the results in the quasi-
particle model and the density-dependent quark mass
model, the bulk viscosity in the EPQ model is larger by
1–2 orders of magnitude than that in the conventional
MIT bag model. The similarities in the magnitude of bulk
viscosity originate from the fact that various models all
include the interactions between quarks, which can lead
to similar EOSs of quark matter. The temperature entering
the EOS can, in principle, enlarge the bulk viscosity,
especially when the temperature is relatively low. In order
to avoid solving the complicated integral equations, we
investigate the reasonable range of model parameters for
valid use of the analytical expression for the bulk
viscosity. On application of the obtained bulk viscosity
in the EPQ model, we estimate the damping time of a
massive quark star with mass about 2 M⊙, and we find
that the damping time can be as short as 10−3 s.
As we have already seen, the bulk viscosity can be

strongly affected by temperature entering the EOS.
Therefore, in order to have a fully consistent study on
the bulk viscosity, the current EPQ model should be
generalized to finite temperature. At the same time,
compact stars usually have a strong magnetic field, which

FIG. 7. Damping time for a star of 1.968 times the solar mass
and with average density ρ ¼ 6.652 × 1014 g cm−3. Curves from
bottom to top correspond to relative volume vibration amplitudes
10−1, 10−2, 1, 10−3, etc., ending at 10−7. The oscillation period τ
is taken as 10−3 s.

FIG. 8. The bulk viscosity as a function of the distance from
the center of the quark star. The structure of the quark star is
calculated with the model parameters C ¼ 2 and B1=4

0 ¼
135 MeV. The dashed curve corresponds to the right axis, while
the solid curve is on the left axis.
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should be considered as well [51]. Besides the equilibrium
achieved by the nonleptonic process studied here, the
leptonic processes ½uþe↔ sðdÞþνe;sðdÞ→uþeþ ν̄e�
can also play an important role when the temperature
approaches to 3 MeV [21]. Therefore, more detailed
investigations on the bulk viscosity should be performed
in the future.
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