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We describe a new analytical model for the accretion of particles from a rotating and charged spherical
shell of dilute collisionless plasma onto a rotating and charged black hole. By assuming a continuous
injection of particles at the spherical shell and by treating the black hole and a featureless accretion disk
located in the equatorial plane as passive sinks of particles, we build a stationary accretion model. This may
then serve as a toy model for plasma feeding an accretion disk around a charged and rotating black hole.
Therefore, our new model is a direct generalization of the analytical accretion model introduced by
E. Tejeda, P. A. Taylor, and J. C. Miller [Mon. Not. R. Astron. Soc. 429, 925 (2013)]. We use our
generalized model to analyze the influence of a net charge of the black hole, which will in general be very
small, on the accretion of plasma. Within the assumptions of our model we demonstrate that already a
vanishingly small charge of the black hole may in general still have a non-negligible effect on the motion of
the plasma, as long as the electromagnetic field of the plasma is still negligible. Furthermore, we argue that
the inner and outer edges of the forming accretion disk strongly depend on the charge of the accreted
plasma. The resulting possible configurations of accretion disks are analyzed in detail.
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I. INTRODUCTION

Accretion onto black holes (BHs) is a fundamental
astrophysical process as it gives rise to a large range of
astrophysical phenomenon like active galactic nuclei
(AGN), X-ray binaries, and gamma ray bursts [1,2].
To describe the full picture of BH accretion one has

to consider general relativistic magnetohydrodynamics,
including turbulences, radiation processes, nuclear burning,
and more. The simulation of accretion processes therefore
contains a number of challenging issues. It requires a large
range of scales because some important effects, like the
magnetorotational instability, only occur on very small
scales, while for the interpretation of observational phe-
nomena typically what happens on very large scales is of
interest. The computational expense rises even more and by
a large factor, if the number of dimensions which have to be
taken into account increases, say, from one dimension
(spherical model) to two (axis symmetric model) or to
three. Therefore, it is necessary to reduce the computational
costs by different methods and assumptions. The relevant
number of dimensions can be reduced (eg. assuming axis
symmetry), or the range of scales, which have to be taken
into account (eg. shearing-box simulations). Negligence of
certain aspects of the accretion process, like conduction,
viscosity, or kinetic effects, simplifies the system of
equations and leads to a reduction of the computational
costs as well.

To understand the general physical processes, analytical
models of the accretion process play a very important role.
Besides serving as initial conditions or test beds, analytical
models are indispensable to understanding the resulting
observational features of the accretion processwhich have to
be taken into account for numerical simulations. An early
work discussing observational features is byMichel [3],who
generalized in his analytical model the spherical accretion
model of Bondi [4] to the general relativistic case and gave
the first estimates for the realized temperatures and lumi-
nosities in the accretion of a polytropic gas. Furthermore, by
assuming the polytropic gas to be a plasma, estimations for
the strength of the arising electrostatic field were discussed.
This simplest case of spherical accretion, however, was

found to have a low efficiency in converting potential
energy to radiation [5], which is why the rotation of
accreted matter was invoked in accretion theories.
Rotating inflows suggest the existence of accretion disks,

introduced among others by Prendergast and Burbidge [6].
Accretion disks and the processes within are discussed
extensively in literature by introducing different (analytical)
models to describe them, such as thin disks, slimdisks, Polish
doughnuts, advection-dominated accretion flows (ADAFs),
andmore (see [7], and citations within). These accretion disk
models significantly advanced our understanding of the
accretion process, and can therefore be used to enhance
numerical simulations. They are further used to understand
specific observational results, such as the truncated disk
model, built by a truncated thin disk adjoined with an inner
ADAF-like flow [8].
Cosmic matter mainly exists in the form of plasma. It

serves as the main ingredient of stars, interstellar nebulae,
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solar wind, jets, and AGN [9,10]. Therefore, it is reasonable
to assume that the matter accreted by a massive central
object is some form of plasma. The broad range of
temperatures and densities (from < 0.01 to > 105 cm−3

in ultra compact HII regions [11,12]) in which plasma may
occur can be taken into account using different plasma
models. This includes hot and cold plasma, or plasma with
and without taking into account particle collisions (colli-
sional or collisionless plasma). The different descriptions
range from plasma described as a fluid over a kinetic theory
of plasma to a description of it as a collection of individual
particle motions [10].
Plasma accretion is also one of the reasons why in

realistic astrophysical models the net charge of the accret-
ing BH is expected to be very small. Selected accretion of
oppositely charged particles will reduce the net charge to a
very small value within a short time scale [13]. In the case
of stellar BHs this will even happen in vacuum due to pair
production [14,15]. In these scenarios the influence of the
net charge on the spacetime geometry is therefore vanish-
ingly small. However, we will show that the remaining
charge can still be strong enough to have a noticeable
influence on the motion of charged test particles. Note that
there are also accretion scenarios which may create BHs
with a net charge big enough to have influence on the
spacetime geometry [16–18].
Here, we will discuss the relativistic accretion of

plasma by a rotating BH with a (very small) net charge.
We restrict to the accretion from a rotating cloud of dust,
thereby generalizing the analytical model introduced by
Mendoza, Tejeda, and Nagel [19], Tejeda, Mendoza, and
Miller [20], and Tejeda, Taylor, and Miller [21] in a
Newtonian approach and for the Schwarzschild and Kerr
spacetimes, respectively. In these references it was shown
that this model is well suited to explore relativistic
effects, such as frame dragging, on the accretion process
and may be used in numerical simulations for collapsar-
like setups to reduce computational costs. For the model
of the plasma we restrict to a collisionless dilute plasma,
i.e. in the form of a collection of individual charged
particles. Our analytical model will help to understand
the influence of specific angular momentum and net
charge of the BH on the accretion process of charged
dust. It might also serve as a toy model for the infall of
plasma feeding an accretion disk around a charged and
rotating BH.
In General Relativity rotating and charged BHs are

described by the Kerr-Newman [22] metric, which is a
generalization of the Kerr metric. Besides an electric charge
it also allows the consideration of a magnetic net charge.
However, the existence of magnetic monopoles, in general,
was never proven and we will not consider the magnetic
charge further here.
Our analytical model necessarily simplifies the complex

physical processes involved in the accretion. In particular,

we assume stationarity, axial symmetry, and the absence of
particle interaction. As a result, pressure gradients within
the accreted plasma are neglected, as well as self gravity.
The charged particles are also assumed to only interact
with the gravitational and the electromagnetic field of the
BH, and we neglect the electromagnetic field produced by
the plasma particles itself. This will restrict the particle
density of the accreted cloud, especially in case of a central
BH with a very small net charge. Within this relativistic
model the trajectories of the individual charged particles
which form the plasma can then be analytically described,
see [21,23]. This allows us to clearly analyze effects which
are purely relativistic or caused by the interaction with the
electromagnetic field of the BH.
The paper is organized as follows. First, an introduc-

tion of the Kerr-Newman spacetime and the equations of
motion for charged test particles are given in Sec. II.
Then we explain the relativistic analytical model of
the accretion used in this paper, including restrictions
to the initial conditions in Sec. III. In Sec. IV we discuss
the accretion flow, with details on the velocity field in
locally nonrotating reference frames (LNRFs), a descrip-
tion of the streamlines in terms of Jacobi elliptic
functions, a derivation of the inner most stable orbit
(ISCO) in Kerr-Newman spacetime which corresponds to
the inner edge of an accretion disk in our model, and the
calculation of the density field formed by the accreted
matter. In Sec. V the results are summarized and
discussed. Finally, we conclude in Sec. VI.

II. EQUATIONS OF MOTION IN
KERR-NEWMAN SPACETIME

The Kerr-Newman spacetime is a stationary and axially
symmetric solution of the Einstein-Maxwell equation,
which describes a charged rotating BH [22]. It allows us
to consider both electric and magnetic net charges; how-
ever, we will not consider a magnetic charge of the BH
here. In the Boyer-Lindquist system of coordinates
ðt; r;ϕ; θÞ the Kerr-Newman metric takes the form

ds2 ¼ ρ2

Δ
dr2 þ ρ2dθ2 þ sin2ðθÞ

ρ2
½ðr2 þ a2Þdϕ − acdt�2

−
Δ
ρ2

½asin2ðθÞdϕ − cdt�2; ð1Þ

where

ρ2ðr; θÞ ¼ r2 þ a2cos2ðθÞ; ð2Þ

ΔðrÞ ¼ r2 − 2Mrþ a2 þQ2 þ P2: ð3Þ

Here the parameters M, a, and Q are related to the angular
momentum J, the mass m, and the electric charge q of the
BH by
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a ¼ J
mc

; ð4Þ

M ¼ Gm
c2

; ð5Þ

Q2 ¼ q2G
4πε0c4

; ð6Þ

where G is Newton’s gravitational constant, c is the speed
of light, and ε0 is the electric constant. The parameter P
corresponds to the magnetic monopole.
The Kerr-Newman spacetime has two horizons r�,

which are located at the coordinate singularities

ΔðrÞ ¼ 0, i.e. r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2 − P2

p
. The cur-

vature singularity is given by ρðr; θÞ ¼ 0, i.e. at simulta-
neously r ¼ 0 and θ ¼ π

2
, which corresponds to a ring

singularity. In the following we will only consider the
region of the spacetime outside the event horizon, r > rþ.
The electromagnetic potential is

A ¼ Aνdxν ¼
c2ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πε0G

p
�
Qr
ρ2

ðdt − asin2ðθÞdϕÞ

þ 1

ρ2
P cosðθÞðadt − ðr2 þ a2ÞdϕÞ

�
ð7Þ

¼ c2ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πε0G

p Āνdxν: ð8Þ

We now consider the motion of test particles with a mass
μ which is very small compared to m and a specific electric
charge parameter ê ¼ e=μ which is related to the charge ϵ
of the particle by

e ¼ ϵffiffiffiffiffiffiffiffiffiffiffiffiffi
4πε0G

p : ð9Þ

The Hamilton-Jacobi equation for such a charged particle
in Kerr-Newman spacetime is separable and leads to the
equations of motion and four separation constants.
Equivalently, one can also derive the equations of motion
directly. We first note that the Hamiltonian of a charged test
particle does not depend on ϕ, t, or proper time τ, which
can be used to obtain three constants of motion directly. We
find the four-velocity modulus, the specific energy E, and
the specific angular momentum in z direction l as

uμuμ ¼ −c2; ð10Þ

E ¼ E
μc2

¼ −g00 _t − g0ϕ
_ϕ

c
þ êĀt; ð11Þ

l ¼ L
μc

¼ gϕ0 _tþ gϕϕ
_ϕ

c
− êĀϕ; ð12Þ

where the zeroth component of the four vector is defined as
x0 ¼ ct. Here the dot denotes a differentiation with respect
to proper time τ. We may now solve Eqs. (11) and (12) for
_ϕ and _t and find the first two equations of motions. If we
introduce the Mino time λ via dλ ¼ ρ−2dτ [24], they take
the form

1

c
dϕ

dλ̄
¼ āRðr̄Þ

Δ̄ðr̄Þ −
T ðθÞ
sin2ðθÞ ; ð13Þ

dt̄

dλ̄
¼ ðr̄2 þ ā2ÞRðr̄Þ

Δ̄ðr̄Þ − āT ðθÞ; ð14Þ

where

T ðθÞ ¼ āE sin2 θ − l̄þ êP̄ cos θ; ð15Þ

Rðr̄Þ ¼ ðr̄2 þ ā2ÞE − ā l̄ − ê Q̄ r̄: ð16Þ

Here we eliminated M from the equations by using the
transformation x ¼ x̄M for x ¼ r; t; a; l; Q; P; d=dλ. By
inserting the equations for ϕ and t into Eq. (10) and by
using again the Mino time, (10) becomes separable for r
and θ and we find

K̄ ¼
�
1

c
dθ

dλ̄

�
2

þ ā2cos2θ þ T 2ðθÞ
sin2θ

¼ 1

Δ̄ðr̄Þ
�
R2ðr̄Þ −

�
1

c
dr̄
dλ̄

�
2
�
− r̄2: ð17Þ

The separation constant K ¼ K̄M2 is the fourth constant of
motion. It is connected to the Carter constant C, which
was found by Carter in 1968, by C ¼ K − ðaE − lÞ2.
Summarized, we find

1

c2

�
dθ

dλ̄

�
2

¼ K̄ − ā2cos2θ −
T 2ðθÞ
sin2θ

¼ ΘðθÞ; ð18Þ

1

c2

�
dr̄

dλ̄

�
2

¼ R2ðr̄Þ − ðr̄2 þ K̄ÞΔ̄ðr̄Þ ¼ Rðr̄Þ; ð19Þ

1

c
dϕ

dλ̄
¼ āRðr̄Þ

Δ̄ðr̄Þ −
T ðθÞ
sin2ðθÞ ; ð20Þ

dt̄

dλ̄
¼ ðr̄2 þ ā2ÞRðr̄Þ

Δ̄ðr̄Þ − āT ðθÞ: ð21Þ

In the following we will use c ¼ 1 and skip the bars
for all parameters and variables, if not explicitly noted
otherwise.

RELATIVISTIC DUST ACCRETION OF CHARGED … PHYSICAL REVIEW D 96, 063015 (2017)

063015-3



III. THE MODEL OF ACCRETION

In the following the accretion model will be introduced
in more detail. It basically consists of three parts: (i) a
rotating and charged BH, which solely determines the
gravitational and electromagnetic field; (ii) a featureless
accretion disk, lying in the equatorial plane; and (iii) a
rotating and charged spherical shell of particles located at a
certain radius r0, which is continuously fed with new
particles. A sketch of the model is given in Fig. 1.
The cloud of particles The particle cloud is assumed to

form a plasma (if charged) and to be sufficiently dilute,
such that particle collisions can be neglected, and the
electromagnetic field of the particle cloud is negligible
compared to the field of the BH. This leads to a ballistic
accretion flow and a collisionless plasma. Furthermore, we
assume that the electromagnetic and gravitational field
formed by the plasma can be neglected compared to the
field of the central BH. In this case the trajectory of each
individual particle in the cloud, charged or uncharged,
follows a path of test particles in the given spacetime as
described by the equations of motion (18)–(21).
The particles of the dust cloud are assumed to be

continuously injected at r0, where they have a constant
r, ϕ, and θ velocity ð _r0; _ϕ0; _θ0Þ, and then start falling onto
the BH and either hit the accretion disk or reach the event
horizon.
As mentioned above, we assume an accretion disk in the

equatorial plane, which only makes sense if the spacetime
exhibits a reflection symmetry with respect to the equatorial
plane, defined by θ ¼ π=2. We discuss this in more detail
below and just postulate this here. The initial conditions _r0,
_ϕ0, and _θ0 are chosen such that they reproduce this
spacetime symmetry. Due to these symmetric initial con-
ditions, particles starting at r0 from the upper half plane will
collide with their corresponding particle starting from the
lower half plane precisely at the equatorial plane. By
choosing the three initial conditions ð _r0; _ϕ0; _θ0Þ, the three

constants of motion E, L, and C are completely determined
and can be calculated using Eqs. (10)–(12) and (18).
It is required that there are no turning points in the

streamlines, described by the θ and r motion of the
particles, before they reach the θ ¼ π=2 plane.
Furthermore, the mapping

� ∂θ
∂θ0

�����
r¼const

≥ 0 ð22Þ

should hold. Otherwise, streamlines of particles with the
same charge may intersect. In this case, Eq. (49), which
describes the arising density field, diverges at the points of
streamline intersection. It is not an easy task to check, if this
condition holds for given initial conditions. However,
during calculation of the streamlines for various different
initial conditions, we found that the main cause for
intersecting streamlines are turning points in the r motion
for θ < π=2. This can be checked rather easily for given
initial conditions. In general, to prevent turning points the
specific angular momentum l and the charge product eQ
have to be chosen sufficiently small.
The black hole and the accretion diskWe assume that the

central BH is described by the Kerr-Newman metric as
introduced in Sec. II, neglecting, however, the case of a
magnetic monopole. In this case the postulated reflection
symmetry with respect to the θ ¼ π=2 plane is realized, and
the equations of motion are simplified. (For P ≠ 0 the
situation looks different. Since the symmetry with respect
to the equatorial plane is broken in that case, there is no
reason to assume that the accretion disk is located
at θ ¼ π=2.)
The choice of constant initial conditions for the particle

cloud results in a constant accretion rate _M, which can be
calculated by

_M ¼ −
Z Z

n0ρ2ðr0Þ _r0 sinðθ0Þdθ0dϕ0 ð23Þ

for a particle density n0 at r0. However, we assume
sufficiently small time scales such that the mass change
of the BH and of the accretion disk can be neglected in our
model. The BH as well as the accretion disk then act as
passive sinks for particles and energy, and a stationary
accretion model is built. Within this stationary model we
can also deduce specific features of the for now featureless
accretion disk.
When discussing the case of charged particles or a

plasma we will restrict to very small values of the charge
Q of the BH and a product eQ of the order of 100. This
restriction results from the following considerations. On the
one hand, it can be expected that BHs with bigger net
charges are quite unlikely; see, for example, Eardley and
Press [14], Zaumen [15], Gibbons [13]. On the other hand,
we assume the plasma to consist of protons and electrons.
By going back to the notation used in Sec. II, the

FIG. 1. Sketch of the accretion model. Here R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sinðθÞ and Z ¼ r cosðθÞ.
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dimensionless charge ê of both electrons and protons can
be calculated using Eq. (9),

êelectron;proton ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4πε0G
p

�
ϵ

μ

�
electron;proton

: ð24Þ

This leads to

êelectron ≈ −2.042 1021 and êproton ≈ 1.112 1018:

Considering a value of Q ≈ 1, all terms in the constants
and equations of motion can be neglected, which are small
compared to ê. When we assume sufficiently small initial
conditions for the ϕ and r motion, so that they are small
compared to ê, the constants of motion reduce to

E ¼ E
ê
≈ At ¼

Qr0
ρ20

; ð25Þ

L ¼ l
ê
≈ −Aϕ ≈ aE sin2 θ0; ð26Þ

K ¼ K
ê2

≈
eqn:ð17Þ

0: ð27Þ

With them we can derive approximate expressions for
the equations of motion,

�
1

ê

�
2
�
dθ
dλ

�
2

≈ −
T2ðθÞ
sin2 θ

; ð28Þ
�
1

ê

�
2
�
dr̄
dλ

�
2

≈ R2ðrÞ; ð29Þ
�
1

ê

�
2 dϕ
dλ

≈
aRðrÞ
ΔðrÞ −

TðθÞ
sin2 θ

; ð30Þ

where

RðrÞ ¼ RðrÞ
ê

≈ ðr2 þ a2ÞE − aL −Qr; ð31Þ

TðθÞ ¼ T
ê
≈ aEðsin2 θ − sin2 θ0Þ: ð32Þ

Equation (28) can only be true for TðθÞ ¼ 0. This leads to a
particle motion with a constant θ value, and thus to a radial
infall, which is why this case is not of further interest in this
paper. As a result, we will only consider very small values
of Q of the order of 10−18–10−21, and we can neglect terms
in Eqs. (10)–(16), which contain Q but not e.
Note that these very small values ofQ still correspond to

a comparably large total net charge q of the BH. According
to Eq. (6), the total net charge per elementary charge ϵ is
given by jqj=ϵ ≈ 1021–5 × 1017m=M⊙, where m=M⊙ is
the BH mass per solar mass. Hence, within our model, the

accretion of electrons or protons will not significantly
change the value of Q.
Since we consider only protons and electrons as accreted

particles, the value of the particle’s charge e is given by the
elementary charge. Fixing the BH charge Q therefore fixes
the value of eQ, while on the other hand different values of
eQ correspond to different charges of the central BH. The
sign of eQ determines whether the particles and the BH
have the same (eQ > 0) or an opposite (eQ < 0) charge.

IV. FEATURES OF THE ACCRETION PROCESS

The description of the accretion process within our
model is based on the analytical solutions of the streamlines
and the velocity field, and on the numerical calculation of
the density field of the accretion flow. In this section we
introduce and discuss the equations covering this accretion
process, based on the treatment presented in Tejeda et al.
[21]. Furthermore, we discuss the innermost stable orbit in
Kerr-Newman spacetime, since it determines the inner edge
of the accretion disc in our model.

A. The velocity field

The components of the four-velocity uμ ¼ dxμ=dτ are
given by the equations of motion (18)–(21),

ur ¼
ffiffiffiffi
R

p

ρ2
; ð33Þ

uθ ¼
ffiffiffiffi
Θ

p

ρ2
; ð34Þ

uϕ ¼ aR
ρ2Δ

−
T

ρ2 sin2 θ
; ð35Þ

ut ¼ ðr2 þ a2ÞR
ρ2Δ

−
aT
ρ2

: ð36Þ

However, in order to obtain a local description of the
velocity field, we will express it in a set of locally
nonrotating frames. This set of reference frames was
introduced by Bardeen, Press, and Teukolsky [25]. It
measures the velocity field seen by locally nonrotating
observers, whose world lines are constant in r and θ, but
change in ϕ with ϕ ¼ constþ ωt and ω ¼ − gϕt

gϕϕ
. This

means the observers are so to say “frame-dragged.” The
observers’ orthonormal tetrads then locally constitute a set
of Minkowskian coordinates.
The components of the three velocity ðdr0dt ;

dθ0
dt ;

dϕ0
dt Þ in the

LNRFs are given by

dr0

dt
¼ vr

0 ¼
ffiffiffiffiffiffiffiffiffiffi
R=Δ

p
ργ

; ð37Þ
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dθ0

dt
¼ vθ

0 ¼
ffiffiffiffi
Θ

p

ργ
; ð38Þ

dϕ0

dt
¼ vϕ

0 ¼ ρðl − eQrasin2θÞ
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þ2 − a2Δsin2θ

p
sin θ

; ð39Þ

and

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vr

02γ2 þ vθ
02γ2 þ vϕ

02γ2
q

; ð40Þ

where the magnetic monopole P is already set to zero. Here
γ is the Lorentz factor between the LNRFs and the passing
test particle. The expressions (37)–(39) for the velocity
field contain the variables ðr; θÞ as well as the constants of
motion E, l and K, which depend on the initial values r0,
θ0, _θ0, _r0, and _ϕ0 of the test particle. Therefore, to calculate
the components of the velocity field we need to compute
the variables r and θ as functions of the initial conditions.
These functional relations are provided in terms of
streamlines.

B. Streamlines

Within our model the particles from the rotating shell will
follow the motion of charged test particles in Kerr-Newman
spacetime. Therefore, the streamlines of the accretion flow
can be described by the solutions to the equations of motions
(18)–(21) in Kerr-Newman spacetime.
As explained in Sec. III, our model has an axial

symmetry to the z axis. Therefore, it is sufficient to consider
the projection on the ðr; θÞ plane to fully discuss the
streamlines of the particle motion. Furthermore, due to the
reflection symmetry to the equatorial plane in our model,
particles starting from the northern and the southern
hemisphere will collide at θ ¼ π=2 and be absorbed by
the accretion disk in the equatorial plane, which acts as a
passive sink for particles. Therefore, we can further restrict
our calculations to the upper half plane (θ < π=2) of the
ðr; θÞ plane.
The equations of motion (18) and (19) can be solved by

elliptic functions and integrals. A comprehensive discussion
of the solutions of the Kerr-Newman equations of motions
using Weierstrass elliptic functions was done by [23]. Here
we use Jacobian elliptic functions to obtain the solution rðθÞ
for the streamlines in the ðr; θÞ plane. We will only write
down the result at this point and refer to Appendix A for the
derivation and more detailed explanations.
The solution for rðθÞ reads

rðθÞ ¼ rbðrd − raÞ − rdðrb − raÞcnðξ; krÞ2
rd − ra − ðrb − raÞcnðξ; krÞ2

ð41Þ

with

ξ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þðra − rcÞðrd − rbÞ

q

× ½Φðr0Þ þ Ψðθ0Þ −ΨðθÞ�; ð42Þ

and

ΦðrÞ ¼ 2

cn−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrd−raÞðrb−rÞ
ðrb−raÞðrd−rÞ

q
; kr

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þðra − rcÞðrd − rbÞ

p ; ð43Þ

ΨðθÞ ¼
cos θacn−1

�
cos θ
cos θa

; kθ
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ ðE2 − 1Þa2 cos θ4a

p : ð44Þ

Here kr, kθ are the moduli of the elliptic integrals given by

k2r ¼
ðrb − raÞðrd − rcÞ
ðrd − rbÞðrc − raÞ

; ð45Þ

k2θ ¼
a2ðE2 − 1Þcos4θa

Cþ a2ðE2 − 1Þcos4θa
; ð46Þ

ra;b;c;d are the four real or complex roots of RðrÞ, and θa is
discussed below. The roots ofRðrÞmark the turning points
of the radial motion, since the motion can only take place
where RðrÞ is positive [see Eq. (19)]. The roots are sorted
differently, depending on between which roots of RðrÞ the
radial motion oscillates. We use the labeling of the roots
introduced by Tejeda et al. [21], which we shortly
review here.
If all roots are real, two situations can happen: In the first

case, the rmotion is bound between two non-negative roots
of RðrÞ, called ra and rb, for ra < rb. In the second case,
the rmotion has a lower bound, ra, but is unbounded above
and rb is the root with the smallest value. In both cases the
remaining roots are called rc, rd, with jrcj < jrdj. If two
roots are real, and two roots form a complex conjugate pair,
the real roots are called ra, rd, with jraj < jrdj, and the
complex roots are called rb, rc. If all roots are complex, one
complex conjugate pair is called ra, rd and the other one is
called rb, rc.
The root θa ∈ ½0; π=2� of ΘðθÞ lies closest to the

equatorial plane. Since the roots determine the turning
points of the θ motion, θa sets the lower limit of the θ

motion. In the case of setting _θ0 to zero, θ0 and θa coincide.
The form of the expression (41) for the streamlines rðθÞ

does not differ from the one given in Tejeda et al. [21].
However, the position of the roots ra::d is influenced by the
electric charge of the particles and the BH. Since the
magnetic monopole is set to zero, the equation of motion
for θ reduces to the one in Kerr spacetime and we recover
the result for the θ motion as given in Tejeda et al. [21],
see Eq. (A24).
Please note that the constants of motions appearing in

Eqs. (41)–(46) are calculated by using Eqs. (11), (12),
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and (17), for the initial values r0, θ0, _r0, _ϕ0, and _θ0. The
value of _t in these equations is determined by the condition
in Eq. (10). As a consequence, the constants of motion are
different for every streamline starting at r0 with a different
angle θ0.

C. The density field

To calculate the density field nðr; θÞ, we use the
continuity equation

ðnuμÞ;μ ¼ 0: ð47Þ

The semicolon denotes covariant differentiation. By using
the Gauss theorem the continuity equation can be written as
follows,

Z
∂V

nuμNμ

ffiffiffiffiffiffi
jhj

p
d3x ¼ 0: ð48Þ

Here Nμ is a unit vector normal to the hypersurface ∂V
delimiting the integration volume and h is the induced
metric’s determinant on this hypersurface. By choosing the
infinitesimal integration volume wisely, such that the
spatial projection of ∂V is determined by neighboring
streamlines and two area elements dx2jr0 , dx2jr¼const.,
which are connected by the neighboring streamlines, the
following final equation can be deduced for the density
field [21],

n ¼ n0ur0ρ
2
0 sin θ0

urρ2 sin θ

� ∂θ
∂θ0

�
−1
����
r¼const

; ð49Þ

where n0, ur0, and ρ0 are the values of n, u
r, and ρ at r ¼ r0

and θ ¼ θ0. For the derivation of the equation above it was
used that, by construction, particles will only flow through
the area elements dx2jr0 and dx2jr¼const. of the spatial
protection of the hypersurface. An intersection of stream-
lines leads to ð ∂θ∂θ0Þ ¼ 0 at the point of intersection, which
results in a divergence of the density at that point [see
Eq. (49)]. In this case the neglection of particle interaction
is not a good approximation anymore. Therefore, this
approach can only be made if streamlines do not intersect,
and Eq. (22) holds.
To calculate the density field np of a plasma with two

types of test particles with different charges e1 and e2 and
e1e2 < 0, we simply compute

npðr; θÞ ¼ n1ðr; θÞ þ n2ðr; θÞ: ð50Þ

Here n1 and n2 satisfy Eq. (49) for e ¼ e1 and e ¼ e2,
respectively. By doing so, we assume that the particle
densities of both types of test particles are sufficiently
small, so that particle interactions are negligible.

D. The forming accretion disk

As described in Sec. III, the particles from the spherical
shell which do not fall onto the event horizon feed an
initially featureless accretion disk located in the equatorial
plane. We assume that in the disk particle interactions
(viscosity, pressure, etc.) are not negligible anymore, and
the particles that hit the accretion disk will be trapped in the
disk. Due to this process, the accretion disk builds up until a
stationary situation is reached. For the final form of the
accretion disk we may then give up to two locations of very
high densities (later called density peaks), and define the
outer and the inner edge of the accretion disk as explained
in the following.
The outer edge We can define the outer edge of the

forming accretion disk by bearing in mind relation (22).
The furthest away a test particle with given initial con-
ditions ð _r0; _ϕ0; _θ0Þ can then reach the π=2 plane from the
BH is given by

rD ≔ lim
θ0→

π
2

rðθ ¼ π=2Þ: ð51Þ

The point rD then determines the outer edge of the final
accretion disk. Note that rðθÞ, given by Eqs. (41)–(46),
depends on the roots of RðrÞ and ΘðθÞ as well as on the
constants of motion E, l, and C, which are all computed in
the limit θ0 → π=2 to determine rD. By using ΨðθaÞ ¼ 0

and Ψðπ=2Þ ¼ cos θaKðkθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CþðE2−1Þa2 cos θ4a

p , KðkÞ being a complete

elliptic integral of first kind, Eq. (42) simplifies to

ξD ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þðra − rcÞðrd − rbÞ

q

×



Φðr0Þ −

π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ðE2 − 1Þa2

p
�
: ð52Þ

We again want to point out that here all quantities are
computed in the limit θ0 → π=2.
The innermost stable circular orbit Even though particle

interactions are not negligible inside the accretion disk, we
will use the assumptions of our dust accretion model to
define the inner edge of the accretion disk. Since neither
viscosity nor pressure occurs in our model, the inner edge
of the accretion disk, which builds up due to the accretion
process under discussion, will be located at the innermost
stable circular orbit in Kerr-Newman spacetime. Particles
that hit the equatorial plane at radii smaller than the ISCO
are bound to fall into the black hole, and can therefore not
contribute to the main accretion disk. However, they might
form a so-called minidisk when spiraling into the black
hole [26,27]. We will come back to that when discussing
the accretion disk in Sec. V.
While the ISCO for Schwarzschild [28] is given by the

simple expression of rISCO ¼ 6M, things are getting more
complicated in Kerr spacetime. An exact expression for
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rISCO can still be derived [25]; however, two solutions arise
for the ISCO in Kerr, one for direct and one for retrograde
orbits. In Kerr spacetime the ISCO can reach fromM to 9M
depending on the value of the rotation parameter. In
Kerr-Newman spacetime one expects four different solu-
tions for the ISCO in the case of charged particles. This can
be traced back to the four possible combinations of direct or
retrograde orbits and same charge (eQ > 0) or opposite
charge (eQ < 0) of BH and test particles. As we neglect the
magnetic monopole (P ¼ 0), the accretion disk is located in
the equatorial plane, and we are therefore interested in
ISCOs for which θ ¼ π=2 holds.
The ISCO is located where the effective potential of the

r motion VeffðrÞ ¼ RðrÞ, see Eq. (19), and its first and
second derivative with respect to r are equal to zero,

VeffðrISCOÞ ¼ 0; V 0
effðrISCOÞ ¼ 0; V 00

effðrISCOÞ ¼ 0:

Furthermore, as we are searching for ISCOs in the
equatorial plane, the θ motion has to vanish at θ ¼ π=2,
leading to

dθ
dλ

����
θ¼π=2

¼ 0: ð53Þ

Since we consider a very small charge of the BH as
explained in Sec. III, it is for our purpose sufficient to
solve the above equations for the ISCO for the case Q ¼ 0

and eQ ≠ 0. We find a complicated expression for rISCO
(see Appendix B), which can be solved numerically.
The results are shown in Fig. 2. Four solutions for the

ISCO can be found for each eQ and a ≠ 0. The black
dotted curve represents the ISCO in Reissner-Nordström
spacetime with vanishingly small Q. Starting from
rISCO ¼ 6M, both solutions, for eQ < 0 and eQ > 0, grow
for bigger values of jeQj, causing rISCO to be minimal for
uncharged particles, where eQ ¼ 0. While rISCO seems to
grow somewhat exponentially for eQ > 0, it grows very
slowly for eQ < 0. The same behavior can be seen for the
ISCO in Kerr-Newman spacetime (red solid and blue
dashed curves), but now four solutions arise, two starting
at each Kerr-ISCO for jeQj ¼ 0 and then showing the same
behavior for eQ > 0 and eQ < 0 with growing values of
jeQj as in the Reissner-Nordström case.

V. RESULTS

In this section we present solutions for plasma and
uncharged dust accretion within the model described in
Sec. III. For this, the streamlines, the three velocity field in
LNRFs, and the density field are calculated for nine
different combinations of the initial conditions and param-
eters (see Figs. 4–6). Furthermore, the influence of these on
the value of the outer edge rD [see definition in (51)] of a
forming accretion disk is discussed (see Figs. 7–8). For all
plots in Figs. 4–6 the BH charge is chosen to be negative.
The specific charge parameter of a proton and an electron
will be called ep and ee, respectively, in the following.
We specify the initial conditions and parameters in the

form ðvϕ0
0

e ; v
r0
0
e ; Q; eQ; aÞ ∈ ½0; 1Þ, where vϕ0

0
e and v

r0
0
e are

the radial and angular particle velocities in the LNRF at
r ¼ r0 and θ0 ¼ π

2
given in Eqs. (37)–(39). They have a

one-to-one correspondence to _r0, _ϕ0, and _θ0, which we
choose as constant, in particular _θ0 ¼ 0. In the case of a
plasma the parameter eQ is given for electrons. The
parameter eQ for protons is then already determined and
given by epQ ¼ μe

μp
eeQ. The plotted solutions represent a

family of solutions, since both the BH mass M and the
initial density n0 at r0 are not fixed.
The density field, shown in Figs. 4–6, is derived by

numerically calculating the differential ∂θ
∂θ0 from Eq. (49).

Even though it is generally possible to derive an analytical
function for this derivative, θðθ0Þ is a very complicated
expression of θ0. It depends, among others, on the nodes of
RðrÞ, which in turn depend on θ0 as well. We refrain from
calculating the derivative analytically and use a numerical
method instead.

A. The velocity field, streamlines, and density field

Figure 4(a) shows the special accretion case of uncharged
(e ¼ 0) dust on a strongly charged BH (Q ≈ 1). Since for
e ¼ 0 the BH charge Q only appears in ΔðrÞ, its influence

FIG. 2. Radius of the ISCO in the equatorial plane for charged
particles in Kerr-Newman spacetime, with very small BH charge
(Q ¼ 0), for a ¼ 0 (black, dotted), a ¼ 0.1 (red, solid), and a ¼
0.5 (blue, dashed) as a function of eQ. Four different solutions
arise, traced back to the four combinations of direct or retrograde
orbits and eQ < 0 or eQ > 0. The radius rISCO grows for bigger
jeQj in all cases, but grows significantly faster for the case where
the BH and test particle have the same charge.
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on the accretion flow is non-negligible only close to the
horizon, where ΔðrÞ approaches zero [see Eqs. (19), (18),
and (3)]. This statement is supported by comparing
the results for the outer edge in Fig. 8(a) with the ones in
7(a) and (b). In Fig. 8(a) it can be seen that the increase of rD
from Q ¼ 0 to Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
is of the order of 10 percent.

This is rather small compared to the increase of rD caused by

a change of the initial conditions v
r0
0
e and vϕ0

0
e , shown in

Figs. 7(a) and (b) at eQ ¼ 0, respectively. Here the value of
rD might even more then double. Overall, the accretion flow
for e ¼ 0, shown in Fig. 4(a), approaches the one for theKerr
spacetime, discussed in [21], and is thereforemainly given as
an example for uncharged particle accretion.
Taking a look at Figs. 4–6, we see that for a plasma two

density peaks will arise at the π=2 plane. They are each
caused by one of the two different particle types (distin-
guished by their different specific charges ep and ee).
Furthermore. the influence of the metric’s parameters a, eQ

and the initial velocities vϕ0
0

e and v
r0
0
e on the accretion flow

and the position of the density peaks is pictured in this
figures. This will be discussed in more detail in the
following.

The plots in Figs. 4(b) and (c) show the accretion flow for
the same initial conditions but different angular momenta a.
These plots are given as an example to show that a variation
of a does onlyweakly effect the accretion flows onto theBH.
The overall structure of the accretion flow stays the same,
while only a small shift in the position of the density peaks
can be detected. A more detailed discussion of the influence
of a on the accretion flowwas done in [21], which is why we
will not go into further details here.
The influence of the initial conditions and parameters in

the model can be analyzed by comparing plots where only
one of the parameters vϕ0

0
e , v

r0
0
e , or eQ is changed. We first

analyze the influence of vϕ0
0

e on the accretion flow by
comparing Fig. 4(c) with 5(b) and Fig. 6(a) with 6(c). This

shows that the bigger the value of vϕ0
0

e the stronger the
course of the streamlines deviates from a radial infall. The

same statement holds if we analyze the influence of v
r0
0
e on

the accretion by comparing Fig. 4(c) with 5(a) and Fig. 6(b)
with 6(c); also, this is true for the influence of eQ, which
can be seen by comparing Fig. 4(c) with 6(c). Summarized,

the larger we choose vϕ0
0

e , v
r0
0
e , or eQ, the more strongly

curved the streamlines are. This is also why for a negatively
charged central BH the course of electrons is more strongly
influenced than the course of protons, since epQ ≪ eeQ.
Figure 5(c) shows the biggest difference between the

particle flow of the two different particle types. Here the
initial value for the r motion with v

r0
0
e ¼ −0.001 is chosen

to be very small. As a result, there is a very weak particle
infall, leading to very small density values [see Eq. (49)].
On the other hand, since the initial r velocity of the infalling
particles is very slow, the attractive and repulsive electro-
magnetic forces on the particles show more effect on their
course. While the streamlines of attracted particles (white
lines) show a close to radial infall, the streamlines of the
repulsed particles (black lines) show the typical course of a
small value of dr=dθ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RðrÞ=ΘðθÞp
. This arises from the

fact that dr=dλ ¼ ffiffiffiffiffiffiffiffiffiffi
RðrÞp

stays small in the case of a
repulsive electromagnetic force.

B. The accretion disk

Figures 7 and 8(b) picture the influence of eQ and the
initial velocities of the test particles on the position of the
outer edge rD. From this we can conclude that drDdp , where p

is one of the parameters vϕ0
0

e , v
r0
0
e , or eQ, is largest for big

values of the parameters. Therefore, the influence of a small

change in one of the parameters vϕ0
0

e , v
r0
0
e , or eQ is rather

small if the parameter is small, but becomes significant for
bigger values of the parameters; see Table I.
The outer edge of the disk does not depend much on the

specific electric charge Q of the BH [see Fig. 8(a)], as
already discussed before. The influence of the angular
momentum a of the BH [see Fig. 8(a)] on rD is also small.

FIG. 3. Schematic plots of possible accretion disk scenarios.
Here rD1

¼ rDje1Q corresponds to e1Q < 0 and rD2
¼ rDje2Q. If

the outer edge rD is smaller than the corresponding ISCO, no
accretion disk is formed. For a general description see Case 1 to
Case 4 in Sec. V, where (a) corresponds to Case 1, (b) corresponds
to Case 2, (c) and (d) correspond to Case 3, and (e) corresponds to
Case 4.
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(a)

(b)

(c)

FIG. 4. Streamlines, three velocity field in LNRFs (left and right) and density field (right) are plotted for plasma or neutral particles, a
negatively charged BH, r0 ¼ 20, and different initial conditions. The corresponding parameter eQ for protons can be calculated by
epQ ¼ μe

μp
eeQ. Black, white, and gray streamlines and velocity fields describe electron, proton, and neutral particle motion respectively.

The density color bar is given in a logarithmic scale. The initial condition vxe is the x component of the three-velocity at r ¼ r0 and
θ ¼ π=2, given by Eqs. (37)–(39). Two density peaks arise, which can be traced back to the two differently charged particle types of the
plasma. Changes in the initial conditions vϕ0

0
e and v

r0
0
e and eeQ have a strong effect on all features of the accretion flow. This effect of the

initial velocities and eeQ can be studied by comparing the plots from Figs. 4–6 with each other.
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(As an example, consider for e ¼ 0, Q ¼ 0, v
r0
0
e ¼ −0.2,

vϕ
0

e ¼ 0.112 the increase ΔrDða1 → a2Þ ≈ 0.7, for a change
of a from a1 ¼ −0.7 to a2 ¼ 0.7). However, the shift of the
outer edge of the disk for different values of a due to the

frame-dragging effect, which was already stressed in [21],
is reproduced here. A counter-rotating flow (a < 0) leads to
a smaller value of the outer edge rD as compared to the
corotating case (a > 0).

(a)

(b)

(c)

FIG. 5. For a detailed description see caption of Fig. 4. A comparison of the plots (a) and (b) with the plot in Fig. 4(c) shows the

influence of the initial velocities v
r0
0
e and vϕ0

0
e , respectively. In plot (c) the initial value for the r motion is chosen to be very small. This

results in a weak particle infall, leading to very small density values and a big effect of the attractive and repulsive electromagnetic forces
on the accretion flow.
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If we identify the two density peaks as the positions of
the outer edges of particle type 1 and 2, which we conclude
from the examples presented here, we infer from the above
discussion that the distance between the density peaks

weakly depends on the parameters Q and a, but strongly
depends on the product eQ and the initial velocities vϕ0

0
e

and v
r0
0
e for sufficiently big values of these parameters. The

distance grows for increasing values of eQ, vϕ0
0

e , and v
r0
0
e .

(a)

(b)

(c)

FIG. 6. For a detailed description see caption of Fig. 4. A comparison of plot (a) with plot (c) and a comparison of plot (b) with plot

(c) show the influence of the initial velocities v
ϕ0
0

e and v
r0
0
e , respectively. The influence of eeQ on the accretion flow is shown by a comparison

with plot (c) and the plot in Fig. 4(c). In plot (a) only one density peak arises, produced by the accreted electrons.All streamlines of the proton
accretion flow reach the BH horizon before hitting the θ ¼ π=2 plane and therefore will not create a density peak.
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In the case of a plasma we can calculate two different
values for both rD and the ISCO for given initial conditions,
one due to the electrons and one due to the protons forming
the plasma. The inner and outer edges of the formed
accretion disk should then be defined by one of the two
values for the ISCO and one of the two values for rD,
respectively. Minidisks might build up for radii smaller
than the inner edge of the main accretion disk, where the
matter is bound to spiral into the BH. Particles hitting the
equatorial plane for radii larger than rISCO may, in principle,
loose so much energy that they, as well, are bound to spiral
into the BH, forming a minidisk. However, at this point the
interaction with the main accretion disk should not be
neglected, and the model description breaks down. We will
therefore not further discuss this possibility here.

Within this setting four cases can occur for a plasma,
which we discuss below. Here we indicate the specific
charge of particles with the opposite charge of the BH with
e1 (e1Q < 0), and the specific charge of particles with the
same charge as that of the BH with e2 (e2Q > 0).
Case 1 rISCOje1Q > rDje1Q and rISCOje2Q > rDje2Q:
All matter reaches the π=2 plane for radii smaller than

the ISCO [see schematic plot in Fig. 3(a)]. All accreted
matter is bound to spiral into the BH and might form a
minidisk during this process. It will not contribute to or

(a)

(b)

FIG. 7. Outer edge rD of the forming accretion disk as
a function of eQ for r0 ¼ 20 and a ¼ 0.1. Here vxe gives
the x component of the three-velocity at r ¼ r0, θ ¼ π=2.

(a) vϕ0
0

e ¼ 0.11, different v
r0
0
e . (b) v

r0
0
e ¼ −0.2, different vϕ0

0
e .

The dependence of rD on eQ increases with growing values

of vϕ0
0

e and v
r0
0
e .

(a)

(b)

0
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FIG. 8. Outer edge rD of the forming accretion disk as (a) a

function of Q for r0 ¼ 20, e ¼ 0, vϕ0
0

e ¼ 0.11, v
r0
0
e ¼ −0.2, and

different values for a and (b) a function of vϕ0
0

e and v
r0
0
e for

r0 ¼ 20, eeQ ¼ 0.5, a ¼ 0.1. The dust flow is counter-rotating
for a < 0 and corotating for a > 0. It can be seen in plot (a) that
rD changes only slightly with variation of a, even less with
variation of Q compared to the changes induced by a variation of

the initial velocities vϕ0
0

e and v
r0
0
e , plotted in (b). This changes

become bigger for bigger values of vϕ0
0

e and v
r0
0
e . The shift of rD

for growing a to bigger values depicts the frame-dragging
effect.
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form a main accretion disk. This case occurs for small

enough v
r0
0
e and vϕ0

0
e , e.g. for a negatively charged BH,

where e2Q ¼ 0.5 (electrons), e1Q ¼ −0.00027 (protons)

and all values for v
r0
0
e and vϕ0

0
e where rD ≲ 5.5 [compare

Fig. 8(b)].
Case 2 rISCOje1Q > rDje1Q and rISCOje2Q < rDje2Q:
All particles with a charge opposite to the BH spiral into

it. But the majority of streamlines of particles with the same
charge as the BH will reach the π=2 plane for radii bigger
than the corresponding ISCO, since the density peak is
located at rD, and therefore contribute to or form an
accretion disk. In this situation the accretion disk should
slowly develop the same charge as the BH [see schematic
plot in Fig. 3(b)], until the electromagnetic field created by
the disk’s charge in not negligible anymore and the
model’s description breaks down. This case occurs, for
example, for a negatively charged BH, where e2Q ¼ 0.5,

e1Q ¼ −0.00027, vr
0
0
e ¼ −0.2, and vϕ0

0
e ¼ 0.13.

Case 3 rISCOje1Q < rDje1Q and rISCOje2Q < rDje2Q:
The majority of the streamlines of all particles reach the

π=2 plane for radii bigger than the corresponding ISCO
[see schematic plot in Figs. 3(c) and (d)]. Since rD and the
ISCO are smaller for particles which have a charge opposite
to that of the BH than for those whose charge has the same
sign as the BH, within the model’s description we expect an
inner and outer area of the accretion disk. Here the inner
area is dominated by oppositely charged particles
(e1Q < 0), and the outer area is dominated by particles
of the same charge (e2Q > 0). However, interactions
between the particles should not be neglected at the
accretion disk and interactions might prevent the develop-
ment of these areas within the accretion disk. Like in Case
2, the model description might break down for this case, if
the electromagnetic field created by the oppositely charged
areas can not be neglected anymore. This case occurs for

sufficiently big values for v
r0
0
e and vϕ0

0
e , e.g. for a negatively

BH, where e2Q ¼ 0.5, e1Q ¼ −0.00027, vr
0
0
e ¼ −0.2, and

vϕ0
0

e ≥ 0.17.

Case 4 rISCOje1Q < rDje1Q and rISCOje2Q > rDje2Q:
All particles with the same charge as the BH spiral into it,

while oppositely charged particles can stay on the π=2
plane [see schematic plot in Fig. 3(e)]. This would be a
situation where the accretion disk slowly develops a charge,
opposite to the BH’s charge. This case might occur for very

big values of eeQ → 1 and sufficiently big values of v
r0
0
e and

vϕ0
0

e . However, since always rD2
> rD1

, while spiraling
inwards the particles of the same charge as the BHwill have
to pass through the area where the model predicts an
accumulation of oppositely charged particles. We have to
expect interactions between the particles at this point and
the model’s prescription breaks down. These interactions
probably prevent the oppositely charged particles to
actually fall into the BH. An accretion disk slowly devel-
oping a charge with the same sign as the BH therefore is an
interesting but unlikely scenario.

C. Limits of the model due to electromagnetic
particle interactions

The negligence of particle interactions, especially the
electromagnetic interactions, of the used model has its
limits. For a plasma the model predicts the occurrence of
two local density maxima, one for each particle type, with a
very sharp density peak at its center. At this center the
electromagnetic particle interactions will most likely not be
negligible anymore. The occurring repulsive electromag-
netic forces at these points will have the effect of softening
the sharp peaks. However, since these sharp peaks lie on the
equatorial plane, they will further, and probably much more
strongly, be effected by the accretion disk, which is
assumed to be located there as well.
Neglecting particle interactions also restricts our choice

in the initial particle density n0 at r̄0. The electromagnetic
field, created by the infalling plasma particles, should still
be negligible compared to the field created by the BH. As a
result, a limit for n0 depends on the choice of r̄0, the total
BH mass M, and on the position of the density peaks,
which create the electromagnetic field of up to two charged
rings around the BH. Changing r̄0 to bigger values raises
the strength of the electromagnetic field of the infalling
particles at the outer area, while at the same time the BH’s
electromagnetic field falls off. Therefore, n0 has to be chosen
to be smaller for larger values of r̄0. The same holds for the
value of the BH massM for constant r̄0 ¼ r0

M, since the total
charge of the accreted particles scaleswithM3,while the total
charge Q ¼ MQ̄ of the BH scales with M. Furthermore, n0
has tobe chosen tobe smaller the further the density peaks are
located away from the BH. This results from the same
consideration done for the effect of r̄0.
For a stellar BH with a net charge of 10−18–10−21 the

plasma density is restricted to values smaller than
10 − 0.01 cm−3. The density has to be even more dilute
for more massive BHs or bigger chosen values for r̄0.

TABLE I. Comparison of the change of the outer edge ΔrD for
an increase of eQ from eQ1 to eQ2 between two sets (Example 1
and Example 2) of initial conditions and eQ. The influence of
changing the value of eQ results in a significantly bigger change
of rD in Example 2, where bigger values for the initial conditions
and eQ are chosen.

Example 1 Example 2

vϕ0
0

e 0.11 0.11

v
r0
0
e

−0.27 −0.001
eQ1 −0.5 0.5
eQ2 0 0.7
ΔrDðeQ1 → eQ2Þ ≈0.5 ≈6
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In this subsection we came back to the notation of
Sec. II, and wrote the net charge and radius with bars,
where it is given in its dimensionless form.

VI. SUMMARY AND CONCLUSION

We discussed an analytical model for the relativistic
accretion of (charged) dust onto a rotating and charged
black hole as described by the Kerr-Newman spacetime.
Our model is a direct generalization of the papers by
Tejeda, Mendoza, and Miller [20] and Tejeda, Taylor, and
Miller [21] on dust accretion onto a Schwarzschild and Kerr
BH. Because strongly charged BHs are astrophysically
quite unlikely, we assumed here very weakly charged BHs
with a normalized charge parameter Q of the order of
10−18–10−21. However, for either electrons or protons with
a normalized charge e we may then find eQ ≈ 1, which
results in a quite significant influence on the accretion
process. In our streamline and density plots, however, we
only showed cases where the BH’s net charge was chosen
to be negative and of the order of Q ≈ 10−21, which results
in eQ ≈ 1 for electrons.
For our stationary analytical model we needed to neglect

a number of physical effects in the accretion process, which
we detailed in the description of the model in Sec. III. In
particular, we neglected all particle interactions and the
accretion disk’s mass and charge. Where we consider
charged dust, we assume it to form a plasma consisting
of noninteracting electrons and protons, which serve as test
particles. For a stellar BH with a net charge of 10−18–10−21

this restricts the plasma density to values smaller than
10 − 0.01 cm−3.
We analyzed the influence of the different parameters in

our model on the accretion process and on the outer and
inner edges of the forming accretion disk. Besides the
density field, which we calculated numerically, all quan-
tities—namely the streamlines, the velocity field, the outer
edge rD, and the ISCO—were derived analytically. Four
different values for the ISCO can be found for charged
particles and a given BH spin and charge. These are
connected to the four different combinations of same or
opposite charge of BH and particles and direct or retro-
gating orbits. The ISCO is used to determine the inner edge
of the accretion disk.
We found that the spacetime parameters a and Q

corresponding to the angular momentum and the charge
of the BH, respectively, have a rather small effect on the
accretion process and the edges of the accretion disk.
However, we recovered the frame-dragging effect due to
the angular momentum a which was already discussed in
[21] within our model. We showed that the product of BH
and particle charge eQ, as well as the initial conditions for
the r and ϕ motion have a considerably stronger influence
on the accretion process and the edges of the accretion disk
than the spacetime parameters.

When considering plasma contributing to or forming an
accretion disk, we discussed four different cases which may
occur within our model. In the first case all accreted
particles will have to spiral into the BH. In the second
and fourth cases all particles of one type have to spiral into
the BH, while a majority of the other particle type can
contribute to the accretion disk. In this case the forming
accretion disk might slowly develop a charge with the same
or opposite sign as that of the BH until the arising
electromagnetic field of the disk can not be neglected
anymore and the model’s description breaks down.
However, the case where an accretion disk with a charge
opposite to that of the BH is developed seems rather
unlikely due to expected interaction processes between the
charged particles on the accretion disk, which are neglected
in our model. In the third case a majority of both particles
will contribute to or form an accretion disk. An inhomo-
geneous distribution of the charge of the disk is the result,
where particles with a charge opposite to that of the BH are
located in an inner area close to the BH, whereas particles
with a charge with the same sign as that of the BH are
located in an outer area farther away from the BH. This
effect might be weakened or washed out due to the particle
interactions within the accretion disk. Again, the model’s
description will break down as soon as the arising electro-
magnetic fields from the charged areas are not negligible
anymore.
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APPENDIX A: DERIVATION OF THE SOLUTION
FOR THE PARTICLE MOTION

In this appendix we present the derivation for the radial
and longitudinal equations of motion for charged test
particles in Kerr-Newman spacetime by using Jacobi
elliptic functions. A comprehensive discussion of the
solutions of the Kerr-Newman equations of motions was
done by Hackmann and Xu (2013), where they used
Weierstrass elliptic functions [23]. More information on
Jacobian elliptic functions can be found in Milne-Thomson
[29] and Byrd and Friedman [30].
Elliptic integrals can take the form

uðϕÞ ¼
Z

ϕ

ϕ0

dzffiffiffiffiffiffiffiffiffi
PðzÞp ; ðA1Þ

where PðzÞ is a polynomial of order three or four. The
inverse function ϕðuÞ of an elliptic integral is called an
elliptic function and it satisfies the differential equation
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�
dϕ
du

�
2

¼ PðϕÞ: ðA2Þ

This property is used to solve the differential equations (18)
and (19) in terms of elliptic functions.
We will now introduce elliptic integrals Fðφ; kÞ of the

first kind, whose inverse functions are the Jacobi elliptic
functions. They can take different forms, depending on
which substitution is made for φ,

Fðφ; kÞ ¼
Z

φ

0

dϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2ðϑÞ

p

¼
Z

y

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − t2Þð1 − k2t2Þ

p ðA3Þ

for y ¼ sinφ. The parameter k ∈ C is called the modulus of
the elliptic integral. The second integral in (A3) with the
polynomial under the square root of the form PðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − t2Þð1 − k2t2Þ

p
is called Legendre normal form,

which only contains terms with even exponents.
The Jacobian elliptic functions used in this paper are now

defined as

snðF; kÞ ¼ sinφ ¼ y; ðA4Þ

cnðF; kÞ ¼ cosφ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
: ðA5Þ

Elliptic functions are doubly periodic and meromorphic,
and the periods of sn are given by 4KðkÞ and 4iK0ðkÞ, with

KðkÞ ¼
Z

π=2

0

dϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2ðϑÞ

p ðA6Þ

and K0ðkÞ ¼ Kðk0Þ, ðk0Þ2 ¼ 1 − k2.
To derive the solutions for the r and θ motion, we first

derive two equations for the Mino time in terms of elliptic
integrals from Eqs. (18) and (19),

λðrÞ ¼
Z

r

r0

dr0ffiffiffiffiffiffiffiffiffiffiffi
Rðr0Þp ; ðA7Þ

λðθÞ ¼
Z

θ

θ0

dθ0ffiffiffiffiffiffiffiffiffiffiffi
Θðθ0Þp : ðA8Þ

By introducing

ΦðrÞ ¼
Z

r

ra

dr0ffiffiffiffiffiffiffiffiffiffiffi
Rðr0Þp ; ðA9Þ

ΨðθÞ ¼
Z

θ

θa

dθ0ffiffiffiffiffiffiffiffiffiffiffi
Θðθ0Þp ; ðA10Þ

whereRðraÞ ¼ 0 and ΘðθaÞ ¼ 0, we can rewrite Eqs. (A7)
and (A8) as λðrÞ¼ΦðrÞ−Φðr0Þ and λðθÞ ¼ ΨðθÞ −Ψðθ0Þ.

To find the solutions of the r and θ motion in terms of
Jacobian elliptic functions, we convert the polynomials
RðrÞ and ΘðθÞ to the Legendre normal form. This can be
accomplished with substitutions of the form

z ¼ A1 þ A2x2

A3 þ A4x2
or ðA11Þ

z ¼ B1 þ B2x
B3 þ B4x

; ðA12Þ

with z ¼ r or z ¼ θ, respectively, and the constants A1::4,
B1::4 have to be chosen properly.
For the radial equation of motion the substitution (A11)

with r ¼ rdx2−nra
x2−n is appropriate, where ra::d are the roots of

RðrÞ. Now k and n have to be chosen such that the interval
r1 < r < r2, where the r motion takes place, lies between
x ¼ 0 and x ¼ 1. As a result we get, using the labeling of
the roots mentioned in Sec. IV B,

ΦðrÞ ¼
Z

r

ra

drffiffiffiffiffiffiffiffiffiffi
RðrÞp

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þðra − rcÞðrb − rdÞ

p

×
Z

x

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − k2rx2Þ

p ; ðA13Þ

where

n ¼ rd − rb
ra − rb

; ðA14Þ

k2r ¼
ðrc − rdÞðra − rbÞ
ðra − rcÞðrb − rdÞ

: ðA15Þ

Now the solution for the radial motion can be written down,

rðλÞ ¼ raðrd − rbÞ þ rdðrb − raÞsnðξ; krÞ2
rd − rb þ ðrb − raÞsnðξ; krÞ2

; ðA16Þ

¼ rbðrd − raÞ − rdðrb − raÞcnðξ; krÞ2
rd − ra − ðrb − raÞcnðξ; krÞ2

; ðA17Þ

with

ξ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þðra − rcÞðrd − rbÞ

q
½Φðr0Þ − λ�: ðA18Þ

In the case that all roots of RðrÞ are real, the value of ΦðrÞ
is always real and no complex numbers occur during the
calculation of rðλÞ. However, in the case of two or four
complex roots the integrand of ΦðrÞ becomes complex and
the calculation of rðλÞ has to be done in the complex plane.
This is no problem in principle but can be avoided by using
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the substitution (A12) and a wise choice of B1::4. The exact
substitution for these cases can be found in [30] and will not
be given here.
For the θ motion we use the substitution x ¼ cos θ to get

a polynomial of order four in ΨðθÞ,

ΨðxÞ ¼
Z

x

xa

dx0ffiffiffiffiffiffiffiffiffiffiffi
Θðx0Þp ; ðA19Þ

for

ΘðxÞ ¼ a2ð1 − E2Þx4 − ðCþ a2ð1 − E2Þ þ l2Þx2 þ C:

ðA20Þ

This can, in general, be solved by the same procedure used
for solving the radial equation. To reduce the equation
above to Legendre normal form, its roots have to be shifted
to 1 and 1=k2. Substituting ~x ¼ x=xa then leads to

Ψð~xÞ ¼ −
cos θaffiffiffiffi

C
p

Z
~x

1

dx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x02Þð1 − ~k2θx02Þ

q ; ðA21Þ

with

~k2θ ¼ −
a2ðE2 − 1Þ

C
x4a: ðA22Þ

By rewriting ~kθ as ~k2θ ¼ kθ2

1−kθ2
, we find

Ψð~xÞ ¼ −
cos θaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cþ a2ðE2 − 1Þcos4θa
p

×
Z

~x

1

dx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x02Þðk0θ þ k2θx

02Þ
q

¼
cos θacn−1ð cos θcos θa

; kθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ ðE2 − 1Þa2cos4θa

p : ðA23Þ

Finally, the solution for the θ motion can be written down,

cosðθðλÞÞ

¼ cos θacn

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ a2ðE2 − 1Þcos4θa

p
cos θa

ðΨðθ0Þ − λÞ; kθ
�
:

ðA24Þ

In the calculation of ΨðθÞ or cosðθðλÞÞ complex numbers
arise, if kθ is imaginary or bigger than one. This can be
avoided by choosing another Jacobian elliptic function to
solve the equation and, by doing so, introducing a new kθ,
which is then real and smaller than one. Again, we will
not discuss these alternative descriptions of ΨðθÞ and
cosðθðλÞÞ, but refer to [30].

APPENDIX B: ISCO IN KERR-NEWMAN
SPACETIME

The innermost stable orbit (for P ¼ 0) is located where
the effective potential of the r motion VeffðrÞ ¼ RðrÞ, see
Eq. (19), and its first and second derivative with respect to r
vanish. By further demanding that the ISCO is located in
the equatorial plane, the θ motion dθ

dλ ¼ ΘðθÞ has to vanish
at θ ¼ π=2. Therefore, one receives an expression for the
ISCO on the equatorial plane by solving the following set
of equations for coordinate r and the three constants of
motion E, L, and K:

RðrÞ ¼ 0;

R0ðrÞ ¼ 0;

R00ðrÞ ¼ 0;

Θðπ=2Þ ¼ 0: ðB1Þ

From the last equation in (B1) the relation

K ¼ ðaE − lÞ2 ðB2Þ

results. With this relation and the first two equations in (B1)
a polynomial of order four can be deduced for

ffiffiffiffi
K

p
of the

form

f1ðu;
ffiffiffiffi
K

p
Þ ¼ A

ffiffiffiffi
K

p
4 þ B

ffiffiffiffi
K

p
3 þ C

ffiffiffiffi
K

p
2

þD
ffiffiffiffi
K

p
þ E ¼ 0; ðB3Þ

where u ¼ 1=r, and

A ¼ ð4Q4 þ 4Q2a2Þu6 þ ð−12Q2 − 4a2Þu5
þ ð4Q2 þ 9Þu4 − 6u3 þ u2;

B ¼ 4aeQu3ðQ2u2 þ a2u2 − 2uþ 1Þ;
C ¼ ð4Q4 þ 4Q2a2 −Q2ðeQÞ2 − a2ðeQÞ2Þu4

þ ð−10Q2 − 2a2 þ 2ðeQÞ2Þu3
þ ð2Q2 − 2a2 − ðeQÞ2 þ 6Þu2 − 2u;

D ¼ Bu2;

E ¼ ðQ4 þ 2Q2a2 −Q2ðeQÞ2 þ a4 − a2ðeQÞ2Þu2
þ ð−2Q2 − 2a2 þ 2ðeQÞ2Þu − ðeQÞ2 þ 1: ðB4Þ

Another equation f2ðu;
ffiffiffiffi
K

p Þ ¼ 0 can be deduced from the
second and third equations in (B1). If we consider a very
small charge of the BH, as explained in Sec. III, and set
Q ¼ 0 but eQ ≠ 0, f2ðu;

ffiffiffiffi
K

p Þ reduces to
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f2ðu;
ffiffiffiffi
K

p
Þ¼ 6ða

ffiffiffiffi
K

p
3−a2eQKÞu2

þ6ðaðeQÞ2
ffiffiffiffi
K

p
−eQKÞu

þeQða2þKÞ− ðeQÞ3−2a
ffiffiffiffi
K

p
¼ 0: ðB5Þ

Now f1ðu;
ffiffiffiffi
K

p Þ (for Q ¼ 0, eQ ≠ 0) and f2ðu;
ffiffiffiffi
K

p Þ can
be solved numerically for u ¼ 1=r and K and lead to
four different solutions for every given set of parame-
ters ða; eQÞ.
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