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We study the properties and direct detection prospects of an as of yet neglected population of dark matter
(DM) particles moving in orbits gravitationally bound to the Earth. This DM population is expected to form
via scattering by nuclei in the Earth’s interior. We compute fluxes and nuclear recoil energy spectra
expected at direct detection experiments for the new DM population considering detectors with and without
directional sensitivity, and different types of target materials and DM-nucleon interactions. DM particles
bound to the Earth manifest as a prominent rise in the low-energy part of the observed nuclear recoil energy
spectrum. Ultra-low threshold energies of about 1 eV are needed to resolve this effect. Its shape is
independent of the DM-nucleus scattering cross-section normalization.
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I. INTRODUCTION

The detection of Milky Way dark matter (DM) particles
is one of the most pressing research questions in astro-
particle physics. The experimental technique known as
direct detection will play a crucial role in this context in the
coming years [1]. It searches for nuclear recoil events
induced by the nonrelativistic scattering of Milky Way DM
particles in low-background detectors [2]. The goal is to
disentangle the expected DM signal, i.e. a few nuclear
recoil events per ton per year, from background events
induced by environmental radioactivity, muon-induced
neutrons or solar and atmospheric neutrinos [3]. In order
to achieve this goal, different experimental read-out strat-
egies are currently under investigation, including the
detection of scintillation light, athermal phonons, ioniza-
tion charge, and bubble nucleation [4]. An alternative to
background discrimination is the detection of an annual
modulation in the observed rate of nuclear recoil events,
which would allow us to identify the DM origin of the
observed signal unambiguously [5–7]. The first ton-scale
detectors for DM direct detection exploiting liquid Xenon
or Argon are currently in a construction or commissioning
stage [8]. The first data release of XENON1T is for instance
expected in 2017, with great expectations for groundbreak-
ing discoveries [9]. At the same time, detectors with
directional sensitivity, i.e. designed to measure anisotropies
in the distribution of nuclear recoil events, are currently in a
research and development stage, and some first encourag-
ing results have already been achieved [10].
Low-threshold detectors are a priority in the design of

DM direct detection experiments. A first motivation for

low-threshold detectors arises from models of light
DM [11]. A DM particle of mass mχ moving at a speed
of 10−3 in natural units can deposit at most an energy
2 × 10−6m2

χmN=ðmχ þmNÞ2 in the scattering by nuclei of
mass mN . Therefore, it is required a threshold energy of
about 1 keV (1 eV) to detect a 1 GeV (1 MeV) DM particle
in DM-nucleus elastic collisions. This can be somewhat
improved by looking at inelastic channels [12]. Currently
none of the operating direct detection experiments has
reached threshold energies of 1 eV yet. However, various
strategies are under consideration, ranging from the initial
proposal of Drukier and Stodolsky for the detection of
neutrinos via neutral-current interactions [13] to more recent
studies by where DM detection is achieved via excitations in
superfluid helium [14] or semiconductors [15].
We have recently argued that low-threshold direct

detection experiments are crucial for a second important
reason [16]. They would allow for the detection of an as of
yet neglected population of DM particles gravitationally
bound to the Earth, for which we have calculated the
expected flux and induced event rate at detector. This new
population of DM particles would manifest in a direct
detection experiment as a prominent spectral feature in the
low-energy part of the observed nuclear recoil energy
spectrum. Such a population of bound DM particles can
form if DM interacts with the nuclei in the Earth and
scatters to orbits gravitationally bound to the planet, where
it accumulates over the whole history of the solar system
until the present time, when it is eventually detected. The
velocity distribution of this new population of DM particles
peaks just below the Earth’s escape velocity, and the
induced nuclear recoil spectrum at detector is maximum
for values of the DM particle mass close to the mass of
abundant elements in the Earth, since in this mass range the
probability of scattering to bound orbits is larger.
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The literature on the capture of DM particles in orbits
bound the solar system is considerable. Most of these
studies focus on the capture of DM particles by the Sun,
and on the subsequent accumulation and annihilation of
such particles at the Sun’s centre, resulting in energetic
neutrinos observable on Earth, e.g. [17–20]. The direct
detection of DM particles from orbits bound to the Sun is
studied in [21,22]. It is found that the expected rate of
nuclear recoils is small due to the large Earth to Sun
distance. The capture of DM particles in orbits bound to the
Earth is investigated in, e.g. [23–26]. Most of the works on
this topic focus on the neutrino signal produced by DM
annihilation at the Earth’s center. To the best of our
knowledge, the direct detection of DM particles bound
to the Earth is addressed in two articles only, besides our
recent publication [16]. In the pioneering work by Gould
et al. [27], the direct detection of DM particles bound to
the Earth is studied assuming a modified isothermal
velocity distribution for DM. This study carefully accounts
for various effects related to the Sun’s gravitational
potential, but focuses on standard spin-independent dark
matter-nucleon interactions only. In a subsequent publica-
tion [28], an explicit expression for the velocity distribution
at the Earth’s surface of DM particles in orbits bound to the
planet is found. Our work [16] extends these first inves-
tigations by considering a broader set of dark matter-
nucleon interactions, a refined chemical composition for
the Earth, and detectors with and without directional
sensitivity. In the present study, we further extend the
results presented in [16] by providing significantly more
general expressions for fluxes and rates now valid for
arbitrary dark matter-nucleon interactions, and considering
different target materials for the assumed terrestrial
detectors.
This paper is organized as follows. In Sec. II we will

review and significantly extend the calculations presented
in Ref. [16], providing all details needed to compute the
flux of DM particles bound to the Earth potentially
observable in a terrestrial detector. In Sec. III we will
convert this flux into a rate of nuclear recoil events,
considering both non-directional and directional detectors,
and expressing all equations in terms of general DM-
nucleus scattering cross-sections. In Sec. IV we will
numerically evaluate the main equations previously derived
and discuss how our conclusions depend on assumptions
regarding the direct detection of DM particles bound to the
Earth. Finally, we will conclude in Sec. V.

II. DM CAPTURE BY THE EARTH

The capture of DM particles by stellar objects and the
Earth has been studied extensively in the past [17,25]. In
particular, the capture of DM in the Sun and its subsequent
distribution in bound elliptical orbits has been studied both
analytically [21,22] and numerically [19,20]. Here we
focus on DM capture by the Earth. The key point for

the DM capture is that the particle should scatter under-
ground to velocities that are below the escape velocity of
that particular point of the Earth, thus leading to a
gravitational bound orbit.
Let us review the capture rate of halo DM particles to

gravitationally bound orbits in the Earth after a scattering
with a nucleus inside the Earth starting from first principles.
Let us assume that the DM particle density inside the
Earth at the scattering point just before the scattering takes
place is

dnχ ¼ fðx⃗; v⃗Þd3xd3v; ð1Þ

where fðx⃗; v⃗Þ is the DM distribution right before the
collision (at position x⃗ with velocity v⃗). The number of
DM scatterings per time per center of mass solid angle dΩ
that takes place within an infinitesimal volume d3x inside
the Earth with nuclei of the element A of density nAðxÞ is
given by

d _NA ¼ d3xnAðx⃗Þd3vfðx⃗; v⃗Þv
dσA
dER

dER; ð2Þ

where dσA=dER is the differential cross section per recoil
energy ER. Not all scatterings lead to capture. The capture
condition for a scattering is for the particle to lose energy
larger than the kinetic energy it had asymptotically far away
from the Earth. The energy before the collision (i.e. kinetic
plus potential one) is

Ebefore ¼
1

2
mχðv2 − v2escðrÞÞ ¼

1

2
mχv2∞; ð3Þ

where vescðrÞ is the escape velocity from the Earth at a
radius r from the center of the Earth (i.e. at the place of the
scattering) and v∞ is the velocity of the particle at an
asymptotically far away distance from the Earth. The total
energy after the collision must be negative in order for the
DM particle to remain in a bound orbit around the Earth. Its
value is

Eafter ¼
1

2
mχðv02 − v2escðrÞÞ ¼ −

GmχM⊕

2a
≡ −

1

2
mχα; ð4Þ

where a is the major semiaxis of the elliptical orbit after the
collision and α is defined as α≡GM⊕=a (G being the
gravitational constant andM⊕ the mass of the Earth). Using
Eqs. (3) and (4) we get the energy transfer ER

ER ¼ 1

2
mχðv2 − v2escðrÞ þ αÞ ¼ 1

2
mχðv2∞ þ αÞ: ð5Þ

Equation (5) gives dER ¼ ð1=2Þmχdα and Eq. (2) now
reads
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d _NA ¼ 1

2
d3xnAðx⃗Þd3vfðx⃗; v⃗Þv

dσA
dER

mχdαΘα; ð6Þ

where Θα represents a step function that enforces the
kinematic constraint ER ≤ βAþEkb where Ekb ¼ð1=2Þmχv2

is the kinetic energy before the collision. We define

βA� ¼ 4mχmA

ðmχ �mAÞ2
: ð7Þ

Using Eq. (5) the above condition can be written
as 2ER=mχ ¼ v2∞ þ α ≤ βAþv2 ¼ βAþðv2∞ þ v2escðrÞÞ. Since
1=βAþ − 1=βA− ¼ 1 the above constraint can be rewritten as

Θα ≡ Θ
�
βA−

�
v2escðrÞ −

α

βAþ

�
− v2∞

�
; ð8Þ

where it is understood that the step function ΘðxÞ ¼ 1 if
x ≥ 0 or 0 otherwise. Since the Earth is moving with
respect to the rest frame of the DM halo, the flux of
incoming particles is not going to be isotropic. This will
also infuence the distribution of elliptical orbits for the
captured DM particles. However merely due to the rotation
of the Earth around its own axis, we expect that the
distribution of the elliptical orbits will be to good approxi-
mation isotropic. For asymptotically far away distances
from the Earth we use a Maxwell-Boltzmann distribution

f∞ðv⃗∞Þ ¼
nχ

π3=2v30
exp

�
−
ðv⃗∞ þ v⃗eÞ2

v20

�
; ð9Þ

where v0 ¼ 220 km s−1 is the local standard of rest, ve ¼
232 km s−1 is the Earth velocity in the galactic rest frame,
and nχ the DM number density in the Earth’s neighbor-
hood. Liouville’s theorem states that the distribution
function remains constant along the trajectory of a particle,
i.e. fðx⃗; v⃗Þ ¼ f∞½v∞ðx⃗; v⃗Þ� where f∞ is the DM distribu-
tion far away from the Earth and v2∞ ¼ v2 − v2escðrÞ. Taking
the angular average of fðx⃗; v⃗Þ defined as

R
fðx⃗; v⃗Þd3v ¼

4π
R
v2f̄ðr; vÞdv we get

f̄ðvÞdv ¼ nχ
4π3=2vEv0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − v21

p
�
e
−v2−

v2
0 − e

−
v2þ
v2
0

�
dv; ð10Þ

where v� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − v21

p
� ve. Note that we have dropped

the variable r from f̄. The escape velocity of the Earth
varies from 15 km s−1 at the Earth’s center to 11.2 km s−1

at the Earth’s surface. In the following, we will simplify our
calculations by setting the escape velocity to its surface
value v1 ¼ 11.2 km s−1. This makes f̄ðr; vÞ independent of
r [leading to Eq. (10)], which simplifies the numerical
calculation significantly. Setting v1 ¼ 11.2 km s−1 is a

conservative choice, in that larger values of the escape
velocity would increase the size of the predicted effect.
Upon making the isotropic approximation, we can

simplify further Eq. (6). The specific angular momentum
of the particle after the collision is J ¼ rv sin θ where r is
the distance from the center of the Earth, v the velocity after
the collision and θ the angle subtended by r⃗ and v⃗. Since we
assume that cos θ is uniformly distributed, and
J2 ¼ J2maxð1 − cos2 θÞ, the distribution rewritten in terms
of J2 is d cos θ ¼ dJ2=ð2J2max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − J2=J2max

p
Þ where

Jmax ¼ rv is the maximum possible specific angular
momentum after the collision. Within this approximation
we can now rewrite Eq. (6) as

d _NA ¼ πd3xnAðrÞv3dvf̄ðvÞ
dσA
dER

mχ

 
J2max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

J2

J2max

s !−1

× dαdJ2ΘαΘJ; ð11Þ

where ΘJ ¼ ΘðJmax − JÞ is a step function enforcing J ≤
Jmax. With the use of Eq. (4), Jmax ¼ rðv2escðrÞ − αÞ1=2. One
can easily check that in the case of spin-independent
interactions where

dσA
dER

¼ mAσA
2μ2Av

2
F2
AðERÞ; ð12Þ

where μA is the DM-nucleus reduced mass, Eq. (11)
becomes the one derived in [22]

d _NA ¼ 2πσAvf̄ðr; vÞnAðrÞ
J2maxβ

Aþ

�
1 −

J2

J2max

�−1=2
F2
AðERÞ

× ΘαΘJðd3xdvÞdαdJ2: ð13Þ

The form factor F2
AðERÞ accounts for the loss of coherence

and it is usually approximated by

F2
AðERÞ ¼ expð−ER=QAÞ; ð14Þ

where ER is the energy transferred during the collision and
QA ¼ 3=ð2mAR2

AÞ, mA being the nucleus mass and RA ¼
10−13 cm ½0.3þ 0.91ð mA

GeVÞ1=3� the radius of the nucleus. In
this paper since we will present results for different types of
DM-nuclei interactions, we will use Eq. (11) which can be
used for any generic interaction and form factor.
Equation (11) can be written in a more convenient form

in terms of new more useful variables for the purposes of
this study. Instead of using J2 and α, we will use the
perihelion (minimum distance of the elliptical orbit to the
center of the Earth) rm and the ellipticity of the orbit e.
Recall that the semimajor axis for an ellipse is a ¼ rm=
ð1 − eÞ and consequently α ¼ GM⊕ð1 − eÞ=rm. Note also
that J2 ¼ r2mðv21 − αÞ. From these two expressions we can
calculate the Jacobian and get
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dJ2dα ¼ 2GM⊕

�
v21 −

GM⊕ð1 − eÞ
rm

�
dedrm: ð15Þ

Equation (11) can be written in terms of the new variables
rm and e as

d _NA ¼ 2πGM⊕d3xnAðrÞv3dvf̄ðvÞ
dσA
dER

mχ

×

 
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2m
r2

r !−1

ΘrmΘedrmde: ð16Þ

The condition J ¼ rmðv21 − αÞ1=2 ≤ Jmax imposed by ΘJ
becomes Θrm ≡ Θðr − rmÞ and Θe is Θα having substituted
α ¼ GM⊕ð1 − eÞ=rm. Recall that the semimajor axis
a ¼ rm=ð1 − eÞ. For the typical spin-independent DM-
nucleus cross section of Eq. (12), Eq. (16) takes the form
provided in [16]

d _NA ¼ 4πGM⊕
σAvfðvÞnAðrÞ

r2βAþ

�
1 −

r2m
r2

�−1=2
F2
AðERÞ

× ΘrmΘeðd3xdvÞdedrm: ð17Þ

Since we consider generic DM-nuclei interactions, we are
going to use the more generic form of Eq. (16).
Equation (16) should be summed over all elements

abundant in the Earth. In practice we take into account
the most abundant elements, i.e. 16O, 28Si, 24Mg, 56Fe, 40Ca,
23Na, 32S, 58Ni, and 27Al assuming the standard composition
and density profile of chemical elements in the Earth nAðrÞ
provided in [29]. Integrating Eq. (16) over d3xdv and
summing over elements gives

d _N ¼ 8π2GM⊕mχ

X
A

KAðrm; eÞ

×
Z

R⊕

rm

drnAðrÞ
�
1 −

r2m
r2

�−1=2
dedrm

≡ gðrm; eÞdedrm: ð18Þ

Equation (18) gives the rate of accumulation of trapped DM
particles into bound elliptical orbits of ellipticity within
½e; eþ de�, and perihelion within ½rm; rm þ drm�. In the
derivation of Eq. (18), we have assumed spherical sym-
metry, i.e. d3x ¼ 4πr2dr. KAðrm; eÞ is defined as

KAðrm; eÞ≡
Z

v2

v1

dvv3f̄ðvÞ dσA
dER

: ð19Þ

The upper limit v2 comes from the step function Θe and it
given by

v2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ βA−Þv21 −

GM⊕

rm
ð1 − eÞ β

A
−

βAþ

s
: ð20Þ

The lower limit of integration is obviously the escape
velocity v1 since a DM particle with zero speed at
asymptotic far distances from the Earth, will acquire v1
once it reaches the Earth. dσA=dER depends generally on
ER (either explicitly or via the form factor F2

AðERÞ. In such
a case

ER ¼ ð1=2Þmχ

�
v2 − v21 þ

GM⊕ð1 − eÞ
rm

�
ð21Þ

is the energy loss in the collision that must be used in the
evaluation of KAðrm; eÞ.

III. RECOIL ENERGY SPECTRUM OF
BOUND DARK MATTER

In order to estimate the rate of events of bound DM
particles scattering off a detector, we need to estimate the
probability of DM particles that follow a specific elliptic
orbit to scatter off the detector as well as the number of
bound DM particles per specific elliptical orbit. To simplify
our estimate, we are going to consider DM particles that
have scattered in the Earth once in order to get captured and
a second time in the detector creating a recoil signal.
Multiple scatterings that take place underground diminish
further the kinetic energy of the DM particle leading to
recoil energies that are practically below any experimental
threshold. Therefore within this approximation, we esti-
mate the number of DM particles that can accumulate in
different orbits and have scattered only once. We can now
estimate the number of periodsN required for a bound DM
particle to scatter for a second time

N ¼
�X

A

Z
θ1

0

nAðrÞσAξðrm; eÞdθ
�

−1
; ð22Þ

where ξðrm; eÞdθ is an infinitesimal path along the elliptic
trajectory of the orbit. The length of the path that a DM
particle travels underground is

Z
dl ¼ 2

Z
θ1

0

dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dr
dθ

�
2

þ r2

s
≡
Z

θ1

0

ξðrm; eÞdθ: ð23Þ

Using the parametric equation for the elliptic orbit

P
r
¼ 1þ e cos θ; ð24Þ

where P is a constant, e the ellipticity of the orbit and θ the
angle subtented from a point of the orbit with distance r
from the center and the perihelion, it is easily found that

ξðrm; eÞ ¼ 2rmð1þ eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2 þ 2e cos θ

p
=ð1þ e cos θÞ2:

ð25Þ
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The limit of integration θ1 is given by

cos θ1 ¼
rm
R⊕

ð1þ eÞ
e

−
1

e
ð26Þ

and corresponds to the angle subtended by the perihelion
and the point where the orbit crosses the Earth (r ¼ R⊕)
from the Earth’s center. It can be found by setting r ¼ R⊕
and solve for θ in Eq. (24) The condition −1 < cos θ1 < 1
implies that

1 − e
1þ e

≤
rm
R⊕

≤ 1: ð27Þ

For a given orbit, the time Tðrm; eÞ a DM particle can spend
without scattering for a second time until today is on
average

Tðrm; eÞ≡min½N × τðrm; eÞ; τ⊕�; ð28Þ

where τ⊕ ≃ 4.5 × 109 years is the age of the Earth and

τðrm; eÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2

GM⊕

r3m
ð1 − eÞ3

s
ð29Þ

is the period of the elliptical bound orbit. We will refer to T
as accumulation time.

A. Nondirectional detectors

The differential event rate in a nondirectional detector for
a given orbit characterized by rm and e is

dRrm;e

dER
¼ NT

dσN
dER

F ¼ NT
dσN
dER

d _N
4πl2c

2Tðrm; eÞ
τðrm; eÞ

; ð30Þ

whereNT is the number of target nuclei in the detector.F is
the flux of bound DM particles in orbits of perihelion rm
and ellipticity e crossing the detector. The flux is equal to
the rate d _N with which a particular orbit is populated (see
Eq. (18)) multiplied by the time Tðrm; eÞ this orbit can
accumulate DM particles divided by τðrm; eÞ=2 since
during each period of the orbit the DM particle crosses
the Earth twice, divided by 4πl2

c (lc being the distance
between the detector and the center of the Earth). We have
assumed that the elliptical orbits cross the surface of the
Earth isotropically, i.e. there are no bound DM particles
crossing a particular patch of the Earth’s surface with a
higher rate than another patch. This gives the factor 4πl2

c.
Since generically dσN=dER depends on the DM particle
velocity, it is needed to know the velocity before the
scattering with the detector. It is completely determined by
rm and e and can be easily shown to be

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM⊕

�
1

r
−
1 − e
2rm

�s
: ð31Þ

with r ¼ lc. Note that dσN=dER refers to DM scattering off
a detector nucleus and it should not be confused with
dσA=dER that was the scattering that lead to the capture of
DM by a random underground nucleus.
Combining Eqs. (18), (28) and (30) we obtain the

differential rate of events

dR
dER

¼ NT

2πl2
c

Z
1

0

Z
R⊕

1−e
1þeR⊕

dedrmgðrm; eÞ
dσN
dER

Tðrm; eÞ
τðrm; eÞ

drmde:

ð32Þ

We stress again that in general dσN=dER depends on v, and
v should be evaluated at the value given by Eq. (31).
Eq. (32) represents the main equation that gives the event
rate in nondirectional detectors. If one assumes spin-
independent interactions [Eq. (12)], the spectrum recoil
becomes

dR
dER

¼ κ

Z
1

0

Z
R⊕

1−e
1þeR⊕

gðrm; eÞ
v2

Tðrm; eÞ
τðrm; eÞ

drmde; ð33Þ

where κ ¼ NTmNσnA2
NF

2ðERÞ=ð4πl2
cμ

2
NÞ.

Equation (32) must be contrasted to the recoil events
coming from direct halo DM scatterings off nuclei targets
in the detectors. The rate is as usually given by

dR
dER

¼ NTnχ

Z
vescþve

vmin

dσN
dER

fðvÞvd3v; ð34Þ

where nχ is the local DM density in the Earth, and

vmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mNER=ð2μ2NÞ

q
ð35Þ

is the minimum velocity that can produce nuclear recoil of
energy ER. For fðvÞ we use the usual Maxwell-Boltzmann
of Eq. (9) with vesc and ve being the escape velocity of the
Galaxy and the velocity of the Earth in the rest frame of the
Galaxy respectively.

B. Directional detectors

We also study the spectrum of bound DM scattering
off directional detectors. By choosing an appropriate
recoil direction, directional detectors have the advantage
of minimizing the rate of events coming from the halo
DM particles. Pointing the cone of detection along with
the DM wind, one looks at particles that have velocities
v⃗ − v⃗e. This leads to overall smaller particle fluxes and
consequently to smaller rate of events. On the contrary
this choice does not affect the rate of events of bound
DM particles. In particular we will consider the spectrum
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of recoils coming from a direction perpendicular to the
vector that connects the center of the Earth with the
detector. We have found that such horizontal directions
can give an enhancement in the bound/halo ratio of DM
events in the detector. Generically the directional rate for
energy recoil ER and recoil direction within the solid
angle dΩq is

dR
dERdΩq

¼ NT

Z
dσ

dERdΩq
dΦ; ð36Þ

where dΦ is the flux of particles arriving at the detector.
For a generic DM-nucleus interaction, the cross section
per nuclear recoil energy per recoil solid angle is

dσN
dERdΩq

¼ dσN
dER

1

2π
δ

�
cos θq −

vmin

v

�
; ð37Þ

where θq is the angle between the nuclear recoil and the
initial DM velocity and vmin is given by Eq. (35).
Equation (36) can be rewritten with the help of (37) as

dR
dERdΩq

¼ NT

2πδl2
c

Z
dσN
dER

gðrm; eÞ
Tðrm; eÞ
τðrm; eÞ

δ

�
cos θq −

vmin

v

�
drmde

d cos θdϕ
4π

dω
2π

: ð38Þ

Equation (38) requires some explanation. The flux of
bound DM particles is proportional to gðrm; eÞTðrm; eÞ ×
τðrm; eÞ as in the case of nondirectional detectors divided
by the effective area of the detector δl2

c. Eventually we will
show that the result will be independent of δlc. In the case
of nondirectional detectors we were interested in the total
flux of particles passing through the detector without caring
about the direction. Therefore once we knew the density of
bound particles per orbit, we had to integrate over all
possible orbits (i.e. rm and e) in order to estimate the total
rate. In the case of directional detection, not only dowe care
about the total number of events per time, but we need to
know from what direction DM particles come from. Since
we care about detecting particles that scatter off nuclei in
the detector creating a nuclear recoil to a particular
direction, rm and e are not the only variables we need to
achieve that. In addition to the characteristics of the
elliptical orbit, we need to know what is the location of
the perihelion of the orbit compared to the detector
location. Therefore we parametrize the orbits by rm, e,
the polar angles θ and ϕ that define the location of the
perihelion with respect to the detector (i.e. the detector is
along the z-axis) and the angle ω between the plane of the
orbit and the plane defined by the perihelion the center of
the Earth and the detector. We expect an isotropic distri-
bution of the perihelion around the Earth and a uniform
distribution for ω. This is why we divide the corresponding
quantities by 4π and 2π respectively in Eq. (38). The δ
function enforces the recoil angle θq to be the one that
kinematics dictates. We now need to find the orbits that
pass from the detector’s location and can create a nuclear

recoil to a particular horizontal direction. Equation (24)
evaluated at θ ¼ 0 gives the perihelion r ¼ rm. Therefore
trading P for rm and using r ¼ lc (the distance of the
detector from the center of the Earth) we rewrite Eq. (24) as

rm ¼ lc
1þ e cos θ

1þ e
: ð39Þ

For a given orbit where the perihelion forms an angle θwith
the center of the Earth and the detector, rm must be given by
the above equation in order for the particle to pass from the
detector’s location. Varying the value of the perihelion
while keeping e and θ fixed leads to

δrm ¼ δlc
1þ e cos θ

1þ e
: ð40Þ

The integration over drm can be substituted approximately
by δrm which is related to the size of the detector. On the
other hand in order for the orbit to pass through the detector
(of dimension δlc),

lc sin θδω ¼ δlc ⇒ δω ¼ δlc

lc sin θ
: ð41Þ

Since θ takes values from 0 to π, it is always positive. Since
δlc ≪ lc δω is extremely small unless one considers very
small values of θ (practically locating the perihelion inside
the detector). If we ignore this tiny patch of surface for the
perihelion, we can substitute the integration over dω by δω.
Using Eqs. (40) and (41) we can write (38) as

dR
dERdΩq

¼ NT

16π3lc

Z
dσN
dER

gðrm; eÞ
Tðrm; eÞ
τðrm; eÞ

δ

�
cos θq −

vmin

v

�
1þ ez
1þ e

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p dzdϕde; ð42Þ

where rm is given by Eq. (39). We defined z≡ cos θ. Note that the rate does not depend anymore on the characteristic size of
the detector δlc. We will eventually use the delta function to perform the integral over z. Before we do this, we need to find
the relation of θq with the variables of the problem i.e. e, ϕ and z. This is done in the Appendix, where we find
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cos θq ¼ θ̂ · l̂ ¼ � 1þ e cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2 þ 2e cos θ

p cosϕ: ð43Þ

The � refers to the two possibilities that the particle is
orbiting the ellipse (counter)clockwise. We assume that it is
equally probable to have clockwise or counterclockwise
orbits. Let us consider first the orbits with a plus sign in
Eq. (43). We will multiply the corresponding rate by a
factor of 1=2 since there is 50% probability. In order to
evaluate the dz integration using the delta function in
Eq. (42), we will use the well-known property

δ½hðzÞ� ¼ δðz − z0Þ
jh0ðz0Þj

; ð44Þ

where hðzÞ is a function of z, z0 is the solution of the
equation hðzÞ ¼ 0 and h0ðz0Þ is the derivative of hðzÞ with
respect to z evaluated at z0. In our particular case

hðzÞ ¼ cos θq −
vmin

v

¼ ð1þ ezÞ cosϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2 þ 2ez

p −
vminffiffiffiffiffiffiffiffiffiffi

2GM⊕
lc

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1−e2

2ð1þezÞ
q ; ð45Þ

where v is given by Eq. (31) with rm given by Eq. (39).
Recall that z ¼ cos θ. The equation hðzÞ ¼ 0 has the
solution

z0 ¼
−cos2ϕþ γ

ecos2ϕ
; ð46Þ

where

γ ¼ v2minlc

GM⊕
: ð47Þ

It is also easy to show that

jh0ðz0Þj ¼
ecos2ϕ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ − ð1 − e2Þcos2ϕ

p : ð48Þ

The constraint −1 < z0 < 1 leads to the condition

ffiffiffiffiffiffiffiffiffiffiffi
γ

1þ e

r
< cosϕ <

ffiffiffiffiffiffiffiffiffiffiffi
γ

1 − e

r
: ð49Þ

From Eq. (45) it is clear that 0 < cosϕ < 1 and thereforeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ð1þ eÞp

< 1. This last condition can be rewritten as

e > γ − 1: ð50Þ

Recall that 0 < e < 1 and therefore to have a nonzero
signal γ − 1 < 1 ⇒ γ < 2. Using the definition of γ
[Eq. (47)] and vmin from Eq. (35), the constraint γ < 2
becomes

ER <
4μ2NGM⊕

mNlc
: ð51Þ

This condition in fact sets the upper limit in the recoil
energy spectrum that bound DM particles can contribute.
We can now rewrite Eq. (42) performing the integration

over z by using the delta function as we prescribed above

dR
dERdΩq

¼ NT

4π3lc

Z
1

e1

Z
ϕ2

ϕ1

dσN
dER

gðrm; eÞ
Tðrm; eÞ
τðrm; eÞ

1þ ez0
1þ e

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z20

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ − ð1 − e2Þcos2ϕ

p
cos2ϕ

Θð2 − γÞdϕde: ð52Þ

e1 ¼ Max½γ − 1; 0� is derived from the constraint
of Eq. (50) and the fact that e > 0. The step function
Θð2 − γÞ ensures that γ < 2 as it is required from the
constraint of (51). The constraint of Eq. (49) determines the
limits of integration for ϕ

ϕ1 ¼ cos−1
�
Min

�
1;

ffiffiffiffiffiffiffiffiffiffiffi
γ

1 − e

r ��

ϕ2 ¼ cos−1
ffiffiffiffiffiffiffiffiffiffiffi
γ

1þ e

r
: ð53Þ

Note that rm is evaluated at the value

rm ¼ lc
1þ ez0
1þ e

; ð54Þ

[see Eq. (39)]. Equation (52) is our final result for the recoil
spectrum in directional detectors. Comparing the overall
coefficient of Eq. (52) with respect to that of Eq. (42), the
former is larger by a factor of 4 (there is a factor of 1=4
versus 1=16 respectively). A factor of 2 comes from the
integration of ϕ. Note that Eq. (49) is satisfied in two
regions i.e. one with positive and one with negative value of
ϕ. Since cosϕ always appears as a square, we integrate
only over positive ϕ and multiply by 2. The second factor
of 2 comes from the fact that the orbits with the opposite
direction [i.e. with a minus sign in Eq. (43)] give exactly the
same contribution as the orbits with the plus sign. This is
easy to show: The solution of Eq. (45) is still given by (46)
even for the orbits with a minus sign in (43). The only
difference is that in this case cosϕ < 0. The constraint of
Eq. (49) remains the same once cosϕ → − cosϕ. However
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since cosϕ appears always as cos2 ϕ in Eq. (52), one
can change variable ϕ0 ≡ π − ϕ keeping in mind that
cos2 ϕ0 ¼ cos2 ϕ. The constraint on ϕ0 is the same of
Eq. (49) with ϕ → ϕ0 since cosϕ0 ¼ − cosϕ. The value
of jh0ðz0Þj is the same as before and therefore the overall
contribution of the “negative sign” orbits is the same as the
ones with positive sign.
Equation (52) can be used for any generic form of

DM-nucleon interactions. For the spin-independent inter-
action of Eq. (12), (52) becomes

dR
dERdΩq

¼ κd

Z
1

e1

de
Z

ϕb

ϕa

dϕ
1

v2
gðrm; eÞ
τðrm; eÞ

Tðrm; eÞ

×
1þ ez0
1þ e

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z20

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ − ð1 − e2Þcos2ϕ

p
ecos2ϕ

;

ð55Þ

where κd ¼ NTmNσnA2
NF

2ðERÞ=ð8π3μ2NlcÞ.
Equation (52) describes the recoil spectrum of bound

DM scattering off an underground detector. This spectrum
must be contrasted to the usual directional spectrum of halo
DM. Using Eq. (37) we get

dR
dERdΩq

¼ NTnχ
2π

Z
dσN
dER

δ

�
v̂ · q̂ −

vmin

v

�
fðvÞvd3v: ð56Þ

In the case of spin independent interactions [see Eq. (12)], it
takes the form

dR
dERdΩq

¼ κhf̂ðvmin; q̂Þ; ð57Þ

where κh ¼ NTnχmNσnA2
NF

2
NðERÞ=ð4πμ2NÞ and f̂ðvmin; q̂Þ

is the so-called Radon transformation of fðvÞ defined
as [30]

f̂ðvmin; q̂Þ ¼
Z

δðv⃗ · q̂ − vminÞfðvÞd3v: ð58Þ

IV. RESULTS

The main equations derived in the previous sections are
Eqs. (32) and (52). They describe the rate of nuclear recoil
events expected in nondirectional and directional detectors,
respectively. Now we numerically evaluate and interpret
these expressions under different assumptions regarding the
cross-sections dσA=dER (for scattering in the Earth) and
dσN=dER (for scattering in a terrestrial detector). We will
also investigate the dependence of our results on the type of
target nuclei composing the detector in analysis.

A. General considerations

The rate of nuclear recoil events in Eq. (32) depends on
the cross-section dσA=dER through the functions KA and T

[defined in Eqs. (19) and (28), respectively]. It also
depends on the differential cross-section dσN=dER, which
appears in Eq. (32) directly. We can therefore characterize
each single scattering event at detector as the result of a
complex three stage physical process. Each stage explicitly
depends on how DM interacts with nuclei and is briefly
described below:

(i) Capture of the DM particle χ by the Earth. The
element A contributes with probability proportional
to KA.

(ii) Motion of the DM particle χ along the bound orbit
characterized by rm and e. This motion lasts on
average for a time T, i.e. the accumulation time
defined in Eq. (28).

(iii) Scattering of the particle χ at detector (with cross-
section given by dσN=dER).

In all numerical applications, we will assume the cross-
section [31]

dσA
dER

¼ 2mA

ð2jA þ 1Þv2
X
τ¼0;1

X
τ0¼0;1

�
cτ1c

τ0
1W

ττ0
M ðERÞ

þ jχðjχ þ 1Þ
12

cτ4c
τ0
4 ðWττ0

Σ0 ðERÞ þWττ0
Σ00 ðERÞÞ

þ jχðjχ þ 1Þ
3

2mAER

m2
n

cτ11c
τ0
11W

ττ0
Φ00 ðERÞ

�
; ð59Þ

and an analogous expression for dσN=dER. The isotope-
dependent nuclear response functions Wττ0

M , Wττ0
Σ0 , Wττ0

Σ00 and
Wττ0

Φ00 in Eq. (59) are quadratic in nuclear matrix elements
and are defined in Ref. [31]. They have been calculated for
the 16 most abundant elements in the Sun, including 16O,
28Si, 24Mg, 56Fe, 40Ca, 23Na, 32S, 58Ni, and 27Al, in Ref. [32]
and for various isotopes of Xe and Ge, and for Na in
Ref. [33]. The labels 1, 4 and 11 in Eq. (59) refer to the non-
relativistic effective operators O1, O4 and O11 introduced
in Ref. [31]. O1 and O4 correspond to the familiar spin-
independent and spin-dependent interaction operators,
respectively, while O11 ¼ ðq=mnÞ · Sχ , where mn is the
nucleon mass. The operators q and Sχ are the momentum
transfer and DM particle spin operators, respectively, and
are explicitly defined in Ref. [32]. The operator O11 can be
the leading operator in the nonrelativistic limit of dark
matter-quark interactions mediated by a spin 0 (1) particle
when dark matter has spin 1=2 (1) [34]. It has an interesting
phenomenology at direct detection experiments [35,36] and
in the capture of WIMPs in the Sun [32] and in the Earth
[37]. A comparison of Eqs. (59) and (12) allows us to
express σA and FA in terms of the coupling constants and
response functions in Eq. (59). For the isoscalar coupling
constants, c01, c

0
4 and c011, we assume the reference values

2=m2
V , withmV ¼ 246.2 GeV (the electroweak scale), or 0,

depending on whether we are interested in the operatorO1,
O4 or O11. At the same time, we set the isovector coupling
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constants to zero: c11 ¼ c14 ¼ c111 ¼ 0. Finally, jA and jχ are
the A element and DM particle spins, respectively.
Knowledge of the Earth’s chemical composition is

needed in order to evaluate KA and T. In this study, we
consider the nine elements: 16O, 28Si, 24Mg, 56Fe, 40Ca,
23Na, 32S, 58Ni, and 27Al, with mass fractions as given in
Ref. [38], and the radial density given in Ref. [39] and
implemented in Ref. [29]. We have verified numerically
that changes in the mass fraction of single elements in the
Earth have a negligible impact on the scattering rate
evaluation.
Figure 1 shows KA as a function of the DM particle mass

mχ for two elements in the Earth, namely Oxygen and Iron,
and for two reference values of the ellipticity e. We find that
KA increases for mχ → mA since in this mass range the
upper limit v2 in Eq. (19) tends to infinity, i.e. maximum
momentum transfer in the scattering. Figure 1 also shows
that for large values of e the range of masses where KA ≠ 0
is broader than for e≃ 0. The reason is that for a given rm,
the upper limit v2 [Eq. (20)] in the integral defining KA
grows with e and the integrand in Eq. (19) is proportional to
v3 which also grows with e. Fig. 1 has been obtained by
setting rm ¼ R⊕=2.
Figure 2 shows T as a function of rm for two reference

values of mχ and e. As expected, T grows when rm → R⊕
and e → 1 since the intersection of these orbits with the
Earth is small, which minimizes the probability of a second
DM scattering event. In this work we assume that after a
second scattering event, DM particles sink at the center of
the planet and cannot be detected directly. Notice also that

in all calculations discussed here, we assume elliptical
orbits for the DM particles in bound orbits, which is
rigorously correct only for trajectories external to the
Earth. It is however a fairly good approximation for orbits
with rm → R⊕ and e → 1, i.e. for the orbits contributing the
most to the rate of nuclear recoil events presented in what
follows. At the same time, Fig. 2 is quantitatively reliable in
the limit rm → R⊕ and e → 1 only.

B. Nondirectional detectors

In this section we focus on the rate of nuclear recoil
events dR=dER in Eq. (32). Figure 3 shows dR=dER as a
function of ER assuming dark matter-nucleon interactions
of type O1. We have obtained this figure under the
assumption c01 ¼ 2ϵ=m2

V , c
0
4 ¼ 0 and c011 ¼ 0 with ϵ ¼ 1

in the left panel, and ϵ equal to the value in the legends
in the right panel (this allows us to consider different
target materials in the same figure). The left panel reports
results obtained for three different values of the DM particle
mass and assuming Germanium as a target material,
whereas in the right panel we consider different target
materials for dσN=dER, namely Xenon, Germanium,
Sodium, Iodine, and Fluorine, and fix the DM particle
mass at mχ ¼ 50 GeV. In both panels, solid lines are
the total rates, including the contribution from halo and
bound DM particles. Dashed lines represent the contribu-
tion to dR=dER from halo DM particles. The case of dark
matter-nucleon interactions of type O11 is discussed in
Fig. 4, where in the left (right) panel we have reported
results obtained for different DM particle masses (target

FIG. 1. KA as a function of the DM particle massmχ for two elements in the Earth, namely Oxygen and Iron. KA is proportional to the
probability of scattering towards a bound orbit of given ellipticity e and perihelion rm. In the figure we vary e as reported in the legends,
and fix rm to R⊕=2. The left panel refers to the interactionO1 with c01 ¼ 2=m2

V and c11 ¼ 0, whereas the right panel to the interactionO11

with c011 ¼ 2=m2
V and c111 ¼ 0. The parameter mV ¼ 246.2 GeV corresponds to the electroweak scale.
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FIG. 3. Rate of nuclear recoil events dR=dER as a function of ER. We assume dark matter-nucleon interactions of type O1 and
c01 ¼ 2ϵ=m2

V , c
1
1 ¼ c04 ¼ c14 ¼ c011 ¼ c111 ¼ 0 (mV ¼ 246.2 GeV), with ϵ ¼ 1 in the left panel, and ϵ equal to the value in the legends in

the right panel (this allows us to consider different target materials in the same figure). The left panel reports results obtained for three
different values of the DM particle mass, and assuming Germanium as a target material. In the right panel we fix mχ ¼ 50 GeV, and
consider different target materials for dσN=dER, namely, Xenon, Germanium, Sodium, Iodine and Fluorine. In both panels, solid lines
correspond to the total rates, including the contribution from halo and bound DM particles. Dashed lines represent the contribution to
dR=dER from halo DM particles. Vertical lines show illustrative energy thresholds of running or proposed dark matter direct detection
experiments.

FIG. 2. Accumulation time T as a function of the perihelion rm for two reference values of the DM particle mass mχ and of the
ellipticity e. The left panel refers to the interaction O1 with c01 ¼ 2=m2

V and c11 ¼ 0, whereas the right panel to the interaction O11 with
c011 ¼ 2=m2

V and c111 ¼ 0. Coupling constants are expressed in terms of the electroweak scalemV ¼ 246.2 GeV. The accumulation time
for the operator O11 is significantly larger than that of O1. Overall, T × KA for O11 is larger than the corresponding of O1.
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materials). In both figures, vertical lines correspond to
the threshold energies of present (CDMSlite [40] and
DAMIC [41]) or proposed (Drukier [13]) direct detection
experiments.

From Figs. 3 and 4 we conclude that DM particles in
orbits bound to the Earth can be revealed in future direct
detection experiments as pronounced features in the low-
energy part of the induced nuclear recoil spectrum. As in

FIG. 4. Same as for Fig. 3 but now for the interaction O11 and with ϵ ¼ 2 for Xenon and 1 otherwise (information omitted in the
legends for simplicity).

FIG. 5. Left: Ratio of Eqs. (32) and (34) as a function of mχ for three different dark matter-nucleon interactions. From the top to the
bottom in the legend:O1, a modified version ofO1 obtained by replacing c01 with c

0
1=v (i.e. resonant scattering),O4 andO11. In all cases

we set c11, c
1
4 and c

1
11 to zero, and assume Germanium as a target material. In the figure, we introduce the symbol dσ=dE to characterize

the scaling of dσA=dER and dσN=dER as a function of the dark matter-nucleus relative velocity v and of the momentum transferred q.
Right: Contribution of 16O, 28Si, 24Mg, 56Fe, 40Ca, 23Na, 32S, 58Ni, and 27Al to the ratio of Eqs. (32) and (34) as a function of the DMmass
mχ . We assume O1 as dark matter-nucleon interaction, c01 ¼ 2=m2

V (mV ¼ 246.2 GeV) and c11 ¼ 0. In both panels we assume a nuclear
recoil energy of 1 eV in the evaluation of the scattering rates.
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the case of halo DM, DM particles bound to the Earth can
produce a larger number of nuclear recoil events at low-
energies if they are light, and in detectors composed of
heavy nuclei.
In order to assess the significance of the predicted

spectral features, we evaluate the ratio of Eqs. (32) and
(34) as a function of mχ . The result of this calculation is
reported in Fig. 5. The left panel shows the rate ratio for
four dark matter-nucleon interaction types: O1, a modified
version of O1 obtained by replacing c01 with c01=v in the
equations above (e.g. resonant scattering [42]), O4, and
finally O11.
The rate ratio can be as large as 0.1 for the interaction

O1, and 0.4 for its resonant analogous. For the operator O4

the rate ratio is 0.27 at the Aluminium resonance, which
partly overlaps with the Sodium resonance. In this analysis,
27Al and 23Na are the only elements in the Earth with spin
different from zero. This explains the differences observed
in theO1 andO4 resonances reported in Fig. 5. Notably, for
the interaction O11 the rate ratio can be ∼200 at the Iron
resonance (i.e. mχ ∼ 50 GeV). The large value found for
the operatorO11 is related to the large accumulation time T
that DM particles interacting with nuclei viaO11 can spend
on bound orbits before a second scattering occurs (see right
panel in Fig. 2). We have verified numerically that the ratio
of Eqs. (32) and (34) is independent of the coupling
constants c01, c

0
4 and c011 when a single interaction at the

time is considered.

Finally, the right panel in Fig. 5 shows the contribution
of 16O, 28Si, 24Mg, 56Fe, 40Ca, 23Na, 32S, 58Ni, and 27Al to the
ratio of Eqs. (32) and (34) as a function of the DM particle
mass, and assuming O1 as dark matter-nucleon interaction.
The overall shape of the rate ratio reflects the resonant form
of the function KA, and contributions from distinct ele-
ments in the Earth can easily be identified in the figure.

C. Directional detectors

We conclude this section with a quantitative analysis of
Eq. (52), which describes the double differential rate of
nuclear recoil events induced by the scattering of DM
particles bound to the Earth in directional detection experi-
ments [43–45].
In Fig. 6, the left panel shows the ratio of the double

differential rates in Eqs. (52) and (56) as a function of the
DM particle mass, assuming O1 as dark matter-nucleon
interaction. The solid blue line refers to a hypothetical
detector composed of Fluorine, whereas the dashed red line
corresponds to a second hypothetical detector which uses
3He as a target material. The right panel in Fig. 6 shows the
same ratio, now evaluated for the operators O1 and O11,
and assuming Fluorine as a target material. As for the case
of nondirectional detectors, the predicted spectral feature is
more pronounced for the operator O11 than for O1 by
roughly three orders of magnitude.
For directional detectors the size of the effect is of the

order of 0.1 (102) for O1 (O11), and it is generically larger

FIG. 6. Left: Ratio of the double differential rates in Eqs. (52) and (56) as a function of the DM particle mass. We assume O1 as dark
matter-nucleon interaction. The solid blue line refers to a hypothetical detector composed of Fluorine, whereas the dashed red line
corresponds to a second hypothetical detector which uses 3He as a target material. Right: Same ratio as in the left panel now evaluated for
the operatorsO1 (blue solid line) andO11 (red dashed line) for comparison. In both cases we assume Fluorine as a target material. In the
two panels we assume a nuclear recoil energy of 1 eV.
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than that of the nondirectional detectors (e.g. compare
Fig. 5 with Fig. 6). Furthermore, Fig. 6 shows that the
predicted spectral feature is slightly more pronounced for a
3He based detector than for a detector adopting F as a target
material.

V. CONCLUSION

We have studied the properties and detection prospects
of DM particles bound to the Earth. The new DM
population forms via scattering of Milky Way DM
particles by nuclei in our planet’s interior. We have
derived fluxes and nuclear recoil event rates at directional
and nondirectional detectors expected for the new pop-
ulation of DM particles. The equations presented in this
work are valid for arbitrary dark matter-nucleon inter-
actions, and extend those found in Ref. [16]. We have
numerically evaluated such expressions under different
assumptions regarding the scattering of DM in the Earth
and at detector, carefully modeling the Earth internal
composition, and considering different target materials for
the assumed directional and nondirectional DM direct
detection experiments. In the figures, results were pre-
sented under the conservative assumption of constant
escape velocity: vesc ¼ 11.2 km s−1. Larger values for
vesc would result in a larger bound to halo DM rate ratio.
For example, we find that such a ratio increases by a
factor of seven when vesc varies from vesc ¼ 11.2 km s−1
to vesc ¼ 15 km s−1 and dark matter interacts with nucle-
ons through O1.
We have found that future DM direct detection experi-

ments with an ultralow energy threshold of about 1 eV,
an equally low energy resolution, and an adequate
understanding of possible background sources in this
energy region, have the potential to reveal the population
of DM particles studied in this paper with the same
exposure needed to detect the associated Milky Way DM
component. DM particles bound to the Earth manifest as
a prominent feature in the low-energy part of the
observed nuclear recoil energy spectrum. In particular
we have found that DM-nucleus operators like O11 can
give rates in recoil events of bound DM in detectors up to
a few hundred times higher than the corresponding
Milky Way DM in low energies. The existence and
the shape of this feature are independent of the dark
matter-nucleus scattering cross-section normalization.
This work provides an additional important motivation
to invest in the design and development of a new class of
ultra-low threshold energy detectors.
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APPENDIX DERIVING θq

We now derive the relation between θq and e, ϕ and z.
Let us consider for the moment an orbit with ϕ ¼ 0 and an
angle θ subtended by the detector, the center of the Earth
and the perihelion of the orbit. If we use Cartesian
coordinates with the perihelion being along the x-axis, a
point in the orbit has coordinates

x ¼ a0eþ r cos θ; y ¼ r sin θ ðA1Þ

with a0 being the focal point. Let us choose a horizontal
direction at the location of the detector

θ̂ ¼ − sin θx̂þ cos θŷ: ðA2Þ

A bound DM particle that follows a particular elliptical
orbit reaches the detector with a velocity that has a
direction

l̂ ¼ dx
dl

x̂þ dy
dl

ŷ: ðA3Þ

With the help of Eq. (A1)

dx
dl

¼ dr cos θ − r sin θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p ¼ dθðdrdθ cos θ − r sin θÞ
dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdrdθÞ2 þ r2

q : ðA4Þ

Canceling the dθ from numerator and denominator and
calculating dr=dθ from Eq. (24) we get the final result

dx
dl

¼ −
sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2 þ 2e cos θ
p : ðA5Þ

Similarly

dy
dl

¼ eþ cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2 þ 2e cos θ

p : ðA6Þ

Using Eqs. (A2), (A3), (A4) and (A5) we get

cos θq ¼ θ̂ · l̂ ¼ � 1þ e cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2 þ 2e cos θ

p : ðA7Þ

Recall that θ̂ is the recoil direction and l̂ the direction of the
velocity of the bound DM particle. As already mentioned in
the previous sections, the � refers to the two possibilities
that the particle is orbiting the ellipse (counter)clockwise.
We now show what is the value of cos θq in the generic case

of a nonzero ϕ. Recall that cos θq ¼ θ̂ · l̂ with θ̂ and l̂
given in Eqs. (A2) and (A3) [see also Eqs. (A5) and (A6)].
Note the coordinate system convention we have used: the
perihelion, the center of the Earth and the detector lie on the
x-y plane with the perihelion being on the x-axis. In order to
find cos θq for a nonzero value of ϕ, we need to go to a
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reference system that is rotated by an angle ϕ around the
axis that connects the center of the Earth and the detector.
Practically this can be achieved by the following coordinate
transformations: (i) We rotate around the z-axis by an angle
θ. This will make the x-axis pass through the detector.
(ii) We rotate around the new x-axis (the axis passing from
the detector and the center of the Earth) by an angle ϕ.
(iii) We rotate around the new z-axis by an angle −θ.

The new coordinate system will be given in terms of the old
one as

x̂0 ¼ C3 · C2 · C1 · x̂; ðA8Þ

where x̂0 ¼ ðx̂0; ŷ0; ẑ0Þ, x̂ ¼ ðx̂; ŷ; ẑÞ and C1;2;3 are the 3 × 3

rotation matrices that correspond to the rotations (i), (ii),
(iii). In particular Eq. (A8) gives explicitly

x̂0 ¼ ðcos2θ þ sin2θ cosϕÞx̂þ sin θ cos θð1 − cosϕÞŷ − sin θ sinϕẑ

ŷ0 ¼ sin θ cos θð1 − cosϕÞx̂þ ðsin2θ þ cos2θ cosϕÞŷþ cos θ sinϕẑ

ẑ0 ¼ sin θ sinϕx̂ − sinϕ cos θŷþ cosϕẑ: ðA9Þ

The velocity of the particle that follows an elliptic orbit where the perihelion is rotated around the detector axis by ϕ
should be given by Eq. (A3) with x̂ and ŷ substituted by x̂0 and ŷ0 respectively

l̂ ¼ dx
dl

x̂0 þ dy
dl

ŷ0; ðA10Þ

with dx=dl and dy=dl given from Eqs. (A5) and (A6). Using Eq. (A9) we calculate cos θq ¼ θ̂ · l̂ and obtain Eq. (43).
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