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Dark matter may be discovered through its capture in stars and subsequent annihilation. It is usually
assumed that dark matter is captured after a single scattering event in the star; however this assumption
breaks down for heavy dark matter, which requires multiple collisions with the star to lose enough kinetic
energy to become captured. We analytically compute how multiple scatters alter the capture rate of dark
matter and identify the parameter space where the effect is largest. Using these results, we then show how
multiscatter capture of dark matter on compact stars can be used to probe heavy mX ≫ TeV dark matter
with remarkably small dark matter–nucleon scattering cross sections. As one example, it is demonstrated
how measuring the temperature of old neutron stars in the Milky Way’s center provides sensitivity to high
mass dark matter with dark matter–nucleon scattering cross sections smaller than the xenon direct detection
neutrino floor.
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I. INTRODUCTION

The nature of dark matter remains an outstanding
mystery of our cosmos. Terrestrial direct detection experi-
ments have become exceptionally sensitive to dark matter
in the mass range GeV–10TeV. While there are proposals
for probing lighter dark matter, finding heavy dark matter,
which has a lower particle flux through terrestrial detectors,
presents a special challenge. Compact stars, which have a
much larger fiducial mass than terrestrial detectors, provide
an alternative means to probe dark matter. Specifically,
pairs of dark matter particles captured via interactions with
the star can annihilate, leaving a distinct thermal trace.
Prior studies of dark matter’s accumulation in stars have

considered the case that darkmatter capture occurs after dark
matter scatters once off a stellar constituent (e.g. nucleus,
nucleon, electron). This is appropriate when the scattering
cross section between dark matter and the constituent is
small, leading to amean path length that is large compared to
the size of the star, so that at most one scatter is expected
[1,2]. In this paper, we consider the case where the single
scatter approximation breaks down and the dark matter is
predominantly captured by scattering multiple times. We
derive equations suitable for computingmultiscatter capture
of dark matter in stars, and as one application, show that
observations of neutron stars in our galaxy would be
sensitive to super-PeV mass dark matter that annihilates
to Standard Model (SM) degrees of freedom, for dark
matter–nucleon scattering cross sections smaller than the
xenon direct detection atmospheric neutrino floor.
To become captured while transiting through a star,

dark matter must slow to below the stellar escape speed
by recoiling against stellar constituents. During a single

transit through the star, if the number of such interactions
exceeds unity,

N ≈ nσR ≥ 1; ð1Þ

dark matter will be slowed (and possibly captured) by
multiple scatters. Here n is the number density of stellar
constituents, R is the radius of the star, and σ is the cross
section for dark matter to scatter off a stellar constituent. In
white dwarfs, σ is typically the cross section for scattering
off nuclei (σNX), while in neutron stars σ is typically the
cross section for scattering off nucleons (σnX). One might
also consider dark matter which predominantly scatters
with electrons, in which case σ would be the dark matter–
electron cross section. Often the stellar mass is related to
the number of scattering sites by M ≃mNn, with m the
mass of a scattering site and Nn the number of scattering
sites per star. Keeping the stellar mass (or, equivalently,Nn)
fixed while varying the star’s size, Eq. (1) implies that the
typical number of dark matter scatters inside a star scales as

N ∝
NnσR
4
3
πR3

∼
Nnσ

R2
: ð2Þ

As explored hereafter, this means that multiscatter capture
is particularly relevant for dark matter accumulating in
compact stars, i.e. white dwarfs and neutron stars.
Specifically, fixing σ and comparing our Sun with an
equivalent mass white dwarf (R ∼ 10−2Rsun) or neutron star
(R ∼ 10−5Rsun), the smaller size of the compact stars leads
to a 104 enhancement in the average number of scatters for
white dwarfs relative to the Sun, and a 1010 relative
enhancement for neutron stars.
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While multiscatter can occur for dark matter of any mass,
multiscatter capture is most important for heavy dark
matter. This is primarily for two reasons. First, in order
to be captured, the dark matter must lose a sufficient
amount of its energy through collisions with scattering sites
in the star. The fraction of the dark matter’s energy lost in
each collision depends on the scattering angle, but is
proportional to the constituent mass m divided by the dark
matter mass mX in the limit that mX ≫ m. Therefore,
heavier dark matter loses less energy per scatter, making
gravitational capture after a single scatter less likely and
multiscatter capture more important. Second, the range
of dark matter–nucleon cross sections for which heavy
(PeV–EeV) dark matter capture in neutron stars proceeds
predominantly through multiscatter energy losses happens
to coincide with dark matter–nucleon cross sections just
beyond the reach of next-generation direct detection experi-
ments. Furthermore, it will be demonstrated in Sec. IV that
PeV–EeV mass dark matter can be captured by multiple
(∼10–103 times) scatters in neutron stars even for the dark
matter–nucleon cross sections below the xenon direct
detection “neutrino floor,” σnX ∼ 10−45 cm2ðmX=PeVÞ
[3]. For these reasons, a primary focus of this paper will
be dark matter with mass mχ ≫ TeV.
The dark matter masses just mentioned are well

above the canonical weakly interacting massive particle
mass scale of about 100 GeV. Dark matter with a weak
scale mass has received deserved attention in the past
decade because it can reproduce the observed dark matter
abundance as a thermal relic. Considerable experimental
efforts have bounded the nucleon scattering cross section
for weak-scale mass (mX ∼ 100 GeV) dark matter to σnX ≲
10−46 cm2 (Refs. [4–6]). On the other hand, it has been
shown that if one deviates from the minimal cosmological
scenario, dark matter models with heavier masses mX ∼
TeV–EeV are predicted, e.g. [7–11], either as a result of
extra sources of entropy that dilute the thermal overabun-
dance or because dark matter is very weakly coupled to the
SM and it never thermalizes. As weak-scale mass dark
matter has become increasingly constrained, the prospect of
very heavy dark matter, which can still have a nearly
“weak” scale cross section with nucleons (σ ∼ 10−40 cm2)
deserves more attention. However, as a consequence of
reduced dark matter flux, direct detection experiments have
sensitivities that drop off with 1=mX at high masses, and
new methods to probe heavy dark matter are necessary. As
we will show, neutron stars in our galaxy are powerful
probes of heavy, weakly interacting dark matter.
Some prior work has considered multiscatter dark matter

capture in the Earth and Sun [12–14], where the gravita-
tional potential of the capturing body, nuclear coherence,
and relativistic effects could be reasonably neglected.
Hereafter we treat single and multiple scatter capture rates
and provide an equation valid for capture in the limit that
the escape velocity of the capturing body greatly exceeds

dark matter’s halo velocity. The organization of the rest of
this paper is as follows: In Sec. II, we present our main
points and the parametric dependence of multiscatter dark
matter capture in compact stars. A detailed derivation of
multiscatter capture is given in Sec. III. Using the derived
multiscatter capture formulas, in Sec. IV we find prospects
for old neutron stars near the Galactic center to constrain
heavy dark matter that annihilates to Standard Model
particles. In Sec. V, we conclude.

II. PARAMETRICS OF MULTISCATTER
CAPTURE

In order to calculate the parametric dependence of
multiscatter capture, we are going to first examine the
dark matter single-scatter capture rate, and then investigate
how the rate changes when one accounts for more than one
collision. We will find that, for heavy enough dark matter,
the mass capture rate of dark matter on compact stars
depends linearly on σ and inversely on mX. This ∼σ=mX
scaling of the mass capture rate arises for heavier dark
matter, because more scatters (which scale up with σ) are
needed for heavier particles to be captured by the star.
Dark matter capture in a star depends upon the flux F

of dark matter through the star and the probability Ω that
collision(s) with the star will deplete the dark matter’s
energy enough that it becomes gravitationally bound. The
flux in turn depends upon the number density of dark
matter in the halo ðnX ¼ ρX

mX
Þ, the relative motion of the

star with respect to the dark matter halo (vstar), the
distribution of dark matter speeds in the dark matter halo,
and the escape speed of the dark matter halo (vhaloesc ). The
probability to capture (Ω) depends on the speed of the
dark matter, set by the initial speed plus the amount of
speed it has gained falling into the star’s gravitational
well. Additionally, the probability depends on the density
of scattering sites in the star (nT), the cross section of
dark matter to scatter off scattering sites (σ), and the
fraction of scattering phase space where sufficient energy
is lost. Both the velocity gained by falling into the star
and the number density are, in principle, functions of
where inside the star the collision occurs. Combining the
flux and capture probability yields a differential capture
rate, which must be integrated over dark matter initial
velocities and trajectories through the star. Schematically,
the differential capture rate is

dC
dVd3u

¼ dFðnX; u; vstar; vhaloesc ÞΩðnTðrÞ; wðrÞ; σ; mn;mXÞ;
ð3Þ

where u is the dark matter velocity far from the star (the
halo velocity) and w2ðrÞ ¼ u2 þ v2escðrÞ is the speed of
the dark matter after it has fallen to a distance r from the
star’s center (either inside or outside of the star).
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To focus on the parametrics of dark matter capture, for
simplicity we assume no motion of the star relative to the
dark matter thermal distribution in the halo (vstar → 0) and
an infinite escape speed for the dark matter halo
(vhaloesc → ∞). We also fix the escape speed of dark matter
in the star to the escape speed at the star’s surface
[vescðrÞ ¼ vescðRÞ], and for the moment omit general
relativistic and nuclear physics corrections. With these
provisos, a constant-density star in the rest frame of the
dark matter halo with stellar escape velocity v2esc ∼ 2GM=R
has a single-scatter dark matter capture rate derived in the
Appendix:

C1 ¼
ffiffiffiffiffiffiffiffi
24π

p
G

ρX
mX

MR
1

v̄
Min

�
1;

σ

σsat

��
1 −

1 − e−A
2

A2

�
: ð4Þ

Note that the capture rate scales with dark matter density ρX
and inversely with the dark matter halo velocity v̄. Here, G
is Newton’s constant, M is the mass of the star, σ is dark
matter’s cross section with a stellar constituent (nucleus,

nucleon, electron). The exponential factor A2 ≡ 3
2
v2esc
v̄2 β−,

where β� ≡ 4mXm=ðmX �mÞ2 and m is the mass of the
particle (nucleus, nucleon, electron) dark matter scatters
against. Increasing the cross section past a certain threshold
will guarantee that most transiting dark matter scatters with
the star at least once, though it may not lose enough energy
to be captured. This threshold cross section is customarily
defined as σsat ¼ πR2=Nn, where Nn is the number of
scattering sites, and the “Min” function evaluates to unity
once at least one capture is probable. The parenthetical
term in Eq. (4) takes into account dark matter that scatters
but does not lose sufficient energy to be gravitationally
captured.
To better understand the origin of the parenthetical piece

of Eq. (4), let us examine the energetics of gravitational
capture. To be captured after a single collision, the energy
lost by the dark matter must be greater than its initial kinetic
energy in the galactic halo. The energy loss is proportional
to the reduced mass of the dark matter–constituent system,
μn, and the speed of the dark matter at the collision site.
In the limit that the star’s escape velocity is much greater
than the halo velocity (w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2esc

p ≃ vesc) the capture
requirement is

ΔE≃ 2
μ2n
m

v2escz ≥
1

2
mXu2; ð5Þ

where z is a kinematic variable ∈ ½0; 1� related to the
scattering angle. Assuming dark matter is much heavier
than the stellar constituents and turning the above require-
ment above into a condition on u,

u < umax ¼
ffiffiffiffiffiffiffiffi
βþz

p
vesc: ð6Þ

In the full capture treatment (see the Appendix), for dark
matter with Boltzmann distributed velocities from 0 to umax
and scattering angles z ∈ ½0; 1�, we consider the kinematic
phase space where dark matter is moving slowly enough to
be captured after a single collision. The limit of this phase
space is set by umax, which is evident in the form of the A2

exponential factor in Eq. (4). Note that when mX ≫ m, a
limit that will be appropriate throughout this paper, β� both
reduce to 4m=mX.
The origin and form A2 term are important because A2

governs the dependence of C1 on the dark matter mass.
When A2 is large, corresponding to a maximum capture
speed much larger than the average dark matter speed, the
parenthetical term in Eq. (4) evaluates to 1, and the sole
dark matter mass dependence lies in the number density ρX

mX
.

In this case, the single scatter capture rate scales as

C1 ∝
σ

mX
ðA2 ≫ 1Þ; ð7Þ

implying a mass capture rate mXC1 ∝ σ that is independent
of the dark matter mass. However, if A2 is small, implying a
maximum capture speed less than a typical dark matter halo
velocity v̄, we can expand the entire parenthetical expres-
sion in Eq. (4), and find that the capture rate scales as

C1 ∝
ρX
mX

σA2 ∝
σ

m2
X

ðA2 ≪ 1Þ; ð8Þ

implying a mass capture rate scaling mXC1 ∝ σ=mX that
depends inversely on the dark matter mass.
To see where the mass capture rate transitions from being

constant to being mX-dependent in compact stars, we can
insert appropriate values for vesc. For a solar mass white
dwarf vescc ∼ 2 × 103 km=s, while a solar mass neutron
star has vescc ∼ 2 × 105 km=s; both of these escape speeds
are far greater than the average dark matter halo speed
v̄c ∼ 220 km=s; therefore A2 will only be less than 1 if the
dark matter is much heavier than m. Specifically, taking
A2 ¼ 1 to be the transition value, and solving for mX, we
find that the transition occurs at mX ∼ TeV in a solar
mass white dwarf (assuming scattering off of carbon) and
mX ∼ PeV for a solar mass neutron star (assuming scatter-
ing off a neutron).
To see how the parametric dependence of Eq. (4)

changes in the case of multiple scatters, let us revisit the
energetics of gravitational capture. For the moment, let us
assume that dark matter participates in N ≥ 1 collisions
during its transit of the star and that each collision results in
an average energy loss

ΔEi ¼
βþEi

2
: ð9Þ

If the dark matter initially entered the star with energy E0,
the energy after N “average” collisions is
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EN ¼ E0

�
1 −

βþ
2

�
N
; ð10Þ

or a net energy deposit of ΔEN ¼ E0 − EN . Assuming, as
in the single scatter case, that the initial dark matter kinetic
energy is E0 ∼ 1=2mXv2esc and plugging ΔEN into the
capture condition Eq. (5), we can solve for the maximum
halo velocity u that can be captured:

u ≤ vesc

�
1 −

�
1 −

βþ
2

�
N
�

1=2
: ð11Þ

In the limit that mX ≫ m and βþ → 4m=mX, the leading
order term in the binomial expansion of the right side of
Eq. (11) approximates the full expression. In that limit, the
maximum allowed velocity simplifies to

u ≤
ffiffiffiffiffiffiffiffiffi
Nβþ
2

r
vesc ≅

ffiffiffiffiffiffiffiffiffiffi
2Nm
mX

s
vesc ð12Þ

up to corrections of OððNmÞ2
m2

X
Þ. As we will show in more

detail in the next section, in the limit of vesc ≫ v̄ the
probability to capture after N scatters can be expressed in a
form very similar to (4) but with A2 (the factor in the
exponential) modified to

A2
N ≡ 3v2esc

v̄2
Nm
mX

: ð13Þ

As discussed following Eq. (4), if this exponential factor is
large then the mX-dependence in the capture rate from the
A2 term is suppressed. Meanwhile, if the factor is small, the
exponential can be approximated by an expansion, result-
ing in a capture rate ∝ nXA2 ∝ σ=m2

X. Comparing Eq. (4) to
Eq. (13), we see that multiple scattering has added a factor
of N to the A2 term. The N dependence in the numerator of
Eq. (13) means that for N ≫ 1, the dark matter mass needs
to be larger (for a given vesc; v̄ and m) before the
exponential factor becomes small. Stated another way, if
the dark matter scatters N times, the capture rate will
behave as CN ∼ σ=mX out to masses N times higher than if
dark matter only scatters once.
Note that this discussion has involved only the energetics

of slowing down a heavy dark matter particle to beneath a
star’s escape speed and not whether the dark matter interacts
with stellar constituents strongly enough to participate in
multiple scatters in the first place. Following from Eq. (1),
the likelihood to participate in multiple scatters roughly
depends on the path length of the dark matter 1=nσ
compared to the size of the star. We will flesh out this
dependence in the next section.

III. MULTISCATTER CAPTURE

Having examined the parametric scaling of multiscatter
capture in the previous section, in this section we derive the
multiscatter dark matter capture rate. Our notation follows
that of [12], which considered capture by the Earth’s iron
core, where the acceleration of incoming dark matter due to
Earth’s gravity, and—more broadly—general relativistic
effects, could be neglected. In the large N limit, the
treatment presented here also allows for more efficient
computation of the multiscatter capture rate, by obviating
the N-fold kinematic phase-space integral in [12].
Formultiscatter capture it is convenient to define theoptical

depth τ ¼ 3σ
2σsat

, σsat ¼ πR2

Nn
, the average number of times a dark

matter particle with dark matter–nuclear cross section σ will
scatter when traversing the star.1 The probability for dark
matterwith optical depth τ to participate inN actual scatters is
given by Poissonðτ; NÞ. However, this expression can be
improved to incorporate all incidence angles of dark matter.
Defining y as the cosine of the incidence angle of dark matter
entering the star, the full probability is

pNðτÞ ¼ 2

Z
1

0

dy
ye−yτðyτÞN

N!
: ð15Þ

While it incorporates all incidence angles, this expression still
makes the assumption that the darkmatter takes a straight path
through the star. In practice, the straight path assumption will
produce conservative bounds on darkmatter capture, margin-
ally underpredicting the capture rate.
Incorporating the likelihood for dark matter to participate

in N scatters, the differential dark matter capture rate after
exactlyN scatters looks similar to the single scatter formula
(see the Appendix), with the probability to capture after N
scatters gNðwÞ adjusted to take into account the kinematics
of N collisions and replacing σ

σsat
→ pNðτÞ,2

CN ¼ πR2pNðτÞ
Z

∞

0

fðuÞ du
u
w2gNðwÞ: ð16Þ

The velocity distribution fðuÞ of dark matter particles in the
galactic halo is given in Eq. (A1). In writing the velocity

1To understand the 3
2
factor in the optical depth, observe that

the cross section for which one scatter occurs over a distance of
2R (where R is the radius of the star) is

1 ¼ nσð2RÞ ¼ Nn

ð4=3ÞπR3
σð2RÞ ¼ 3Nn

2πR2
σ

→ σ ¼ 2

3

�
πR2

Nn

�
¼ 2

3
σsat: ð14Þ

The optical depth is normalized so that τ ¼ 1 when dark matter
typically scatters once as it passes through the star.

2The multiscatter capture rate (16) can be obtained by setting
nðrÞ ¼ Nn

4
3
πR3 in Eq. (A7), integrating r from 0 to R and making the

substitutions g1ðwÞ → gNðwÞ and σ
σsat

→ pNðτÞ.
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distribution as fðuÞ we have retained the assumptions from
the single capture case that the escape velocity of the dark
matter halo is infinite and the velocity of the star relative to
the dark matter is zero. We have also maintained that the
density of the star is uniform and ignored the radial
dependence of the escape velocity.3

It is convenient to shift the integral to w, where w2 ¼
u2 þ v2esc. The capture rate for N scatters then becomes

CN ¼ πR2pNðτÞ
Z

∞

ve

dw
fðuÞ
u2

w3gNðwÞ; ð17Þ

and the total capture rate is the sum over all N of the
individual CN :

Ctot ¼
X∞
N¼1

CN: ð18Þ

In actual computations, the sum in Eq. (18) will be cut off at
some finite Nmax where pNmax

ðτÞ ≈ 0.
Finally, we need to evaluate gNðwÞ, the probability that

the speed of the dark matter after N collisions drops below
the escape velocity. This probability, which we analyzed
dimensionally in Sec. II, depends solely on dark matter’s
initial velocity, the amount of energy lost in each scatter,
and the escape velocity of the star. For dark matter with
initial kinetic energy at the star’s surface E0 ¼ mXw2=2, the
energy lost in a single scattering event is given by
ΔE ¼ zβþE0, where z is related to the scattering angle,
z ∈ ½0; 1�, and we again note that βþ ≡ 4mXm=ðmX þmÞ2.
Iterating for N scatters, the dark matter energy and velocity
decrease to

EN ¼
YN
i¼1

ð1 − ziβþÞE0; vN ¼
YN
i¼1

ð1 − ziβþÞ1=2w:

ð19Þ

If the velocity after N scatters is less than the escape
velocity, the dark matter is captured. Phrased as a condition

on the initial velocities w that we are integrating over, the
capture probability is

gNðwÞ ¼
Z

1

0

dz1

Z
1

0

dz2 � � �

×
Z

1

0

dzNΘ
�
vesc

YN
i¼1

ð1 − ziβþÞ−1=2 − w

�
; ð20Þ

where the dzi integrals sum over all possible scattering
trajectories (angles) at each step. This condition requires an
integral for every scatter, and becomes computationally
cumbersome to evaluate for large N. Therefore, as a further
approximation, let us replace the zi with their average
value. Provided the differential dark matter–nuclear cross
section is independent of scattering angle (valid in most
scenarios of spin-independent elastic scattering) hzii ¼ 1=2
and gNðzÞ simplifies to4

gNðwÞ ¼ Θ
�
vesc

YN
i¼1

ð1 − ziβþÞ−N=2 − w

�
: ð21Þ

As in the single scatter case, the capture probability restricts
the range of dark matter velocities that allow for capture. To
illustrate the relationship between dark matter’s halo speed
and the number of scatters it takes to slow down to below the
star’s escape speed, we recast Eq. (21) as contours in u − N
space in Fig. 1 below, for typical neutron star and white
dwarf parameters (see caption). The fact that dark matter
with a given mass and speed requires more scatters to be
captured in awhite dwarf is due to the fact that the velocity at
infinity (u) is a larger fraction of the star’s escape speed than
for a neutron star. This gives the impression that multiscatter
is more important for dark matter capture in white dwarfs.
However, the number of scatters needed to slow down to
subescape velocities is not the only factor in the problem;
capture also depends on whether the dark matter–nuclei
cross section is large enough for the dark matter to interact
and scatter multiple times as it transits the star. The strength
of the dark matter–constituent interaction is encapsulated in
the optical depth τwhich, as we have seen, is proportional to
1=R2 and therefore much larger for neutron stars.
Using the simplified form for gNðwÞ, we can evaluate the

remaining integral in Eq. (17):

CN ¼ πR2pNðτÞ
ffiffiffi
6

p
nXffiffiffi
π

p
v̄

�
ð2v̄2 þ 3v2escÞ − ð2v̄2 þ 3v2NÞ

× exp

�
−
3ðv2N − v2escÞ

2v̄2

��
; ð22Þ

3To estimate how much the constant density assumption
alters the neutron star capture rate, consider an approximate
neutron star density profile (ADP) ρADPNS ðrÞ ¼ 2.6×
1038 GeV=cm3ð10 km

r Þ, which matches a 1.5 M⊙, R ¼ 10 km
neutron star. This can be compared to a constant density (CD)
profile; such a neutron star would have ρCDNS ≃ 4×
1038 GeV=cm3. We can calculate the integrated optical depth
dτi ¼ nðrÞσnXdl, where l is the path of the dark matter particle.
Calculating this integrated optical depth for a dark matter particle
that passes within a kilometer of the center of the neutron star, we
find that for the constant density and approximate density profile
cases, for trajectories passing deep within the neutron star, the
optical depth can increase by up to 50%. This would somewhat
aid capture in the multiscatter regime. Therefore, the bounds
derived in this paper are somewhat conservative.

4We have checked numerically that for N ≳ 5, the approximate
expression in Eq. (21) matches the full expression Eq. (20) to
within less than a percent for the applications presented in
Sec. IV.
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with vN ¼ vescð1 − βþ=2Þ−N=2. In the limit that vesc ≫ v̄
and mX ≫ mn, this becomes

CN ¼
ffiffiffiffiffiffiffiffi
24π

p
pNðτÞGnXMR

1

v̄

�
1 −

�
1 −

2A2
Nv̄

2

3v2esc

�
e−A

2
N

�
;

A2
N ¼ 3v2escNm

v̄2mX
; ð23Þ

where the last expression follows the format of the single
scatter capture equation (4). Note that the reason C1

according to this formula does not precisely match
Eq. (4) is that we integrated over all possible energy loss
fractions (dz1) when deriving the latter, but assume average
energy loss in the former. As expected, the capture rate for
N scatters has a similar form as the single capture rate, up to
a factor of N in the exponential factor A2

N. Following the
logic presented in Sec. II, the factor of N implies that
theCN ∝ 1=mX scaling persists out to highermX than in the
single scatter case. However, while the behavior of an
individual CN is easy to see given mX, m and vesc, the mass
scaling of the full capture rate is more subtle as it involves
the sum over all CN , each weighted by pNðτÞ.
Having reviewed the general form of the multiple scatter

capture rate, we can now apply it to white dwarfs and
neutron stars. Each of these applications involves subtleties
not present in Eq. (17).
White dwarfs are compact stars (R∼104km;M ∼

1057GeV) that are supported by electron degeneracy pres-
sure. Their suitability as potential laboratories to capture and
thereby constrain various dark matter candidates has been
studied previously in the single-scatter regime [15–19]. At
the upper end of the mass range, white dwarfs are largely
composed of carbon and oxygen, som ¼ mN ∼Oð10 GeVÞ
in the capture equations above. Darkmatter possessing spin-
independent (e.g. scalar or vector current) interactions with
nuclei will scatter coherently off the nucleonswithin carbon/
oxygen if the momentum exchange is low enough, while

higher energy exchangeswill be sensitive to the substructure
of the nucleus and correspondingly suppressed. This loss of
coherence is expressed by a form factor. Including the form
factor suppression, the multiscatter accumulation rate will
be given by Eq. (18) with the cross-section substitution

σ → σWD
NX ≃ σnX

m4
N

m4
n
F2ðhERiÞ; ð24Þ

where, in the case of scattering off carbon, the mass
of the stellar constituent is mN ≃ 12mn ≃ 11.1 GeV, and
F2ðhERiÞ is the Helm form factor evaluated at the
average recoil energy hERi [20]. The average recoil energy
is defined as

hERi≃
R Emax

R
0 dERERF2ðERÞR Emax

R
0 dERF2ðERÞ

; ð25Þ

where we make the approximation that vesc is much greater
than the halo velocity and therefore Emax

R ≃ 4mNv2esc.
For recoil energies relevant for heavy dark matter scattering
off carbon in a solar mass white dwarf (vesc ≃ 0.01,
hERi≃MeV), the form factor evaluates to F2ðhERiÞ ∼ 0.5.
In addition to affecting the overall scattering cross

section, the form factor also impacts the weighting of
different momentum exchanges (scattering angles) in each
scatter, previously encapsulated in the variable zi. Higher
momentum exchanges are suppressed by the form factor as
they correspond to reduced dark matter–nucleus scattering
coherence. As a result, lower energy scatters—where a
smaller fraction of the dark matter’s kinetic energy is
deposited in each scatter—are more common. To account
for this, wemake the substitution hzii ¼ hERi=Emax

R (instead
of hzii ¼ 1

2
) in Eq. (21). In deriving hzii, we have assumed

that the relative velocity of the dark matter and nucleus
remains constant (at ∼vesc) during the capture process. This

FIG. 1. Number of scatters needed to capture dark matter as a function of dark matter’s halo speed (i.e. the speed at long distance from
the star). The left plot shows the relation assuming a solar mass white dwarf made entirely of carbon (mN ∼ 10 GeV) and with radius
R ¼ 0.1Rsun. The right plot shows the relation for a solar mass neutron star with radius R ¼ 10 km, which for the moment neglects
relativistic corrections. The lines correspond to 10 TeV–100 PeV mass dark matter, as indicated.
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assumption is valid so long as the darkmatter halo velocity is
much smaller than its velocity during capture u ≪ w ∼ vesc,
implying that the speed of the dark matter remains approx-
imately constant during capture. To understand this, note
that as soon as the darkmatter velocity decreases by anOð1Þ
factor from w ∼ vesc, its speed will be well below the escape
velocity, since u ≪ vesc.
The mass capture rates for heavy dark matter in a white

dwarf, computed using both the single and multiple capture
expressions and two different assumptions about the size of
the dark matter–nucleon cross section, are shown in Fig. 2.
The contours in Fig. 2 display the capture rate for up to
N ≤ 1; 10; 100… scatters, using Eq. (18). As the dark
matter–nucleon cross section increases, the difference in
mass capture rate for N ¼ 1 versus N ≤ 1000 scatters
increases dramatically. This is a consequence of the fact
that, as the dark matter–nucleon cross section becomes
large enough, most trajectories through the white dwarf will
involve multiple scattering events and so the rate for
capture after a single scatter more substantially under-
predicts the total capture rate. We can also see that, as the
number of scatters increases, the “turnover mass” (the mass
at which the capture rate diminishes) also increases. As
explored in Sec. II, this is because lighter dark matter
requires fewer scatters to be captured, since the fractional
energy loss of the dark matter per scatter is ∼2mN=mX.
The quoted per-nucleon scattering cross sections in

Fig. 2, σnX ¼ 10−34 and 10−36 cm2, which were chosen
to be large enough so that multiple scatters are relevant, are
typically excluded by direct detection searches for spin-
independent DM-nucleon scattering [4–6]. One might
consider whether white dwarfs could be used to constrain
spin-dependent DM-nucleon interactions, which are less
constrained by direct detection searches. Unfortunately,
white dwarfs are composed of mainly spin-free nuclei (e.g.
carbon 12, oxygen 16), and so a precise determination of
the fraction of spin> 0 nuclei in a given white dwarf would

need to be determined to set bounds on spin-dependent
dark matter, something that is beyond the scale of this
work. Another scenario for which large dark matter–
nucleon cross sections are not yet excluded and could
potentially be probed by white dwarf observations is
inelastic dark matter [17,21], provided the dark matter
settles to the core of the white dwarf (i.e. thermalizes)
within the age of the Universe.
Turning to neutron stars, a 1.5 solar mass neutron star has

escape speed
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM=R

p
∼ 2

3
[22] and is supported by

neutron degeneracy pressure. The extreme velocities and
densities mean we must modify Eq. (17) to account for two
general relativistic correctionswhen considering darkmatter
capture on a neutron star. First, the amount of dark matter
crossing the star’s surface will be increased because of an
enhancement from the star’s gravitational potential. It can be
shown [23] that for a darkmatter particlewith velocity u and
impact parameter b, if the particle barely grazes the surface
of the star, then CX ∝ b2 ¼ ð2GMR=u2Þ½1 − 2GM=R�−1,
where the square-bracketed term accounts for the general
relativistic enhancement to dark matter crossing the star’s
surface. Accordingly, the dark matter capture rate (with
m ¼ mn, of course) is modified to

CN →
CN

1 − 2GM
R

; ð26Þ

to account for general-relativity-enhanced capture.5 The
second general relativistic correction we need is to account
for the gravitational blueshift of the dark matter’s initial

FIG. 2. Mass capture rate of dark matter on a constant density white dwarf, for a per-nucleon scattering cross section of σnX ¼ 10−38

(left panel) and 10−36 cm2 (right panel). Following Eq. (24), these per-nucleon cross sections translate to dark-matter carbon cross
sections of σnX ∼ 10−34 and ∼10−32 cm2. In both panels we have taken the target star to be a 1 solar mass white dwarf composed of
carbon 12, with R ¼ 104 km, in a background dark matter density of ρX ¼ 0.3 GeV=cm3 with halo velocity dispersion v̄≃ 220 km=s.

5Technically, the general relativistic effects are most straight-
forwardly introduced into the differential capture rate dCN=dr,
and these effects, upon integration, yield Eq. (26) plus correc-
tions. Given that we are already making an approximation in
assuming straight trajectories through the star, we will neglect
these corrections to Eq. (26).
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kinetic energy, in the rest frame of a distant observer. In the
absence of general relativistic corrections, the dark matter
must lose its initial halo kinetic energy Ei ¼ 1

2
mXu2 via

scattering with the star in order to become gravitationally
bound to the star. However, from the rest frame of a distant
observer, this initial kinetic energy will be enhanced by a
factor χ ¼ ½1 − ð1 − 2GM=RÞ1=2� under the influence of the
star’s gravitational potential. This can be accounted for by
making the substitution in Eq. (21)

vesc →
ffiffiffiffiffi
2χ

p
: ð27Þ

In practice, the gravitational and kinetic energy blueshift
effects alter the dark matter capture rate in neutron stars by
less than a factor of 2.
Given the degeneracy of the neutrons that the dark matter

must collide with, one may worry that Pauli blocking also
comes into play when deriving the capture rate. Specifically,
in order to scatter with the constituents of a neutron star, dark
matter must excite them to momenta larger than their Fermi
momentum, typically pF;NS ∼ 0.1 GeV [23]. However, as
the incoming dark matter has been accelerated to semi-
relativistic speeds in the gravitational well of the neutron
star, this requirement is easily satisfied provided the dark
matter is heavy. Plugging in numbers, in the limitmX ≫ mn
the average momentum exchanged in any scatter is
Q ∼

ffiffiffi
2

p
mnvesc ∼ 0.7 GeV ≫ pF;NS; see e.g. [24,25] for

more discussion.
In Fig. 3 we show the mass capture rate of dark matter on

a neutron star for a range of dark matter masses and a dark
matter–nucleon cross section where τ ≳ 1. Figure 3 has all
of the same qualitative features as Fig. 2: the mass capture
rate increases dramatically once multiple scatters are
included, and exhibits a 1=mX dependence in the large
mX limit. However, comparing Figs. 2 and 3, it is evident
that multiscatter capture is relevant for white dwarfs when

σnX ∼ 10−35 cm2, while multiscatter capture on neutron
stars becomes important for σnX ∼ 10−45 cm2. Because the
latter cross section is closer to the cross section presently
probed by direct detection experiments [4,5], we will focus
on neutron star probes of dark matter in the next section.
While our focus here will be on dark matter which
annihilates inside and thereby heats neutron stars, there
are many other ways multiscatter stellar capture could be
used to probe dark matter, including neutron star implo-
sions [16,23,24,26–35], monopole-induced nucleon decay
[36,37], white dwarf heating [17,38,39], type Ia supernova
ignition [18,19], neutrino signatures of superheavy dark
matter [40,41], and dark-matter-powered stars [42–45].

IV. PROBING HEAVY DARK MATTER
WITH OLD NEUTRON STARS

Dark matter that is captured in neutron stars may
annihilate to Standard Model particles, thereby heating
and increasing the apparent luminosity of old neutron stars.
Consequently, the temperature of old neutron stars can be
used to probe the dark matter–nucleon cross section,
provided that one bounds or measures the temperature of
old stars in regions of sufficiently high dark matter density.
Because it harbors a high density of dark matter, the
Galactic center is an obvious target [15,26,46,47]. While
old neutron stars at the Galactic center are being vigorously
sought by the current generation of radio telescopes
[48,49], to date none has been found, although they are
expected to be within reach of next-generation radio
telescopes like FAST and SKA [50]. Here we determine
the potential bounds on dark matter annihilating to SM
particles in old neutron stars in the Galactic center. Prior
work [26,47] has explored this bound on dark matter using
single scatter capture. This document extends these bounds
to higher masses using multiple scatter capture, assuming
that DM annihilates to Standard Model particles, and that

FIG. 3. Mass capture rate of dark matter on a neutron star, for a per-nucleon scattering cross section of σnX ¼ 10−44 and 10−42 cm2. A
constant density, 1.5 solar mass neutron star composed of neutrons, with R ¼ 10 km, in a background dark matter density of ρX ¼
0.3 GeV=cm3 with halo velocity dispersion v̄≃ 220 km=s is assumed. Note that the dark matter mass where the mass capture rate shifts
from mXCX ∝ const to mXCX ∝ 1=mX shifts to higher values as we include more scatters.
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an old, colder neutron star is resolved in the Galactic center
at some time in the future.
The process by which dark matter heats neutron stars

involves several steps. First, each captured dark matter
particle must thermalize with the host neutron star through
successive scatters off neutrons. This thermalization proc-
ess is complicated by the fact that dark matter momentum
will drop after each scatter, and eventually the momentum
exchanged between dark matter and the neutrons becomes
small enough that Pauli blocking can no longer be ignored.
A full calculation of thermalization within neutron stars
incorporating Pauli blocking was performed in Ref. [25]
and showed that the time to thermalize is much less than the
age of the neutron star. As one example, for mX >
100 GeV dark matter with a cross section σnX >
10−48 cm2 (well below the values where multiscatter
becomes important), thermalization occurs in less than a
thousand years. Once thermalized, the dark matter settles
into a spherical volume Vth within the star. Approximating
the neutron star as having a constant density core ρNS, Vth

can be related to the star’s temperature T by Vth ¼ 4
3
πr3th,

rth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9T=4πGρNSmX

p
(see e.g. [18]) within the star.

The next step is to understand how NXðtÞ, the number of
dark matter particles residing in Vth, evolves with time.
Assuming the thermalization time is rapid compared to
other time scales, the number of dark matter particles
increases as new particles are captured, and decreases as
pairs of dark matter particles meet and annihilate. This can
be phrased as a simple differential equation for NXðtÞ [31],
with solution

NXðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CXVth

hσavi

s
tanh

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CXhσavi

Vth

s
t

3
5; ð28Þ

where CX is the net capture rate, t is time over which
collection has occurred, and hσavi is the thermally aver-
aged self-annihilation cross section of the dark matter (DM

DM → SM fields). Once t >
ffiffiffiffiffiffiffiffiffiffiffiffi

Vth
CXhσavi

q
, the dark matter

population plateaus, and there is an equilibrium between
the rate at which dark matter is annihilated and the rate at
which it is captured. Assuming all dark matter passing
through a neutron star is captured (which implies the
longest equilibration time), this equilibration time is [47]

teq ≃ 104 yrs

�
102 GeV

mX

�
1=4

�
103 GeV=cm3

ρX

�
1=2

×

�
TNS

3 × 104 K

�
3=4

�
10−45 cm3=s

hσavi
�

1=2

; ð29Þ

where TNS is the temperature of the neutron star, and
this equilibration time assumes that all DM passing
through a R ¼ 10 km, 1.5 M⊙ NS with central density

ρNS ∼ 4 � 1014 g=cm3 is captured. The temperatures for the
oldest observed neutron stars (age > 100 million years) are
projected to be T ≪ 3 × 104K [26]. Plugging this temper-
ature into Eq. (29) and assuming our local dark matter
density ρX ¼ 0.3 GeV=cm3, we find the equilibration time
is teq ≤ 10 million years for 100 GeV dark matter with
annihilation cross sections of hσavi≳ 10−48 cm3=s. This
value is already far less than the age of the oldest neutron
stars, and increasing the dark matter mass, density or
annihilation cross section leads to even shorter times; for
a benchmark point closer to our region of interest, PeV
dark matter in the Galactic center (ρX ¼ 103 GeV=cm3)
will equilibrate in a 3 × 104 K neutron star in as little as
1000 years if hσavi ¼ 10−45 cm3=s. Because this dark
matter self-annihilation cross section is already quite small,
hereafter we assume that the dark matter annihilation rate
rapidly reaches equilibrium with the capture rate.
Within the parameter space where thermalization and

equilibration times are short compared to the typical
neutron star lifetime, the annihilation rate is equivalent
to the capture rate, and the rate of energy release is simply
the mass capture rate mXCX. We can define an effective
neutron star temperature arising from dark matter annihi-
lations by equating the energy release rate to the apparent
luminosity,6

mXCX ¼ LDM ¼ 4πσ0R2T4
NS

�
1 −

2GM
R

�
2

; ð30Þ

where σ0 ¼ π2=60 is the Stefan-Boltzmann constant, and
the parenthetical term accounts for the gravitational redshift
of light departing the high curvature environment of a
neutron star. Read left to right, Eq. (30) defines a minimum
temperature for an old neutron star (with our assumptions of
thermalization and equilibration) for a given dark matter
mass, density, and capture cross section. Read right to left,
Eq. (30) forms a bound. Specifically, if an old neutron star is
observed to have surface temperature TNS, Eq. (30) dictates
what regions of ρX,mX and σ are allowed and which regions
would overheat the observed neutron star. Plugging Eq. (18)
into Eq. (30), we can reframe the expression as

X
N

pNðτÞ
�
1 −

�
1 −

2A2
Nv̄

2

3v2esc

�
e−A

2
N

�
¼ const

T4
NS

ρX
; ð31Þ

where the constant on the right-hand side is a combination of
G, σ, v̄ and the mass and size of the neutron star. The sum

6This implicitly assumes that the energy of all DM annihilation
products go to heating. It can be verified that the scattering length
for neutrinos (and all more strongly coupled Standard Model
particles) is much less than the neutron star radius. The exact way
the temperature will rise requires knowledge of the equation of
state of the star, which is beyond the scope of this paper, but
would be an interesting topic for future research.
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over N makes this formula a bit opaque; however we know
from Sec. II that the left-hand side of Eq. (31) is roughly
linear in the darkmatter–nucleon cross section σ and is either
independent of the dark matter mass or ∝ 1=mX depending
on whether the dark matter is lighter or heavier than a PeV.
Solving Eq. (31) for σ, these two regions translate into
bounds that are σ ∝ const (for mX < PeV) or σ ∝ mX
(for mX > PeV). To get a feeling for the type of bound that
can be set in thisway, in Fig. 4 belowwe show that σ could be
excluded as a function of mX should we observe an old
neutron star with temperature TNS ∼ 3 × 104 K in the
Galactic center (ρX ¼ 103 GeV=cm3).
There are several interesting features in Fig. 4. First, a

shift in the cross section bound around mX ∼ PeV is
evident; this was the mass at which multiple scatter capture
becomes relevant, as derived in Sec. II. Second, should a
neutron star matching the criteria be found, the DM-
nucleon cross section bound it implies would dominate
over the existing xenon direct detection bound for all dark
matter heavier than mX ∼ TeV. Furthermore, while com-
paring potential neutron star heating bounds to current
xenon bounds may seem unfair, for mX > 0.1 PeV, the
cross sections ruled out by neutron star heating are beneath
the so-called “neutrino floor” cross section, where direct
detection experiments encounter an irreducible back-
ground. Given that direct detection experiments are
approaching the multiton scale and the feasibility of further

size increase is far from obvious, observing a cold neutron
star may be the best path towards subneutrino floor bounds,
and further study into how well current and planned
telescopes can identify cold neutron stars in environments
like the Galactic center are warranted [51]. The dependency
of the neutron star bound on the temperature of the observed
star and the ambient dark matter density where the star is
located are clear from the right-hand side of Eq. (31),
provided one does not deviate toomuch from the benchmark
values of TNS¼3×104K, ρX ¼ 103 GeV=cm3. For exam-
ple, observing a TNS ∼ 1.5 × 104 K neutron star in the
Galactic center would strengthen the bound in Fig. 4 by a
factor of ∼10. For larger temperature or density deviations,
the parametrics is not as simple, since the capture rate cannot
be increased indefinitely by increasing the DM-nucleus
cross section. Specifically, once σ reaches the pointwhere all
dark matter (at all halo velocities) is captured, further
increasing σ will not change anything. This “saturation”
cross section will depend on the mass of the dark matter.
While a detailed study of the feasibility of constraining

neutron stars at various temperatures in the Galactic center
has not yet been undertaken, we note that observations
of >104 K neutron stars within a parsec of the Galactic
center appear to be within the scope of existing x-ray
observatories [52], and would lead to the strongest bound
on the dark matter–neutron cross section for mX > PeV.

V. CONCLUSIONS

The existence of dark matter has been established by a
number of cosmological and astrophysical observations.
It is, therefore, one of the most compelling arguments
for physics beyond the Standard Model, since there is no
candidate for dark matter within the Standard Model. This
has inspired vigorous experimental searches for nongravita-
tional dark matter interactions, including underground
detectors looking for dark matter smacking against nuclei,
and satellites searching for annihilation of dark matter into
StandardModel particles. These searches are most sensitive
to dark matter masses up to a few TeV.
One complementary way to look for heavier dark matter

is though its accumulation in stars. Most studies addressing
dark matter accumulation in stars have supposed that
capture occurs after a single scatter. In this paper we
explored multiscatter capture and found it is particularly
relevant for high mass dark matter, which, even for cross
sections below present constraints, will typically scatter
multiple times in a neutron star before being captured. We
have derived analytical formulas for this process and we
have proven that the dark matter–nucleon cross-section
bounds obtained at large dark matter masses will have the
same parametric dependence as xenon direct detection
experiments. Note that while the σ ∝ mX scaling at high
masses for direct detection experiments is a result of
decreased local dark matter number density at high masses
(nX ∼ ρX=mX), the same parametric dependence that arises

FIG. 4. Potential sensitivity to dark matter from annihilation to
SM particles, heating a 1.5 M⊙ neutron star in the Galactic center
(ρX ¼ 103 GeV=cm3, about 10 parsecs from the Galactic center)
to a core temperature of ∼3 × 104 K, along with interpolations of
the current LUX bounds and the neutrino floor (one atmospheric
neutrino event on xenon [3]) for comparison. Here the parameters
of the surrounding dark matter density and neutron star temper-
ature have been chosen conservatively; observation of a colder
neutron star or a larger dark matter density would both deepen
sensitivity. The curve labeled “1 scatter” uses Eq. (4) to set the
bound, while the multiscatter curve uses the multiscatter formulas
derived in this document. Note that multiscatter capture allows
for heavier dark matter to be discovered or bounded, for cross
sections below the direct detection neutrino floor.
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for heavy dark matter capture in compact stars results from
needing more scattering events to capture higher mass dark
matter, as explained in Sec. II.
We have used the resulting formalism to point out

bounds on heavy dark matter, which could be obtained
through thermal observation of old neutron stars in the
Galactic center. The resulting bounds are stronger at high
dark matter masses than the reach of next-generation
direct detection experiments. For mX ≳ 100 TeV the cross-
section bound on dark matter that annihilates to Standard
Model particles from a T ∼ 104 K neutron star near the
Galactic center lies below xenon direct detection cross
sections at which atmospheric neutrinos will begin to
provide a substantial background, known as the xenon
direct detection neutrino floor. There are additional appli-
cations of multiscatter capture, some of which are listed at
the end of Sec. III, which we leave to future work.
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APPENDIX: CAPTURE IN THE
OPTICALLY THIN LIMIT

It is useful to summarize the derivation of dark matter
capture [2] on stars:
(A) Far enough away from the star, dark matter particles

in the Galactic halo have speeds that are Boltzmann
distributed. Half the particles will be moving towards
the star, namely thosewith headings−π=2< θ< π=2,
where θ is the angle between each particle’s velocity
and a vector pointing at the star center. The total flux
of dark matter is defined as F .

(B) As it traverses the stars gravitational well, the dark
matter moves faster in the star’s gravitational po-
tential, but conservation of angular momentum
implies that its angular momentum with respect to
the star remains fixed. Therefore given θ and the
particle’s initial speed (i.e. altogether the particle’s
initial velocity), we can determine whether it has an
angular momentum small enough that it will inter-
sect a spherical mass shell at radius r from the center
of the star.

(C) The probability that dark matter scatters and is
captured while transiting a mass shell of thickness
dr, depends on the density of scattering sites nðrÞ,
the initial dark matter velocity u⃗, and the dark
matter’s cross section with stellar constituents, σ.

Integrating the Boltzmann distributed flux and the
probability for capture over 0<u<∞ for each
stellar mass shell, and integrating mass shells over
0 < r < R, determines the total capture rate. (In the
case of multiscatter capture covered in Sec. III, it is
convenient to instead simply consider all dark matter
that intersects the star at radius R, and then integrate
over paths through the star, calculating the multi-
scatter probability along each path.)

We assume dark matter particles surrounding the star
will have velocities that follow a Maxwell-Boltzmann
distribution. The number density of dark matter particles
with velocities ranging from u to uþ du is

fðuÞdu ¼ 3

ffiffiffi
6

π

r
nXu2

v̄3
Exp

�
−
3u2

2v̄2

�
du; ðA1Þ

where nX is the number density and v̄ the average velocity
of the dark matter particles. Here fðuÞdu gives the
distribution of dark matter velocities far from the gravita-
tional well of the star; nearer to the star each dark matter
particle will have a total velocity given by w2 ¼ u2 þ v2ðrÞ,
where vðrÞ is the escape velocity from the star at radius r.
It is useful to at first consider the flux of dark matter

particles across a spherical surface large enough that the
star’s gravitational potential can be neglected. The angle at
which darkmatter intersects the large surfacewill increase or
diminish its flux across this spherical surface; to account for
this, we incorporate a factor of u⃗ · R̂a ¼ u cos θ, where θ is
the angle between theDMvelocity vector u⃗ and a unit vector
R̂a normal to the large surface. Then the flux of dark matter
particles towards the star, through an infinitesimal area
element, is obtained by integrating the product ofu cos θ and
Eq. (A1) over the range 0 < dðcos θÞ < 1, and including a
factor of 1=2 to effectively reject the outgoing DM flux,

dF ¼ 1

2
fðuÞudu cos θdðcos θÞ ¼ 1

4
fðuÞududðcos2θÞ:

ðA2Þ

This leads directly to an expression for the flux of dark
matter entering a region of size Ra, which is large enough to
ignore the star’s gravitational potential,

dF ¼ 4πR2
adF ¼ πR2

afðuÞududðcos2 θÞ: ðA3Þ

To incorporate the star’s gravitational potential into the
capture rate, we must consider what the dark matter flux
will be into a spherical shell of radius r, which is the radius
of the star or smaller. We define α as the angle between the
dark matter particle’s velocity vector w⃗ and the unit normal
vector r̂ on this small spherical shell. The dark matter’s
dimensionless angular momentum is

J ≡ uRa sin θ ¼ wr sin α; ðA4Þ
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where the last equality of Eq. (A4) follows from angular
momentum conservation. As noted previously, w2¼u2þ
v2ðrÞ, and vðrÞ is the escapevelocity at radius r. The flux can
now be recast with dJ2 ¼ u2R2

adðcos2 θÞ,

dF ¼ πfðuÞ du
u
dJ2: ðA5Þ

As the dark matter particle transits the star’s interior, the
probability that it is captured after scattering once can be
defined as g1ðwÞ. Then the total probability for capture
while traversing an infinitesimal spherical shell of length
dl ¼ dr= cos α is the capture probability times the number
of path lengths in dl:

nðrÞσg1ðwÞdl; ðA6Þ
where we have indicated that the number density nðrÞ of
scattering sites may have radial dependence.7 Using
Eq. (A4) to reexpress dl ¼ dr=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðJ=rwÞ2

p
, the total

single scatter capture rate can then be obtained by multi-
plying Eqs. (A6) and (A5), and integrating over J. We apply
a theta function to require that the dark matter’s angular
momentum is small enough that it will intersect a shell of
size r, Θðrw − JÞ. We also multiply by a factor of 2 to
account for dark matter passing through both sides of a
spherical shell of size r,

dC1 ¼ 4πnðrÞσg1ðwÞfðuÞ
du
u

Z
∞

0

dJΘðrw − JÞJdl

¼ 4πnðrÞσg1ðwÞfðuÞ
du
u
w2r2dr: ðA7Þ

It remains to determine the probability for capture after a
single scatter, g1ðwÞ. We define

β� ≡ 4mXmn

ðmX �mnÞ2
; ðA8Þ

where mn is the mass of the stellar constituent with
which the DM scatters. A kinematic analysis shows that,
in the star’s rest frame, the fraction of DM energy lost in a
single scatter is evenly distributed over the interval
0 < ΔE=E0 < βþ. For single scatter capture, the required
fraction of DM kinetic energy loss is u2=w2, which is the
ratio of DM’s kinetic energy far away, versus inside the star.
To define g1ðwÞ, we use the probability for a single scatter
to diminish the DM kinetic energy by a fraction u2=w2,

1

βþ

�
βþ −

u2

w2

�
; ðA9Þ

along with a theta function that enforces dark matter
capture after a single scatter,

Θ
�
βþ −

u2

w2

�
: ðA10Þ

Then g1ðwÞ is the product of Eqs. (A9) and (A10). Inserting
this into Eq. (A7), and integrating over the incoming
Boltzmann distribution of DM (u), the total capture rate
as a function of radius is

C1 ¼
ffiffiffiffiffi
96

π

r
nX
v̄

Z
R

0

drr2nðrÞσðrÞv2ðrÞ
�
1 −

1 − e−A
2ðrÞ

A2ðrÞ
�
;

ðA11Þ

where we have indicated that the number density of
scattering sites nðrÞ, the escape velocity, vðrÞ, the
Boltzmann variable A2 ≡ 3v2ðrÞ=2v̄2β−, and the scattering
cross section, as a consequence of form factor suppression
at higher velocities, all depend on the radius of the mass
shell, r. In the limit that we ignore radial dependence, and
set vðrÞ≃ vescðRÞ, Eq. (4) results.
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