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The measured orbital period decay of relativistic compact-star binaries, with characteristic orbital
periods ∼0.1 days, is explained with very high precision by the gravitational wave (GW) emission of an
inspiraling binary in a vacuum predicted by general relativity. However, the binary gravitational binding
energy is also affected by an usually neglected phenomenon, namely the dark matter dynamical friction
(DMDF) produced by the interaction of the binary components with their respective DM gravitational
wakes. Therefore, the inclusion of the DMDF might lead to a binary evolution which is different from a
purely GW-driven one. The entity of this effect depends on the orbital period and on the local value of the
DM density, hence on the position of the binary in the Galaxy. We evaluate the DMDF produced by three
different DM profiles: the Navarro-Frenk-White (NFW) profile, the nonsingular-isothermal-sphere (NSIS)
and the Ruffini-Argüelles-Rueda (RAR) DM profile based on self-gravitating keV fermions. We first show
that indeed, due to their Galactic position, the GWemission dominates over the DMDF in the Neutron star
(NS)-NS, NS-(White Dwarf) WD andWD-WD binaries for which measurements of the orbital decay exist.
Then, we evaluate the conditions (i.e. orbital period and Galactic location) under which the effect of DMDF
on the binary evolution becomes comparable to, or overcomes, the one of the GW emission. We find that,
for instance for 1.3–0.2 M⊙ NS-WD, 1.3–1.3 M⊙ NS-NS, and 0.25–0.50 M⊙ WD-WD, located at
0.1 kpc, this occurs at orbital periods around 20–30 days in a NFW profile while, in a RAR profile, it occurs
at about 100 days. For closer distances to the Galactic center, the DMDF effect increases and the above
critical orbital periods become interestingly shorter. Finally, we also analyze the system parameters (for all
the DM profiles) for which DMDF leads to an orbital widening instead of orbital decay. All the above imply
that a direct/indirect observational verification of this effect in compact-star binaries might put strong
constraints on the nature of DM and its Galactic distribution.
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I. INTRODUCTION

Compact-star binaries composed of neutron stars (NSs)
and/or white dwarfs (WDs) have turned out to be rich
laboratories of physics and astrophysics that allow us to test
fundamental theoretical predictions. In particular, NS-NS
binaries have served to prove the existence of gravitational
waves (GWs) [1] and the motion of matter and photons in
strong gravitational fields [2], as well as other phenomena
[3]. These latter aspects are of special interest in tests of
general relativity and alternative theories of gravity [2,4].
The orbital motion of such systems also offers the

possibility of analyzing further effects. An interesting
physical situation arises when the orbiting object moves
through an extended medium which is formed, for instance,
from the mass loss of the binary companion. This inter-
action can be thought of as a drag force exerted by the
circumbinary medium on the object in question, perturbing
thereby its Keplerian orbital motion [5]. This dynamical
friction produced by the gravitational drag force has been
also studied in the context of different astrophysical
phenomena such as mergers of star clusters, galaxies,

and even galaxy clusters, to the inspiral of dwarf galaxies
within dark matter halos and the orbital evolution of
massive black hole (BH) binaries in a stellar medium
[6]. Thus, dynamical friction plays an important role in the
orbital evolution of many astrophysical systems. In a
pioneering work, S. Chandrasekhar [7] calculated the
dynamical friction force on a massive object traversing
an infinite homogeneous collisionless background (repre-
senting the surrounding star neighbors).
It is thus natural to expect that a binary system moving

through the galaxy can also experience a dynamical friction
caused by collisionless DM particles, namely DM dynami-
cal friction (hereafter DMDF), particularly in DM-domi-
nated regions, as at the outer part of the Galactic halo and
near the Galactic center [8]. The perturbed orbital motion
may lead thus to interesting observable effects in the
secular evolution of the orbital period. An interesting
proposal was advanced in Ref. [9] on the possibility of
inferring constraints to the DM density by determining the
above DM effect on the orbital motion of binaries (see also
the pioneering work by Bekenstein & Zamir [10], for a
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general discussion of collisionless background types as
well as in the context of DM). They showed that the
change in the orbital period could be due to the dynamical
friction force exerted by the DM background on the
binary. In that work, this effect was used to put an upper
bound on the DM density in a given location of the
Galaxy, independently of the density profile or the nature
of the DM particles. It can be shown, however, that this
upper limit is indeed fulfilled by any DM density profile
consistent with the outer halo properties of the MilkyWay.
Thus, we explore in this work the dependence of the
orbital period decay by DMDF on the different binary
parameters and also on the DM density profile, in order to
identify all possible physical situations suitable for an
observational verification of the DMDF effect. For doing
this we obtain DM profiles fulfilling definite Galactic-
halo observables such as the escape velocity, the velocity
dispersion and the one-halo scale length parameters. The
velocity distribution function and the DM density profile
are, as we shall show below, crucial elements in the
dynamical friction force estimation.
It is known that the DM in the outer part of our Galaxy is

well described by a classical Maxwell-Boltzmann distri-
bution, e.g. by a nonsingular isothermal (hereafter NSIS)
profile [6]. However, depending on the DM nature (e.g.
particle type), the DM density distribution can deviate from
the classical Maxwell-Boltzmann behavior towards the
inner regions of the Galaxy. This implies that the
DMDF effect will depend according to the phase-space
density consistent with the DM particle nature. We shall
consider, for the sake of comparison, three DM models: 1)
the NSIS profile, 2) the Navarro-Frenk-White (NFW)
profile [11], and 3) the recently introduced Ruffini-
Argüelles-Rueda (RAR) model [12,13].
The RAR model is based on a self-gravitating system of

massive (keV) fermions in thermodynamic equilibrium.
The density profile of the RAR model exhibits a core-halo
structure which allows to explain the DM distribution in
galactic halos from dwarfs to big spirals, and predicts at the
same time the presence of a DM high density core [12].
Under this approach and following the more realistic
distribution function including violent relaxation processes
[14] and the escape velocity of particles, the Fermi-Dirac
distribution function was subsequently introduced to
describe the finite size of halos. In the case of the
Milky Way, such a DM core can explain the observed
dynamics near the Galactic center Sgr A* without invoking
a central supermassive black hole for fermion masses in the
range 48 keV≲mc2 ≲ 345 keV [13].1

Having established the DM density profiles we shall
analyze, we now describe the structure of this work. We
start by discussing in Sec. II the effects which are

commonly assumed to produce a change of the orbital
period of binaries, putting special attention evidently to the
one produced by GW emission. We analyze in Sec. III
the dynamical friction force and its main ingredients for the
case when it is produced by DM and when it acts on binary
systems. We analyze in Sec. IV the perturbation effect of
DMDF on the orbital motion of the pulsar and reproduce
some general results presented in [9]. Furthermore, we
introduce Galactic-halo observables in order to generalize
the prescription presented in [9] and present thus a more
realistic estimation of dynamical friction effects. Finally,
we present in Sec. V the numerical results of _Pb as a
function of the radial position, the DM wind velocity and
the orbital period. This latter computation leads us to
compare directly the _Pb due to GW emission to that given
by DMDF. In Sec. V we summarize our results and present
a general discussion.

II. BINARY SYSTEMS AND ORBITAL PERIOD
DECAY BY GRAVITATIONAL WAVES

The precise pulsar timing measurements allow us to
detect, with a high accuracy, tiny orbital effects which thus
require a precise theoretical description of the orbital
motion [1]. In the weak field regime (Newtonian
approach), the binary motion of pulsar is simply described
by the Kepler laws. However, relativistic and strong-field
effects in the orbital motion should be taken into account in
the vicinity of a close-orbit binary pulsar [2]. These
relativistic effects can be described, for the known binaries,
with sufficient accuracy in terms of the called post-
Keplerian parameters that account for departures from
Newtonian Keplerian dynamics owing e.g. to the GW
emission, time delay caused by the curvature of space-time
near the pulsar (Shapiro delay), and relativistic time
dilation [16]. There exist a variety of effects that affect
the orbital period stability and they can be, roughly
speaking, classified in two large groups: kinematic and
intrinsic to the system. The former include the effects of a
secular increase due to the Galactic gravitational potential,
secular acceleration resulting from the pulsars transverse
velocity (proper motion of the pulsar) and the clusters
gravitational field; while the latter is related to “local”
effects in the system as mass loss either from the pulsar or
its companion and the GW emission among others.2 After
subtracting kinematic effects from the observed change
of the orbital period, the remaining intrinsic period decay
has been shown to be explained by the GW emission
predicted by general relativity of an inspiraling binary in
vacuum.
The orbital period decay owing to the GW emission of a

binary spiraling in circular orbits is given by

1See also Ref. [15] for the gravitational lensing properties of
the RAR profile.

2For a more detail description of possible effects on the
observed period decay see Refs. [3,17].
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_PGW
b ¼ −

192π

5

�
2πGM
c3Pb

�
5=3

; ð1Þ

where G is the gravitational constant, Pb is the orbital
period, M ¼ ðmpmcÞ3=5M−1=5 is the so-called chirp mass
and M ¼ mp þmc is the total mass, with the subscripts p
and c denoting the primary component and its companion,
respectively.
The theoretical prediction of general relativity given by

Eq. (1) was first verified with the observed intrinsic orbital
period decay of the famous Hulse-Taylor binary pulsar PSR
B1913þ 16 [1], which is explained with an accuracy of
99,8%. Later on, additional successful verifications in other
relativistic NS-NS and NS-WD binaries have been made
and with even higher accuracy. We refer the reader to
Ref. [18] for a review on this subject and also Table I.
As we have mentioned, the above orbital period decay by

GW emission is calculated under the assumption of binary
motion in empty space. We shall explore below the effect of
the presence of DM background on the orbital motion via
dynamical friction, i.e. by DM gravitational drag. We shall
infer the predicted orbital period time derivative by this
phenomenon to then compare it with the one produced by
the GW emission.

III. DYNAMICAL FRICTION FORCE AND ITS
MAIN INGREDIENTS

Dynamical friction has been widely used to account for
the drag force when an object is moving through a
collisionless medium of field particles. This drag induces
a wake of medium particles on the object with a

characteristic overdensity proportional to its mass [6]. In
his seminal work, Chandrasekhar [7] computed the
dynamical friction force onto an object that moved in an
infinite homogeneous stellar medium obeying a Maxwell-
Boltzmann velocity distribution, taking into account only
the contribution of the field particle velocities smaller with
respect to the object’s velocity. However, the dynamical
evolution of many astrophysical systems is driven by
dynamical friction in a more realistic way [6]. We consider
the drag force, ffr;i, experienced by a test body of mass
mi ≫ m, being m the DM particle mass, and with orbital
velocity vi moving through the DM background with
velocity distribution function fðuÞ [6,7]:

ffr;i ¼ −4πG2m2
i m

�Z
~vi

0

d3ufðuÞ ln
�
bmax

Gmi
ð ~v2i − u2Þ

�

þ
Z

vesc

~vi

d3ufðuÞ
�
ln

�
uþ ~vi
u − ~vi

�
− 2

~vi
u

��
~vi
~v3i
; ð2Þ

where the integral in the first term accounts for low velocity
contributions (fraction of particles moving slower than the
object), while the integral in the second term refers to
the faster particles, limited by the escape velocity vesc
according to the Galactic gravitational potential.3 bmax is
the maximum impact parameter defined below in Eq. (4).
The above equation takes into account the orbital velocity
of each object with respect to the DM wind relative to the

TABLE I. Intrinsic orbital decays for several binary systems in the Galaxy as well as the ones predicted by GR and DM dynamical
friction. There, it is also shown the values of mass binaries, orbital periods and distances measured from the Galactic center. This
information is taken completely from Table I in Ref. [18] and references therein. For updated values of masses of neutron stars see [19].
We have simply added the last row for the WD-WD binary and the last two columns to show the orbital decay predicted by DMDF for
the NFW profile and the RAR model.

Name Type mp [M⊙] mc [M⊙] Pb [days] d [kpc] _Pint
b [10−12] _PGW

b [10−12] _PDF
b;NFW [10−21] _PDF

b;RAR [10−21]

J0737-3039 NS-NS 1.3381(7) 1.2489(7) 0.104 1.15(22) −1.252ð17Þ −1.24787ð13Þ −10.498 −7.860
B1534þ 12 NS-NS 1.3330(4) 1.3455(4) 0.421 0.7 −0.19244ð5Þ −0.1366ð3Þ −244.166 −27.827
J1756-2251 NS-NS 1.312(17) 1.258(17) 0.321 2.5 −0.21ð3Þ −0.22ð1Þ −0.271 −20.695
J1906þ 0746 NS-NS 1.323(11) 1.290(11) 0.166 5.4 −0.565ð6Þ −0.52ð2Þ −2.655 −11.176
B1913þ 16 NS-NS 1.4398(2) 1.3886(2) 0.325 9.9 −2.396ð5Þ −2.402531ð14Þ −7.942 −17.747
B2127þ 11Ca NS-NS 1.358(10) 1.354(10) 0.333 10.3(4) −3.961ð2Þ −3.95ð13Þ −8.083 −17.0154
J0348þ 0432 NS-WD 2.01(4) 0.172(3) 0.104 2.1(2) −0.273ð45Þ −0.258ð11Þ −0.399 −1.514
J0751þ 1807 NS-WD 1.26(14) 0.13(2) 0.263 2.0 −0.031ð14Þ � � � −1.022 −2.587
J1012þ 5307 NS-WD 1.64(22) 0.16(2) 0.60 0.836(80) −0.15ð15Þ −0.11ð2Þ −3.404 −7.343
J1141-6545 NS-WD 1.27(1) 1.02(1) 0.20 3.7 −0.401ð25Þ −0.403ð25Þ −3.578 −11.469
J1738þ 0333 NS-WD 1.46(6) 0.181(7) 0.354 1.47(10) −0.0259ð32Þ −0.028ð2Þ −2.120 −4.379
WDJ0651þ 2844 WD-WD 0.26(4) 0.50(4) 0.008 1 −9.8ð28Þ −8.2ð17Þ −0.014 −0.207

aThis binary is located in the globular cluster M15 [20]. However we have made here a simple estimation of the DMDF effect
assuming that the DM local density in its location does not change abruptly within the globular cluster, which may not be the case. This
point is better discussed in footnote 9. For a comprehensive list of all known binaries in globular clusters see http://www.naic.edu/
pfreire/GCpsr.html and references therein.

3It has been recently shown that the incorporation of the tidal
radius into the background system can produce interesting
features in infalling satellites in large cored galaxies [21].
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center of mass of the binary system: ~vi ¼ vi þ vw, with vw ¼
vwðcosα sin β; sinα sin β; cos βÞ andβ andα being the angles
between the wind velocity vector and the perpendicular axis
of the binary orbital plane and the projection of the wind
velocity vector with an axes lying in the orbital plane,
respectively. There are at least two different cases of wind
velocities: bound and unbound binaries to the galaxy poten-
tial. In the former theDMwindvelocity can be assumed as the
negative of the binary circular velocity with respect to the
galactic center vw ¼ −vrot. The latter case occurs often in
binaries with NS components in which the system received a
high kick velocity from the supernova event [22]. For high
kick velocities the binary circular velocity with respect to the
galactic center can be neglected [23] and we can assume
vw ¼ −vT , where vT is the transversal velocity of the system.
For intermediate kicks, the system can remain bound and we
can consider, in a more general case, vw ¼ vrot þ vT . Thus,
we shall consider the value of vw as a free parameter that can
assume values ranging from 10 km s−1 all the way to
1000 km s−1 following the above discussion. There is the
additional possibility for thebinary components to experience
an intrinsic DM wind. However, up to the best of our
knowledge, there is no observational evidence of an intrinsic
rotation of theDMwith respect to theGalactic center and thus
we do not consider it in our estimates.
It is important also tomention that the conditionL=a ≪ 1,

whereL is the size of the component’s wake and a the orbital
separation, must be fulfilled in order that Eq. (2) becomes
linearly applicable to each binary component [6,10]. SinceL
is of the order of the radius of the sphere of gravitational
influence of each component—see Eq. (5) below—this
means that we are limited to binary systems with orbital
velocities smaller than the velocity dispersion of the DM
background. Namely, we deal with binary systems with
sufficiently large orbital periods (small orbital compactness)
so that each binary component does not interact with its
respective companion’s wake. Furthermore, we treat the
binary system as composed of point masses no matter their
internal structure. Thus,we can apply this approach under the
above conditions to binary systems such as NS-NS/NS-WD
[18] and WD-WD [24], or any other possible binary system
of astrophysical interest.
We proceed now to introduce the most relevant ingre-

dients entering into the computation of the dynamical
friction force on the binary system. This analysis allows
us to establish our system more accurately in terms of
Milky Way galactic observables and to more realistically
characterize the DM density properties.

A. The Coulomb logarithm

The Coulomb logarithm in the Chandrasekhar’s dynami-
cal friction formula accounts for the finite size of the system
and is defined as the ratio of the maximum and minimum
impact parameters for encounters, respectively bmax and
bmin, i.e.

logΛ≡ log

�
bmax

bmin

�
: ð3Þ

It is assumed typically that bmax is of the order of the size of
the system, and bmin is defined as the impact parameter for a
90° deflection [6]

bmax ≈ a; bmin ¼ maxðrh; RAÞ; ð4Þ
where bmax can be taken as the effective size of the system
(the binary orbital separation) and rh is the half-mass radius
of the subject system. This is the radius that contains the
body’s half-mass and should be taken as bmin in the case it be
an extended body. However it does not correspond to the
present case. We instead adopt bmin ¼ RA, where RA is the
radius at which a particle of the surrounding medium is
affected by the sphere of gravitational influence of the test
body, namely:

RA;i ¼
Gmi

~v2i
; ð5Þ

being ~vi the relative velocity of the object with respect to the
DM wind velocity as we defined above.
We can see from here that dynamical friction force is

determined by the local distribution of matter producing the
wake around each object. This also establishes the char-
acteristic size of the wake. It is here assumed that bmax ≫
bmin and bmax is set to be the length scale over which the
density can be assumed to be constant for a given system at
fixed radial position. It is important to note that the choices
of the impact parameters are somewhat arbitrary. However,
we guarantee that the condition Λ ≫ 1 is satisfied.
As an example we plot in Fig. 1 the Coulomb logarithm

as a function of the wind velocity for a 1.3þ 0.2 M⊙

FIG. 1. Coulomb logarithm for the primary, log10 Λp (blue
line), and for the secondary, log10 Λc (red line), as a function of
the DM wind velocity. The primary is a NS of 1.3 M⊙ and the
companion secondary is a WD of 0.2 M⊙. The NS-WD binary
has an orbital period Pb ¼ 100 days and β ¼ π=2. The
differences between the Coulomb logarithms lead every compo-
nent of the system to experience distinct gravitational interactions
with its respective wake.
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NS-WD binary with orbital period Pb ¼ 100 days. We
stress that the Coulomb logarithm does not change with β,
we choose however β ≠ 0 to perform, in a more general
way, a study of the orbital period decay. We also note that,
for vw ≥ 80 km s−1 there are not large differences between
the Coulomb logarithm for each object. However, we will
take into account these small differences for accuracy even
though we consider, in some cases, large values for the
wind velocity.

B. Velocity distribution function

The evolution of a collisionless self-gravitating system is
determined by the Vlasov-Poisson equation that sets the
conservation of the phase-space density [6]. This distribu-
tion function fully specifies the dynamic of a collisionless
system. For instance, for spherical systems, the mass
density is proportional to

R
d3vf. It is also possible to

derive the distribution function of a collisionless system for
a given self-consistent density profile ρ following
Eddington’s formula [25]

fðEÞ ¼ 1ffiffiffi
8

p
π2

�Z
E

0

d2ρ
dΨ2

dΨffiffiffiffiffiffiffiffiffiffiffiffi
E − Ψ

p þ 1ffiffiffi
E

p
�
dρ
dΨ

�
Ψ¼0

�
; ð6Þ

where we have introduced the relative potential and binding
energy (per unit mass) defined respectively as: Ψ ¼ −Φþ
Φ0 and E ¼ −EþΦ0 ¼ Ψ − 1

2
v2. For a spherical system

with an isotropic velocity dispersion, the phase space
distribution function of dark halos depends only on the
energy and not on the angular momentum. The above
formula is particularly useful when we seek for a distri-
bution function to associate with a density profile obtained
from other methods. We shall apply this procedure in the
appendix, to the NSIS and to the phenomenological NFW
profile to validate the approximation of considering, within
our estimations, the Maxwell-Boltzmann distribution for
these both profiles. Significant but very small differences
appear between the Maxwell-Boltzmann distribution and
the distribution functions associated to the NFW and NSIS
profile at nearby unbound energies, as can be seen in Fig. 7.
In addition, the unbound energy (E ¼ 0) permits, in fact, to
define the escape velocity vesc ¼

ffiffiffiffiffiffiffiffiffi
2jΨjp

. We shall see that
the contribution of particles moving faster than the object
and limited by the escape velocity, do not contribute
substantially to the dynamical friction force. This conse-
quence supports the fact of considering the Maxwell-
Boltzmann distribution to describe the velocity distribution
for the aforementioned profiles. The main motivation of
this approach is then, due to the numerical facilities that the
simple Maxwell-Boltzmann distribution provides in the
computation of the dynamical friction force.
Accordingly, for the sake of comparison, let us assume

then that the virialized NFW and NSIS halos, follow the
Maxwell-Boltzmann distribution function

fMBðuÞ ¼ n0
ð2πσ2Þ3=2 exp

�
−

u2

2σ2

�
; ð7Þ

where n0 is the particle number such that ρ ¼ n0m and σ is
the velocity dispersion which is defined in terms of the DM
gravitational potential through the Jeans Eq. (14).
For the RAR model, we consider self-consistently a

Fermi-Dirac distribution function with energy cutoff ϵc to
describe the velocity distribution of self-gravitating halos in
thermodynamic equilibrium [12]4

fcðpÞ ¼
gm3

h3

�
1−eðϵ−ϵcÞ=kT
eðϵ−μÞ=kTþ1

ϵ ≤ ϵc;

0 ϵ > ϵc:
ð8Þ

Here ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2 þm2c4

p
−mc2 is the particle kinetic

energy, m is the particle mass, μ is the chemical potential
(with the particle rest mass subtracted off), T is the
temperature, k is the Boltzmann constant. The quantity g
denotes as usual the particle spin degeneracy (g ¼ 2 in our
case) and h is the Planck constant. It is important to stress
that, the parameter ϵc serves to account for the finite size of
galaxies. Note also that for ϵc → þ∞, we recover the
Fermi-Dirac distribution. In the nondegenerate limit
μ → −∞, we recover on the other hand the classical
King model [26], which reduces to the Boltzmann dis-
tribution in the limit ϵc → þ∞.
As we have mentioned, we are going to explore in this

work the dynamical friction force effects on binary systems
produced by DM profiles. However, it is important to note
that, the dynamical friction force depends actually on the
velocity distribution function whereby the introduction of
the DM density profile, is somehow artificial; but in any
case, it should be self-consistent for a given velocity
distribution function according to the previous discussion.

C. The escape velocity

The escape velocity is defined in terms of the gravita-
tional potential ϕðrÞ of the background5 as vesc ¼

ffiffiffiffiffiffiffiffiffi
−2ϕ

p
.

The latter can be determined completely at any radius scale
for a given density profile as follows

ϕðrÞ ¼ 4πG

�
1

r

Z
r

0

dr0r02ρðr0Þ þ
Z

∞

r
dr0r0ρðr0Þ

�
: ð9Þ

The observed escape velocity of the Milky Way (consid-
ering the Galactic components, disk, bulge and halo) was
found to be in the range 498 km s−1 ≲ vesc ≲ 608 km s−1 at
the solar position, at 90% confidence interval and median

4See also Ref. [14] for a general discussion about the
conditions under which statistical equilibrium state is reached.

5Note that we are ignoring the gravitational potential produced
by the binary system as well as other possible contributions, such
as those produced by the baryonic component.
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likelihood of 544 km s−1 [27]. The RAVE survey has
recently found the local escape speed to be vesc ¼
533þ54

−41 km s−1 [28]. These values depend significantly
on the mass exterior to the solar circle within a certain
halo radius rh. For example, the halo mass MDMðrh ¼
40 kpcÞ ∼ 2 × 1011 M⊙ is consistent with the dynamics of
the outer DM halo as was recently indicated in [29]. We
note therefore that the Galactic escape velocity is either
lower or closely equal to the orbital velocity of the binary
pulsar for periods around Pb ≈ 0.1 days. For large orbital
periods Pb ≈ 100 days, the orbital velocity is always well
below the escape velocity. These two facts imply therefore
that the contribution of the second integral (fast particles) to
the dynamical friction force could be very small in most
cases but not negligible in general. We will keep this term
for a general study since, as we will see, it also leads to a
change of sign in the orbital period time derivative (i.e.
from decay to widening) for some values of the period as
well as for the DM wind velocity.

D. The density profile

1. The NFW profile

We first recall the widely used phenomenological DM
density profile arising within the ΛCDM cosmological
paradigm, i.e. the NFW profile [11]

ρðrÞ ¼ ρc
ðr=rsÞð1þ r=rsÞ2

; ð10Þ

where ρc is the characteristic density and rs is the scale
radius. This density profile exhibits a sharp cusp in the
inner region ρ ∝ r−1 while in the halo part the density
scales as ρ ∝ r−3.
It is worth to mention that there is an active debate in the

literature on which is the best representation of the DM
density profile that originates from the ΛCDM paradigm.
For instance, some simulations have pointed out that the
density profile of DM halos might be actually shallower
than the one given by the NFW profile and found a cored
structure represented more accurately by an Einasto profile
(see Ref. [30] for details). It is out of the scope of this work
to make an assessment on this issue and thus, for the sake of
example, we adopt the NFW profile as the DM profile
associated with the ΛCDM scenario. As we shall see, since
the NSIS and the RAR profiles show also a shallower,
cored inner halo,6 they are useful to analyze the differences
that arise in the DMDF effect between cuspy and cored
density profiles.

2. The NSIS profile

Another often adopted DM density profile which also
yields the asymptotic flatness of the rotation curves is
represented by the NSIS profile [32]:

ρðrÞ ¼ ρ0
1þ ðr=r0Þ2

; ð11Þ

where ρ0 is the central density and r0 is the core radius.

3. The RAR profile

We will also examine the DMDF in the case of the RAR
model [12,13]. This model describes the DM distribution
along the entire galaxy in a continuousway, i.e. from the halo
part to the Galactic center and without spoiling the baryonic
component which dominates at intermediate scales.
Likewise, the density ρ and pressure P for the Fermi-
Dirac distribution function are defined respectively by

ρ ¼ g
h3

m
Z

ϵc

0

fcðpÞ
�
1þ ϵðpÞ

mc2

�
d3p; ð12Þ

P ¼ 2

3

g
h3

Z
ϵc

0

fcðpÞ
1þ ϵðpÞ=2mc2

1þ ϵðpÞ=mc2
d3p: ð13Þ

Assuming a self-gravitating system of massive fermions
(within the standard Fermi-Dirac phase-space distribution)
in thermodynamic equilibrium, the DM density profile was
computed in [12]. By imposing fixed boundary conditions
at the halo and including the fulfillment of the rotation
curves data, the parameters of the system have been
constrained. This procedure was applied for different types
of galaxies from dwarfs to big spirals exhibiting a universal
compact core-diluted halo density profile. An extended
version of the RAR model was recently presented [13], by
introducing a fermion energy cutoff ϵc in the fermion
distribution. Importantly, this generalization in the statistics
naturally arises by studying the stationary solution of a
generalized Kramer statistics which includes the effects of
escape of particles and violent relaxation [14]. The new
emerging density profile serves to account for the finite
galaxy sizes due to the more realistic boundary conditions,
while it opens the possibility to achieve a more compact
solution for the quantum core working as a good alternative
to the BH scenario in Sgr A* (see, Ref. [13], for details).
The narrow particle mass range provides several solutions
to satisfy either the rotation curve data in the halo part or
both sets of data, namely including additionally the orbits
of the S-cluster stars such as the S2 star, necessary to
establish the compactness of the DM central core. A
comparison between the RAR model, NFW profile and
NSIS for MW-like spiral galaxies is also shown in Fig. 2,
describing the outstanding inner structure below parsec
scale for the RAR profile.

6The similarity between the Einasto profile and the RAR
profile in the inner halo region has been shown in Ref. [31].
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It is important to clarify that the above DM density
profiles are obtained without considering a DM-baryonic
matter feedback nor DM self-annihilations. As shown in
Ref. [35], these effects might produce changes in the DM
density profile. We expect, however, the former to be
important only locally in massive clusters and the latter
stands on the largely model-dependent unknown DM
nature. Thus, for the sake of generality, we shall not
consider these effects in this work.

E. The velocity dispersion

According to observations of stars in outer part of halos
and numerical simulation, the stellar velocity dispersion of
the Milky Way halo σr, shows an almost constant value
around 120 km s−1 at scales of 20 kpc where DM is
supposed to dominate and the circular velocity Vc exhibits
a flat behavior. Assuming that the galactic halo is stationary
and spherically symmetric, it is possible to derive the DM
radial velocity dispersion from the Jeans equation7

1

ρðrÞ
dðρðrÞσ2rÞ

dr
þ 2

βσ2r
r

¼ −
dϕðrÞ
dr

¼ −V2
c; ð14Þ

where β ¼ 1 − σ2θ=σ
2
r is the velocity anisotropic parameter,

that in the isotropic case, takes evidently the value β ¼ 0.
The circular velocity vc is defined by the local radial

gradient of the potential while the radial velocity dispersion
σðrÞ depends on the shape of the potential at exterior radii.
For a nonrotating spherical system the relation between
these quantities is given by

v2c ¼ −σ2r
�
d ln ρ
d ln r

þ d ln σ2r
d ln r

þ 2β

�
; ð15Þ

where the first term in parenthesis is (minus) the loga-
rithmic slope γ of the density profile. For the singular
isothermal sphere with a Maxwell Boltzmann distribution,
the simple relation v2c ¼ 2σ2r is satisfied for all radii. We
note that, instead, for the NFW profile one obtains 1 ≤
γ ≤ 3 and hence, this simple relation between the circular
velocity and the velocity dispersion is not fulfilled at all
radii (except at the virial radius where γ ¼ 2, see e.g.
Ref. [36]). Therefore, in order to find the right velocity
dispersion profile for a given density profile, with asso-
ciated gravitational potential, we solve hence the Jean
equation for the isotropic case along the entire the Galaxy.

IV. ORBITAL PERIOD EVOLUTION

In this section we study the DMDF effect as an intrinsic
effect on the binary system motion. Hence, in order to
analyze the perturbed Keplerian orbit of binary systems, we
use the osculating formalism that permits us to obtain the
sequence of perturbed orbits [16]. We follow particularly
both the formulation and the derived analysis presented in [9]
to compute the orbital period decay due to DMDF. We start
by defining the relative acceleration between two bodies as

_v ¼ −
GM
r3

rþ f; ð16Þ

with f ¼ a1ηv þ a2vw for the case in which the perturbing
force is taking to be the drag force measured on the center of
mass. To the zeroth order, the orbital velocity obeys a
Keplerian motion, v ¼ Ω0r0, with Ω0 and r0 being the
angular velocity and orbital separation, respectively.Wehave
also introduced thedefinitions: η ¼ μ=M,μ ¼ mpmc=M and
M ¼ mp þmc. From here, the perturbed orbital elements
can be then written as follows

_a ¼ 2

ffiffiffiffiffiffiffiffi
r30
GM

r
SðtÞ; ð17Þ

_e ¼ 2

ffiffiffiffiffiffiffiffi
r0
GM

r
½RðtÞ sinðΩ0tÞ þ 2SðtÞ cosðΩ0tÞ�; ð18Þ

_i ¼ 2

ffiffiffiffiffiffiffiffi
r0
GM

r
WðtÞ cosðΩ0tþ ωÞ; ð19Þ

_Ω ¼ 1

sin i

ffiffiffiffiffiffiffiffi
r0
GM

r
WðtÞ sinðΩ0tþ ωÞ; ð20Þ

where the orbital parameters a, e,ω, i andΩ are the semiaxis
major, the eccentricity, the longitude of the pericenter, the

FIG. 2. Distribution of DM in MW-type galaxies predicted by
the RAR model. The solid line in the legend, refers to the most
compact solution for m ¼ 345 keV. For comparison we show,
with the dashed blue line, the solution form ¼ 48 keV. There are
also shown the NFW and NSIS profiles given by Eqs. (10) and
(11), respectively. The free parameters in these profiles were
taken from [33,34], respectively, satisfying the same (total)
rotation curve data as in the RAR case, with the corresponding
considerations of bulge and disk counterparts.

7Note that it is not the (observed) line of sight velocity
dispersion of tracers.
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inclination and longitude of the ascending node, respectively.
In the right side of Eqs. (17)–(20), the source terms SðtÞ,
RðtÞ and WðtÞ have been defined as a functions of the
dynamical friction force as well as the wind velocity vector
according to [9]

SðtÞ ¼ a1ηv − a2vw sin β sinðΩ0t − αÞ; ð21Þ

RðtÞ ¼ a2vw sin β cosðΩ0t − αÞ; ð22Þ

WðtÞ ¼ a2vw cos β: ð23Þ

The rate of change of the separation with time leads
consequently to a change of the orbital period Pb ¼
2π=Ω0 given by [37]

_Pb

Pb
¼ 3

2

_a
r0
: ð24Þ

This relation along with Eq. (17) provide the time derivative
of the orbital period8

_PbðtÞ ¼ 3Pb½a1η − a2Γ sin β sinðΩ0t − αÞ�: ð25Þ

The resulting secular change in the orbital period is obtained
by averaging over one period Pb, namely (see e.g. Ref. [9]):

h _Pbi ¼
1

Pb

Z
Pb

0

_PbðtÞdt: ð26Þ

In the above formulation we have introduced the same
definitions as in [9] for an easier comparison of the results:
Γ ¼ vw=v, Δ� ¼ Δ� 1, Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4η
p

. The coefficients ai
can be written in terms of the integral velocity contribution
function

bi ¼
1

ρðrÞ logΛi

Ii
~v3i
; ð27Þ

as

a1 ¼ −ðA1b1 þ A2b2Þ; a2 ¼
1

2
ðA1b1Δþ þ A2b2Δ−Þ; ð28Þ

with Ai ¼ 4πρðrÞ logΛiG2M. The definition of bi in the
more general form given by Eq. (27) allows the use of any
velocity distribution function, or equivalently any density
profile through the integral term Ii [term in parenthesis in
Eq. (2)]. This feature is contrary to the analyzed case in [9]
where the Maxwell-Boltzmann distribution function was
only considered there.

It is clear that the initial phase α can be set to any value
without loss of generality, hence we set α ¼ 0 for sim-
plicity. In the next section, we compute the secular change
of _Pb for different density profiles with the velocity
dispersion profile determined by Eq. (14) and the asso-
ciated velocity distribution function described by Eqs. (7)
and (8). The incorporation of the radial scale dependence of
these quantities, leads to reduce the number of free
parameters presented in early calculations [9], as already
pointed out previously.
There may be other contributions to a secular change of

the orbital period in addition to the DMDF and the
gravitational wave emission. A common effect in binaries
with ordinary star components is the mass loss by star
winds or accretion. A change of mass in the system would
produce a change in the orbital period of the type
_Pb=Pb ¼ − _M=M, thus mass loss increases the orbital
period (orbital widening) and mass accretion decreases it
(orbital decay). In our case of binaries composed of
compact stars the mass loss by winds is unlikely and
accretion of matter from one component into the other
could occur only via Roche lobe overflow for extremely
short binary periods near the merging process. It remains
the possibility of accretion of DM particles onto the binary
components leading to a shrink of the orbit. The assessment
of the importance of this effect, however, relies on the
unknown cross section between DM and baryonic matter
inside the stars (see, e.g., Ref. [38]). Thus, for the sake of
generality of our conclusions, we shall not include this
effect in our estimates.

V. NUMERICAL RESULTS

We present now the dependence of _Pb according to
Eq. (25) on the free parameters: the orbital period, the DM
wind velocity and the radial position of the binary mea-
sured from the Galactic center.
Once the density profile has been chosen, and the binary

position has been fixed, the velocity distribution function,
the velocity dispersion, as well as the escape velocity that
constrains the maximum velocity in phase space, [upper
limit in the second integral Eq. (2)] can be determined
uniquely. Thus, for an observed binary at a known galactic
position, the above quantities acquire values that can not be
treated as uncorrelated and fully free parameters.
In the following analysis we adopt for the RAR model

the solution for the Milky Way with a particle mass
m ¼ 345 keV, which has the density profile with the most
compact quantum core (see Fig. 2). We consider for the
sake of example the following binary systems: NS-WD
with masses mp ¼ 1.3 M⊙ and mc ¼ 0.2 M⊙, NS-NS
with masses mp ¼ mc ¼ 1.3 M⊙ and WD-WD with
masses mp ¼ 0.5 M⊙ and mc ¼ 0.25 M⊙. According to
our above discussion of the DM wind, and considering the
observed orbital period range and binary positions, we

8We note there is a typo in Eq. (18) of Ref. [9], namely when
compared with Eq. (25) of our present work it shows an extra
factor v=2 which leads the equation to be dimensionally
incorrect.
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perform our analysis varying the parameters in the following
ranges: 10 km s−1 ≲ vw ≲ 1000 km s−1, 0.1 days ≲Pb ≲
100 days and a scale radius 0.1 kpc≲ r≲ 10 kpc. It is
important to note that we will also consider binary systems
near theGalactic center (at parsec scales) since it is of interest
to check theDMDF in regions along theGalaxywhereDM is
supposed to dominate.

A. DMDF in observed binaries

We first apply the approach to the Galactic binaries with
measured intrinsic orbital periods and which are remark-
ably well explained by GW emission. In the last three
columns of Table I we compare _PGW

b with _PDF
b . In this

calculation we use the NFW profile and the RAR model
for illustrative purposes and the following free parameters:
β ¼ 0 and vw ¼ 100 km s−1. For other values of β, _PDF

b
does not change significantly, however a change of vw by
one order of magnitude may be more important in the
computation of _PDF

b as we shall see below. At this point we
should discuss whether the binaries of Table I are bound or
unbound to the Galactic gravitational potential to determine
a more precise value for the DM velocity wind.9 However,
for the binaries of Table I which are characterized by short
orbital periods, we checked that this is not relevant since for
any DM wind in the range 10 km s−1 ≲ vw ≲ 1000 km s−1

the value of _PDF
b is still very small compared with the _PGW

b
and with the measured intrinsic orbital period decay.
As we can see the DMDF effect is very small for all the

above binaries because of the short orbital periods (com-
pact orbits) that lead them to experience a small drag force.
We can thus first conclude that, for the binary systems

listed in Table I, the DMDF effect is indeed negligible and
their secular evolution is fully dominated by GWemission.

B. DMDF as a function of the orbital period

A natural question that arises is whether DMDF effects
can be comparable with the orbital period decay predicted
by GW emission. To answer this question we explore the
physical conditions (and hence the values for the model
parameters) under which such equality may be attained. We
thus consider the possibility to have binary systems with
large periods, e.g. Pb ¼ 100 days, since DMDF is
enhanced in systems with small binary compactness. We
also consider regions along the Galaxy where the DM is
supposed to dominate as those near the Galactic center.

We start our analysis by plotting the secular change of Pb
as a function of the orbital period for different density
profiles in Fig. 3 with values for the free parameters vw ¼
100 km s−1 and r ¼ 0.1 kpc in this analysis. We also show

FIG. 3. Secular change of the orbital period as a function of the
orbital period. The red dotted curve refers to the most compact
solution of the RAR profile for the Milky Way, namely for a DM
particle mass m ¼ 345 keV. The blue dashed curve shows the
results for the NSIS profile and the purple solid curve the ones for
the NFW profile. The pink solid line shows the prediction of the
orbital decay due to GW emission. We have here adopted the
values r ¼ 0.1 kpc, vw ¼ 100 km s−1 and β ¼ π=2. Top panel:
NS-WD with mp ¼ 1.3 M⊙ and mc ¼ 0.2 M⊙. Middle panel:
NS-NS with mp ¼ mc ¼ 1.3 M⊙. Bottom panel: WD-WD with
mp ¼ 0.5 M⊙ and mc ¼ 0.25 M⊙.

9It is important to clarify that the pulsar B2127þ 11C is located
within the Galactic globular cluster M15 whereby it is subjected
dominantly to the gravitational potential of its host globular cluster.
As in the case of bulge globular clusters accelerating (possibly)
pulsars through their stellar components [39], DM can also
contribute to the total acceleration by the studied effect in this
paper. This latter claim is motivated by recent observational
analysis that point out favorably the importance of the DM
component in the dynamical of globular clusters [40,41].
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in the same plot the orbital decay due to GWemission _PGW
b ,

according to Eq. (1).
We can see that for a NS-WD system (top panel in

Fig. 3), the orbital period decay starts to be dominated by
the DMDF effect shortly after than Pb ¼ 18 days, for the
NFW profile, i.e it is now larger that the one predicted by
the GW emission. For the same system, The NSIS predicts
a _PDF

b that matches _PGW
b around Pb ¼ 80 days while for the

RAR model, it occurs around 120 days. For a NS-NS
system (middle panel in Fig. 3), the NFW provides the
match around 30 days and around 90 days and 130 days for
the NSIS and RAR model respectively. For a WD-WD
system (bottom panel in Fig. 3), the NFW provides the
match around 25 days and around 70 days and 150 days for
the NSIS and RAR model respectively. These results are
also summarized in Table II for clarity. However, for such
large periods, DMDF provides small orbital decays
between 10−16 (for the NFW profile) and around 10−18

(for the other profiles) as can be seen in Fig. 3. It is evident
from here that, the larger the orbital period, the larger the _Pb

reached. For instance for Pb ¼ 1000 days, _Pb ∼ 10−14 for
the NFW profile and NS-NS binaries (middle panel in
Fig. 3). These values are however very small, with respect,
for instance, to the measured intrinsic orbital decays shown
in Table I for some binary systems. However, possible
measurements of the intrinsic period decays for binary
systems with characteristic large periods is a challenge of
unprecedented precision for astronomical observations. If
such measurements might be successfully attained, it could
also lead to discriminate between different DM density
profiles due to the outstanding precision which is a
characteristic property in such systems.

C. DMDF as a function of the DM wind

In order to analyze the effect of the wind velocity, we
choose the radial position of the binary system fixed
(measured from the Galactic center) at r ¼ 1.5 kpc and
the orbital period Pb ¼ 100 days. Figure 4 shows that, for
the aforementioned parameters and for the NFW and the
NSIS profile, _PDF

b lies in the range 10−20–10−16. We can see
from here that the smaller the DM wind velocity the larger
the _PDF

b . However the latter statement does not apply for the
RAR model which exhibits a constant value of _PDF

b ∼ 5 ×

10−18 for NS-WD and WD-WD and around 10−17 for NS-
NS, for vw ≳ 200 km s−1. this analysis leads to conclude
that binaries into a DM background with small DM wind
velocities (than the orbital velocity), experience a more
effective drag force and hence a larger _Pb. We shall be then

TABLE II. This table displays theoretical predictions of orbital
periods in days at which _PDF

b , computed by the indicated DM
density profiles, equates _PGW

b predicted by general relativity for
different binary systems.

DM Profile NS-WD NS-NS WD-WD

NFW 18 30 25
RAR 120 130 150
NSIS 80 90 70

FIG. 4. Secular change of the orbital period as a function of the
DM velocity wind. The red dotted curve refers to the most
compact solution of the RAR profile for the Milky Way, namely
for a DM particle mass m ¼ 345 keV. The blue dashed curve
shows the results for the NSIS profile and the purple solid curve
the ones for the NFW profile. The pink solid line shows the
prediction of the orbital decay due to GWemission. We have here
adopted the values r ¼ 1.5 kpc, Pb ¼ 100 days and β ¼ π=2.
Top panel: NS-WD with mp ¼ 1.3 M⊙ and mc ¼ 0.2 M⊙.
Middle panel: NS-NS with mp ¼ mc ¼ 1.3 M⊙. Bottom panel:
WD-WD with mp ¼ 0.5 M⊙ and mc ¼ 0.25 M⊙.
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more interested in binary systems with small wind veloc-
ities, however we do not exclude at all binaries with (at
least) one NS companion which may posses high kick
velocities and then large wind velocities.

D. DMDF as a function of the binary position

We turn now to plot in Fig. 5 the value of _Pb as a function
of the radial position. We here adopt for the DM wind
vw ¼ 200 km s−1 and for the binary period Pb ¼ 100 days
(left panel) and Pb ¼ 0.5 days (right panel). We can see
that, differences between the solution provided by m ¼
48 keV and the one provided by m ¼ 345 keV for the
RARmodel is ≈3 × 103. Interestingly, towards the Galactic
center, for the two chosen cases of orbital periods
(Pb ¼ 0.5, 100 days), the NFW profile and the RAR
model (for the most compact solution m ¼ 345 keV) can
reach a value of _Pb that may be comparable with the one
provided by Eq. (1) due to GWemissions. The prediction of
_Pb due to DMDF, for binaries with short orbital periods,
can also be seen in Table I for the NFW profile and the
RAR model, respectively. For large periods however (left
panel in Fig. 5), DMDF effect is highly enhanced for all the
binary systems as can be seen in Fig. 3. In particular, the
RAR model predicts large orbital period decay very near
the Galactic center (around 10−3 pc) due to the high DM
density at such distances (see also Fig. 2). The most
promising situation arises then for binary positions near
the Galactic center either for long or short orbital periods.
We expect hence that observational measurements reach a
technological improvement that permit us to measure such
short orbital periods decays with outstanding precision in
the future. In addition, it would be interesting to observe
binary systems near the Galactic center to put constraints
on the Galactic center environment, particularly on the DM

density profile and importantly, to check the GR predic-
tions in the strong field regime.

E. From orbital shrinking to widening

We turn now to analyze the model parameters under
which a change of sign in the orbital period first time-
derivative occurs. Namely, the conditions under which
DMDF produces an orbital widening instead of an orbital
shrinking or vice-versa. For given binary parameters and β,
there are values of the wind velocity for which occurs a
change of sign of _Pb. This is clearly seen in Fig. 4 for each
density profile, for binaries with known values of the orbital
period and distance and setting β ¼ π=2. Figure 6 shows,
instead, how sensitive is this feature to the value of the β
parameter and to the Galactic DM distribution, i.e on the
DM density profile. We describe now, for the sake of
example and without loss of generality, the case of the NS-
WD binary of Fig. 6. In this analysis we have adopted
Pb ¼ 100 days and r ¼ 1.5 kpc as known quantities. The
two changes of signs occur at: β ¼ 68.75° and 114.6° for
the RAR model with vw ¼ 70 km s−1; β ¼ 80.21° and
97.40° for the NFW profile with vw ¼ 200 km s−1; and β ¼
74.49° and 103.13° for the NSIS profile with vw ¼
300 km s−1 (see Fig. 6). These results are in general
agreement with the ones found in Ref. [9] within the
approximation of large vw. The contribution of fast moving
particles with respect to the binary-components, along with
particular choices of vw, β and even Pb, might lead
(although it is not a necessary condition) to multiple
changes of sign of _Pb. This analysis supports the necessity
of taking into account this contribution to check the
conditions under which _Pb may change sign. If one were
interested in providing only negative values of _Pb, the
particular choice β ¼ 0 (or more generally a value of it out

FIG. 5. Secular change of the orbital period of a NS-WD as a function of the radial position, for all the density profiles analyzed in this
work. The red dotted curve refers to the most compact solution of the RAR profile for the Milky Way, namely for a DM particle mass
m ¼ 345 keV. The black dot-dashed curve shows the RAR profile for m ¼ 48 keV. The blue dashed curve shows the results for the
NSIS profile and the purple solid curve the ones for the NFW profile. We have here adopted the values vw ¼ 200 km s−1 and β ¼ π=2.
Left panel: numerical results for the case Pb ¼ 100 days. Right panel: numerical results for the case Pb ¼ 0.5 days.
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the above ranges) would fulfill such requirement. We set
then henceforth on the contrary β ¼ π=2 in order to
introduce a possible change of sign in _Pb as a general case.
Let us turn back to Fig. 3. We note that the change of sign

can occur for shorter or longer periods depending on the
density profile and the DM wind velocity. For instance, for
the NFW profile and vw ¼ 200 km s−1, the change of sign
occurs at Pb ≈ 2 days contrary to the case vw ¼ 100 km s−1

where the change is around 100 days for NS-WD as can be
seen in the top panel of Fig. 3. The change of sign of _Pb
may occur at short period values for the RAR model,
around 1 day for NS-NS and WD-WD (see middle and
bottom panel in Fig. 3), while for the NFW profile, it may
occur around 20 days for NS-NS, around 12 days for WD-
WD and around 100 days for NS-WD. The NSIS profile
always provides negatives values in all the binary systems
shown in Fig. 3. Before the first peak and after the second
one, _Pb is always negative while between the two peaks _Pb
is positive. We recall that, however, negatives values can be
obtained for all the orbital period range in the case in which
β takes a value different from the aforementioned ranges,
independently of the binary system and the other param-
eters as was inferred from Fig. 6.
It can be seen that negative values of _Pb correspond to

those binaries between the two peaks contrary to the curve
given by the RAR model in the bottom panel in Fig 3. We
also note that the position of those peaks does not change
significantly when the orbital period varies, but rather the
order of magnitude of _Pb. In some cases it can vary up to
one order of magnitude. It is also important to note that this

feature may change depending on the radial position and
the density profile. As we can see from the same plot, the
RAR model shows negative values of _Pb below the
first peak.
We can analyze the behavior as a function of the binary

position in Fig. 5. For the case of NFW profile and left
panel (Pb ¼ 100 days), negatives values of _Pb can still be
found after the peak as pointed out previously; therefore,
positives values are located below 1.5 kpc for the NFW
profile, while for both the NSIS profile and the RARmodel,
_Pb is always negative. In the right panel of the same figure
(for Pb ¼ 0.5 days), all the DM density profiles provide
negatives values of _Pb except the RAR model, before the
peak, for m ¼ 48 keV (also for Pb ¼ 100 days). It is
important to stress that this analysis is valid for β ¼ π=2
since, for other values of it, as β ¼ 0, _Pb is always negative
being independent of the DM density profile as can be
inferred from Fig. 6.

VI. DISCUSSION AND CONCLUSIONS

It is by now well-known that the high-precision mea-
surements of the orbital parameters of compact-star binaries
(e.g. NS-NS, NS-WD and WD-WD) with short orbital
periods (Pb ≲ 0.1 days) have allowed a remarkable veri-
fication of the of the orbital decay predicted by general
relativity due to GW emission (see Table II and references
therein). However, the binary gravitational binding energy
can be also affected by an usually neglected phenomenon,
namely the DMDF (i.e. DM gravitational drag) induced by
the DM on the binary owing to the interaction of the binary
components with their DM gravitational wakes. We have
qualified and quantified in this work this effect in the
evolution of compact-star binaries and assessed the con-
ditions under which it can become comparable to the one of
the GW emission. We can draw the following conclusions
from such an analysis:
(1) A first interesting situation may occur for binaries

with long orbital periods above 20 days: the orbital
decay produced by DMDF becomes comparable to
the one produced by the emission of GWs. Clearly,
the precise orbital period at which the two effects are
quantitatively equal depends on the DM density
profile and on the binary parameters (see Fig. 3).

(2) We have presented here, for the NFW, the NSIS and
the RAR DM profiles, the orbital period for NS-NS,
NS-WD and WD-WD binaries at which the DMDF
effects, start to dominate over the produced by GW
emission. These results are summarized in Table II
(see also Fig. 3).

(3) The NFW profile and the RARmodel provide a more
significant effect in the drag force than the one given
by the NSIS profile, as can be seen in Figs. 3–5. It is
important to note that the RAR and the NSIS profile
predictions are similar above Pb ¼ 100 days, for all

FIG. 6. Secular change of the orbital period for a NS-WD as a
function of the angle β. The red-dotted curve refers to the most
compact solution of the RAR profile for the Milky Way, namely
for a DM particle mass m ¼ 345 keV. The blue-dashed curve
shows the results for the NSIS profile and the purple-solid curve
the one for the NFW profile. We have here adopted the values
Pb ¼ 100 days and r ¼ 1.5 kpc for all the profiles. Here we
adopt values of the wind velocities that can lead to change of sing
in the orbital period time-derivative. For the RAR model
vw ¼ 70 km s−1, for NFW profile vw ¼ 200 km s−1 and for
the NSIS profile vw ¼ 300 km s−1.
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the binary systems analyzed in this work (with vw ¼
100 km s−1 and located at 0.1 kpc), while also for
those values of Pb the NFW profile predicts a much
larger DMDF effect.

(4) Another promising situation arises for binary sys-
tems located very near the Galactic center. In this
case, the _Pb due to DMDF is increased even for short
orbital periods (Pb ¼ 0.5 days) as is shown in the
right panel of Fig. 5. For long orbital periods the
DMDF is notoriously strengthened, particularly for
the NFW profile and the most compact solution for
the RAR model (m ¼ 345 keV). This latter situation
corresponds to the most ideal case for testing the
DMDF (left panel of Fig. 5).

(5) For the most ideal scenario of the DMDF effects in
binary systems, kinematic effects, which are propor-
tional to the orbital period, must be considered and
respectively compared to the one studied in this work.

(6) It is known that positive values of _Pb can be caused
for example by binary mass-loss or mass-exchange.
However, we have seen that _Pb might change sign
from negative to positive due to DMDF. This is
shown in Fig. 6 for different DM density profiles.
Thus, this effect could be study in binary systems
dominated by kinematic effects.

To summarize, The DMDF is very sensitive to the DM
properties: density profile, velocity distribution function
and velocity dispersion profile; whereby it would permit to
put stringent constraints on the DM properties (and
presumably on the nature) at the binary position and thus
to discriminate between different DM models. Following
this idea, the determination of the orbital secular changes of
compact-star binaries with long/short orbital periods
located in the outer halo/center of the Galaxy, might
constrain the DM density distribution in these locations.
It would also be interesting to study such an effect in
binaries with measured orbital decays within globular
clusters (as in the case of B2127þ 11C) in order to put
constraints on the DM distribution in these systems.
Therefore, the possible identification of this effect estab-
lishes a topic for future high-precision astrophysical data
for the analysis of the secular evolution of compact-star
binaries.
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APPENDIX: DISTRIBUTION FUNCTIONS FROM
EDDINGTON’S FORMULA

For a given density profile, the gravitational potential can
be obtained by solving the Poisson’s equation ∇Ψ ¼
−4πρðrÞ. Now, in order to solve Eddington’s formula
Eq. (6), we express the integral there in terms of r instead
of Ψ, and choose the appropriate limits of integrations by
inverting numerically the equation ΨðrÞ ¼ gðrÞ, with gðrÞ
being a defined function of the radial position for a given
density profile. In addition, the condition that the distri-
bution function be positive for any positive energy, i.e,
fðEÞ ≥ 0 for E ≥ 0, should be guaranteed. This condition is
fulfilled when ΦðrÞ goes to zero at infinity along with the
appropriated value of the central potential Φ0 ¼ Φðr ¼ 0Þ.
We then set E ¼ −E and do for convenience the simple
change

d2ρ̄

dΨ̄2
¼ d

dr̄

�
ρ̄0ðr̄Þ
Ψ̄0ðr̄Þ

�
dr̄

dΨ̄
: ðA1Þ

All quantities with bar are dimensionless by making use of
the model parameters of the respective density profile. With
all of this, we can perform numerically the integral in
Eq. (6). In order to compare the distribution functions
associated with the NFW and the NSIS profiles, with the
Maxwell-Boltzmann one, we have to normalize f to
common units. For this we follow the usual normalizationffiffiffi
8

p
M=ðRVÞ3, whereM is the mass enclosed at a position R

where the circular velocity V becomes flat, and E is given
in units of square velocity V2; hence we introduce the
dimensionless quantity Ē ¼ E=V2. For the NFW profile
(Eq. (10) such a radius is given by the virial radius,
rv ¼ crs, where c is the so-called concentration parameter
c and rs is the scale radius. For this profile, we measure
then f in units of

ffiffiffi
8

p
Mv=ðRvVvÞ3 and Ē ¼ E=V2

v. For the
NSIS profile (Eq. (11), we adopt the core radius r0 and thus
all the quantities derived from it such that f is given in units
of

ffiffiffi
8

p
M0=ðr0V0Þ3 and Ē ¼ E=V2

0. Furthermore, we
express the Maxwell-Boltzmann distribution as follows [6]

fðEÞ ¼ ρ̄0
ð2πσ2Þ3=2 exp ½E=σ

2�; ðA2Þ

with Ē ¼ −E=2σ2.
To check the consistency of our calculation we also

apply the above method to the singular isothermal sphere
(SIS)

ρðrÞ ¼ σ2

2πGr̄20

�
r̄0
r

�
2

; ðA3Þ

which must follow the Maxwell-Boltzmann distribution
function (see, e.g., [6]). We define the central density ρ̄0 ¼
σ2=2πGr̄20 and compute its associated distribution function
also from Eddington’s formula. This solution is represented
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by the cyan-dotted line in Fig. 7 which can be seen overlaps
with the Maxwell-Boltzmann distribution. For this profile,
we measure f in units of

ffiffiffi
8

p
M̄0=ðr̄0

ffiffiffi
2

p
σÞ3. Thus, all the

distribution functions and the dimensionless energy Ē are
given in terms of theirs model parameters. Therefore, once
we set the units of f and Ē, we can infer quantitatively the
scale factor that lead to compare our results. However, it is
important to mention that such a scale factor may be

somewhat arbitrary when one does not consider a finite size
for the halo which forces us to introduce a cutoff at
some radius scale. The relation between the relative energy
E ¼ −E and the particle velocity v is determined by
E ¼ 1

2
ðv2 − v2escÞ. For v < vesc particles are of course

bounded. Finally, we present numerical results of the
distribution functions associated to the NFW and the
NSIS profiles and the comparison with the Maxwell-
Boltzmann distribution function in Fig. 7. Our goal in this
computation is to validate the approximation of taking the
Maxwell-Boltzmann distribution to describe the velocity
distribution for the aforementioned profiles. We can see
that the largest differences occur close to unbound energies,
precisely where the contribution of particle velocities near
the escape velocity do not contribute significantly to the
dynamical friction force. These results then lead us to
approximate, within our estimations, the velocity distribu-
tions function for the aforementioned profiles to follow the
Maxwell-Boltzmann distribution. Such approximation per-
mits us to notoriously facilitate all the numerical compu-
tations regarding the orbital period decay. However, if we
had at disposition observational timing pulsar data to test
robustly our predictions, we would have to use the exact
velocity distribution function for every density profile
according to Eddington’s formula.
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