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Dynamical mechanisms to generate an ultralight axion of mass ∼10−21–10−22 eV in supergravity and
strings are discussed. An ultralight particle of this mass provides a candidate for dark matter that may play a
role for cosmology at scales of 10 kpc or less. An effective operator approach for the axion mass provides a
general framework for models of ultralight axions, and in one case recovers the scale 10−21–10−22 eV as the
electroweak scale times the square of the hierarchy with an Oð1Þ Wilson coefficient. We discuss several
classes of models realizing this framework where an ultralight axion of the necessary size can be generated.
In one class of supersymmetric models an ultralight axion is generated by instanton-like effects. In the
second class higher-dimensional operators involving couplings of Higgs, standard model singlets, and
axion fields naturally lead to an ultralight axion. Further, for the class of models considered the hierarchy
between the ultralight scale and the weak scale is maintained. We also discuss the generation of an ultralight
scale within string-based models. In the single-modulus Kachru-Kallosh-Linde-Trivedi moduli stabiliza-
tion scheme an ultralight axion would require an ultralow weak scale. However, within the large volume
scenario, the desired hierarchy between the axion scale and the weak scale is achieved. A general analysis
of couplings of Higgs fields to instantons within the string framework is discussed and it is shown that
the condition necessary for achieving such couplings is the existence of vector-like zero modes of the
instanton. Some of the phenomenological aspects of these models are also discussed.
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I. INTRODUCTION

Recently it has been proposed [1,2] that an ultralight
boson candidate for dark matter [sometimes referred to as
fuzzy dark matter (FDM)], with a mass of Oð10−22Þ eV,
can properly explain cosmology at scales of 10 kpc or less.1

Such an ultralight particle was identified with an axion2

with a decay constant in the range 1016 ≤ F ≤ 1018 GeV.
It was shown that an axion of the size needed could be
generated via instanton effects. See Refs. [10–50] for recent
works related to ultralight axions.
We emphasize, as did the authors of Ref. [1], that this

ultralight axion is not the QCD axion (for work related
to the QCD axion see e.g. Ref. [51]). In the latter case
the axion mass ma ≃ Λ2

QCD=F depends on one parameter,
since ΛQCD ≃ 200 MeV is known. For relic QCD axions
produced by misalignment, this sets an upper bound
F ≲ 1012 GeV. The axion considered here is another axion,
perhaps a string axion (see e.g. Ref. [52]), that is not
necessarily related to gauge dynamics in any way. Instead,
its effective Λ is set by nonperturbative effects, such as
string instantons, and therefore ma ≃ Λ2=F depends on

two parameters. This allows for greater freedom in the
axion mass and relic abundance, and such axions are
ubiquitous in string theory [53,54].
In this work we discuss explicit models where an ultra-

light axion can arise. We will study the axion mass scale
using effective operators and will account for the scale
Oð10−22Þ eV in terms of the electroweak scale and the
hierarchy. We will also exhibit the emergence of such a light
particle both in supergravity effective field theory and then in
the framework of a specific class of string-motivated models.
The outline of the paper is as follows. In Sec. II we discuss
the general issue of the mass scale of the axion using an
effective operator approach. In Sec. III we discuss field-
theoretic models based on supersymmetry (SUSY) and
supergravity that lead to an ultralight axion. In Sec. IV
we discuss the possibility of realizing the axion within more
general string frameworks. Specifically we consider the large
volume scenario (LVS) moduli stabilization scheme, and
show that the desired hierarchy between the axion scale
and the weak scale can be achieved. In Sec. V we discuss
conditions within string theory that allow the possibility of
coupling axions with higher-dimensional Higgs operators
via D-brane instantons. The phenomenology of these models
is discussed in Sec. VI and we conclude in Sec. VII.

II. THE MASS SCALE OF THE
ULTRALIGHT AXION

An apparent conspiracy of scales exists [1] between
the observed dark matter relic abundance, astrophysical
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1Alternative possibilities for cosmology at small scales include

complex dynamics or baryonic physics. However, in this work we
focus on the approach involving an ultralight boson.

2For early work on axions see Refs. [3–9].
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observations, and common properties of axions in string
theory. Specifically, if one considers an axion in string
theory with a string scale decay constant Oð1016Þ GeV and
demands that misalignment produces an axion relic abun-
dance matching the observed dark matter relic abundance
Ωh2 ¼ :12, then the axion must be ultralight with a mass
ma of Oð10−22Þ eV. This is the relevant mass scale for
accounting for a variety of astrophysical observations, as
discussed in Ref. [1].
From an ultraviolet perspective, however, it is preferable

to turn this logic around: if the mass scale ma ≃ 10−22 eV
could be motivated by theoretical considerations, then a
misalignment-produced axion, with a string scale decay
constant, would give a derivation of the observed relic
abundance. In Ref. [1] this was achieved by tuning an
instanton action to obtain the mass, which is possible in
string theory but depends critically on moduli stabilization.
In this section we will instead study axion masses utilizing
symmetry arguments and effective field theory, motivat-
ing ma ≃ 10−22 eV.
The effective operator Va in the scalar potential that

gives the axion its mass must respect all of the symmetries
of the theory. In particular, the axion itself has a perturba-
tive continuous shift symmetry that is expected to be (and
typically is in concrete constructions) broken to a discrete
shift symmetry by instantons. This consideration leads
to Va ∼ cosða=FÞ [55]. The coefficient of this periodic
term must also respect all symmetries of the theory. Since
any theory consistent with observations respects at least
standard model gauge invariance, it is natural to decompose
Va as

Va ¼ ~AOHOV cosða=FÞ; ð1Þ

where OH is a hidden sector operator, and OV is a visible
sector operator that contains only standard model [or
minimal supersymmetric standard model (MSSM)] fields
or a standard model singlet s that couple to the Higgs.
For this term to give the axion a mass, both coefficient
operators must receive vacuum expectation values (VEVs),
where one or both could be the identity operator. Defining
A ≔ ~AhOHi and recognizing that if OV obtains a VEV it
can3 only involve powers of s and ðh†hÞ, we write4

Va ¼ A
s2mðh†hÞ2k
Λ4kþ2m−4 cosða=FÞ: ð2Þ

We note that in supersymmetric formulations higher-
dimensional operators with integer powers in the

superpotential will naturally lead to even integer powered
higher-dimensional operators. For this reason we take the
powers of s and of (h†hÞ to be ð2m; 2kÞ where ðm; kÞ are
integers or half-integers.
Equation (2) gives rise to an axion mass

ma ¼ A
1
2hhi

�hsi
hhi
�

m
�hhi

Λ

�
n−1
�
Λ
F

�
; ð3Þ

where n ¼ 2kþm and where Λ is some ultraviolet cutoff.
The precise axion mass depends on model-dependent
details that determine the precise values of A, F, and Λ,
but if A is not too small and F is near the high-scale cutoff,
as motivated by string theory, and also hsi ∼ hhi ∼ ΛEW, we
have the approximate mass equation

ma ≃ ΛEW

�
ΛEW

Λ

�
n−1

: ð4Þ

For a high-scale cutoff Λ≃1018GeV and ΛEW ≃ 102 GeV,
this gives

ma ≃ 1027 eV for n ¼ 0;

ma ≃ 1011 eV for n ¼ 1;

ma ≃ 10−5 eV for n ¼ 2;

ma ≃ 10−21 eV for n ¼ 3; ð5Þ

and we therefore have four different regimes for axion
masses: high scale, electroweak scale, neutrino scale, and
ultralight scale. Note that the mass scale relevant for
ultralight axion dark matter has arisen out of known mass
scales in nature. In Sec. III we will show that a potential of
the form (2) arises naturally from a superpotential, in which
case the appearance of the singlet is related to having
integral powers of superfields.5

We wish to emphasize that Eq. (2) is an effective field
theory proposal which is motivated by our desire to realize
the result of Hui et al. on the ultralight axion from concrete
models. This is what we set out to do in the rest of the paper.
Thus concrete analyses of some of the possibilities dis-
cussed above for various values of A, F, and Λ will be
presented in Sec. III, but we would like to make some brief
comments here. One critical aspect of the Sec. VI analysis
will address the fact that A in string theory is typically
exponentially suppressed by the volume of an internal
cycle in a Calabi-Yau manifold. From this perspective, the
authors of Ref. [1] used the n ¼ 0 case and fine-tuned this
exponential to obtain the axion mass Oð10−22Þ eV. This
requires a large internal cycle and depends on moduli
stabilization. We are simply proposing that the same small
scale can be obtained by trading instanton suppression for

3In the MSSM we could use ðh†u;dhu;dÞk and similar con-
clusions would hold.

4In supergravity and strings with strong dynamics a fermion
condensate of appropriate power could replace the s2mðh†hÞ2k
factor in Eq. (2).

5See Ref. [56] for a method of generating such operators from
a discrete symmetry.
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the electroweak hierarchy. In particular, we will see that
reasonable values of A in string theory can be accommo-
dated in this framework. In Sec. V we will discuss how
operators of the schematic form (1) may arise from D-brane
instanton corrections to the superpotential in which vector-
like instanton zero modes play a crucial role.

III. THE AXION IN SUPERSYMMETRY AND
SUPERGRAVITY MODELS

In this section we construct explicit supersymmetric
models that generate an ultralight axion. The ultralight nature
of the axion is due to a perturbatively exact shift symmetry
which is broken by a small amount (relative to other scales in
the model) by nonperturbative effects such as instantons. The
construction of a superpotential at the perturbative level that
respects invariance under aUð1Þ shift symmetryS → eiλS for
a field S can be achieved with extra matter charged under the
standard model and Uð1Þ, and in this case terms in the
superpotential involving S and the extra matter can bewritten
such that the superpotential is neutral under the shift sym-
metry [3,4]. Alternately one may make the MSSM fields
charged underUð1Þ and introduce terms in the superpotential
involving S and the MSSM fields [8].
Here we take an alternative approach where we introduce

two fields S1 and S2 which are SUð3Þ × SUð2ÞL ×Uð1ÞY
singlets but are oppositely charged under the global Uð1Þ
symmetry, i.e., under a global Uð1Þ transformation one has

S1 → eiλS1; S2 → e−iλS2; ð6Þ

so that S1S2 is neutral under the Uð1Þ. We consider a
superpotential of the form

Ws ¼ μ0S1S2 þ
λs
2M

ðS1S2Þ2: ð7Þ

The superfields Si (i ¼ 1; 2) have the expansion

Si ¼ ϕi þ θξi þ θθFi; ð8Þ

where ϕi is a complex scalar containing the axion and the
saxion, ξi is the axino and Fi is the auxiliary field. Here
we write

ϕi ¼ ðρ0i þ ρiÞeiai=ρ0i ; i ¼ 1; 2; ð9Þ

where the ρi are expansions about the VEVs ρ0i . The higher-
dimensional operator in Eq. (7) is needed to give a VEV to
the scalar component of ϕi. The F-term equations of motion
give the constraint6

μ0 þ
�
λs
M

�
ðρ01ρ02Þ ¼ 0: ð10Þ

Further one finds F≡ ρ01 ¼ ρ02. Thus we may write ϕi in
the form

ϕi ¼ ðF þ ρiÞeiai=F; i ¼ 1; 2: ð11Þ

It is useful to define the combination of axion fields a1
and a2 so that

a� ¼ 1ffiffiffi
2

p ða1 � a2Þ: ð12Þ

Here one finds that Eq. (7) leads to the following potential
for aþ:

V ¼ 4F2μ20

�
1 − cos

� ffiffiffi
2

p
aþ
F

��
: ð13Þ

Equation (13) gives aþ a mass maþ ¼ 2
ffiffiffi
2

p
μ0. One

may also check that the saxion field ρþ defined so that
ρ� ¼ ðρ1 � ρ2Þ=

ffiffiffi
2

p
and the axino fields ξþ where ξþ ¼

ðξ1 � ξ2Þ=
ffiffiffi
2

p
also have exactly the same mass. Thus the

superpotential in Eq. (7) gives rise to an entire massive
chiral multiplet ρþ; aþ; ξþ, as required by supersymmetry.
We also note that the axion a− still possesses a continuous
shift symmetry, and thus no potential is generated for a− and
so it remains massless. The same applies to ρ− and ξ−. Thus
one combination of the original chiral fields becomes
massive while the orthogonal combination remains massless.
We now turn to the generation of a mass for a−. To give a−
mass we need to include contributions in the superpotential
which break the continuous shift symmetry. We will discuss
two classes of models. For one class we will use an
instanton-type contribution and for the other class we will
use higher-dimensional operators, which couple the Higgs
fields and standard model singlets to the axion fields, which
breaks the continuous shift symmetry.
We begin by considering models of the first type. Here

we take a superpotential of the form

W ¼ Ws þWn; Wn ¼ Aðe−αS1 þ e−αS2Þ; ð14Þ

whereWs is as defined by Eq. (7) andWn violates the shift
symmetry. In this case the equations of motion give

μ0F þ
�
λs
M

�
F3 − αAe−αF ¼ 0: ð15Þ

Retaining only the dependence on a− the axion potential
takes the form

6We will assume throughout this section that the axions are
stabilized at zero, which we will find to be a consistent
assumption.
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Vða−Þ ¼ 2α2A2e−2αFe−αF cosða−=
ffiffi
2

p
FÞ

× ½1 − cosðαF sinða−=
ffiffiffi
2

p
FÞÞ�: ð16Þ

We note that the form of the axion potential is not of the
standard form cosðcaÞ. However, it reduces to it when we
expand sinða−=

ffiffiffi
2

p
FÞ about a− ¼ 0 and retain the first term

in the expansion. Thus an expansion of the potential, and
using the condition αF ≫ 1, is needed to simulate an
instanton-like effect and leads to a mass term for a− of the
form

ma− ≃ α2Ae−αF: ð17Þ

Using numbers consistent with Ref. [1], i.e., F¼1017GeV;
α2A¼1012GeV, αF ¼ 99, one finds ma− ¼ 10−21 eV. A
similar analysis holds for the saxion ρ− and the axino ξ−
which develop a mass of similar size. We assume that μ0 is
on the order of the electroweak scale. Since F ¼ 1017 GeV,
this requires λs to be Oð10−12Þ.7
Next we discuss the case when the shift symmetry is

broken by a higher-dimensional operator involving cou-
plings to the Higgs, standard model singlets, and the axion
fields. As an organizing principle we consider supersym-
metric models with three sectors: visible, hidden and an
overlap sector between the hidden and the visible sectors
with interactions suppressed by the Planck mass8 so that

W ¼ Wvis þWhid þWvh; ð18Þ

where Wvis contains fields in the visible sector, Whid
contains fields in the hidden sector and Wvih contains
the overlap. In this analysis we assume that Wvis contains
the fields H1, H2, and S, where S is a standard model
singlet like the one used in the next-to-MSSM and does not
possess any shift symmetry and Whid contains the axion
fields S1, S2 discussed above. Here we take

Wvis ¼ μsS2 þ λ0SH1H2;

Whid ¼ μ0S1S2 þ
λs
2M

ðS1S2Þ2;

Wvh ¼
λ

M
S1S2H1H2 þ

c
Mn−2 ðS1 þ S2ÞSn: ð19Þ

We assume that the Higgs fields develop VEVs due to
sources in the visible sector not considered here. The effects

of Wvh on the VEVs of S; S1; S2 are small because of
Planck mass suppression. Thus, to the lowest order, one can
see that the minimization condition in the S sector gives
hSi ∼ λ0hv1v2i=μs. We assume μs is of order the electro-
weak scale, which implies v0 ≡ hSi is of the same order.
Next we focus on the F-term equations in the S1 and S2

sectors. Here we find

μ0ρ
0
1 þ

λs
M

ðρ01Þ2ρ02 þ
λ

M
ρ01v1v2 þ

c
Mn−2 v

n
0 ¼ 0;

μ0ρ
0
2 þ

λs
M

ρ01ðρ02Þ2 þ
λ

M
ρ02v1v2 þ

c
Mn−2 v

n
0 ¼ 0: ð20Þ

From Eq. (20) we deduce F ¼ ρ01 ¼ ρ02, which results in
the constraint

μ20F þ λs
M

F3 þ λ

M
Fv1v2 þ

c
Mn−2 v

n
0 ¼ 0: ð21Þ

The axion potential results from the term
P

i¼1;2j∂W=∂Sij2.
Retaining only the dependence on a− we find

Vða−Þ ¼ 4c2
�

vn0
Mn−2

�
2
�
1 − cos

�
a−ffiffiffi
2

p
F

��
: ð22Þ

Equation (22) leads to a mass for a− of the form

ma− ¼
ffiffiffi
2

p
c

vn0
FMn−2 ¼ ΛEW

�
ΛEW

Λ

�
n−1

; ð23Þ

where v0 ∼ ΛEW, and Λ ¼ ðFMn−2Þ1=n−1.
We now show that the term j∂W=∂Sj2 does not con-

tribute to the a− mass. The S-dependent terms in the
superpotential are given by

WðSÞ ¼ μsS2 þ λ0SH1H2 þ
c

Mn−2 ðS1 þ S2ÞSn: ð24Þ

The F-term equation in this sector reads

2μsS0 þ λ0v1v2 þ
nc

Mn−2 ðρ01 þ ρ02ÞSn−10 ¼ 0: ð25Þ

Using the result deduced above that ρ0a ¼ F ¼ ρ02, the axion
potential from this sector is given by

VSða1; a2Þ ¼ j2μ0S0 þ λ0v1v2

þ nc
Mn−2 Fðeia1=F þ eia2=FÞSn−10 j2: ð26Þ

Applying Eq. (25) to Eq. (26) we have

VSða1; a2Þ ¼
���� nc
Mn−2 Fðeia1=F − 1þ eia2=F − 1ÞSn−10

����2:
ð27Þ

7This choice of λs, though small, is protected from renorm-
alization by supersymmetry. We note also that this size of λs can
be generated in string perturbation theory; e.g. in type IIA disc
instantons can generate suppressions of the form e−A, where A is
the disc area. This effect is distinct from the Euclidean D-brane
instantons that we consider elsewhere.

8Supersymmetric models of this sort with three sectors have
been considered in previous works; see, e.g., Ref. [57].
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From the above we deduce that the a−-dependent part of the
potential is

VSða1; a2Þ ¼
���� ncSn−10

Mn−2 F

����2h2 cosð ffiffiffi
2

p
a−=FÞ

− 8 cosða−=
ffiffiffi
2

p
FÞ
i
; ð28Þ

which gives a vanishing mass for a−. Therefore jFSj2 does
not contribute to the mass of a−. Finally we consider the
potential for a− generated by the terms

P
i¼1;2j ∂W∂Hi

j2. Here
we find

VSða−Þ ¼
X
i¼1;2

���λ0SHi þ
λ

M
S1S2Hi

���2; ð29Þ

which gives a vanishing contribution to Vða−Þ.
Superpotentials of the type considered in Wvh in Eq. (19)
can be generated in string models as discussed in Sec. V.
When supersymmetry is promoted to supergravity

[58,59] and supersymmetry breaking is taken into account,
one will generate soft terms and the potential will have the
form

V ¼
X
i

���� ∂W∂ϕi

����2 þ Vsoft; ð30Þ

where ϕi are all the fields that enter in the superpotential
and Vsoft are terms such as m2

0

P
iϕiϕ

† and trilinear terms.
In this case one finds that the dominant term that contrib-
utes to the axion a− mass is

m2
a− ¼ qh2

�
h
Λ

�
n−1

; ð31Þ

where q is an Oð1Þ number, and we assume μ0 ∼ s ∼ h.
Taking h ∼ ΛEW, we then have

ma− ≃ ΛEW

�
ΛEW

Λ

�
m−1

; ð32Þ

where m ¼ ðnþ 1Þ=2. Here m ¼ 3 requires n ¼ 5.

A. Models with higher-dimensional
Higgs-axion couplings

Next we discuss the case when the shift symmetry is
broken by a higher-dimensional operator involving cou-
plings of the Higgs and Si. Here we assume a superpotential
of the form

W ¼ μ0S1S2 þ
λs
2M

ðS1S2Þ2 þ
λ

M
S1S2H1H2

þ c
M2k−2 ðS1 þ S2ÞðH1H2Þk: ð33Þ

Next using the superpotential of Eq. (33) and after
spontaneous breaking which gives VEVs to Si and also
assuming thatHi develop VEVs, the axion a− potential can
be obtained as discussed in the previous analysis and one
gets

Vða−Þ ¼
��

2

M2k−2 cðv1v2Þk
�

2

þ
�

cF
M2k−2 ðv1v2Þk−1

�
2

× ðv21 þ v22Þ
��

1 − cos

�
a−ffiffiffi
2

p
F

��
: ð34Þ

For the case k ¼ 2 the first term in the brackets on the right-
hand side of Eq. (34) is small relative to the second which
gives an axion mass

Ma− ¼ cðv21 þ v22Þ1=2
�
M
F

��ðv1v2Þ1=2
M

�
2k−2

: ð35Þ

This is of the same form as Eq. (4) with n ¼ 2k − 1 and for
k ¼ 2 one has n ¼ 3 which gives the ultralight axion. We
note that after soft terms are taken into account we will have
a result similar to Eq. (32).
As a final example we consider a model where the axion

couples directly to the Higgs fields, via a nonperturbative
term in the superpotential. We present this model because it
is a very simple realization of the organizing principle of
Sec. II involving higher-dimensional Higgs-axion cou-
plings. In this example the axion a is the imaginary part
of a complex modulus T ¼ τ þ ia, whose potential is
generated nonperturbatively. This class of models is
ubiquitous in string theory, and we will explore the details
of string embeddings in Secs. IV and V. We consider a
superpotential of the form

W ¼ W0 þ μH1H2 þ Λ3−2nðH1H2Þne−T=F; ð36Þ

whereW0 is a constant obtained from integrating out heavy
fields. The axion appears in the potential only via the H1

and H2 F-terms, and a quick calculation shows the mass
of a takes the form

ma ¼ 2

�
h
Λ

�
n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nμ

Λ3

F2
e−τ

r
: ð37Þ

Taking F ∼ Λ to be a high scale and h ∼ μ ∼ ΛEW, we have

ma ¼ 2
ffiffiffi
n

p �
ΛEW

Λ

�
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΛEWΛe−τ
p

: ð38Þ

Furthermore, if we take Λe−τ ∼ ΛEW, we find
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ma ≃ ΛEW

�
ΛEW

Λ

�
n
: ð39Þ

Here taking n ¼ 2 provides the desired ultralight mass for
the axion. In many string models [60–62] the μ term in the
superpotential is generated nonperturbatively, so we find
it plausible that additional nonperturbative effects could
generate this coupling at the same scale. Alternatively, it
may be possible for the instanton that generates the higher-
order Higgs coupling to be in the same homology class as
the instanton that generates the μ term; in this case the
relationship Λe−τ ∼ ΛEW is automatic. We leave the study
of these important global issues to future work.
We note that a priori it may seem strange that there

would be a relationship between the axion mass, the
electroweak scale, and a high scale–such as the grand
unified theory (GUT) scale or the Planck scale–since the
electroweak scale and the Planck scale do not care much
about the axion mass. However, such asymmetric relation-
ships between very low-mass scales and high-mass scales
are already known to us. In the standard model the electron
mass me ∼ 0.5 MeV arises from the electroweak scale
vEW ∼ 250 GeV via the relation m2 ∼ λyukvEW. Similarly
in GUT theories the neutrino mass mν ∼ v2EW=MPl. Thus
while the electroweak scale does not care much about the
electron mass, the electron mass does care about the
electroweak scale. Similarly the electroweak mass and
the Planck scale do not care about the neutrino mass,
but the neutrino mass is sensitive to both. The relationship
of the axion mass to the electroweak scale and the high
scale Λ of Eq. (39) is very similar to the case of the
neutrino.

IV. AXIONS IN A SIMPLIFIED STRING MODEL

The authors of Ref. [1] suggested that the FDMmodel of
dark matter could be embedded in a string compactifica-
tion, and the necessary mass and axion decay constant are
natural from a stringy point of view. To make a precise
statement one should scan over an ensemble of vacua and
use the distribution of axion masses and decay constants to
estimate the frequency in which parameters consistent with
FDM occur. Unfortunately, while it is well known how to
calculate axion decay constants even when the number of
moduli is large (cf. Ref. [63]), calculating the masses
requires intimate knowledge of nonperturbative effects,
which are currently only partially calculable. In addition,
moduli stabilization with a large number of moduli is
notoriously difficult.
It is therefore our goal to find a realistic simplified model

to demonstrate that embedding FDM in string theory is
consistent with moduli stabilization, and does not remove
us from the regime of validity of the effective theory.
A typical four-dimensional (4D) effective supergravity

(SUGRA) theory constructed from a string compactifica-
tion has scalar fields known as moduli. These fields arise

from reducing the metric and various p-form gauge fields
along appropriate p-cycles in the internal space X. A
virtually universal class of moduli are the Kähler moduli,
whose vacuum expectation values parametrize complexi-
fied volumes of holomorphic cycles in X. We consider a
compactification of IIB string theory on a Calabi-Yau
orientifold X, which yields an effective N ¼ 1 SUGRA
theory in 4D. Type IIB string theory has a four-form gauge
field C4 in ten dimensions, and dimensionally reducing C4

along a holomorphic four-cycle (divisor) in X yields an
axion in the 4D theory. This axion pairs with the volume
modulus of the four-cycle in a complex scalar field, which
is the lowest component of a chiral superfield. The Kähler
moduli Ti are written as

Ti ¼ 1

2

Z
Di
J ∧ J þ i

Z
Di
C4 ≡ τi þ iθi; ð40Þ

where Di is the corresponding divisor with volume modu-
lus τi and axion θi, and J is the Kähler form on X. The
theory typically has other moduli besides Kähler moduli,
including the complex structure moduli U and the hol-
omorphic axio-dilation S ¼ e−ϕ þ iC0 ≡ S1 þ iS2.

9 The
tree-level Kähler potential takes the form

K ¼ − logðSþ S̄Þ − 2 logðVÞ þ KcsðU; ŪÞ: ð41Þ

The complex structure moduli and holomorphic axio-dilaton
acquire masses via the tree-level flux superpotential [64]

WTree ¼
Z
X
G3 ∧ Ω; ð42Þ

whereG3 is a particular flux on X, andΩ is the holomorphic
(3, 0)-form. We will assume that S and U are stabilized at a
high scale by WTree. The Kähler moduli, on the other hand,
only appear in the superpotential nonperturbatively [65].
Including these nonperturbative effects, the superpotential
then takes the form

W ¼ W0 þ
X
a

Aae−q
a
i T

i
; ð43Þ

where W0 ¼ hWTreei, and the matrix qai is a matrix of
rational numbers. The full D ¼ 4;N ¼ 1 SUGRA potential
takes the form [58,59]

V ¼ eκ
2KðKij̄DiWDj̄W̄ − 3κ2jWj2Þ;

DiW ¼ W;i þ κ2K;iW: ð44Þ

In the analysis below we set κ ¼ 1.

9Here the variables S, S1, and S2 are not to be confused with
the ones from Sec. III.
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In the Kachru-Kallosh-Linde-Trivedi (KKLT) moduli
stabilization scheme [66] the weak scale ms is related to
the hidden sector W0 so that ms ¼ eK=2jW0j in gravity-
mediated breaking of supersymmetry (see Ref. [59] and the
references therein). Therefore, in realizing an ultralight
axion in KKLTone finds the string scale to be far below the
electroweak scale. Thus, we see that single-modulus KKLT
is incompatible with an ultralight axion.
In order to get around this we must modify the theory,

by introducing more fields and/or by considering further
corrections to the potential. A particularly simple way
to introduce an additional scale is to consider the first
nonvanishing α0 correction to the Kähler potential. This
correction was computed in Ref. [67], and the corrected
Kähler potential takes the form10

K ¼ − logðSþ S̄Þ − 2 logðV þ αÞ þ KcsðU; ŪÞ; ð45Þ

where α ¼ 1
2
ξS3=21 , ξ ¼ ζð3Þχ=2ð2πÞ3, and χ is the topo-

logical Euler characteristic of X. The LVS [51,68] is a
multimodulus (≥ 2) stabilization scheme that uses the α0
correction, along with a nonperturbative effect, to realize a
hierarchy of scales.
Here we will consider the simplest case, where the

number of Kähler moduli, which is counted by the Hodge
number h1;1ðXÞ, equals two. It was shown in Ref. [69] that
the volume of all h1;1 ¼ 2 Calabi-Yau manifolds can be
written in the strong cheese form, such that

V ¼ ηðτ3=2b − τ3=2s Þ: ð46Þ

Here τb is the big (or large) cycle, which controls the
overall volume (size of the cheese), and τs is a small cycle
(a hole in the cheese). The constant η is typically an Oð1Þ
number, which depends on the intersection numbers of X.
Wewill take η ¼ 1=9

ffiffiffi
2

p
for concreteness, as in theP4

1;1;1;6;9

Calabi-Yau hypersurface. Each of these volume moduli
pairs with an axion, so we have two complex scalars
Ts ¼ τs þ iθs and Tb ¼ τb þ iθb.
In the LVS the overall volume is taken to be large, with τs

left small, so that V ∼ τ3=2b , and

τs
τb

≪ 1;
α

V
≪ 1: ð47Þ

In this regime the Kähler potential can be expanded as

K ≈ −2 logðVÞ − 2
α

V
: ð48Þ

In the standard LVS the cycle τb is taken to be large
enough to effectively ignore any nonperturbative effects
that depend on τb. The superpotential then takes the form

W ¼ W0 þ Ase−asTs : ð49Þ

The axion θb is massless in this approximation, as it does
not appear in the potential. Of course, it is expected that a
nonperturbative correction to the potential will generate a
mass of θb. In an N ¼ 1 SUGRA model the mass for θb
can be generated by a correction to either the superpotential
or the Kähler potential (or both). Let us first consider a
correction to the superpotential, of the form

ΔW ¼ Ae−abTb : ð50Þ

At large volume (large τs) this correction is negligible
compared to the terms in Eq. (49), and will therefore not
affect the stabilization of τb, τs, or θs. However, Eq. (50)
provides the only term in W that explicitly depends on θb,
and will therefore be the leading-order operator that gen-
erates a mass for θb, in the absence of additional corrections.
However, this term will be quite suppressed, and so one
must consider whether this correction truly is leading order.
Holomorphy, along with the shift symmetry of the axion,
constrain ΔW to take the form derived in Ref. [65]:

ΔW ¼
X
i

Aie
−qijT

j
; ð51Þ

where the qij are rational numbers, and −qijτj is a positive
rational multiple of the volume of a divisor.
However, holomorphy does not constrain the Kähler

potential, and the corrections can take a more general form.
It is beyond the scope of this work to explicitly calculate
any such corrections; instead, we believe the following
assumptions are well motivated:
(1) ΔK is periodic in θb.
(2) ΔK is generated by instantons that are charged under

C4, namely, Euclidean D3- and anti-D3-branes.
(3) The nonperturbative correction preserves the loga-

rithmic form of the Kähler potential.
If one assumes that the correction is generated by a

Euclidean D3- or anti-D3-brane, wrapping a cycle γ, then
we expect the correction to the Kähler potential to take the
form

ΔK ¼ A
V
e−SfðθbÞ; ð52Þ

where f is a periodic function of θb. Here S is the instanton
action, which we expect to go roughly as the volume of the
brane. In order to solve the equations of motion γ should be
a locally volume-minimizing representative of its class [γ],
with volume vol(γ), and so S≃ volðγÞ. However, since this
instanton is correcting the Kähler potential, and not the
superpotential, γ does not need to have the minimal volume
in the class [γ], as it is not necessarily a holomorphic
representative. Therefore, volðγÞ ≥ τγ, where τγ is the10In this note we work exclusively in the Einstein frame.

ULTRALIGHT AXION IN SUPERSYMMETRY AND STRINGS … PHYSICAL REVIEW D 96, 056025 (2017)

056025-7



minimal volume of [γ]. Without an explicit calculation we
see no reason to assume that the inequality volðγÞ ≥ τγ
cannot be saturated by at least some corrections to the
Kähler potential. If this is the case the correction in Eq. (52)
could provide corrections to V of the same order as those
in Eq. (50). We will assume this is not the case, but it is
important to understand these corrections further in the
future.
Under the assumption that the correction to W given

in Eq. (50) provides the leading-order term for θb, the
scalar potential11 takes the form

V¼
�
12

ffiffiffi
2

p jAsj2a2s ffiffiffiffi
τs

p
e−2asτs

VS1
þ2jAsW0jasτse−aτs

V2S1
cosðasθsÞ

þ2abτbjAbW0j
V2S1

e−abτb cosðabθbÞþξ
3jW0j2

ffiffiffiffiffi
S1

p
8V3

þ4abasτbτsjAbĀsj
V2S1

e−asτs−abτb cosðabθb−asθsÞ
�
:

ð53Þ

This form is derived in Appendix A. The axions are
stabilized at θb ¼ π=ab; θs ¼ π=as. A nonsupersymmetric
anti–de Sitter minimum of the potential is found approx-
imately at aτs ∼ lnV. For a concrete example we consider
the following parameters:

h1;1¼2; h2;1¼171; W0¼10−12; As¼Ab¼1;

as¼ab¼2π=6; S1¼10.71: ð54Þ

These numbers are well motivated in weakly coupled IIB
string theory. Calabi-Yau manifolds with a hierarchy in h1;1

and h2;1 are quite common, and the dual Coxeter number 6
appearing in as and ab corresponds to an SO(8) gauge
group, which is consistent with our weak coupling
assumption. Here we also have S1 ¼ 1=gs, so in this
example gs ≈ 0.1 is small. Inserting these parameters into
Eq. (53) and minimizing the potential, we find the volume12

is stabilized at V ¼ 187. The small cycle is stabilized at
τ ¼ 32.5. One might be concerned that a volume ofOð100Þ
is too small for the 1=V expansion of the Kähler potential
to be valid, but in this example the correction is at the
percent level, so we expect the approximation to be good.13

Using the parameters in Eq. (54) we find a light axion mass
of 3.9 × 10−22 eV. The mass of the other axion is approx-
imately 26 TeV, and the masses of the saxions are 590 GeV

and 280 TeV. The fermions masses are 13 and 26 TeV. Both
axion decay constants are Oð1016Þ GeV. Importantly, the
gravitino mass, which is the order parameter for SUSY
breaking, is not too large, at approximately 13 TeV. It
would be difficult to argue for SUSY as a solution to the
hierarchy problem if the gravitino mass was near the
Planck scale.
While the potential in Eq. (53) is a toy model for a real

string compactification, with all relevant corrections com-
puted, our analysis demonstrates that a mass scale for the
lightest axion of Oð10−22Þ eV is arguably consistent with
moduli stabilization and a realistic electroweak scale. Of
course, further study of both nonperturbative and pertur-
bative corrections to the Kähler potential, such as those in
Ref. [70], and the superpotential is important in under-
standing how FDM could be embedded in string theory.

V. ULTRALIGHT AXION COUPLINGS TO
THE HIGGS IN STRING THEORY

In this section we discuss how operators of the form
ðh†hÞn cosða=FÞ may arise in string theory, focusing on
nonperturbative corrections to the superpotential [65]. Some
of the concepts implicit in previous sections will be repeated
here in order to present a more complete picture of instanton
corrections to the superpotential in string theory.
We begin by reviewing well-known facts about instan-

tons in string theory. Nonperturbative corrections to the
superpotential may arise from gauge dynamics, Euclidean
D-brane instantons, M2-brane instantons, or worldsheet
instantons, depending on the situation. For example, in
type IIB compactifications, in particular in KKLT and the
LVS, Euclidean D3 (ED3) instantons may generate such
corrections, and Euclidean D2 (ED2) instantons and M2-
brane instantons provide similar corrections in type IIA
and M-theory compactifications. The nonperturbative con-
tribution to the superpotential from a single instanton is
typically written in the schematic form

Wnp ¼ AðϕÞe−T; ð55Þ

where T is a modulus appropriate to the compactification,
e.g. a Kähler modulus in type IIB compactifications, where
hReðTÞi ¼ volðDÞ, where D is the internal cycle wrapped
by the instanton, and the axion a is ImðTÞ. AðϕÞ is an
instanton prefactor that depends on other moduli. These
couplings do not couple a to the Higgs, and therefore are
not of the desired type.
More general classes of brane instantons exist [60–62]

in which the instanton prefactor may also contain gauge-
invariant combinations of chiral supermultiplets charged
under gauge groups. Such corrections arise due to the
presence of additional instanton zero modes when D
intersects some other cycle D0 wrapped by spacetime-
filling branes that carry nontrivial gauge sectors. We write
the general form of these corrections as

11We set Kcs ¼ 0 for simplicity, and absorb any phase of W0

into the axions.
12In this section we express all of our volumes in the

appropriate units of α0.
13While the relative smallness of the perturbation to the Kähler

potential is a necessary condition for the LVS approximation to
be valid, it is not sufficient, due to the nontrivial Kähler geometry.
We have checked that the higher-order terms are subleading.
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Wnp ¼ AðϕÞOHOVe−T; ð56Þ

where the visible sector operator OV contains only MSSM
superfields, whereas OH may have charged fields beyond
the MSSM, which could live in a hidden sector separated
from the visible sector in the extra dimensions. One
important aspect of these instantons is that they may
generate the leading coupling in OHOV , if OHOV on its
own is forbidden by an anomalous Uð1Þ symmetry. For
example, in weakly coupled type II compactifications the
top-quark Yukawa coupling 10105 of a Georgi-Glashow
SUð5Þ GUT is always forbidden in perturbation theory, as
are the flavor-diagonal Majorana mass terms for right-
handed neutrinos. Obtaining these superpotential couplings
therefore requires nonperturbative effects, such as the ones
described.
For concreteness, we will restrict our attention to ED3

instantons in type IIB compactifications, though similar
statements regarding vector-like zero modes and higher-
dimensional operators should hold in other contexts
as well.
We would like to study situations under which an

ultralight axion mass can arise from an effective operator
of the schematic form (1), which itself arises from an
instanton contribution to the superpotential. For this to
happen, holomorphy and gauge invariance dictate that the
nonperturbative superpotential contains a term14

Wax ¼ A
ðH1H2Þn
M2n−3

s
e−T: ð57Þ

Whether or not such a term exists depends on the detailed
structure of the instanton zero modes. These include ED3-
ED3 zero modes, as well as ED3-D7 zero modes that arise
from ED3 intersections with spacetime-filling D7-branes
that give rise to the Higgs fields H1 and H2. Of particular
importance are the fermionic zero modes, so-called λ
modes, in the ED3-D7 sector.
For example, if the μ term H1H2 is forbidden by an

anomalous Uð1Þ symmetry, a nonperturbative effective
operator of the form

AMsH1H2e−T ð58Þ

may generate it nonperturbatively [60–62], where the
effective μ parameter μeff ¼ AMse−hReðTÞi may be at the
electroweak scale depending on the expectation value of
the stabilized field T. In this way, ED3 instantons give a
solution to the μ problem. Generating such an operator that
is forbidden in perturbation theory by an anomalous Uð1Þ
symmetry requires a chiral excess of λ modes and an

associated shift of T under the anomalous Uð1Þ, so that
the entire operator is gauge invariant. In such a case the
axion in T becomes the longitudinal component of the
massive Z0 boson associated to the anomalous Uð1Þ, which
has a string scale mass via the Stückelberg mechanism.
See Refs. [71,72] for systematic phenomenological studies
in this context.
We now turn to issues related to the effective operators

that are of interest for this paper. The central issue is to
identify instanton corrections of the right form that ensure
that the axion is not eaten in a Stückelberg mechanism, as
then it would have a string scale mass. Therefore the
operators ðH1H2Þn must not be forbidden by an anomalous
Uð1Þ, and correspondingly the instanton must have at most
vector-like λ modes, i.e. the modes have index zero. Using
the instanton calculus of Ref. [60], an instanton on a divisor
D with Kähler modulus T and a single vector-like pair λλ̄
with an appropriate structure of ED3-ED3 zero modes
generates an effective operator of the form

Z
d4xd2θ

Z
dλdλ̄AM3

se−TþλH1H2 λ̄=M2
sþ���

⊃
Z

d4xd2θAMsH1H2e−T; ð59Þ

which is precisely Wax in the n ¼ 1 case. More generally,
there may be n pairs of vector-like zero modes λiλ̄i, in
which case there are more Grassmann integrals, and we
have

Z
d4xd2θ

Z
dλ1dλ̄1…dλndλ̄nAM3

se−TþaijλiH1H2 λ̄j=M2
sþ���

⊃
Z

d4xd2θdetðaijÞA
ðH1H2Þn
M2n−3

s
e−T; ð60Þ

which is precisely Wax. Thus, we see that a superpotential
operator Wax of the desired form may be generated if there
is an instanton with n pairs of vector-like zero modes λλ̄.
The n ¼ 2 case is quite similar to the nonperturbative
Weinberg operator LH2LH2 studied in Ref. [73], since L
and H1 have the same quantum numbers under the MSSM
gauge group.
The appearance Wax, then, depends crucially on the

structure of vector-like instanton zero modes, and we
would like to consider when such zero modes exist. In
Appendix B we provide the details of a relevant string-
motivated example to demonstrate the existence of such
zero modes.

VI. PHENOMENOLOGY

As discussed in Ref. [1], the relic density of the ultralight
axion arises from misalignment, where after inflation the
axion begins to oscillate around its minimum. Initially the

14One could easily incorporate the field S, considered in
Sec. II, in this effect, but we omit it here for simplicity of
discussion.
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axion field is assumed to have a value close to the decay
constant, which leads to a relic density

Ωa ∼ 0.1
�

ma

10−22 eV

�
1=2
�

F
1017 GeV

�
2

; ð61Þ

consistent with WMAP [74] and Planck [75] if ma ≃
10−22 eV and F≃ 1017 GeV. If hsi≃ hhi or m ¼ 0 [see
Eq. (3)], the effective operator (2) of Sec. II accounts for
this mass scale in the n ¼ 3 case with a Wilson coefficient
A ¼ 1 and an ultraviolet cutoff and axion decay constant
of size Λ ¼ F ¼ Mpl, in which case

ma ≃ ΛEW

�
ΛEW

Mpl

�
2 ≃ 10−21 eV: ð62Þ

From Eq. (61), we see that with this axion decay constant
the relic abundance is oversaturated.
A sub-Planckian axion decay constant and suppressed

coefficient A may give rise to the correct relic abundance
and relevant axion mass, though, and this is well motivated
by ultraviolet considerations. The analysis is simplified by
the assumption that hsi≃ hhi or m ¼ 0, in which case the
axion mass in Eq. (3) becomes

ma ¼ A
1
2hhi

�hhi
Λ

�
n−1
�
Λ
F

�
: ð63Þ

Given this simplifying assumption, in Fig. 1 we plot the
axion mass and relic abundance as a function of F and A
in the cases n ¼ 3 and n ¼ 0. In the n ¼ 0 (n ¼ 3) case
the relic abundance Ωah2 ¼ Ωobsh2 ¼ :12 and axion mass
ma ¼ 10−22 eV arise for F ¼ 2 × 1017 GeV and A≃
10−100 (A≃ 5 × 10−4). From the perspective of this
effective operator, the authors of Ref. [1] studied the
n ¼ 0 case and used a large instanton suppression to
account for the relic abundance and ultralight axion. We
see that the n ¼ 3 case may also do so by utilizing the
electroweak hierarchy to account for the small mass scale,
rather than a very large instanton suppression. From the
figure we also see that smaller values of A and F are
also permitted in the case that the ultralight axion is a
subcomponent of the dark matter.
As discussed in Sec. III, Eq. (23) gives an axion

mass of the desired size for the case n ¼ 3 and from
Eq. (61) we find that the same mass then gives the
desired relic density. Thus as mentioned in Sec. III one
may call this the n ¼ 3 miracle. We discuss now the
remaining fields arising from S; S1; S2 that appear in
Sec. III. The field S has cubic interactions with the
Higgs fields and assuming its mass to be larger than
the Higgs it decays into MSSM fields and does not
contribute to the relic density. We are then left with the
fields aþ; ρþ; ξþ and ρ−; ξ−. To discuss their disposition
we need to look at their couplings to the Higgs given in

FIG. 1. Axion relic abundance and mass as a function of axion decay constant F andWilson coefficient A. The dashed contours denote
the axion relic abundance and are labeled by log10ðΩaxh2Þ; the −1 contour is the observed relic abundance. The blue, orange, and green
bands are mass regions 10−23 eV ≤ ma ≤ 10−22 eV, 10−22 eV ≤ ma ≤ 10−21 eV, and 10−21 eV ≤ ma ≤ 10−20 eV, respectively, so that
the ma ¼ 10−22 eV line is the boundary between the blue and orange bands. Left: The n ¼ 3 case, which accommodates the relic
abundance and mass by using the electroweak hierarchy. Right: The n ¼ 0 case, which accommodates these solely with instanton
suppression.
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Eq. (19).15 After S1 and S2 develop VEVs, the inter-
action S1S2H1H2 in Eq. (19) will generate an effective
μH1H2 term where μ ¼ ðλ0S0 þ λF2

M Þ. For any reasonable
phenomenology μ must be electroweak size. Noting
the size of F as given in Sec. III we infer λ ∼ 10−12.
While we have no fundamental explanation for the
smallness of λ, we note that the desired size is
technically natural.16

Every supersymmetric model of an ultralight axion will
be accompanied by a scalar saxion ρ and fermion partner
axino. In general, the saxion may give rise to cosmological
problems if it dominates the energy density of the Universe
through the time of big bang nucleosynthesis (BBN).
However, many UV completions give rise to Planck-
suppressed operators that lead to a saxion decay rate

Γρ ¼
c
4π

m3
ϕ

M2
pl

: ð64Þ

As is well known, if mϕ ≳ 50 TeV then the saxion decays
prior to BBN. Throughout, we assume that UV completions
of our models give rise to such operators and scalars of this
mass, in order to avoid spoiling BBN. In addition, there are
constraints on dark radiation production via modulus decay
during reheating, cf. Refs. [76–78].
Let us discuss these ideas in the specific case of three of

the models of Sec. III, which have heavy fields ρþ; aþ; ξþ.
Here we assume that they, as well as ρ− (which acquires a
mass through soft breaking), have masses ∼105 GeV. Such
a mass assures their decay before BBN. For specificity let
us discuss the ρþ decay. Here the relevant term arises from
the couplings in Eq. (19) and is

W3 ¼
ffiffiffi
2

p
λF

M
ρþH1H2 þ � � � : ð65Þ

The interaction above allows for the decay ρþ → ~H1
~H2

with a lifetime consistent with the BBN constraints. The
lifetimes of aþ and the axino ξþ are similar. Thus the
decays of fields ρþ; aþ; ξþ are all consistent with the BBN
constraints and do not play a role in any further discussion.
To decay ρ− we consider the coupling

LρF ¼ −
1

4
frðS−ÞFa

μνFa
μν; ð66Þ

where frðS−Þ is the real part of the kinetic energy function
in supergravity [58,59,79]. Using the interaction of Eq. (66)
the decay width of ρ− to gauge bosons is given by [79]

Γðρ− → ggÞ≃ ngdf
128π

m3
ρ−

M2
P
; ð67Þ

where df ∼ 1; note that this effective operator has realized a
decay rate of the form in Eq. (64). There is an identical
contribution arising from the decay into gauginos. For
ng ¼ 4 for the electroweak gauge bosons and for a ρ− mass
of 105 GeV one gets a decay lifetime consistent with BBN.
We assume that in the MSSM sector there exists a term

which violates R-parity which makes the neutralino unsta-
ble. Thus the only remaining dark matter particles are the
axion a− and the axino ξ−. There is no efficient production
mechanism to generate the relic density for ξ− comparable
to the a− and thus dark matter is dominated by the ultralight
axion whose relic density is given by Eq. (61).
Tests of axionic dark matter have been discussed over the

years (see, e.g., Refs. [53,80]). Tests specific to ultralight
axions may come from more studies of cosmology at small
scales [81]. It has also been suggested that future gravi-
tational-wave detectors such as LISA, eLISA and DECIGO
could be used for the detection of ultralight axionic dark
matter [82–86].

VII. CONCLUSION

Recently it has been proposed that a boson with a de
Broglie wavelength of 1 kpc may help resolve problems in
cosmology at scales of the order of 10 kpc. A possible
candidate is an ultralight axion with a mass in the range
10−21–10−22 eV. In this work we discussed models within
the framework of supersymmetry, supergravity and strings
where an ultralight axion of the desired mass may arise.
In Sec. II we presented an effective operator analysis of
the axion mass, noting its possible dependence upon the
expectation values of the Higgs field and singlets s that
couple to the Higgs. We saw that for one effective operator
the relevant axion mass arises as the electroweak scale
times the square of the electroweak hierarchy; this arose in
the case n ¼ 3, where n is an integer parameter in the
effective operator. In Sec. III we discussed two classes of
supersymmetric models. In one class the shift symmetry is
broken by instanton-type effects and the instanton action
can be fine-tuned to generate the desired axion mass. In
the second class of models it was shown that higher-
dimensional operators constructed out of Higgs fields,
standard model singlet fields and the axion fields which
violate the shift symmetry naturally lead to an ultralight
axion of size 10−21–10−22 eV. Quite remarkably it was
shown in Ref. [1] that such an ultralight axion leads to a
relic density consistent with WMAP [74]. In the analysis
given in Sec. III it was shown that for the case when
the shift symmetry is broken by higher-dimensional oper-
ators involving Higgs fields, standard model singlet fields
and the axion fields both the mass of the axion and
correspondingly the relic density consistent with WMAP

15Another term bilinear in the MSSM fields which can be
added to the superpotential is λ0

M S1S2LH2. However, in the
analysis here we focus on the term exhibited in Eq. (19).

16A λ this size may be generated by the same mechanism as
discussed in footnote 5.
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arise naturally for the case n ¼ 3. The possibility of
generating an ultralight axion within string-based models
was also discussed.
In arguing for the consistency of such an embedding

one must show that the model is consistent with moduli
stabilization, and that the operators necessary to generate the
mass scale are well motivated from a UV perspective, for
reasonable choices of Wilson coefficients. As an ultralight
axion is inconsistent with KKLT moduli stabilization, due to
the ultralow electroweak scale that is required, we consid-
ered the large volume scenario moduli stabilization scheme.
In the large volume scenario a hierarchy between the axion
scale and the weak SUSY scale can be achieved. We next
turned to demonstrating that the necessary effective oper-
ators could be generated in string theory with a reasonable
degree of generality. To ensure that higher-dimensional
Higgs-instanton operators which violate shift symmetry
can be generated in string theory, the conditions necessary
for the coupling of the instanton to Higgs fields were
discussed. It was shown that the conditions require the
existence of vector-like zero modes of the instanton. An
illustrative example was given where such vector-like zero
modes can arise. These considerations therefore demonstrate
that an ultralight axion, of mass scale ∼10−21 eV, can
plausibly be generated in string theory, in a regime of
parameter space consistent with the validity of the effective
field theory. Some phenomenological aspects of the models
analyzed were discussed, including the dependence of the
axion mass and relic abundance on the Wilson coefficient A
and axion decay constant F, as well as cosmologically
relevant decay channels.
The concrete models discussed here for the realization of

ultralight dark matter may help in further investigations.
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APPENDIX A: DERIVATION OF THE
LVS POTENTIAL

In this section we derive the form of the LVS potential,
using the α0-corrected Kähler potentialK ¼ −2 logðV þ cÞ,
where c is independent of the Kähler moduli. We first work
with the classical Kähler potential ~K given by c ¼ 0, and
then treat c as a perturbation, where c=V ≪ 1. The good
Kähler coordinates on the moduli space of X are the
complexified divisor volumes Ti ¼ τi þ iθi. However,
the volume is most naturally expressed in terms of the
dual coordinates ti:

V ¼ 1

6
κijktitjtk: ðA1Þ

Here the κijk are the divisor triple intersection numbers
of X. The relationship between τi and the tj is given by

τi ¼ ∂V
∂ti ¼

1

2
κijktjtk: ðA2Þ

It is also useful to define the following symmetric matrix:

Aij ¼ ∂τi
∂tj ¼ κijkt;: ðA3Þ

We will denote the inverse of Aij by Aij, such that
AikAkj ¼ δij. We also note the useful identities

τiti ¼ 3V;

Aijtj ¼ 2τi;

Aijτ
j ¼ 1

2
AijAjktk ¼

1

2
δki tk ¼

ti
2
: ðA4Þ

The metric on Kähler moduli space is given by

~Kij̄ ¼
∂
∂Ti

∂
∂T̄ j̄

~K: ðA5Þ

However, since V only depends on the real parts of the Ti

we can replace the holomorphic and antiholomorphic
derivatives with real derivatives via

∂
∂Ti ¼

1

2

� ∂
∂τi þ i

∂
∂θi
�

→
1

2

∂
∂τi ; ðA6Þ

and similarly for the antiholomorphic derivatives. The
Kähler connection is given by

~Ki ¼
∂
∂Ti

~K ¼ 1

2

∂
∂τi ð−2 logðVÞÞ ¼ −

1

V
∂V
∂tj

tj
∂τi

¼ −
1

V
τjAij ¼ −

ti
2V

: ðA7Þ

The metric takes the form

~Kij̄ ¼
1

4

�
−
Aij̄

V
þ titj̄
2V2

�
; ðA8Þ

and the inverse metric is then

~Kij̄ ¼ 4ð−VAij̄ þ τiτj̄Þ: ðA9Þ

The N ¼ 1 SUGRA potential contains the contractions
~Kij̄ ~Kj̄. We have
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~Kij̄ ~K;j̄ ¼ −4ð−VAij̄ þ τiτj̄Þ tj̄
2V

¼ −
2

V
ð−2τiV þ 3τiVÞ ¼ −2τi: ðA10Þ

Therefore

~Kij̄ ~Ki
~K;j̄ ¼ 2τi

ti
2V

¼ 3: ðA11Þ

In the large-volume limit V ≫ c, we can write

K ¼ −2 logðV þ cÞ ≈ −2 logðVÞ − 2
c
V
≡ ~K þ ΔK:

ðA12Þ

Here ΔK can be treated as a perturbation to the classical

Kähler potential ~K. The correction to the Kähler connection

is then

ΔKi ¼
1

2

∂
∂τi ΔK ¼ c

V2

∂V
∂tj

∂tj
∂τi ¼

c
V2

τjAji ¼
c

2V2
ti:

ðA13Þ

The correction to the Kähler metric is then

ΔKij̄ ¼
1

2

∂
∂τj̄
�

c
2V2

ti

�

¼ c
4

�
−
2ti
V3

∂V
∂tk

∂tk
∂τj̄ þ

1

V2
Aij̄

�

¼ c
4V2

�
−
titj̄
V

þ Aij̄

�
: ðA14Þ

From this we can infer the correction to the inverse Kähler

metric, via

Kij̄K
j̄k ¼ δki ¼ ð ~Kij̄ þ ΔKij̄Þð ~Kj̄k þ ΔKj̄kÞ
≈ δki þ ΔKij̄

~Kj̄k þ ~Kij̄ΔKj̄k; ðA15Þ

where in the last equality we have dropped terms of

OðΔK2
ij̄Þ. We then have

ΔKij̄ ¼ ~Kil̄ΔKml̄
~Kmj̄: ðA16Þ

To evaluate this, we first calculate

~Kil̄ΔKml̄ ¼ 4ð−VAil̄ þ τiτl̄Þ c
4V2

�
−
tmtl̄
V

þ Aml̄

�

¼ c
V2

�
2tmτi − Vδim − 3tmτi þ

1

2
tmτi

�

¼ −
c
V2

�
1

2
tmτi þ Vδim

�
: ðA17Þ

We then have

ΔKij̄ ¼ ~Kil̄ΔKml̄
~Kmj̄

¼ −
4c
V2

�
1

2
tmτi þ Vδim

�
ð−VAmj̄ þ τmτj̄Þ

¼ −
4c
V2

�
−Vτiτj̄ þ 3

2
Vτiτj̄ − V2Aij̄ þ Vτiτj̄

�

¼ −
4c
V2

�
3

2
Vτiτj̄ − V2Aij̄

�
: ðA18Þ

We now calculate the N ¼ 1 SUGRA potential for our
specific example. We will first use the tree-level Kähler
potential, and then add the α0 correction. We consider a
superpotential of the form

W ¼ W0 þ Ase−asTs þ Abe−abTb ≡W0 þWs þWb:

ðA19Þ

We then have ∂iW ¼ −aiAieaiTi ¼ −aiWi, where there is
no sum on i ∈ fTb; Tsg. In addition, we will take W0 to be
much larger than the nonperturbative contributions to the
superpotential, so that KiW ≈ KiW0. Using the no-scale
structure Kij̄KiKj̄ ¼ 3, we then have

e−KtotalV ¼ Kij̄ð∂iW∂ j̄W̄Þ − ð2τið∂iWÞW̄0 þ c:c:Þ ðA20Þ

where Ktotal is the Kähler potential for all the moduli. In the
large-volume limit the relevant terms are

e−KtotalV ≈ Kss̄a2sWsW̄s þ Ksb̄ðasabWsW̄b þ c:c:Þ
þ ð2asτsðWsÞW̄0 þ c:c:Þ
þ ð2abτbðWbÞW̄0 þ c:c:Þ: ðA21Þ

In the LVS we have Kss̄ ≈ −4VAss̄, and for our particular
example Ksb̄ ¼ 4τsτb̄. Taking a volume of the form

V ¼ 1

9
ffiffiffi
2

p ðτ3=2b − τ3=2s Þ; ðA22Þ

we have

ULTRALIGHT AXION IN SUPERSYMMETRY AND STRINGS … PHYSICAL REVIEW D 96, 056025 (2017)

056025-13



 
Ass̄ Asb̄

Abs̄ Abb̄

!
¼ 6

ffiffiffi
2

p � ffiffiffiffi
τs

p
0

0 − ffiffiffiffiffi
τb

p
�
:

Taking Kcs ¼ 0, we have

eKtotal ¼ 1

2V2S1
; ðA23Þ

and so we can write the potential as

V¼
�
12

ffiffiffi
2

p jAsj2a2s ffiffiffiffi
τs

p
e−2asτs

VS1
þ2jAsW0jasτse−aτs

V2S1
cosðasθsÞ

þ2abτbjAbW0j
V2S1

e−abτb cosðabθbÞ

þ4abasτbτsjAbĀsj
V2S1

e−asτs−abτb cosðabθb−asθsÞ
�
;

ðA24Þ

where we have absorbed any phase of W0 into the
axions. We now calculate the α0 correction to the
SUGRA potential, whose presence is crucial for the exist-
ence of a large-volume minimum. The term that is important
in the LVS is given by the leading-order breaking of the no-
scale structure, given schematically by ΔðKij̄KiKj̄ÞjW0j2.
We have

ΔðKij̄KiKj̄Þ ¼ ðΔKij̄Þ ~Ki
~Kj̄ þ ~Kij̄ðΔKiÞ ~Kj̄ þ ~Kij̄ ~KiðΔKj̄Þ:

ðA25Þ

We will calculate this term by term. First, we have

ðΔKij̄Þ ~Ki
~Kj̄ ¼

c
V4

�
3

2
Vτiτj̄ − V2Aij̄

�
titj̄

¼ c
V4

�
27

2
V3 − 6V3

�
¼ 15c

2V
: ðA26Þ

We also have

~Kij̄ðΔKiÞ ~Kj̄ ¼ −
c
V3

ð−VAij̄ þ τiτj̄Þtitj̄ ¼ −
3c
V
: ðA27Þ

Putting it all together, and including the nontrivial factor
of eKtotal , we have

ΔV ¼ 3c
4V3S1

jW0j2: ðA28Þ

Plugging in c ¼ 1
2
ξS3=21 , we find

ΔV ¼ ξ
3jW0j2

ffiffiffiffiffiffi
S1

p

8V3
: ðA29Þ

The full potential then takes the form (53).

APPENDIX B: VECTOR-LIKE ZERO MODES
FROM STRINGY INSTANTONS

In this section we present a string-motivated example to
demonstrate the existence of the vector-like zero modes
considered in Sec. V. Suppose that an ED3 and a D7-brane
(or a stack of D7-branes) wrap divisors D and D0 in a
smooth Calabi-Yau threefold X that intersect along a curve
C ≔ D ·D0. Both the instanton and the D7-brane may
carry (1,1)-form worldvolume fluxes (or more generally
holomorphic vector bundles), which may be written in
terms of line bundlesLD andLD0 onD andD0, respectively.
Then the ED3-D7 instanton zero modes at the intersection
are counted by the cohomology hiðC;K1=2

C ⊗ LÞ, where
L ≔ LDjC ⊗ L−1

D0 jC.
As discussed, a necessary condition for obtaining cou-

plings of the desired type is that there is no chiral excess of
ED3-D7 zero modes on C, i.e.

χðC;K1=2
C ⊗LÞ ¼ h0ðC;K1=2

C ⊗LÞ−h1ðC;K1=2
C ⊗LÞ ¼ 0:

ðB1Þ

Computing this index by applying the Hirzebruch-
Riemann-Roch theorem, we have

χðC;K1=2
C ⊗ LÞ ¼

Z
C
chðK1=2

C ⊗ LÞtdðCÞ

¼
Z
C
ð1þ c1ðK1=2

C ⊗ LÞÞð1þ c1ðCÞ=2Þ

¼
Z
C
c1ðLÞ; ðB2Þ

and we see that the index is zero when c1ðLÞ ¼ 0.
By this we see that if c1ðLDjCÞ ¼ c1ðLD0 jCÞ then
χðC;K1=2

C ⊗ LÞ ¼ 0, i.e. we have at most vector-like
instanton zero modes on C.
In such a case, determining whether there actually are

vector-like instanton zero modes requires computing the
cohomology, not just the index. This computation can be
done by a variety of means, but as an existence proof we
would like to present a simple example.
Consider the case where a divisor D ¼ P1 × P1 is

wrapped by an ED3 instanton that intersects a space-
time-filling D7-brane on another divisor D0 at a degree
ðm; nÞ curve C ⊂ D, and there are no worldvolume
fluxes, i.e. LD ¼ OD and LD0 ¼ OD0 . The zero modes
are counted by hiðC;K1=2

C Þ, which has index zero, where
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KC ¼ ðKD þOðCÞÞjC ¼ Oðm − 2; n − 2ÞjC. Taking the
square root, a Koszul sequence for K1=2

C is given by

0 → OD

�
−
m
2
− 1;−

n
2
− 1

�

→ OD

�
m
2
− 1;

n
2
− 1

�
→ K1=2

C → 0: ðB3Þ

By Serre duality, hiðD;ODðm2 − 1; n
2
− 1ÞÞ ¼ h2−iðD;

ODð− m
2
− 1;− n

2
− 1ÞÞ. Since a degree l line bundle

on P1 has lþ 1 global sections, and therefore a degree

ðk − 1; l − 1Þ line bundle onP1 × P1 has kl global sections,
hiðD;ODðm2 − 1; n

2
− 1ÞÞ ¼ ðmn=4; 0; 0Þ. Using the long

exact sequence in cohomology associated to the Koszul
sequence (B3), we obtain

hiðC;K1=2
C Þ ¼

�
mn
4

;
mn
4

�
; ðB4Þ

which shows that there are vector-like instanton zero modes
for general even m and n. For a more in-depth introduction
to this type of computation, see e.g. Refs. [87,88].
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