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A two-phase description of the quark–nuclear matter hybrid equation of state that takes into account the
effect of excluded volume in both the hadronic and the quark-matter phases is introduced. The nuclear
phase manifests a reduction of the available volume as density increases, leading to a stiffening of the
matter. The quark-matter phase displays a reduction of the effective string tension in the confining density
functional from available volume contributions. The nuclear equation of state is based upon the relativistic
density-functional model DD2 with excluded volume. The quark-matter equation of state is based upon a
quasiparticle model derived from a relativistic density-functional approach and will be discussed in greater
detail. The interactions are decomposed into mean scalar and vector components. The scalar interaction is
motivated by a string potential between quarks, whereas the vector interaction potential is motivated by
higher-order interactions of quarks leading to an increased stiffening at high densities. As an application,
we consider matter under compact star constraints of electric neutrality and β equilibrium. We obtain mass-
radius relations for hybrid stars that form a third family, disconnected from the purely hadronic star branch,
and fulfill the 2 M⊙ constraint.
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I. INTRODUCTION

Theoretical investigations into compact star matter have
seen a boom over the past decade, spurred forward by the
plethora of observational data collected for the masses and
radii of pulsars. The mass-radius (M-R) data have been
particularly useful for constraining the dense-matter equation
of state (EoS) at zero temperature. For a recent review see,
e.g., Ref. [1]. These constraints provide an experimental
sandbox for probing the properties of matter that is inacces-
sible in terrestrial experiments. The question investigated in
this work is whether or not quark matter is manifest in the
interior of compact stars by a phase transition from hadronic
matter to quarkmatter and, if quarkmatter is indeedmanifest,
whatwould the implications be on the observables, aswell as
the QCD phase diagram.
In order to answer this question, we employ an effective,

relativistic density-functional approach to both the hadronic
and the quark-matter equation of state (EoS) at zero
temperature. A method for implementing quark confine-
ment in a chiral quark-matter model is based on reviving
the idea of the string-flip model (SFM) [2,3]. According to
the SFM, the confining interactions between colored
constituents (modeled, e.g., through a Cornell-type con-
fining potential) get saturated within nearest neighbors. In
hadronic matter, these quark neighbors are the ones bound
in a hadron, while at high densities in a multiquark system,
one has to draw string connections between quarks so as to
neutralize the color while keeping the total length of all
strings at a minimum. This task can be solved by simulation

[4] or by effective quantum statistical methods [3,5]. One
can obtain the string-length distribution function for a given
density and fold a given interaction potential model with
this distribution in order to obtain the correlation energy in
a mean-field approximation. Since the average string length
between quarks in uniform matter is related to the scalar
number density ns by being proportional to n−1=3s , one
obtains a corresponding contribution to the energy density
functional of quark matter; see also Ref. [6]. Adopting the
confining interaction as a scalar potential, this density
functional describes the medium modification of the quark
mass, being a Dirac scalar. At low densities the quark mass
diverges, thus mimicking confinement by removing quarks
as dynamical degrees of freedom. At low density the quarks
are clustered into hadrons, and this quark cluster phase
is energetically preferable over the uniform quark matter
with diverging scalar confining interaction. Increasing the
density, quark exchange effects between hadrons (Pauli
blocking) lead to strong repulsion (that can be described by
an excluded hadron volume model) and to delocalization
of the quark wave function, driving the system into the
homogeneous quark-matter phase. In the phase transition
region, the reduction of the available volume (in which
the nonperturbative dual superconductor vacuum of QCD
persists which expels the color field lines by the dual
Meissner effect) leads to a reduction of the density of color
field lines and thus to a “screening” of the string tension by
the available volume fraction factor. At still higher den-
sities, higher-order quark interactions adopted according
to Refs. [7,8] lead to a stiffening of quark matter that
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allows for a stable branch of hybrid stars with quark-
matter cores.
In order to obtain the EoS for hybrid star matter, we

have developed a relativistic, self-consistent mean-field
approach within the path-integral approach, based on an
ansatz for the potential energy density functional from
which density-dependent self-energies follow as deriva-
tives. The resulting quasiparticle model necessarily main-
tains thermodynamic consistency, since all approximation
steps are done on the level of the partition function from
which the expressions for thermodynamical functions
follow by derivation.
When considering the possibility of a phase transition

from hadronic matter to quark matter in compact star
interiors, the phenomenon of high-mass twins presents
itself. The term “mass twins” refers to the existence of two
compact star configurations that have the same mass but
distinctly different radii. It is related to the occurrence of a
“third family” of compact stars, besides white dwarfs and
ordinary neutron stars, which is separated from the latter by
an unstable branch in the mass-radius diagram. As dis-
cussed already by Gerlach in 1968 [9], the third family is
related to the behavior of the high-density EoS, which may
exhibit a phase transition. The transition to quark matter or
to pion condensed matter has been considered in the con-
text of a third family of stars by Kämpfer [10,11], and later
this issue was taken up again, e.g., in Refs. [12–15].
When the mass twins occur in a mass range that covers
the presently best known high mass of the pulsar PSR
J0348þ 0432 with M ¼ 2.01� 0.04 M⊙ [16], we will
speak of high-mass twin (HMT) stars.
The existence of HMTs hinges on the nature of the phase

transition in these dense systems. In order for this phe-
nomenon to appear, the EoS of the compact star matter
must have a strong first-order phase transition [8,17,18]
characterized by a large jump in energy density of the two
phases also denoted as a large latent heat. In order to
support the mass-twin phenomenon, a necessary condition
is [17,19,20]

Δε
εtrans

>
1

2
þ 3

2

Ptrans

εtrans
; ð1Þ

where Δε is the latent heat, and εtrans (Ptrans) is the energy
density (pressure) at the onset of the deconfinement phase
transition. As mentioned, the existence of HMTs would
imply the existence of at least one critical end point in the
QCD phase diagram [18,21]. The existence of high-mass
twins can potentially be observationally confirmed. If the
radii of two compact stars with sufficiently accurately
measured high mass—like, e.g., PSR J0348þ 0432 [16]
and PSR J1614-2230 [22,23]—could be measured (for
instance, by the NICER mission, which has recently been
launched and mounted on the International Space Station
[24]) and turn out to be significantly different from each

other, then this would present evidence for HMTs that
imply a strong first-order transition in compact star matter.
In order to obtain HMTs, it is necessary to fulfill the

following constraints:
(1) A strong stiffening of nuclear matter at supersatu-

ration densities.
(2) A sufficiently soft behavior of quark matter at the

hadron-to-quark-matter phase transition, in order to
have a sufficiently large latent heat Δε [8].

(3) A sufficient stiffening of quark matter above the
deconfinement transition.

These properties characterize the class of hybrid EoS we
are investigating in the present work.
This paper is organized in the following way. We begin

by outlining our relativistic density-functional approach in
Sec. II. In Sec. III, we discuss our solutions to the Tolman-
Oppenheimer-Volkoff equation with parametrizations of
our hybrid EoS and examine how observations constrain
our choices of parametrization. A discussion and conclud-
ing remarks will be given in Secs. IV and V, respectively.
The appearance of a stable branch of compact stars, with
quark-matter cores at high masses, which is disconnected
from the stable neutron star branch and is called the “third
family” of stable hybrid stars, is a main result of the new
relativistic density-functional-based EoS introduced in this
work.

II. HYBRID STAR MATTER WITH EXCLUDED
VOLUME EFFECTS

The effective relativistic density-functional (RDF)
approach has been successfully applied in describing warm,
dense asymmetric nuclear matter with light clusters [25] as
well as other systems where the fundamental interaction
between constituents is not a priori known. Thus, this RDF
approach is adopted and applied here to the hybrid quark-
hadron matter EoS. The final hybrid EoS is comprised of
two separate RDF EoSs for each phase of matter, combined
by utilizing a Maxwell phase transition construction.
The correct thermodynamic treatment of quark matter

depends on the physical constraints of the system which are
to be probed. For large volumes of quark matter that exist
for long times, i.e. the thermodynamic limit, the conserved
quantities are quark number (or baryon number), electron
charge, color charge, and lepton number. Each of these
conserved quantities has an associated chemical potential.
These large systems must remain charge- and color-neutral,
which determines the values for μQ and μC. This leaves a
three-dimensional phase space parametrized by the baryon
chemical potential (μB), the lepton chemical potential (μl),
and the temperature (T).

A. Relativistic density-functional approach

The RDF approach to interacting quark matter can be
obtained using the path-integral approach to the partition
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function, which, analogously to the treatment of the
Walecka model of nuclear matter in Ref. [26], takes the
form

Z ¼
Z

Dq̄Dq exp

�Z
β

0

dτ
Z
V
d3x½Leff þ q̄γ0μ̂q�

�
; ð2Þ

where in the two-flavor case

q ¼
�
qu
qd

�
; ð3Þ

and μ̂ ¼ diagðμu; μdÞ is the diagonal matrix of the chemical
potentials conjugate to the conserved numbers of up and
down quarks. The effective Lagrangian density is given by

Leff ¼ Lfree −Uðq̄q; q̄γ0qÞ; ð4Þ

Lfree ¼ q̄
�
−γ0

∂
∂τ þ iγ⃗ · ∇⃗ − m̂

�
q; ð5Þ

where m̂ ¼ diagðmu;mdÞ is the matrix of current quark
masses. The interaction is given by the potential energy
density Uðq̄q; q̄γ0qÞ, which in general is a nonlinear
functional of the field representations of the scalar and
vector quark densities (in the isotropic case, the vector four-
current reduces to its zeroth component). To achieve a
quasiparticle representation, the potential energy density
shall depend linearly on the Dirac spinor bilinears repre-
senting the relevant currents of the system.
The linearization of the interaction is facilitated by a

Taylor expansion around the corresponding expectation
values

hq̄qi ¼ ns ¼
X
f¼u;d

ns;f ¼ −
X
f¼u;d

T
V

∂
∂mf

lnZ; ð6Þ

hq̄γ0qi ¼ nv ¼
X
f¼u;d

nv;f ¼
X
f¼u;d

T
V

∂
∂μf lnZ ð7Þ

of the scalar density ns and the vector density nv, respec-
tively. This expansion results in

Uðq̄q; q̄γ0qÞ ¼ Uðns; nvÞ þ ðq̄q − nsÞΣs

þ ðq̄γ0q − nvÞΣv þ � � � ; ð8Þ

where we have introduced the notation

Σs ¼
∂Uðq̄q; q̄γ0qÞ

∂ðq̄qÞ
����
q̄q¼ns

¼ ∂Uðns; nvÞ
∂ns ; ð9Þ

Σv ¼
∂Uðq̄q; q̄γ0qÞ

∂ðq̄γ0qÞ
����
q̄γ0q¼nv

¼ ∂Uðns; nvÞ
∂nv ð10Þ

for the scalar and vector self-energies, respectively. The
expansion is truncated at the second term, assuming the
fluctuations about the expectations of the fields are small.
Employing this quasiparticle approximation for the effec-
tive Lagrangian (4), the partition function (2) takes the form

Z ¼
Z

Dq̄Dq exp fSquasi½q̄; q� − βVΘ½ns; nv�g; ð11Þ

where the quasiparticle action in Fourier-Matsubara
representation is given by [26]

Squasi½q̄; q� ¼ β
X
n

X
p⃗

q̄ G−1ðωn; p⃗Þq; ð12Þ

G−1ðωn; p⃗Þ ¼ γ0ð−iωn þ μ̂�Þ − γ⃗ · p⃗ − m̂�; ð13Þ

with the Dirac effective mass matrix m̂� ¼ m̂þ Σs, the
renormalized chemical potential matrix μ̂� ¼ μ̂ − Σv, and
the effective potential energy density

Θ½ns; nv� ¼ Uðns; nvÞ − Σsns − Σvnv: ð14Þ

The functional integral can be performed in this quasipar-
ticle approximation with the result

Zquasi ¼
Z

Dq̄Dq exp fSquasi½q̄; q�g ¼ det½βG−1�; ð15Þ

where the determinant operation acts in momentum-
frequency space as well as on the Dirac, flavor, and color
indices. Using the identity ln detA ¼ Tr lnA and the
representation of the gamma matrices, one obtains for
the pressure of the homogeneous system (for details, see,
e.g., Ref. [26])

Pquasi ¼
T
V
lnZquasi ¼

T
V
Tr ln½βG−1� ð16Þ

¼ 2Nc

X
f¼u;d

Z
d3p
ð2πÞ3 fT ln ½1þ e−βðE

�
f−μ

�
fÞ�

þT ln ½1þ e−βðE
�
fþμ�fÞ�g; ð17Þ

where we have tacitly used the so-called “no sea” approxi-
mation (as is customary in the Walecka model) by
removing the vacuum energy term which corresponds
to the phase-space integral over the one-particle energy

E�
f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm�

f
2

q
. After partial integration, the quasipar-

ticle contribution (17) to the pressure takes the form
(Nc ¼ 3)

Pquasi ¼
X
f¼u;d

Z
dp
π2

p4

E�
f
½fðE�

f − μ�fÞ þ fðE�
f þ μ�fÞ�; ð18Þ
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where fðEÞ ¼ 1=½1þ expðβEÞ� is the Fermi function,
which at T → 0 degenerates to a step function. In this
T ¼ 0 case, which is relevant for compact stars, the total
pressure becomes

P ¼
X
f¼u;d

Z
pF;f

0

dp
π2

p4

E�
f
− Θ½ns; nv�; ð19Þ

with the Fermi momentum of the quark flavor f defined as

pF;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�f

2 −m�
f
2

q
: ð20Þ

In order to evaluate the thermodynamics of the RDF
approach, we have to solve a self-consistency problem,
since the pressure is a functional of the scalar and vector
densities, which themselves are defined as derivatives of
the pressure by Eqs. (6) and (7), which now take the form

ns ¼ −
X
f¼u;d

∂P
∂mf

¼ 3

π2
X
f¼u;d

Z
pF;f

0

dpp2
m�

f

E�
f
; ð21Þ

nv¼
X
f¼u;d

∂P
∂μf¼

3

π2
X
f¼u;d

Z
pF;f

0

dpp2¼p3
F;uþp3

F;d

π2
: ð22Þ

The general RDF approach to quark matter as outlined
here is open to applications for a variety of interaction
potentials, in both the scalar and vector channels. The
general form of the function Uðns; nvÞ can be modeled
after specific interactions. In the next section, the specific
interaction potential for the present RDF quark-matter
model is introduced, and the resulting self-energies Σs
and Σv are discussed.

B. Density functional for quark matter

When the RDF quasiparticle Fermi gas was derived, the
interaction potential in the Lagrangian was introduced as a
functional of the quark currents in the scalar and vector
channels, q̄q and q̄γ0q, respectively. This potential was
expanded about the mean field values, hq̄qi ¼ ns and
hq̄γ0qi ¼ nv, utilizing the Taylor expansion to the first order.
The Taylor expansion coefficients could then be absorbed
in the definition of the fermionic quasiparticle properties,
i.e., the effective masses m�

f and the effective chemical
potentials μ�f. As a result, the mean-field thermodynamic
potential could be given in a thermodynamically consistent
form, just based on the knowledge of the interaction
potential, now given in terms of the scalar and vector
densities. In the following, we use flavor-independent quark
masses m ¼ mu ¼ md entailing m̂� ¼ diagðm�; m�Þ with
m� ¼ mþ Σs. For the density functional of the interaction
energy, we adopt in the present work the form

Uðns; nvÞ ¼ DðnvÞn2=3s þ an2v þ
bn4v

1þ cn2v
: ð23Þ

Let us explain the terms occurring in (23) more in detail. The
first term captures aspects of (quark) confinement through
the density-dependent scalar self-energy

Σs ¼
2

3
DðnvÞn−1=3s ; ð24Þ

defining the effective quark mass m�. The effective mass
diverges1 for densities approaching zero (see Fig. 1), and thus
suppresses the occurrence of the quasiparticle excitations
corresponding to these degrees of freedom. For quark matter
in compact stars, such amechanism has recently been used in
Ref. [28]. Note that in its nonrelativistic formulation with
energy shifts [3], the SFM has already been applied success-
fully to describe massive hybrid stars with quark-matter
cores [29].
The second term in (23) stands for the repulsion

stemming from a four-fermion interaction in the Dirac
vector channel, while the last term is a higher-order (eight-
quark) repulsive interaction in the vector channel. Such
higher-order vector mean fields have been considered
already in the description of nuclear matter (see, e.g.,
Ref. [30]), and it is therefore natural to invoke them also in
the description at the quark level. The higher-order quark
interactions have been introduced in Ref. [7] for the
description of hybrid stars in order to provide a sufficient
stiffening at high densities required to fulfill the 2 M⊙ mass
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α = 0.4 fm6

FIG. 1. Effective quark mass as a function of the baryon
density. The effective confinement manifests itself by a diver-
gence of the quasiparticle mass at low densities.

1For color-neutral hadrons, this divergence of the self-energy is
entirely compensated by that of the confining interaction in the
equation of motion [27].
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constraint from the precise mass measurement of
Refs. [16,22]. This allows one to obtain a separate third
family of high-mass hybrid stars [8]. The denominator in
the last term of (23) makes sure that for appropriate choices
of the parameters b and c, the speed of sound cs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂P=∂εp

does not exceed the speed of light. All terms
in the density functional (23) that contain the vector density
contribute to the shift defining the effective chemical
potentials μ�f:

Σv ¼ 2anv þ
4bn3v

1þ cn2v
−

2bcn5v
ð1þ cn2vÞ2

þ ∂DðnvÞ
∂nv n2=3s : ð25Þ

Note that the last term in (25) comes from a vector density
dependence in the effective string tension, which is a new
aspect of the present approach and a generalization of
the SFM.
Different alternative mechanisms are suggested in the

literature to account for the modification of the strong
interaction in a dense medium at the deconfinement
transition. As examples, we would like to mention the
percolation of color flux tubes (see, e.g., Refs. [31,32] for a
review and for further references on the subject) and the
color dielectric model [33] that has been applied for two-
and three-quark [34] as well as multiquark systems [35].
In the present work, we extend the original SFM by
accounting for the occupation of the surrounding medium
by color fields, which leads to an effective reduction of the
in-medium string tension

DðnvÞ ¼ D0ΦðnvÞ: ð26Þ

In the ansatz (26), the reduction is realized by multiplying
the vacuum string tension D0 between color charges with
the available volume fraction

ΦðnBÞ ¼
�
1; if nB < n0

e−αðnB−n0Þ2 ; if nB > n0
; ð27Þ

where for the density dependence we have made a Gaussian
ansatz motivated by the form that is chosen for the
generalized excluded volume model of nuclear matter
[36]. The parameter α quantifies the density range in which
the string tension will be reduced from its full vacuum
strength to a negligible value. It is a heuristic parameter that
will be varied in our current work to investigate its effect on
the equation of state, and thus on the neutron star mass-
radius curves.
In the dual superconductor model of confinement [37],

the appearance of color flux tubes and their effective string
tension is understood as a dual Meissner effect which
expels color field lines from the nonperturbative dual
superconductor QCD vacuum. The reduction of the string

tension in a dense medium is then understood as a
modification of the pressure on the color field lines
caused by a reduction of the available volume of non-
perturbative QCD vacuum. We illustrate this situation in
Fig. 2.
Taking into account all of the mean-field contributions

(23)–(26) discussed above, the quark-matter EoS of the
RDF approach

P ¼ Pquasi − Θ½ns; nv� ð28Þ

is defined for the SFM model and will be employed in the
following for the T ¼ 0 case (19) that is relevant for
applications to compact stars.

C. Hadronic phase

For the hadronic phase, we use the well-known DD2
model by Typel et al. [38] with the parameterization given
in Ref. [25]. It is a relativistic density functional model,
based on meson-exchange interactions. It describes the
properties of nuclear matter at saturation density and below
very well, also in accordance with the chiral EFT approach
[39]; see also Ref. [40]. To improve the higher-density
behavior, a generalized excluded volume effect is included
according to Ref. [36] using the Gaussian form of the
(isospin-independent) available volume fraction (27),
where α ¼ vjvj=2 is now related to the excluded volume
v determined by the size of the hadron. This excluded
volume-modified DD2 model has been used before to
construct hybrid EoSs for compact stars with quark matter
cores; see Ref. [41] for an example. For the convenience of
the reader, we shortly review here the generalized excluded
volume formalism as it is being used in the present work,
following Ref. [36] for the case of an approach with
effective potentials. The pressure of the hadronic sector
of the model assumes a form similar to Eq. (19),

P ¼
X

j¼n;p;σ;ω;ρ;δ

Pquasi;j − Umeson − UðrÞ; ð29Þ

(a) (b)

FIG. 2. Illustration of the effective reduction of the string
tension (density of color field lines) at high densities. At low
densities, (a) the field lines are compressed to thin flux tubes by
the dual Meissner effect, while at high densities, (b) this pressure
is reduced, and consequently the effective string tension is
lowered.
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where the quasiparticle pressure for hadron species j is

Pquasi;j ¼
gðeffÞj

σj
T
Z

d3k
ð2πÞ3 ln



1þ σje−

EjðkÞ−μ
T

�
; ð30Þ

with σi ¼ þ1ð−1Þ for fermions (bosons). In this case, the
available volume fraction Φj according to (27) defines the

effective degeneracy factor gðeffÞi ¼ giΦi describing a
reduction of the hadronic degrees of freedom at densities
exceeding the reference value n0, here taken as the nuclear
saturation density.
The mesonic interaction density functional is

Umeson ¼
1

2
ðCωn2ω þ Cρn2ρ − Cσn2σ − Cδn2δÞ; ð31Þ

where the coefficients Ci ¼ Γi=mi are determined by the
massesmi and density-dependent couplings Γi ¼ ΓiðnBÞ of
the meson species i ¼ ω, ρ, σ, δ. The source densities are

nj ¼
X
i

gijnv;i; j ¼ ω; ρ; ð32Þ

nj ¼
X
i

gijns;i; j ¼ σ; δ; ð33Þ

with appropriate factors gij.
Due to the density dependence of both the meson

potential and the excluded volume, there are two contri-
butions to the rearrangement potential which guarantees
thermodynamic consistency:

UðrÞ ¼ UðrÞ
meson þUðrÞ

Φ ; ð34Þ

UðrÞ
meson ¼¼ nB

∂
∂nB Umeson; ð35Þ

UðrÞ
Φ ¼

X
i

ðnv;iVðrÞ
i − ns;iS

ðrÞ
i Þ; ð36Þ

with the Φi-dependent rearrangement contributions

SðrÞi ¼
X
j

Pquasi;j
∂ lnΦj

∂ns;i ; ð37Þ

VðrÞ
i ¼ −

X
j

Pquasi;j
∂ lnΦj

∂nv;i : ð38Þ

The densities

ns;i ¼ gðeffÞi

Z
d3k
ð2πÞ3 fiðkÞ; ð39Þ

nv;i ¼ gðeffÞi

Z
d3k
ð2πÞ3 fiðkÞ

mi − Siffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðmi − SiÞ2

p ð40Þ

contain the modified distribution functions

~fiðkÞ ¼


exp

�
EiðkÞ − μi

T

�
þ σi

�
−1
: ð41Þ

The quasiparticle energies EiðkÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þðmi−SiÞ2

p
þVi

are defined by the scalar and vector self-energies, given as

Si ¼ Cσgiσnσ þ Cδgiδnδ þ SðrÞi ; ð42Þ

Vi ¼ Cωgiωnω þ Cρgiρnρ þ BiV
ðrÞ
meson þ VðrÞ

i ; ð43Þ

where the contribution from the meson rearrangement
potential is

VðrÞ
meson ¼ 1

2
ðC0

ωn2ω þ C0
ρn2ρ − C0

σn2σ − C0
δn

2
δÞ; ð44Þ

with the derivatives C0
i ¼ dCi=dnb due to the dependence

of the coupling coefficients on the baryon-number density
nB ¼ P

iBinv;i, Bi being the baryon number of species i.
This set of equations defines the density-dependent RMF
model with generalized excluded volume correction. For
the case of the DD2 model, the parameters are defined
in Ref. [25].
Alternatively, the available volume fraction Φj can also

be introduced by a temperature-dependent effective repul-
sive potential Wj ¼ −T lnΦj which in general also
depends on density; see Ref. [36].
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FIG. 3. Pressure versus baryon chemical potential for the
hadronic DD2 EoS with different excluded volume parameters
and for a quark-matter EoS (QEoS) with parameters α ¼ 0.2 fm6,
a ¼ −2.0 MeV fm3, b ¼ 2.0 MeV fm9, and c ¼ 0.036 fm6. As
the excluded volume is increased, the slope of the hadronic DD2
is lowered and the onset of the hadron-to-quark-matter transition
(the crossing of quark and hadron EoSs) is lowered.
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As can be seen from Figs. 3 and 4 below, the excluded
volume correction leads to a stiffening of the nuclear EoS
and a lowering of the onset (energy) density for the
deconfinement phase transition.

D. Compact stars

Compact stars are large systems of degenerate matter,
which tend to exist for quite long times, so the thermody-
namic limit constraints are valid for describing these
systems. Neutrinos are considered capable of escaping
from cold compact stars due to their negligible interaction,
which entails a sufficiently large mean free path, so lepton
number is not conserved. This leaves compact star matter to
be constrained by baryon number and T. For our further
discussion, we shall be operating in the zero-temperature
regime, further reducing the parameters to just the baryon
number. For quark matter in compact star systems, due to
the large chemical potential threshold for strange quarks
∼1500 MeV (and larger for the heavier flavors of quarks),
contributions from heavy quarks are negligible [42] and
therefore not considered in this approach. Utilizing the
above mentioned assumptions, both the hadronic and
quark-matter phases in compact stars obey the following
conditions. The matter is in β-equilibrium with electrons,

d → uþ e− þ ν̄e; uþ e− → dþ νe; ð45Þ

n → pþ e− þ ν̄e; pþ e− → nþ νe: ð46Þ

The relevant chemical potentials μu, μd, and μe (μp, μn,
and μe for the hadronic phase) satisfy the weak equilibrium
(β-equilibrium) condition

μd − μu ¼ μe; ð47Þ

μn − μp ¼ μe; ð48Þ

where we have assumed that the neutrinos escape without
interacting.2 The quark and baryon densities are related by

nB ¼ 1

3
nv ¼

1

3
ðnv;u þ nv;dÞ: ð49Þ

The charge density (without muons) of the quark-matter
phase is

nQ;q ¼
2

3
nv;u −

1

3
nv;d − ne; ð50Þ

while for the hadronic phase it is

nQ;h ¼ np − ne: ð51Þ

Electric charge neutrality of the homogeneous phases
requires nQ;q ¼ nQ;h ¼ 0. In the case of a phase transition,
different possibilities to realize global charge neutral-
ity occur.

E. Phase transition

Generally, a mixed phase can occur when constructing
the quark-hadron phase transition; e.g., by adjusting a
volume fraction χ of the quark phase so that charge
neutrality in that phase is fulfilled globally [43]:

0 ¼ nQ ¼ χnQ;q þ ð1 − χÞnQ;h: ð52Þ

This is called a Gibbs construction (sometimes also
“Glendenning construction”). In that situation, the quark
and hadron phases may be charged separately. A more
sophisticated construction of the phase transition considers
the occurrence of structures (so-called “pasta phases”) with
an interplay of surface tension, Coulomb energy and
charge-screening effects. For a recent work, see e.g.
Ref. [44] and references therein.
In the present work, we shall use a simple Maxwell

construction for the phase transition between two sepa-
rately charge-neutral phases, requiring nQ;q ¼ nQ;h ¼ 0.
The two distinct phases are then matched by assuming

chemical (μ), thermal (T), and mechanical (P) equilibrium

0

100

200

300

P 
[M

eV
 f

m
-3

]

DD2p00
DD2p20
DD2p40
DD2p60
DD2p80
QEoS

200 400 600 800 1000 1200 1400
ε [MeV fm3]

0

0.5

1

c s
2

FIG. 4. Upper panel: Pressure versus energy density for the
hybrid EoS that emerge from the Maxwell constructions corre-
sponding to Fig. 3. As the excluded volume parameter is
increased, the slope in the hadronic phase is raised, exhibiting
the stiffening of the hadronic matter. Lower panel: Squared speed
of sound as a function of energy density, verifying the causality
condition (c2s < 1).

2This case applies when the compact star is sufficiently cooled
down below the neutrino opacity temperature ∼1 MeV, so that
the radius of the neutrino sphere exceeds that of the star and
neutrinos leave the star, not participating in the β-equilibrium
processes.
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at the phase transition; outside the phase transition, the phase
with higher pressure (lower grand canonical potential)
is the one chosen. Technically, we plot the isotherms
(TH ¼ TQ ¼ 0) of both phases in pressure over baryon
chemical potential and merge them at the crossing point
(where μHB ¼ μQB and PH ¼ PQ are fulfilled). In this way,
thermodynamical consistency is fulfilled, because temper-
ature and chemical potentials are the natural variables of the
grand potential or the pressure (ΩðT; fμigÞ ¼ −PðT; fμigÞ).

III. RESULTS

Theoretical studies of the properties of compact stars
have increased in prevalence in recent years because
of the growing amount of observational data that have
been collected for the masses and radii of pulsars. The
measurements are used to constrain and elevate the most
promising EoSs, while eliminating the others. The con-
straints imposed by the observational data provide a
metaphorical “playground” for probing properties of matter
unattainable in terrestrial experiments. This “playground”
allows theorists to investigate different phenomenology
which can explain the data, such as the investigation into
a hadron-to-quark-matter phase transition.
By solving the Tolman-Oppenheimer-Volkoff equations

using the EoS designed from the RMF quasiparticle Fermi
gas, a unique type of mass-radius (M-R) relation is
obtained. This relation is altered in distinct ways by varying
each individual parameter. The four parameters to be
systematically varied, while observing their effects on
the observable M-R relation, are the hadronic excluded
volume parameter α ¼ vjvj in Eq. (27); the high-density
eight-quark coupling parameter b; the transition-density
four-quark coupling parameter a; and the available volume
fraction Φ, which is dependent on the parameter α.
It is useful to define the descriptive labels for the EoSs

used below. The hadronic EoS is labeled as “DD2p##,”
where “p##” describes the excluded volume value used in
the EoS (e.g., DD2p80 indicates the hadronic EoS has an
excluded volume value of v ¼ 8.0 fm3). For the fol-
lowing results, the string tension potential is determined
to be D1=2

0 ¼ 240 MeV, and the value of the parameter
c ¼ 0.036 fm6 was chosen to maintain causality for all the
following parametrizations.

A. Variation of the hadronic excluded volume

The first parameter to be addressed is the DD2 excluded
volume. By increasing it, the hadronic matter is stiffened,
reducing the compressibility of the star and leading to an
increase in the radii at a given mass on the hadronic branch
of the sequences in the M-R diagram shown in Fig. 5,
before the phase transition, which manifests itself with a
branch of unstable configurations (grey lines). It is a feature
of the quark-matter EoS used here that it is sufficiently stiff
(close to the causality limit, see Fig. 4) to allow for stable

branches of very compact hybrid stars, forming a so-called
“third family” of compact stars besides the first (white
dwarfs) and the second ones (purely hadronic neutron
stars).
Increasing the excluded volume parameter in the hadronic

phase stiffens the hadronic matter. This stiffening shifts the
chemical potential of the phase transition to smaller values,
resulting in an earlier transition. It is interesting to note that
although the mass of the star at phase transition onset
increases, the pressure at these points gets lower.

B. Variation of the stiffness at high densities

The most influential parameter for highest densities of
the quark-matter phase is the eight-quark coupling param-
eter b. From the vector shift equation (25) which defines the
modification of the quasiparticle chemical potential, the
dominance of parameter b at the highest densities is evident
due to the coupling to the vector density to the third
power. This term gives a large, repulsive contribution to the
energy—i.e., an effective strong stiffening effect on the
EoS; see Figs. 6 and 7.
The strongly stiffened quark-matter EoS has a substantial

stiffening effect at phase-transition densities. Increasing b
delays the onset of quark matter to compact stars with
higher mass. With increasing values of b, the transition
from hadron to quark degrees of freedom is shifted to
higher values of chemical potentials. The strong effect of
the eight-quark interactions is more evident in the M-R
relations; see Fig. 8.

C. Variation of the stiffness at transition densities

The parameter a represents a four-quark interaction term
resulting in a vector self-energy depending linearly on the
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FIG. 5. M-R relations for the hybrid EoS shown in Fig. 4 with
varying hadronic excluded volume parameters. The thin dotted
lines represent the unstable configurations of hybrid stars
between the second and third families of stable compact stars.
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vector density. This parameter allows for a manipulation of
the properties of the phase transition point without strongly
influencing on the high-density region governed by the
parameter b; see Figs. 9, 10, and 11.

D. Variation of the available volume for quark matter

The available volume fraction controls the scaling of the
effective mass of the quasiparticle with increasing density.
This fraction controls the rate at which the effective mass

converges to the bare quark mass. Reducing the mass of the
quasiparticle more quickly has the effect of increasing
the pressure of the quark gas at lower densities. As such, the
phase-transition point for this EoS is shifted down to a
much lower chemical potential; see Figs. 12 and 13. In
Fig. 14, the strong effect of the available volume color
screening can be seen.
The value of the available volume parameter α, repre-

senting the strength of the color-screening mechanism, has
a strong effect on the onset of the quark phase transition.
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FIG. 6. Same as Fig. 3, but for varying values of the eight-quark
coupling parameter b, while the other parameters are kept fixed at
α ¼ 0.2 fm6, a ¼ −2.0 MeV fm3, and c ¼ 0.036 fm6, and the
hadronic phase is described by the DD2p40 EoS.
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FIG. 7. The same as Fig. 4 for the hybrid EoS cases following
from the EoS shown in Fig. 6.
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FIG. 8. M-R relations for the hybrid EoS shown in Fig. 7,
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hybrid stars.
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The strength of the screening lowers the onset mass for the
creation of a quark core considerably.

IV. DISCUSSION

As seen in the figures presented above, the stiffness of the
hadronic matter has a significant effect on the radius differ-
ence, ΔRstar, of the twin configurations. As the hadronic
phase is stiffened, the radii of a purely hadronic star increases.
The most stiff hadronic EoS produces a neutron star of

∼2 M⊙ and radius∼15.0 km, and the resultingΔRstar for the
hybrid star twin is∼4.0 km, see Fig. 5.At the other end of the
spectrum, the hadronic EoS without any excluded volume
effects has a ΔRstar ≃ 0.25 km. Upcoming astronomical
endeavors, such as the NICER [24] and SKA [45] observa-
tional experiments, have the possibility to resolve these
differences in radii to confirm the HMTs.
The primary target of NICER is the nearest millisecond

pulsar PSR J0437-4715, for which a radius will be obtained
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FIG. 10. The same as Fig. 7 for the hybrid EoS cases following
from the EoS shown in Fig. 9.
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with about 500 m variance at 1σ, while the mass obtained
with that instrument remains rather uncertain [46]. In the
case of PSR J0437-4715, the mass has recently been
determined independently to 1.44� 0.07 M⊙ [47]. If the
radius from the NICER measurement comes out too low
(R < 12 km), a high-mass twin solution can be excluded
with high probability. If the radius comes out large, at this
mass we could not discriminate between hadronic and
high-mass hybrid stars. The measurement of the radius of
the high-mass pulsars (Refs. [16] and [22,23]) would
definitely be important for verifying the HMT hypothesis.
Unfortunately, only the Demorest pulsar PSR J1614-2230
as a millisecond pulsar with a period P ¼ 3.15 ms would
be suitable for a radius determination with NICER. But as it
is faint, the low count rate would require observation times
in excess of 107 seconds for a radius uncertainty of 500 m.
Such a long exposure is not foreseen at this stage of the
NICER experiment.
For a distinction between hadronic and third-family

hybrid star branches, one would need at least three points
(with sufficiently small error ellipses) in the M-R diagram,
whereby two of them have about the same (high) masses
but significantly different radii. Unfortunately, the second
high-mass pulsar PSR J0348þ 0432 has not shown any
pulses in the x-ray light curve and is thus not suitable for
the NICER experiment.
The energy shift at transition density, finely tuned by the

coupling parameter a of the four-quark interaction, has a
subtle effect on the onset of the transition to quark matter.
The maximum mass of the purely hadronic neutron star is
decreased as the parameter value is increased; see Fig. 11.
The energy shift at high densities, dominated by the

coupling parameter b of the eight-quark interaction, has

two effects. The repulsive interaction potential provided to
the EoS by this term significantly stiffens the quark phase
of the matter. The stiffer quark core is capable of supporting
much more massive configurations. A consequence of the
stiffer quark-matter phase is that the transition to the quark-
matter phase occurs much later. This results in a greater
purely hadronic neutron star mass at the transition point;
see Fig. 8.
In order to produce an accessible (e.g., by mass accretion

or spin-down of a maximum mass neutron star from the
hadronic branch) and stable hybrid star branch, a suffi-
ciently rapid drop of the quark mass within the chiral
symmetry restoration transition is necessary, since it leads
to a stiffening of the EoS with increasing density. In our
approach, the dynamical quark mass is determined by the
scalar self-energy (24), based on a confining interaction
with the string tension being medium dependent due to the
available volume correction (26). The parameter α deter-
mines the density dependence of chiral symmetry restora-
tion; see Fig. 1. It is evident in Fig. 14 that without the
restoration (or even with too slow of a restoration), the
hybrid configuration is unstable against collapse. Proper
consideration of the available volume for quark matter
supports the existence of high-mass neutron stars in the
range of measured stars [16,22]. Of particular interest are
two parametrized equations of state with differing values of
the α parameter. The EoSs are analyzed further with a focus
on the twin solutions produced within.
The larger value of α (as seen Fig. 15) has a profound

effect on the critical, transition pressure, where the matter
goes over from the hadronic phase to the quark phase. The
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rate at which the available volume of the confining non-
perturbative QCD vacuum is reduced allows for twin
solutions to exist at much lower compact star masses, to
which the majority of the observational data pertains. The
values α ¼ 0.2 and α ¼ 0.3 correspond to two interesting
cases for neutron star phenomenology. They correspond to
an onset of deconfinement at MNS

max ¼ 2.023 M⊙ and at
MNS

max ¼ 1.471 M⊙, respectively. Both cases produce third-
family sequences of hybrid stars (HS), separated from the
purely hadronic neutron star (NS) branch by a sequence of
unstable solutions (indicated by the grey lines in Fig. 15).
While in the former case the hybrid stars (and therefore twin
star solutions) are restricted to the high-mass domain
1.864 < MHS½M⊙� < 2.030, and the radius difference ΔR
of the twins amounts to 1.31 < ΔR½km� < 3.61; in the latter
case the NS branch ends already atMNS

max ¼ 1.471 M⊙, and
the hybrid star solutions cover a large band of masses
1.383 < MHS½M⊙� < 2.097, with a smaller radius difference
for the twins 0.65 < ΔR½km� < 1.61. While in the former
case hybrid star solutions are restricted to the high-mass
domain, in the latter case the purely hadronic neutron star
solutions are restricted to masses below 1.471 M⊙, and all
starsmoremassive than1.383 M⊙ can be hybrid ones. These
results are summarized in Table I. Note that the chosenvalues
forα serve for an orientation on the spectrumof solutions that
are possible within the present class of high-density quark-
matter EoSs.
In Figs. 16 and 17, we compare the density profiles of

pressure, energy density and baryon density for the twin
star solutions indicated in Fig. 15 by plusses and by stars,
respectively. While the purely hadronic stars (red dashed
lines) have a monotonic profile of these quantities at a
rather low level, the hybrid star profiles (black solid lines)
exhibit jumps in energy density and baryon density by
about a factor 2 at about one half (for α ¼ 0.2 and
M ¼ 1.47 M⊙) and three quarters (for α ¼ 0.3 and
M ¼ 2.02 M⊙).
In particular, in the case α ¼ 0.2 with high-mass twins,

as with those shown in Fig. 17, there is a significant
compactification when comparing the NS and the HS
branches with a radius difference up to ΔR ¼ 3.6 km that
could be detectable with instruments like NICER [24].
Besides different radii and therefore different momenta of
inertia, there are qualitative differences expected in, e.g.,
the cooling behavior of high-mass twins, resulting from
their different internal composition and largely different
densities in their cores.
The question arises whether a more realistic treatment of

the first-order phase transition under neutron star con-
straints than a Maxwell construction would eliminate the
unstable branch in theM-R diagram so that no third-family
and consequently no mass twins occur. As discussed in
Sec. II E, such a treatment would be provided by a so-called
pasta phase construction, taking into account the formation
of structures of finite size and different shapes governed by

surface tension and Coulomb effects. Proper pasta phase
constructions yield results that are closer to a Maxwell
construction than to a Gibbs construction [48]; see also
Ref. [44] for a comparison of pasta, Gibbs, and Maxwell
constructions for the same pair of hadronic and quark
matter EoSs. For the case of the HMT EoS, no pasta phase
construction has been made yet. This study is now under-
way. However, in Ref. [49], the effect of mimicking the
formation of pasta structures in the transition on the M-R
relationship has been investigated. This study revealed that
there is a certain robustness of the HMT phenomenon when
a mixed phase appears in the hybrid star interior due to a

TABLE I. Maximum (MNS
max) and minimum (MHS

min) masses of
twin star configurations and the corresponding pair of radii
resulting in a radius difference ΔR ¼ RNS − RHS for different
values of the available volume parameters α ¼ 0.2 (middle
column) and α ¼ 0.3 (right column).

α ¼ 0.2 α ¼ 0.3

MNS
max [M⊙] 2.023 1.471

RNS [km] 13.87 13.34

RHS [km] 10.26 11.73

ΔR [km] 3.61 1.61

MHS
min [M⊙] 1.864 1.383

RNS [km] 13.75 13.21

RHS [km] 12.44 12.56

ΔR [km] 1.31 0.65

MHS
max [M⊙] 2.030 2.097

RHS [km] 10.04 9.87
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corridor of width Γ around the critical pressure PH ¼ PQ of
the Maxwell construction. Following the experience of
Ref. [49], it can be expected that for a Gibbs construction in
most cases, no HMT sequences would result, while for the
more realistic pasta phase construction, the interesting new
third-family solutions could be obtained, in particular for
the parameter range α ¼ 0.2…0.3 shown in Fig. 15.
As a final point of discussion, we compare our hybrid

EoS with the variation of the available volume parameter α
to a more conservative analysis of the EoS constraint that
follows from a multi-polytrope ansatz for the high-density
EoS in Fig. 18. We find that the cases discussed as the most
favorable hybrid EoSs in this work are in fair agreement
with the shaded region in the plane of pressure vs energy
density that was deduced by Hebeler et al. in Ref. [50]. The
parameters of such a multi-polytrope EoS can be adjusted
so that a strong first-order phase transition is described
which entails the HMT phenomenon, as has recently been
demonstrated in Ref. [51]. In comparison, the parameters
in the EoS of the present work can be linked to their
microscopic origin. With such an EoS, one could poten-
tially gain insights on the microphysics of strongly inter-
acting matter by measuring masses and radii of neutron
stars to a sufficient accuracy.

V. CONCLUSION

We have presented an effective relativistic density func-
tional approach to the quark-nuclear hybrid matter and
applied it to the EoS at zero temperature for the purpose of
studying compact stars, in particular the HMT phenome-
non. The mechanism of chiral quark confinement is based
on a Cornell-type confining potential. To this end, we have
revived the string-flip model for a practical application

within compact stars. We have introduced an available
volume fraction to the quark-matter phase, to mirror the
excluded volume in the hadronic matter, and have exhibited
the important effect that such a consideration has on the
stiffness of the quark matter. The effective reduction of the
string tension in dense matter by the available volume
fraction Φðn̄vÞ results in an appropriate softening of the
EoS in the region of the hadronic to quark phase transition.
This approach satisfies observational constraints for pulsars
taking into consideration a transition to quark matter, while
at the same time successfully fulfilling the requirements to
obtain a stable third branch of hybrid stars and HMT
solutions. Our approach has been limited to considering the
third branch of hybrid stars. Recently, Alford and Sedrakian
have considered a synthetic EoS for high-density quark
matter, which results in a “fourth family” of hybrid stars,
based on a second first-order phase transition from two-
flavor quark matter to three-flavor color-superconducting
(CFL) quark matter; see Ref. [52]. The present approach
can be extended to consider such questions based on an
appropriately chosen density functional. It can also be
straightforwardly generalized to finite temperatures so that
quark-hadron hybrid equations of state for applications in
simulations of supernova explosions and neutron star
mergers can be provided.
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FIG. 17. Same as Fig. 16, for the high-mass twin solutions with
M ¼ 2.02 M⊙ obtained for α ¼ 0.3 and indicated in Fig. 15 by a
star sign.
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FIG. 18. The EoS shown in Fig. 13 compared to the EoS
constraint region analyzed with a multi-polytrope ansatz for the
high-density EoS by Ref. [50].

QUARK-NUCLEAR HYBRID STAR EQUATION OF STATE … PHYSICAL REVIEW D 96, 056024 (2017)

056024-13



[1] J. M. Lattimer and M. Prakash, Phys. Rep. 621, 127 (2016).
[2] C. J. Horowitz, E. J. Moniz, and J. W. Negele, Phys. Rev. D

31, 1689 (1985).
[3] G. Röpke, D. Blaschke, and H. Schulz, Phys. Rev. D 34,

3499 (1986).
[4] C. J. Horowitz and J. Piekarewicz, Nucl. Phys. A536, 669

(1992).
[5] C. J. Horowitz and J. Piekarewicz, Phys. Rev. C 44, 2753

(1991).
[6] A. S. Khvorostukin, V. V. Skokov, V. D. Toneev, and K.

Redlich, Eur. Phys. J. C 48, 531 (2006).
[7] S. Benic, Eur. Phys. J. A 50, 111 (2014).
[8] S. Benic, D. Blaschke, D. E. Alvarez-Castillo, T. Fischer,

and S. Typel, Astron. Astrophys. 577, A40 (2015).
[9] U. H. Gerlach, Phys. Rev. 172, 1325 (1968).

[10] B. Kämpfer, J. Phys. A 14, L471 (1981).
[11] B. Kämpfer, J. Phys. G 9, 1487 (1983).
[12] K. Schertler, C. Greiner, J. Schaffner-Bielich, and M. H.

Thoma, Nucl. Phys. A677, 463 (2000).
[13] N. K. Glendenning and C. Kettner, Astron. Astrophys. 353,

L9 (2000).
[14] A. Bhattacharyya, S. K. Ghosh, M. Hanauske, and S. Raha,

Astron. Astrophys. 418, 795 (2004).
[15] B. K. Agrawal and S. K. Dhiman, Phys. Rev. D 79, 103006

(2009).
[16] J. Antoniadis et al., Science 340, 1233232 (2013).
[17] M. G. Alford, S. Han, and M. Prakash, Phys. Rev. D 88,

083013 (2013).
[18] D. Blaschke, D. E. Alvarez-Castillo, and S. Benic, Proc.

Sci., CPOD (2013) 063.
[19] Z. F. Seidov, Sov. Astron. Lett. 15, 347 (1971).
[20] R. Schaeffer, L. Zdunik, and P. Haensel, Astron. Astrophys.

126, 121 (1983).
[21] D. Alvarez-Castillo, S. Benic, D. Blaschke, S. Han, and

S. Typel, Eur. Phys. J. A 52, 232 (2016).
[22] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and

J. Hessels, Nature (London) 467, 1081 (2010).
[23] E. Fonseca et al., Astrophys. J. 832, 167 (2016).
[24] https://heasarc.gsfc.nasa.gov/docs/nicer.
[25] S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. H.

Wolter, Phys. Rev. C 81, 015803 (2010).
[26] J. I. Kapusta, Finite Temperature Field Theory (Cambridge

University Press, Cambridge, England, 1989).
[27] L. Y. Glozman, Phys. Rev. D 79, 037504 (2009).

[28] A. Li, W. Zuo, and G. X. Peng, Phys. Rev. C 91, 035803
(2015).

[29] D. Blaschke, T. Tovmasian, and B. Kämpfer, Yad. Fiz. 52,
1059 (1990) [Sov. J. Nucl. Phys. 52, 675 (1990)].

[30] B. D. Serot and J. D. Walecka, Int. J. Mod. Phys. E 06, 515
(1997).

[31] M. A. Braun, J. Dias de Deus, A. S. Hirsch, C. Pajares,
R. P. Scharenberg, and B. K. Srivastava, Phys. Rep. 599, 1
(2015).

[32] H. Satz, Lect. Notes Phys. 841, 1 (2012).
[33] H. J. Pirner, Prog. Part. Nucl. Phys. 29, 33 (1992).
[34] G. Martens, C. Greiner, S. Leupold, and U. Mosel, Phys.

Rev. D 70, 116010 (2004).
[35] G. Martens, C. Greiner, S. Leupold, and U. Mosel, Phys.

Rev. D 73, 096004 (2006).
[36] S. Typel, Eur. Phys. J. A 52, 16 (2016).
[37] G. Ripka, Lect. Notes Phys. 639, 1 (2004).
[38] S. Typel, Phys. Rev. C 71, 064301 (2005).
[39] T. Krüger, I. Tews, K. Hebeler, and A. Schwenk, Phys. Rev.

C 88, 025802 (2013).
[40] T. Fischer, M. Hempel, I. Sagert, Y. Suwa, and J. Schaffner-

Bielich, Eur. Phys. J. A 50, 46 (2014).
[41] D. Alvarez-Castillo, A. Ayriyan, S. Benic, D. Blaschke,

H. Grigorian, and S. Typel, Eur. Phys. J. A 52, 69
(2016).

[42] C. Kettner, F. Weber, M. K. Weigel, and N. K. Glendenning,
Phys. Rev. D 51, 1440 (1995).

[43] N. K. Glendenning, Phys. Rev. D 46, 1274 (1992).
[44] N. Yasutake, R. Lastowiecki, S. Benic, D. Blaschke, T.

Maruyama, and T. Tatsumi, Phys. Rev. C 89, 065803
(2014).

[45] http://www.ska.ac.za.
[46] A. L. Watts et al., Rev. Mod. Phys. 88, 021001 (2016).
[47] D. J. Reardon et al., Mon. Not. R. Astron. Soc. 455, 1751

(2016).
[48] D. N. Voskresensky, M. Yasuhira, and T. Tatsumi, Nucl.

Phys. A723, 291 (2003).
[49] D. E. Alvarez-Castillo and D. Blaschke, Phys. Part. Nucl.

46, 846 (2015).
[50] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk,

Astrophys. J. 773, 11 (2013).
[51] D. E. Alvarez-Castillo and D. B. Blaschke, arXiv:1703

.02681.
[52] M. G. Alford and A. Sedrakian, arXiv:1706.01592.

KALTENBORN, BASTIAN, and BLASCHKE PHYSICAL REVIEW D 96, 056024 (2017)

056024-14

https://doi.org/10.1016/j.physrep.2015.12.005
https://doi.org/10.1103/PhysRevD.31.1689
https://doi.org/10.1103/PhysRevD.31.1689
https://doi.org/10.1103/PhysRevD.34.3499
https://doi.org/10.1103/PhysRevD.34.3499
https://doi.org/10.1016/0375-9474(92)90118-4
https://doi.org/10.1016/0375-9474(92)90118-4
https://doi.org/10.1103/PhysRevC.44.2753
https://doi.org/10.1103/PhysRevC.44.2753
https://doi.org/10.1140/epjc/s10052-006-0052-2
https://doi.org/10.1140/epja/i2014-14111-1
https://doi.org/10.1051/0004-6361/201425318
https://doi.org/10.1103/PhysRev.172.1325
https://doi.org/10.1088/0305-4470/14/11/009
https://doi.org/10.1088/0305-4616/9/12/009
https://doi.org/10.1016/S0375-9474(00)00305-5
https://doi.org/10.1051/0004-6361:20040062
https://doi.org/10.1103/PhysRevD.79.103006
https://doi.org/10.1103/PhysRevD.79.103006
https://doi.org/10.1126/science.1233232
https://doi.org/10.1103/PhysRevD.88.083013
https://doi.org/10.1103/PhysRevD.88.083013
https://doi.org/10.1140/epja/i2016-16232-9
https://doi.org/10.1038/nature09466
https://doi.org/10.3847/0004-637X/832/2/167
https://heasarc.gsfc.nasa.gov/docs/nicer
https://heasarc.gsfc.nasa.gov/docs/nicer
https://heasarc.gsfc.nasa.gov/docs/nicer
https://heasarc.gsfc.nasa.gov/docs/nicer
https://doi.org/10.1103/PhysRevC.81.015803
https://doi.org/10.1103/PhysRevD.79.037504
https://doi.org/10.1103/PhysRevC.91.035803
https://doi.org/10.1103/PhysRevC.91.035803
https://doi.org/10.1142/S0218301397000299
https://doi.org/10.1142/S0218301397000299
https://doi.org/10.1016/j.physrep.2015.09.003
https://doi.org/10.1016/j.physrep.2015.09.003
https://doi.org/10.1007/978-3-642-23908-3
https://doi.org/10.1016/0146-6410(92)90003-K
https://doi.org/10.1103/PhysRevD.70.116010
https://doi.org/10.1103/PhysRevD.70.116010
https://doi.org/10.1103/PhysRevD.73.096004
https://doi.org/10.1103/PhysRevD.73.096004
https://doi.org/10.1140/epja/i2016-16016-3
https://doi.org/10.1007/b94800
https://doi.org/10.1103/PhysRevC.71.064301
https://doi.org/10.1103/PhysRevC.88.025802
https://doi.org/10.1103/PhysRevC.88.025802
https://doi.org/10.1140/epja/i2014-14046-5
https://doi.org/10.1140/epja/i2016-16069-2
https://doi.org/10.1140/epja/i2016-16069-2
https://doi.org/10.1103/PhysRevD.51.1440
https://doi.org/10.1103/PhysRevD.46.1274
https://doi.org/10.1103/PhysRevC.89.065803
https://doi.org/10.1103/PhysRevC.89.065803
http://www.ska.ac.za
http://www.ska.ac.za
http://www.ska.ac.za
http://www.ska.ac.za
https://doi.org/10.1103/RevModPhys.88.021001
https://doi.org/10.1093/mnras/stv2395
https://doi.org/10.1093/mnras/stv2395
https://doi.org/10.1016/S0375-9474(03)01313-7
https://doi.org/10.1016/S0375-9474(03)01313-7
https://doi.org/10.1134/S1063779615050032
https://doi.org/10.1134/S1063779615050032
https://doi.org/10.1088/0004-637X/773/1/11
http://arXiv.org/abs/1703.02681
http://arXiv.org/abs/1703.02681
http://arXiv.org/abs/1706.01592

