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To reflect the asymptotic freedom in the thermal direction, a temperature-dependent coupling was
proposed in the literature. We investigate its effect on QCD matter with and without strong magnetic fields.
Compared with the fixed coupling constant, the running coupling leads to a drastic change in the dynamical
quark mass, entropy density, sound velocity, and specific heat. The crossover transition of QCD matter at
finite temperature is characterized by the pseudocritical temperature Tpc, which is generally determined by
the peak of the derivative of the quark condensate with respect to the temperature dϕ=dT, or equivalently,
by the derivative of the quark dynamical mass dM=dT. In a strong magnetic field, the temperature- and
magnetic-field-dependent coupling GðeB; TÞ was recently introduced to account for inverse magnetic
catalysis. We propose an analytical relation between the two criteria dϕ=dT and dM=dT and show a
discrepancy between them in finding the pseudocritical temperature. The magnitude of the discrepancy
depends on the behavior of dG=dT.
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I. INTRODUCTION

It is well known that with increasing baryon number
density and temperature, hadronic matter undergoes a
phase transition to quark-gluon plasma. In high-temper-
ature or high-density regions, asymptotic freedom becomes
important in the investigation of the QCD diagram [1]. To
obtain a comprehensive QCD diagram, it is necessary to
understand the phase transition in the presence of magnetic
fields. In recent years, research related to strong magnetic
fields has been carried out in both condensed matter
physics [2] and particle physics [3]. Strong magnetic fields
could have a drastic influence on the special stability of
quark matter [4–6], the anisotropy of the equation of state
[7], the region of the phase transition, and (inverse)
magnetic catalysis. The presence of magnetic fields can
promote a change in the size and location of the first-order
line [8] and increase the mass of neutron stars and white
dwarf stars beyond the Chandrasekhar limit [9]. Both
thermodynamical and dynamical quantities display an
oscillating behavior in the presence of magnetic fields
[10]. Magnetic catalysis was found to have an important
effect on chiral symmetry breaking enhanced by an external
magnetic field [11–14].
The Nambu–Jona-Lasinio (NJL) model has been suc-

cessful in investigating the QCD diagram, and recently it
was extended to easily reproduce the behavior of the quark
condensate and the dynamical mass with an external
magnetic field [15,16]. It was further extended by including
tensor channels (which leads to a spin-one condensate [17])
or by including the eight-quark interaction [18]. In addition
to the magnetic effect at vanishing chemical potential,

inverse magnetic catalysis was initially suggested as a
mechanism to decrease the critical chemical potential for
chiral restoration [19]. It was later predicted by lattice
simulations at zero density that the critical temperature of
the chiral transition decreases with the magnetic field [20].
It has also recently attracted much theoretical attention in
various phenomenological models [21,22]. It is apparent
that the failure of the previous effective models to provide
inverse magnetic catalysis can be attributed to the fact that
the coupling constant does not run with the magnetic field
[23], or strictly speaking, the effective models lack gluonic
degrees of freedom and cannot account for the backreaction
of sea quarks to the magnetic field [24].
Many attempts have been made to interpret inverse

magnetic catalysis. One approach is through a magnetic-
field- and temperature-dependent coupling [23,24] or a
parametrized fitting function [25] taking into account the
asymptotic-freedom effect near the critical point. Another
approach is through the parametrization of the Polyakov
loop (whose coefficients depend on both the temperature
and magnetic field) to mimic the reaction of the gluon
sector to the magnetic field [26]. In fact, the employment of
asymptotic freedom in the phenomenological approach can
be traced to early works in the literature. For example, the
QCD coupling was introduced to depend on the environ-
mental parameters, such as the density [27], temperature
[28], and magnetic field [13,25]. Based on the general
argument from the renormalization group equation [29],
these characteristics replace the momentum as the running
scale. The special running behavior will lead to a detailed
change in the properties of QCD matter. The magnetic-
field-dependent running coupling reveals interesting prop-
erties, such as a change in the dynamical mass and the*wenxj@sxu.edu.cn
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stability of magnetized quark matter [30–32]. One recent
work reported that the magnetization changes due to the
variation of the coupling constant with respect to the
magnetic field ∂G=∂B [24]. Then, one may ask about
the contribution of ∂G=∂T. In this paper, we first analyze
the behavior of the coupling dependent on the temperature in
two-flavor quark matter. Then, we investigate the influence
of the temperature- and magnetic-field-dependent coupling
on the pseudocritical temperature of the crossover transition
in a strong magnetic field.
This work is organized as follows. In Sec. II, we briefly

review the NJLmodel of quark matter in both zero magnetic
field and a strong magnetic field. Correspondingly, the two
kinds of running couplings are introduced as well as the
model parameters in the computation. In Sec. III, the
numerical results and a discussion are given, with a detailed
analysis of the effects of the running coupling on the
thermodynamical quantities. The last section is a short
summary.

II. THERMODYNAMICS OF THE
SU(2) NJL MODEL

A. Thermodynamics of the SU(2) NJL Model in
zero magnetic field

In the SU(2) version of the NJL model without a
magnetic field, the Lagrangian density of the two-flavor
NJL model is given by

LNJL ¼ ψ̄ði=∂ −mÞψ þ G½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�; ð1Þ

where ψ represents a flavor isodoublet (u and d quarks) and
τ⃗ are isospin Pauli matrices. In the mean-field approxima-
tion [33], the dynamical quark mass is

Mi ¼ m − 2Ghψ̄ψi; ð2Þ

where the quark condensates include u and d quark
contributions as hψ̄ψi≡ ϕ ¼ P

i¼u;dϕi. The dynamical
mass depends on both flavor condensates. Therefore, the
same mass Mu ¼ Md ¼ M is available for u and d quarks.
The contribution from the quark with flavor i is

ϕi ¼ ϕvac
i þ ϕmed

i : ð3Þ

The terms ϕvac
i and ϕmed

i represent the vacuum and medium
contributions to the quark condensation, respectively,

ϕvac
i ¼−

MNc

2π2

�

Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2þM2

p
−M2 ln

�
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2þM2

p

M

��

;

ð4Þ

ϕmed
i ¼ 2MNc

π2

Z
∞

0

f
E� p

2dp; ð5Þ

where the effective quantity is E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
, and the

fermion distribution function is defined as

f ¼ 1

1þ exp½E�=T� : ð6Þ

The total thermodynamic potential density in the mean-
field approximation reads

Ω ¼ ðM −m0Þ2
4G

þ
X

i¼u;d

Ωi; ð7Þ

where the first term is the interaction term. In the second
term, Ωi is defined as Ωi ¼ Ωvac

i þ Ωmed
i . The vacuum and

medium contributions to the thermodynamic potential are

Ωvac
i ¼ Nc

8π2

�

M4 ln

�
Λþ ϵΛ
M

�

− ϵΛΛðΛ2 þ ϵ2ΛÞ
�

; ð8Þ

Ωmed
i ¼ −

2TNc

π2

Z
∞

0

�

ln

�

1þ exp

�

−
E�

T

���

p2dp; ð9Þ

where the quantity ϵΛ is defined as ϵΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p
. The

ultraviolet divergence in the vacuum part Ωvac
i of the

thermodynamic potential is removed by the momentum
cutoff. The effective pressure in the system is corrected by
defining PeffðTÞ ¼ PðTÞ − Pð0Þ. The sound velocity, spe-
cific heat, and entropy density from the flavor i contribution
are given as [24,34]

c2s ¼
∂Peff

∂ϵ
	
	
	
	
S
; CV ¼ T

∂2Peff

∂T2

	
	
	
	
V
; ð10Þ

Si ¼ −
2Nc

π2

Z
∞

0

½f lnðfÞ þ ð1 − fÞ lnð1 − fÞ�p2dp: ð11Þ

In principle, the interaction coupling constant between
quarks should be solved by the renormalization group
equation, or it can be phenomenologically expressed in an
effective potential dependent on environmental variables
[35–37]. In the infrared region, the nonperturbative effect
becomes important and the dynamical gluon mass repre-
sents the confinement feature of QCD [38]. Here we adopt
the temperature-dependent running coupling to investigate
the thermal effect in the high-temperature region [1],

G0ðTÞ ¼ G0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
�
T
T0

�
2

s

; ð12Þ

where T0 ¼ 0.3 Λ is the critical temperature.

B. Thermodynamics of the SU(2) NJL model in a
strong magnetic field

In the presence of strong external magnetic fields, the
Lagrangian density of the two-flavor NJL model in a strong
magnetic field is given as

LI YANG and XIN-JIAN WEN PHYSICAL REVIEW D 96, 056023 (2017)

056023-2



LNJL ¼ ψ̄ði=D −mÞψ þ G½ðψ̄ψÞ2 þ ðψ̄ iγ5τ⃗ψÞ2�; ð13Þ

where the covariant derivative Dμ ¼ ∂μ − iqiAμ represents
the coupling of the quarks to the electromagnetic field (a
sum over flavor and color degrees of freedom is implicit).
The dynamical quark mass is the same as Eq. (2), but the
quark condensates should include an additional term from
the magnetic field contribution,

ϕi ¼ ϕvac
i þ ϕmag

i þ ϕmed
i ; ð14Þ

where the vacuum contribution ϕvac
i is the same as Eq. (4).

The magnetic field and medium contributions to the quark
condensation are [15,39]

ϕmag
i ¼ −

MjqijBNc

2π2

�

ln½ΓðxiÞ� −
1

2
lnð2πÞ þ xi

−
1

2
ð2xi − 1Þ lnðxiÞ

�

; ð15Þ

ϕmed
i ¼

X

ki¼0

aki
MjqijBNc

2π2

Z
fi
E�
i
dp; ð16Þ

where aki ¼ 2 − δk0 and ki are the degeneracy label and the
Landau quantum number, respectively. The dimensionless
quantity xi is defined as xi ¼ M2=ð2jqijBÞ. It can be seen
that the quark condensation is greatly strengthened by the
factor jqiBj together with the dimensional reduction D − 2
[13,40]. In the second equation above, the temperature
contribution with zero chemical potential is introduced in
the fermion distribution function as

fi ¼
1

1þ exp½E�
i =T�

: ð17Þ

The effective quantity E�
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ s2i

p
sensitively depends

on the magnetic field through si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2kijqijB

p
.

Accordingly, the thermodynamic potential density Ωi
becomes a sum of three terms,

Ωi ¼ Ωvac
i þ Ωmag

i þΩmed
i ; ð18Þ

where only the second and third terms feel the strong
magnetic field and should be rewritten as

Ωmag
i ¼−

NcðjqijBÞ2
2π2

�

ζ0ð−1;xiÞ−
1

2
ðx2i −xiÞ lnðxiÞþ

x2i
4

�

;

ð19Þ

Ωmed
i ¼ −T

X

k¼0

aki
jqijBNc

2π2

Z

dp

�

ln

�

1þ exp

�

−
E�
i

T

���

;

ð20Þ

where ζða; xÞ ¼ P∞
n¼0

1
ðaþnÞx is the Hurwitz zeta function.

In the presence of a strongmagnetic field, it is well known
that the interaction constant shows an obvious decreasing
behavior in addition to the enlargement of the gluon mass
[22]. For sufficiently strong magnetic fields eB ≫ Λ2

QCD, it
is reasonable to express the coupling constant αs related to
the magnetic field [13,25]. Motivated by the work of
Miransky and Shovkovy [13], a similar ansatz for the
magnetic-field-dependent coupling constant was introduced
in the SU(2)NJL models [24]:

GðeB; TÞ ¼ cðBÞ
�

1 −
1

1þ eβðBÞ½TaðBÞ−T�

�

þ sðBÞ; ð21Þ

where the four parameters c, β, Ta, and s were obtained by
fitting the lattice data and are strongly dependent on the
magnetic field [24].
To identify the pseudocritical temperature of the cross-

over transition, one generally uses the location of the peaks
for the vacuum quark condensates jhψ̄ψij [18], or the
normalized quark condensates [26,41],

σ ¼ hψ̄ψiðB; TÞ
hψ̄ψiðB; 0Þ ; ð22Þ

which means that the quark condensate is measured in units
of the condensate at T ¼ 0. In fact, the crossover is signaled
by a rapid increase of the energy density. Thus, it has been
suggested that the crossover transition is determined by the
maximum of −dM=dT [8], which is generally consistent
withdϕ=dT [42].However,when the coupling constant runs
with the temperature, a discrepancy will appear between
them. From Eq. (2) we obtain the following relation:

dM
dT

¼ −2G
dhψ̄ψi
dT

− 2hψ̄ψi dG
dT

; ð23Þ

where the additional second term is necessarily introduced
by the temperature dependence of the running coupling, and
will lead to a new formula for the determination of the
pseudocritical temperature in the next section.

III. NUMERICAL RESULTS AND DISCUSSION

For the SU(2) NJL model in this paper, we adopt the
parameters Λ ¼ 650 MeV, mu ¼ md ¼ 5.5 MeV, and
G0 ¼ 4.50373 GeV−2 in the calculation. In order to reflect
the asymptotic freedom in the thermal region, the two kinds
of running couplings are adopted for the zero magnetic
field case and strong magnetic field case [1,24]. The
temperature dependence of G0ðTÞ and the thermomagnetic
dependence of GðeB; TÞ were obtained by fitting lattice
QCD predictions for the chiral transition order parameter.

A. In zero magnetic field

The quark condensate or the dynamical mass is usually
considered as an order parameter of the chiral phase
transition. The dynamical mass decreases as the temperature
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increases, and the chiral-symmetric phase is restored. In this
section, we mainly discuss the chiral restoration under the
coupling constant G0 and the temperature-dependent run-
ning coupling G0ðTÞ in zero magnetic field. The dynamical
quark mass M is shown as a function of the temperature in
Fig. 1. The solid and dashed lines are for the fixed coupling
constantG0 and the running couplingG0ðTÞ, respectively. It
is clear that the absolute value of the quark condensate under
the running coupling G0ðTÞ is lower, which increases the
possibility of having massless quarks compared to the fixed
coupling constant G0 case. Thus, the chiral-restoring tran-
sition can be realized at a lower temperaturewith the running
coupling in our considerations.
According to the second law of thermodynamics, entropy

is an increasing dimensionless function of temperature.
In our work, we use the ratio of the entropy density and
the cube of the temperature to get a dimensionless quantity in
Fig. 2. The ratio increases and reaches a constant value
(S=T3 ¼ 9.2) as the temperature increases. However, in the
temperature range of 80–120 MeV, the dashed line for
the running coupling G0ðTÞ is higher than the solid line for
the fixed couplingG0 case. The entropy density is increased
by the running coupling G0ðTÞ, which can be understood
from the fact that the temperature-dependent interaction
strength becomesweak enough as the temperature increases.
In Fig. 3, the sound velocity and specific heat are

compared for the two different couplings, as in Fig. 2.
The sound velocity reflects the stiffness of the equation of
state, or determines the flow properties in heavy-ion
reactions. In the left panel of Fig. 3, the sound velocity
increases and gradually approaches the relativistic limit
c2s ¼ 1=3 as the temperature increases. In the temperature
range 0.4 ∼ 0.8T0, we can see that the dashed line for the
running coupling is always above the solid line for the
fixed-coupling case. In fact, at high temperature, the quark

mass is much less in the running-coupling case than in the
fixed-coupling case. The quarks with very small masses
and weak interaction strengths display a behavior similar to
the massless particles. So the running coupling induces a
faster approach to the relativistic limit at lower temperature.
In the right panel, the specific heat is shown as a function of
temperature, where the ratio of the specific heat density CV

and the cubic temperature T3 is introduced as a dimension-
less quantity. The nonmonotonic shape of CV=T3 appears
in both coupling cases. But for the running coupling, the
position of the maximum of the specific heat moves in the
direction of lower temperature, which would signifies that
the crossover temperature may decrease in the running-
coupling case compared to the fixed-coupling case. At very
high temperature, the two lines coincide and the specific
heat maintains an almost constant value of CV=T3 ≈ 28,
which indicates an equilibrium state of thermal radiation.

FIG. 1. The dynamical mass of the quark versus temperature for
the coupling constant G0 and the running coupling G0ðTÞ. The
critical temperature T0 is 195 MeV.

FIG. 2. The entropy density divided by T3 as a function of the
temperature for the couplings G0 and G0ðTÞ.

FIG. 3. Sound velocity and specific heat versus temperature.
The two lines are coincident at T0.
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B. In a strong magnetic field

It is well known that the dynamical quark mass and
vacuum structure are drastically changed by a strong
magnetic field and many interesting properties are
revealed. In particular, the pseudocritical temperature
for the chiral restoration transition characterized by
inverse magnetic catalysis is a hot topic. Inverse mag-
netic catalysis can be interpreted by a magnetic-field-
dependent coupling. In Fig. 4, we plot the reduced
coupling GðeB; TÞ=G0 versus the temperature at differ-
ent magnetic fields eB ¼ 0, 0.2, 0.4, 0.6, and 0.8 GeV2.
The coupling constant remains invariant when the
temperature is smaller than 140 MeV. Moreover, the
stronger the magnetic field, the smaller the coupling
constant. Then, there is a sharp drop on each line at a
critical temperature in the range of (150–170 MeV),
which is essentially determined by the parameter Ta in
the coupling constant (21). Due to the nonmonotonous
parameter set of Ta in the coupling constant (21), the
two lines for B ¼ 0.4 and 0.6 GeV2 cross each other. As
in Ref. [24], the quark dynamical mass and the con-
densate decrease continuously when the temperature
increases. So far, a large number of lattice simulations
have demonstrated that there is only an energy density
jump (and not a true phase transition) when the baryon
chemical potential vanishes. This signals a crossover
characterized by a pseudocritical temperature Tpc, which
is about 160 MeV with systematic errors. The effect of
the coupling constant running with the temperature was
investigated and the entropy density can be greatly
increased [24]. In this section, we focus on its effect
on the crossover pseudocritical transition, which is
determined by the peaks in the susceptibilities. In the
following, we define two criteria to calculate the
pseudocritical transition temperatures.

(1) Criterion I: The temperature Tpc at which the
maximum of the derivation of the quark condensate
ϕ with respect to the temperature occurs,

∂2ϕ

∂T2
¼ 0: ð24Þ

(2) Criterion Π: The temperature Tpc at which the
maximum of −dM=dT occurs,

−
d2M
dT2

¼ 2G
∂2ϕ

∂T2
þ 2ϕ

∂2G
∂T2

þ 4
∂G
∂T

∂ϕ
∂T ¼ 0: ð25Þ

Because the contribution of the last two terms in
Eq. (25) cannot be neglected numerically, the two
criteria in Eqs. (24) and (25) cannot be satisfied simulta-
neously. Even for the coupling constant GðB; TÞ ¼
GðBÞð1 − γTjeBj=Λ3

QCDÞ [23], the second term is zero,
but the third term will not vanish yet.
In Fig. 5 the derivation of the coupling constant

GðeB; TÞ with temperature is shown. In order to get a
dimensional quantity, the quark condensate value in vac-
uum jhψ̄ψi0j ¼ ð236.4 MeVÞ3 is multiplied in the produc-
tion. From the numerical result, it is obvious that the
minimum value of the derivative ∂G=∂T occurs in the
temperature range 140–175 MeV, which always covers
the range of the pseudocritical temperature. Consequently,
it is inevitable that the derivative term ∂G=∂T will affect
the position of the crossover pseudocritical temperature
Tpc. The parametrization of the temperature- and mag-
netic-field-dependent function from Ref. [23] will lead to
a constant value for the second term in Eq. (23). Other
attempts in the literature with a temperature-dependent

FIG. 4. The reduced running coupling constantGðeB; TÞ=G0 as
a monotonous decreasing function of the temperature for several
fixed magnetic fields.

FIG. 5. The derivative of the coupling constant with respect to
the temperature, which is multiplied by the vacuum quark
condensate jhψ̄ψi0j to give a dimensional quantity.
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coupling have also led to considerable changes
[43]. Because Ta is nonmonotonous in Eq. (21), the
behavior of the curves as the magnetic field increases
is not regular.
Since the behavior of the coupling with the temperature

cannot be neglected, we compare the two criteria dM=dT
and dϕ=dT in the calculation of the pseudocritical temper-
ature in Figs. 6 and 7. First, we show the contribution of the
running coupling constant to the effective susceptibilities at
the two strengths eB ¼ 0 and eB ¼ 0.8 GeV2 in Fig. 6.
For convenience of comparison, the negative derivative
−dM=dT (which is dimensionless) is plotted on the
left axis, while the criterion dϕ=dT (in units of GeV2)
is plotted on the right axis. The peaks of the susceptibility
based on the two criteria are no longer exactly coincident,
which is particularly noticeable for the magnetic field
eB ¼ 0.8 GeV2.
Inverse magnetic catalysis can be explained by the

dependence of the QCD coupling on the strong magnetic
field. At finite temperature and vanishing density, it is
further understood from the temperature- and magnetic-
field-dependent coupling that the pseudocritical temper-
ature decreases as the magnetic field increases. In order
to account for the effect of GðeB; TÞ and display the
difference between the two criteria, we show the
descending lines of the pseudocritical temperature Tpc

as the magnetic field increases in Fig. 7. The solid and
dashed lines are derived from the peaks of the derivatives
−dM=dT and dϕ=dT, respectively, in Fig. 6. For weak
magnetic fields, the tiny difference can be neglected. As
the magnetic field increases, the two lines are distinctly
separated. It can be clearly seen at stronger magnetic
fields that the criterion dM=dT will give a lower
pseudocritical temperature Tpc and the inverse catalysis
effect becomes more prominent. The parametrization of
the running coupling is derived from the lattice

simulation of the QCD phase diagram, and in turn it
will influence the QCD pseudocritical temperature.
However, the difference between the two criteria is less
than the lattice error. One cannot make a conclusion
about which criterion is better to get the pseudocritical
temperature. To some extent, the relation can be used to
check the discrepancy between two methods for the
running coupling proposed in future work.

IV. SUMMARY

In this paper we have employed the SU(2) NJL model to
study QCD matter with a temperature- and/or magnetic-
field-dependent coupling. Compared to the fixed coupling
constant, the temperature-dependent coupling drastically
changes the dynamical quark mass, entropy density, sound
velocity, and specific heat. As the temperature increases up
to T0, the entropy density, sound velocity, and specific heat
density go up and approach the critical values S=T3 ≈ 9.2,
cs ¼

ffiffiffiffiffiffiffiffi
1=3

p
, and CV=T3 ≈ 28. In the temperature range

0.4 ∼ 0.8T0, we found that the entropy and sound velocity
in the running-coupling case are remarkably larger than
those in the fixed-coupling case.
It is also helpful to use the magnetic-field- and

temperature-dependent coupling when accounting for
inverse magnetic catalysis at finite temperature. In
previous work, the position of the crossover transition
characterized by a pseudocritical temperature was deter-
mined by the peak of the susceptibility of the quark
condensate or the quark dynamical mass with respect
to the temperature. The two criteria dϕ=dT and dM=dT
are coincident when the coupling is independent of
the temperature. However, when the coupling constant
depends on the temperature and magnetic field, a
discrepancy will appear between the two criteria due
to the presence of the nonzero term ∂GðeB; TÞ=∂T.

FIG. 6. The pseudocritical temperature determined by the peaks
of the derivatives −dM=dT and dϕ=dT is shown. FIG. 7. The pseudocritical temperature determined by the peaks

of the derivatives −dM=dT and dϕ=dT.
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The criterion dM=dT leads to a lower pseudocritical
temperature for the crossover transition. The special
value of Tpc will depend on the running behavior of
the coupling constant with the temperature. Therefore,
we argued that possible choices for the coupling con-
stant in future work will influence the QCD phase
diagram.
Up to now, spontaneous chiral symmetry breaking has

been studied in backgrounds of electric and magnetic field
[44]. The QCD phase diagram could be ruled by the rather
complicated interaction structure. A careful treatment
should be done in the case of the temperature- and

magnetic-field-dependent coupling GðeB; TÞ. In a future
paper, we hope to consider the implications for the color
superconducting phase to develop a deeper understanding
of the QCD phase diagram.
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