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We analyze the worldline holographic framework for fermions. Worldline holography is based on the
observation that in the worldline approach to quantum field theory, sources of a quantum field theory over
Mink4 naturally form a field theory over AdS5 to all orders in the elementary fields and in the sources.
Schwinger’s proper time of the worldline formalism automatically appears with the physical four spacetime
dimensions in an AdS5 geometry. The worldline holographic effective action in general and the proper-time
profiles of the sources in particular solve a renormalization group equation. By taking into account sources
up to spin one, we reconstruct seminal holographic models. Considering spin two confirms AdS5 as a
consistent background.
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I. INTRODUCTION

Strong interactions offer an immensely rich phenomenol-
ogy.Most of the time they overtax the computational abilities
of the day and thus motivate us to put more energy into the
development of new methods. In this context, for the last
fewdecades, theholographicidea[1–4]—includingtheAdS=
CFT correspondence—promises progress and, for example,
has been applied to quantum chromodynamics (QCD) [5–7],
extensions of the Standard Model [8,9], condensed-matter
physics [10], and the Schwinger effect [11–13]. All concrete
instances of such correspondences discovered to date, how-
ever, hold for theories with a particle content that is different
from QCD. For the time being, extrapolated “bottom-up”
AdS/QCD descriptions are considered, and they capture the
hadron spectrum thought-provokingly accurately [5,14].Yet,
they lack a derivation from first principles, and this is the
motivationfordelving into the fundamental reasons forwhich
such an approach could be tenable. Considerable work has
been done in this area already [15–17].
We managed to show [13,18–22] that a quantum field

theory over Mink4 readily turns into a field theory for its
sources over AdS5 in the framework of the worldline
formalism [23–25] for quantum field theory. Schwinger’s
proper time naturally takes the role of the fifth dimension
of the AdS5 geometry.1 Schwinger’s proper time sets a
length scale (inverse energy scale), and this is the inter-
pretation of the fifth dimension in holography [2–7] as well.
Divergences occurring in a theory necessitate regularization.
In the worldline formalism they are naturally taken care of by
proper-time regularization, i.e., the introduction of a minimal
positive proper time. This proper-time regularization corre-
sponds to the UV-brane regularization [2–7].
References [18,19] demonstrated how such an AdS5

formulation comes about to all orders in the sources and

the elementary fields—matter and gauge. Analyzing the
consequences of regulator independence of worldline holog-
raphy in Ref. [18] identified it as a renormalization group
framework. In fact, we can define [21] worldline holography
as a variational solution to aWilson (gradient) flow [26]2 and,
from there, using the exact same computational steps, obtain
the identical result. Consequently, worldline holography was
regulator independent all along, but we can and will define it
using this requirement henceforth.
In the past we concentrated on scalar elementary matter,

as it provides the least impeded view of the underlying
structure of worldline holography, due to the minimal
number of internal degrees of freedom. There, among other
things, worldline holography maps a free scalar theory onto
a theory of arbitrarily high spins on AdSdþ1 [27], as was
previously conjectured [28].
Here, we turn to fermionic elementary matter, especially

as it makes up the matter part of the Standard Model.
Considering fermions overturns neither the worldline
formalism [24,25] nor, as we shall see below, the worldline
holographic framework in any way, but it makes its
phenomenology richer.
In Sec. II we present worldline holography for fermionic

elementary matter. In Sec. III we provide explicit compu-
tations in the free case. We derive the worldline holographic
answer for (pseudo)scalar and (axial-)vector sources,
which calls for a comparison with [5–7]. In Sec. III A
we confirm the self-consistency of the AdS background
within our framework. In Sec. IV we use our framework to
study the renormalization of quantum electrodynamics
(QED). Section V summarizes our findings.

II. WORLDLINE HOLOGRAPHY

As an introduction we present the general framework
for fermions in worldline holography. We start with one

1These worldline dualities are also available for different pairs
of spaces including the nonrelativistic case [19–21].

2We thank Roman Zwicky and Luigi Del Debbio for
encouraging us to investigate this point.
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massless fermion flavor and a vector source V combined
with the gauge field G in the “covariant derivative”
D ¼ ∂ − iV , where V ¼ Gþ V. The generating functional
for vector-current correlators is given by

Z ¼ hewi ¼
Z

½dG�ew− i
4e2

R
d4xG2

μν ; ð1Þ

where

w ¼ ln
Z

½dψ �½dψ̄ �ei
R

d4xψ̄ iDψ ¼ ð2Þ

¼ lnDetiD ¼ Tr ln iD ¼ 1

2
Tr lnD2; ð3Þ

and D ¼ γμDμ.
3 The γμ stand for the anticommuting Dirac

matrices fγμ; γνg ¼ 2ημν, where ημν represents the flat
(inverse) metric. γ5 ¼ iγ0γ1γ2γ3 anticommutes with all
γμ, fγμ; γ5g ¼ 0. The first step in the derivation of the
worldline representation for this determinant is replacing
the logarithm by an exponential proper-time integral
representation [24,25],

lnD2 ¼ −
Z

∞

ε>0

dT
T

e−TD
2

; ð4Þ

where we introduced the regulator ε > 0. This, however,
requires an operator with a positive-definite spectrum,
which D is not. For this reason, we continue with the last
version of (3),

D2 ¼ D2 −
i
2
σμν½Dμ;Dν�−; ð5Þ

where σμν ¼ i
2
½γμ; γν�−. The first addend in (5) corresponds

to the kinetic operator for scalar elementary matter
[18,19,24,25]; the second is an additional potential term,
i.e., one without open derivatives, also referred to as spin
factor. In the worldline formalism4 [23–25] after a Wick
rotation, w can be expressed as [13,18,21,22]

w ¼
Z

d4x0

Z
∞

ε>0

dT
2T3

L≡
ZZ

∞

ε
d5x

ffiffiffi
g

p
L; ð6Þ

L¼−
N

ð4πÞ2
Z
P
½dy�trγPe−

R
T

0
dτf_y2

4
þi_y·Vðx0þyÞþ i

2
σμν½Dμ;Dν�−g; ð7Þ

where the line element for the five-dimensional metric g
reads

ds2 ¼ gMNdxMdxN ¼ þ dT2

4T2
þ dx0 · dx0

T
ð8Þ

and
ffiffiffi
g

p
represents the square root of the absolute of

its determinant. “·” stands for the contraction with
ημν. The Wick rotation turns the Minkowski ημν in the
convention mostly plus to the Euclidean all plus.
Simultaneously, Eq. (8) turns from an AdS4;1 (frequently
simply referred to as AdS5; the pair of indices indicates the
metric signature) into an AdS5;0 (also referred to as H5 or
EAdS5) line element. The isometry group of the five-
dimensional AdS space is the conformal group of the
corresponding four-dimensional flat space. T represents
Schwinger’s proper time. One factor of T−1 came from
exponentiating the logarithm in (4), while another factor of
T−2 arose when taking the functional trace. The Lagrangian
density L consists of a path integral over all closed paths
over the proper-time interval ½0;T�, i.e., with xð0Þ ¼ xðTÞ,
where xðτÞ ¼ x0 þ yðτÞ. The normalization cancels the free

part, N
R
P½dy�e−

1
4

R
T

0
dτ _y2 ¼ 1. The d4x0 integral translates

otherwise equivalent paths to every position in space. The
translations are the zero modes of the kinetic operator ∂2

τ ,
where _y≡ ∂τy. Separating them from the rest of the path
integral also serves to make momentum conservation
manifest. The choice of the representant loop for each
equivalence class modulo translations is conventional; the
center-of-mass convention, for example, is defined throughR
T
0 dτy ¼ 0 and the starting-point convention through
yð0Þ ¼ 0 ¼ yðTÞ.5 trγ indicates that the finite-dimensional
trace over the γ matrices remains to be taken.6 P signifies
that the exponential is path ordered, which is required due
to the noncommutative nature of the γ matrices. With the
path ordering already in place, we can consider non-
Abelian flavor (f) and color (c) groups right away as well,
trγ → trγ;f;c.
A rewrite of the free kinetic term of the worldline action,R

T
0 dτ ð∂τyÞ2

4
¼ R

1
0 dτ̂

ð∂ τ̂yÞ2
4T , where τ̂ ¼ τ=T, shows that small

values of T confine y to short relative distances, i.e., to
the UV regime. Therefore, the proper-time regularization
T ≥ ε > 0 is a UV regularization and corresponds to the
UV-brane regularization in holography [5–7].

A. Volume elements

Taking stock, in the worldline formalism, w automati-
cally takes the form of an action (6) over AdS5. In ew,
however, there are all powers of w. Thus, we have to show
that this also holds for all other contributions to Z. The nth
power is given by

3Throughout the manuscript, we omit field-independent
normalization terms.

4The worldline form (6) of the functional determinant (3) is
the particle dual of the determinant’s wave(-function or field)
representation as a Feynman functional integral (2) in the sense of
the particle-wave duality.

5For details and more intermediate steps, see [19,21,24,25].
6We have chosen to retain the γ-matrix representation of

the anticommutativity of the fermions. Alternatively, an antiperi-
odic integration over Grassmann variables can be used to this
effect [24,25].
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wn ¼
Yn
j¼1

Z
d4xj

Z
∞

ε

dTj

2T3
j
Lðxj; TjÞ: ð9Þ

The source-free part only depends on the positions of
the single contributions Lðxj; TjÞ relative to one another.
As before, we separate off an absolute coordinate
x0 ¼ x0ðfxjgÞ. It can be chosen as any linear combination
of the xj, like the center of mass 1

n

P
n
j¼1 xj, for example.

This splits the 4n integrations into 4 over the absolute, d4x0,
and 4ðn − 1Þ over the relative coordinates, d4ðn−1ÞΔ,Z Yn

j¼1

d4xj

Z
d4x0δð4Þ½x0−x0ðfxkgÞ�¼

Z
d4x0

Z
d4ðn−1ÞΔ:

ð10Þ

Accordingly, we define an overall proper time T ¼
TðfTjgÞ and proper-time fractions tj ¼ Tj=T. Without
the introduction of additional and thus artificial dimension-
ful scales, on dimensional grounds, we always have that
TðfTjgÞ ¼ T ×TðftjgÞ. A choice that is symmetric under
the pairwise exchange of the Tj makes the corresponding
symmetry of wn manifest from the beginning. (Otherwise,
one could and would have to use the corresponding
symmetry of wn to make the symmetry visible again.)
The sum of all individual proper times T ¼ P

n
j¼1 Tj is

the arguably simplest choice satisfying these requirements.
Implementing this change of variables with the help of

1 ¼
Z

dTδ½T −TðfTjgÞ�
Yn
j¼1

�Z
dtjδ

�
tj −

Tj

T

��
ð11Þ

yields

Yn
j¼1

Z
∞

ε

dTj

2T3
j

¼
Z

dT

�Yn
j¼1

Z
∞

ε

dTj

2T3
j

Z
dtjδ

�
tj −

Tj

T

��
× ð12Þ

× δ½T −TðfTlgÞ�

¼
Z

dT
2T3

T−2ðn−1Þ
Z

∞

ε
T

�Yn
j¼1

dtj
2t3j

�
2δ½1 −TðftlgÞ�:

ð13Þ

Reexpressing wn in terms of the new variables, we obtain

wn ¼
Z

d4x0

Z
dT
2T3

Z
d4ðn−1ÞΔ
T2ðn−1Þ

Z
∞

ε
T

�Yn
j¼1

dtj
2t3j

× Lðx0 þ xj − x0; TtjÞ
�
2δ½1 −TðftlgÞ�: ð14Þ

Here xj − x0 is a function only of the relative coordinatesΔ
and not of the absolute coordinate x0. Finally, we convert to
dimensionless relative coordinates Δ̂ ¼ Δ=

ffiffiffiffi
T

p
, such that

wn ¼
Z

d4x0

Z
dT
2T3

Z
d4ðn−1ÞΔ̂

Z
∞

ε
T

�Yn
j¼1

dtj
2t3j

× Lðx0 þ dxj − x0
ffiffiffiffi
T

p
; TtjÞ

�
2δ½1 −TðftlgÞ�; ð15Þ

which shows that wn takes the form of a Lagrangian density
integrated over AdS5 for all n.

B. Contractions

In order to be a genuine action over AdS5, the con-
tractions of all spacetime indices have to be performed
with (inverse) AdS metrics. We start demonstrating this
by extracting the dependence on xj − x0 and yj from the
sources by means of a translation operator,

Vðyj þ xjÞ ¼ eðyjþxj−x0Þ·∂x0Vðx0Þ: ð16Þ
The relation holds for any function of yj þ xj, i.e., here the
vector Vμ but also the field tensor i½Dμ;Dν�−. The combi-
nations xj − x0 depend only on the relative coordinates Δ.
Putting everything into the Lagrangian density yields

Lðxj;TjÞ¼L½x0þðxj−x0Þ;Ttj�

¼−
N

ð4πÞ2
Z
P
½dyj�e−

R
1

0
dτ̂j

ð∂ τ̂j y
μ
j
Þgμνð∂ τ̂j yνj Þ
4tj

×trγ;f;cPexp

�
−
Z

1

0

dτ̂je
½yλjþðxj−x0Þλ�· ∂

∂xλ
0

×fið∂ τ̂jy
ρ
jÞVρðx0Þþ

i
2
tjσ̌ρσ½Dρðx0Þ;Dσðx0Þ�−g

�
;

ð17Þ

where τ̂j ¼ τj=Tj ¼ τj=ðTtjÞ. The width of the ½dy� inte-
gration is set by the four-dimensional part of the metric g,
Eq. (8). Consistently, the normalizationN compensates for

the volume elements
ffiffiffiffiffiffiffi
gð4Þ

p
, the absolute of the determinant

of the four-dimensional part of g. Consequently, after
carrying out the ½dy� integration, every pair of yμ-s

generates an inverse metric yμj y
ν
k!
R
½dy�

gμν times a function
of the proper times τj and τk, which are integrated out
subsequently. The dΔ integration has a flat measure and the
consistent nonunit volume element,Z

d4ðn−1ÞΔ̂ ¼
Z

d4ðn−1ÞΔ
T2ðn−1Þ ¼

Z
d4ðn−1ÞΔð ffiffiffiffiffiffiffi

gð4Þ
p Þn−1

: ð18Þ

gð4Þμν alone describes a flat space but has a nonunit
normalization. Accordingly, we introduced γ matrices
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with the same normalization, γ̌μ ¼ ffiffiffiffi
T

p
γμ, and therefore,

fγ̌μ; γ̌νg ¼ 2gμν as well as σ̌μν ¼ Tσμν. All the above taken
together shows that the last two lines in

wn ¼
Z

dT
2T

Z
∞

ε
T

�Yn
j¼1

dtj
2t3j

�
2δ½1 −TðftlgÞ�

×
Z

d4x0

ffiffiffiffiffiffiffi
gð4Þ

q Z
d4ðn−1ÞΔð

ffiffiffiffiffiffiffi
gð4Þ

q
Þn−1

×
Yn
k¼1

L½x0 þ ðxk − x0Þ; Ttk�; ð19Þ

belong to a field theory over the space with the metric gð4Þμν .
(T and the tj can be seen as external parameters in the four-
dimensional context, and T is exclusively present in the
metric g.) Consequently, after carrying out the ½dy� and dΔ
integrations as well as the trace over the γ matrices, the
remaining coordinate will be x0 and all spacetime indices
will be contracted with (inverse) metrics g [18,19].
Integrating out the gauge field G does not change this, as

we can identically rewrite the action in the exponent of the
integration measure using g instead of η,Z

d4x
ffiffiffi
η

p
ημκηνλGμνGκλ ¼

Z
d4x

ffiffiffiffiffiffiffi
gð4Þ

q
gμκgνλGμνGκλ; ð20Þ

which holds already at the level of the integrand.
Consequently, after the ½dG� integration is also carried
out, all contractions are still with g, which accounts for all
powers of T. In summary, Eq. (1) can be expressed as an
action over AdS5 for its sources to all orders and to all
orders in the elementary fields.

C. Fifth-dimensional components and renormalization

As explained in [18], asking for the independence from
the unphysical value of the UV regulator corresponds to a
Wilson-Polchinski renormalization condition [29] and is
achieved by completing the five-dimensional field theory.
Here we compile the essentials. An expansion of the
effective action in powers of gradients and sources after
carrying out the ½dy�, Δ̂, tj, and τ̂j integrations yields
symbolically7

Zε ¼
Z

d4x0

Z
∞

ε
dT

ffiffiffi
g

p X
n∂ ;nV

#n∂ ;nV

× ðg∘∘Þn∂þnV
2 ð∂∘Þn∂ ½V∘ðx0Þ�nV : ð21Þ

The addends are to represent all possible occurring combi-
nations. Each of the derivatives, generally, only acts on
some of the sources and never to the right of the sources.
The #n∂ ;nV are dimensionless numerical coefficients,8 and
“∘” signifies that only four-dimensional contractions are
carried out.
Zε depends on the proper-time regulator ε > 0, thevalue of

which, however, hasapriorinophysicalmeaning.Conseque-
ntly, the physical effective action lnZphys

ε should be regulator
independent; i.e., we are looking for a solution to

ε∂ε lnZ
phys
ε ¼! 0; ð22Þ

which is a Wilson-Polchinski renormalization condition.
Equation (21) is already an action over AdS5 [13,18,19,

21,22], albeit without fifth-dimensional components. The
group of isometries of AdS5 is the conformal group over
Mink4, including the invariance under scale transfor-
mations. Scale invariance would make the value of ε
irrelevant. In order to have the AdS isometries at our
disposal, we have to complete the field theory by adding the
missing components.
Then again, the original four-dimensional theory has no

fifth-dimensional polarizations. We can only remove them
again if the V̆T ¼ 0 is an allowed gauge condition. This
means that the five-dimensional extension—in which the
value of ε is irrelevant—has to have five-dimensional local
invariance under the flavor group. This fixes the form of the
five-dimensional completion. Since Zε is already locally
invariant under four-dimensional transformations,9

Z ¼
ZZ

∞

ε
d5x

ffiffiffi
g

p X
n∂ ;nV

#n∂ ;nV

× ðg••Þn∂þnV
2 ð∇•Þn∂ ½V•ðx0; TÞ�nV ð23Þ

is invariant under five-dimensional transformations. Here
“•” stands for the five-dimensional contractions, and ∇ for
the AdS covariant derivative. Equation (23) features the full
AdS5 isometries including scale invariance. Consequently,
it is independent of the value of ε, if Vðx0; TÞ transforms
like a five-dimensional vector. (V does not depend explic-
itly on ε.) Imposing VT ¼ 0 gauge at the level of the action
would still manifestly preserves scale invariance because
scale transformations do not mix the tensor components.

7The interaction part in (7) consists of a Wilson line part and
a field tensor part. Therefore, it is locally invariant under the
flavor transformation Vμ → Ω½Vμ þ iΩ†ð∂μΩÞ�Ω†, which brings
about hidden local symmetry [30]. Consequently, Zε can also be
expressed purely in terms of covariant derivatives [31,32],

Zε ¼
ZZ

∞

ε
d5x

ffiffiffi
g

p X
n

#nðg∘∘ÞnðD∘Þ2n;

where D ¼ ∂ − iV. Furthermore, the proper-time regularization
preserves this symmetry; which, for example, a momentum cutoff
would not.

8There are only contributions from n∂ þ nV even.
9This is manifest in the expansion shown in footnote 7. There

the completion would proceed by replacing all flavor covariant
derivatives by flavor and generally covariant derivatives.
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(The full symmetry would also be intact, but modulo a local
flavor transformation.)
So far, Z is, however, only some functional of just any

source configuration V. It is a variational principle that
makes it the (effective) action of a field theory, thus singling
out a special field configuration (or configurations) as
saddle point(s), V̆. Through the boundary condition

V̆μðx0; T ¼ εÞ ¼ Vμðx0Þ; ð24Þ

the four-dimensional polarizations are handed on to the
five-dimensional solution V̆, and the normalization, which
makes it the source for exactly once the vector current, is
preserved.10

Moreover, Eq. (24) coincides with the previous findings
of worldline holography [13,19,21], i.e., that the worldline
formalism induces a Wilson (gradient) flow of the sources
in the fifth dimension with this boundary condition.
Furthermore, Eq. (24) localizes the bare source configu-

ration at the UV end of the fifth dimension, i.e., at small
values of the proper time T corresponding to short four-
dimensional distances. In conjunction with the requirement
(22) that the effective action do not depend on the
unphysical value of the UV regulator ε, this is a Wilson-
Polchinski renormalization condition [29].
Finally, holography is the concept of extrapolating the

sources from their boundary values (from theUVbrane) into
the bulk, and the effective action for the four-dimensional
side of the holographic duality is described by the five-
dimensional action evaluated on its saddle point [2–7]. As a
matter of fact, there the computational steps are well-nigh
identical, albeit, in parts, with a different reasoning.
Taking all the above into account, the desired cutoff-

independent effective action is obtained by evaluating Z on
the saddle-point configuration with the boundary condition
(24) and in V̆T ¼ 0 gauge,

Z̆ ¼
ZZ

∞

ε
d5x

ffiffiffi
g

p X
n∂ ;nV

#n∂ ;nV

× ðg••Þn∂þnV
2 ð∇•Þn∂ ½V̆∘ðx0; TÞ�nV : ð25Þ

Hence, worldline holography identifies Schwinger’s proper
time as the fifth dimension [13,18,19,21,22] and fixes the
fifth-dimensional profile of the sources as a solution to the
renormalization group equation (22).

III. FREE CASE

In order to obtain more insight into the worldline
holographic formalism, let us turn to the free case. To this
end, we switch off the coupling to the gauge bosons G in
(1) by setting to zero the coupling to the gauge bosons G,
which is tantamount to analyzing w with V → V.11

For the sake of clarity, above we studied the vector, a
rank-one source. In an expansion in the rank of the sources,
however, we would thereby have omitted several other
sources, namely the scalar S, the pseudoscalar P, and the
axial vector A. These are also the sources needed for a
comparison to other holographic frameworks [5–9].
With those sources in place,

w ¼ Tr lnði∂ þ ΓÞ; ð26Þ
where

Γ ¼ V þ γ5Aþ Sþ iγ5P: ð27Þ
We again would like to use (4) for which we need an
operator with a positive-definite spectrum. We choose the
approach

O ¼ ðOOÞ1=2 ¼ ½ðO=O†ÞðO†OÞ�1=2 ð28Þ
such that

Tr lnO ¼ 1

2
Tr lnðOO†Þ þ 1

2
Tr lnðO=O†Þ: ð29Þ

In what follows, we analyze w maximally up to the fourth
order in the fields and/or gradients. For O ¼ i∂ þ Γ, this
result does not contain terms with an odd number of γ5

matrices, which would come from the second addend in the
previous equation [40,41]. (See also Appendix.) Hence, we
only retain the first term,

Zε ⊃ −
1

ð4πÞ2
ZZ

∞

ε
d5x

ffiffiffi
g

p
N

Z
P
½dy�trf;γP

exp

�
−
Z

T

0

dτ

�
_y2

4
þ γR

�
i_yμLμ þ

1

2
σμνLμν

þΦΦ† − γμDμΦ
�
þ γLfL ↔ R&Φ ↔ Φ†g

��
:

ð30Þ

Here we switched to the basis

L ¼ V þ A; ð31Þ10A quantized version of lnZ also bears the necessary iso-
metries to be a solution of the renormalization condition (22),
barring anomalies. The saddle point is then the leading contribu-
tion. The subleading correction is the fluctuation determinant. (The
worldline formalism also relates this to the Gutzwiller trace
formula [33,34], which also describes quantum systems through
classical attributes.) In certain cases a distinction between “quan-
tum” and “classical” turns out to be irrelevant because the sum over
the quantum contributions from all bulk fields cancels [35].

11In low-energy scattering processes these should actually also
be the kinematically dominant diagrams, justified by the obser-
vation that there the contributions with the lowest number of
exchanged gauge bosons dominate [36–39].
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R ¼ V − A; ð32Þ

γL=R ¼ ð1 ∓ γ5Þ=2; ð33Þ

Φ ¼ Sþ iP; ð34Þ

and introduced a flavor-covariant derivative

DμΦ ¼ ∂μΦ − iLμΦþ iΦRμ: ð35Þ

Lμν (Rμν) stands for the field tensor for Lμ (Rμ). The
expansion to the level of the (flavor-covariant) kinetic terms
for all source fields yields

Zε⊃−
4

ð4πÞ2

×
ZZ

∞

ε
d5x

ffiffiffi
g

p
trf

�
1

2
gμνðDμ

ffiffiffiffi
T

p
ΦÞ†ðDν

ffiffiffiffi
T

p
ΦÞ− j

ffiffiffiffi
T

p
Φj2

þ 1

12
gμκgνλðLμνLκλþRμνRκλÞ

�
; ð36Þ

after carrying out the ½dy� as well as dτ integrations and
dropping total derivatives.
According to the recipe detailed in Sec. II,

Z⊃−
4

ð4πÞ2

×
ZZ

∞

ε
d5x

ffiffiffi
g

p
trf

�
1

2
gMNðDMΦÞ†ðDNΦÞ−#jΦj2

þ 1

12
gMKgNJðLMNLKJþRMNRKJÞ

�
;

ð37Þ

back in Minkowski space and where
ffiffiffiffi
T

p
Φ → Φ [19]. The

retention of the coefficients during the five-dimensional
completion was needed to ensure the local invariance that
allows us to gauge away the unphysical fifth polarization.
This holds for all fields but the spin-zero mass term, which
is neither influenced by the introduction of fifth polar-
izations nor fifth gradients. Consequently, its coefficient
is not thus protected. (In this context, it is important to
remember that also in a purely four-dimensional utiliza-
tion of the worldline formalism, additional conditions
must be identified that are not automatically transferred
by the formalism to ensure the correct renormalization of
the mass [42,43].) Because of the way that S is coupled
to the elementary fermions in (27), a finite mass m of
these fermions corresponds to a constant value S ¼ m.
Accordingly, in order to have a consistent framework,
Φ̆ ¼ m

ffiffiffiffi
T

p
must be an admissible classical solution for Φ

in Eq. (37). For 4D homogeneous solutions, the classical
equation of motion reads

ð2∂TT−1∂T þ #T−3ÞΦ̆ ¼ 0 ð38Þ

and possesses power-law solutions Tα, where α ¼ 1� 1
2
if

# ¼ 3=2. This is exactly the prediction of the holographic
dictionary [3,4] for the fifth-dimensional mass of the
scalar, which always includes the second independent
solution ∝ T3=2.12 Consistently, inserting the solution
∝ T1=2 into the (flavor-covariant) spin-zero kinetic term
generates a mass term for the axial vector ∝ m2A2, but not
the vector [5,6]. For the free theory, the part of the action
for the vector V does not contain any scale.
In order to see what we can expect for an interacting

gauge theory in its confining phase, let us represent the part
of (1) in which all sources are connected to a single matter
loop by a confining term in the worldline action. (See also
the discussion in [19].) We can consider the Gaussian
model from [21],

SGauss ¼
1

4

Z
T

0

dτð_y2 þ c2y2Þ; ð39Þ

or an area law for the area of the corresponding loop,

Sarea ¼
1

4

Z
T

0

dτ _y2 þ const × area: ð40Þ

As already discussed above, if the kinetic term sets the
length scale, the typical length will be Oð ffiffiffiffi

T
p Þ. Then y2 as

well as the area are OðTÞ, and, to logarithmic accuracy, we
expect a (warp) factor e−const

0×T in the effective action. Let
us check our expectations for the first case (39). Carrying
out the path integral yields13

N
Z

½dy�e−SGauss ¼
Y∞
n¼1

�
1þ c2T2

4ð2πÞ2n2
�
−d

ð41Þ

¼
�
sinhðcT=4Þ

cT=4

�
−4

¼ e−cTþOðlnTÞ: ð42Þ

Taking stock, (37) with # ¼ 3=2 and a confining
potential/warp factor closely resembles the soft-wall
model [5].

A. Self-consistency of the AdS geometry

An effective action like (21), particularly in the covariant
form given in footnote 7, can also be obtained for a
generally curved background metric g,

12This second solution is associated with spontaneous chiral
symmetry breaking [6] and thus should not contribute in the free
case. The T1=2 solution corresponds to the tachyon (squared)
profile [44] for a free theory of elementary matter with the explicit
mass m.

13There are other subleading differences between the effective
warp factors of the different addends due to different powers of
the modified worldline propagator on the ground floor.
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Zε ¼
Z

∞

ε

dT
2T3

Z
d4x0

ffiffiffi
g

p X
n

#nðTg∘∘Þnð∇∘½g�Þ2n

¼
ZZ

∞

ε
d5x

ffiffiffī
g

p X
n

♯nðḡ∘∘Þnð∇∘½g�Þ2n; ð43Þ

where ḡ stands for the five-dimensional Fefferman-Graham
[45] embedding of g,

ds2 ¼ ḡMNdxMdxN ¼ ♮
�
dT2

4T2
þ gμνdxμdxν

T

�
; ð44Þ

♯n ¼ #n♮n−5=2, and ∇½g� for the Levi-Civita connection.
The #n are the DeWitt-Gilkey-Seeley coefficients [46].
As seen above, the independence (22) from ε can be

achieved by means of the completion to a five-dimensional
action

Z ¼
ZZ

∞

ε
d5x

ffiffiffī
g

p X
n

♯nðḡ••Þnð∇•½ḡ�Þ2n; ð45Þ

and its subsequent evaluation on its saddle point for the
boundary condition,

˘̄gμνðx0; T ¼ εÞ ¼ ♮
ε
gμνðx0Þ; ð46Þ

in the gauge where

˘̄gTT¼! ♮gTT; ˘̄gTν¼! 0; ð47Þ

with gTT from (8). This corresponds to the absence of
deviations from g with fifth-dimensional polarizations,

hTN¼! 0 ∀ N: ð48Þ

The two leading terms [47] correspond to a negative
cosmological constant and an Einstein-Hilbert term,

Z ⊃ −
1

3ð4πÞ2
ZZ

∞

ε
d5x

ffiffiffī
g

p ðR½ḡ� þ 12Þ: ð49Þ

As a consequence, the corresponding Einstein equations
admit an AdS5 solution with the squared AdS curvature
radius

♮ ¼ ð5 − 1Þð5 − 2Þ
12

¼ 1: ð50Þ

Taking into account the boundary (46) and gauge con-
ditions (47), the solution is ğ ¼ g. Therefore, to this order,
an AdS background is a self-consistent prediction of the
formalism.
At higher orders, AdS, being a space of constant

curvature, is still a saddle-point solution, although

generally with a different curvature radius. The AdS5
isometry group does not depend on the value of the
curvature radius and is always the conformal group over
Mink4. (Analogously, Mink4 is Poincaré invariant for every
value of the speed of light.) As a consequence, the value of
the AdS radius is of secondary importance. For one thing,

Z ¼
ZZ

∞

ε
d5x ˘̄g1=2

X
n∂ ;nV

♯n∂ ;nV

× ð ˘̄g••Þn∂þnV
2 ð∇•½ ˘̄g�Þn∂ ½V•ðx0; TÞ�nV ; ð51Þ

where ♯n∂ ;nV ¼ #n∂ ;nV ♮
ðn∂þnV−5Þ=2, is identical to (23), which

itself does not depend on ♮. Likewise, the covariant
derivatives are independent from the curvature radius as
is the (1,3) Riemann tensor.

IV. HOLOGRAPHIC 2-LOOP CHARGE
RENORMALIZATION OF QED

Interpreting the vector source V as a (background)
gauge field Zε is the QED effective action in the back-
ground-field formalism. There is a logarithmic divergence
in the leading term

Zε ¼ #2;2

ZZ
∞

ε
d5x

ffiffiffi
g

p
gμκgνλVμνVκλ; ð52Þ

where Vμν represents the (presently Abelian) field-strength
tensor. The divergence appears in the dT integration, where
there is a factor of T−3 from the volume element and two
factors of T, one from each metric gμν, which makes an
overall dT=T. To two loops for Nf × Nc quarks [25],

#2;2 ¼ 2
NfNc

ð4πÞ2
�
−
1

3
−

e2

ð4πÞ2
�
: ð53Þ

The full five-dimensional action

Z ¼ #2;2

ZZ
∞

ε
d5x

ffiffiffi
g

p
gMKgNLVMNVKL ð54Þ

is independent of ε. Here capital indices run over all five
dimensions. The corresponding saddle-point equations are
given by

gNL∇NV̆KL ¼ 0: ð55Þ

In the axial gauge V̆T ¼ 0 these equations of motion
also imply Lorenz gauge ∂ · V̆ ¼ 0. Then the remaining
transverse components (here in 4D momentum space)
must obey �

∂2
T −

p2

4T

�
~̆V
⊥ ¼ 0: ð56Þ
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The normalizable solution with (24) is given by

~̆V
⊥ ¼ ~V⊥ðpÞ

ffiffiffiffiffiffiffiffi
p2T

p
K1ð

ffiffiffiffiffiffiffiffi
p2T

p
Þffiffiffiffiffiffiffiffi

p2ε
p

K1ð
ffiffiffiffiffiffiffiffi
p2ε

p
Þ
; ð57Þ

where Bessel’s Kn is defined in Eqs. 9.6.1. ff. in [48], and
for which (see Eq. 9.6.28 in [48])

∂T
~̆V
⊥ ¼ ~V⊥ðpÞ p

2K0ð
ffiffiffiffiffiffiffiffi
p2T

p
Þ=2ffiffiffiffiffiffiffiffi

p2ε
p

K1ð
ffiffiffiffiffiffiffiffi
p2ε

p
Þ
: ð58Þ

Putting this solution back into the 4D Fourier transformed
action (54), we obtain a surface term,

Z̆ ¼ 4#2;2

Z
d4x0ηνλ½V̆⊥

ν ∂T V̆
⊥
λ �∞ε ð59Þ

¼ 4#2;2

Z
d4p
ð2πÞ4 η

νλ½ ~̆V⊥
ν ∂T

~̆V
⊥�
λ �∞ε ð60Þ

¼ −2#2;2
Z

d4p
ð2πÞ4 η

νλ ~V⊥
ν
~V⊥�
λ p2K0ð

ffiffiffiffiffiffiffiffi
p2ε

q
Þ; ð61Þ

where the tilde marks the Fourier transform and the
asterisk the complex conjugate. Making use of Eq. 9.6.13.
from [48],

Z̆ ¼ #2;2

Z
d4p
ð2πÞ4 η

νλ ~V⊥
ν
~V⊥�
λ p2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼̂j ~Vμνj2=2

flnðp2εÞ þO½ðp2εÞ0�g:

ð62Þ

In our conventions, where the coupling e is absorbed in the
field, the prefactor of the kinetic term equals −ð4e2Þ−1.
To two loops, the β function describing the running of

the coupling with the scale μ is given by

de
d ln μ

¼ β1e3 þ β2e5: ð63Þ

Integrating (63) and solving for e−2ðμÞ − e−2ðμ0Þ14 yields

e−2ðμÞ − e−2ðμ0Þ ¼ −2ðβ1 þ β2e2Þ ln
μ

μ0
þ…; ð64Þ

where the ellipsis stands for terms of Oðe4Þ, and this order
also depends on the three-loop coefficient. The comparison
of the divergent pieces yields

2#2;2 lnðp2εÞ ¼ −e−2 ¼ ðβ1 þ β2e2Þ2 ln
μ

μ0
: ð65Þ

Upon identification of lnðp2εÞ ↔ 2 ln μ
μ0

we obtain

β1 þ β2e2 ¼ 2#2;2 ¼ 4
NfNc

ð4πÞ2
�
−
1

3
−

e2

ð4πÞ2
�
; ð66Þ

which are the known β-function coefficients.15

In the worldline formalism there are no subdivergences
in the two-loop contribution [25] to the coefficient #2;2.
(This does not only hold for proper-time regularization,
but also other four-dimensional regularization schemes like
Pauli-Villars.) The absence of subdivergences is known to
persist for the quenched contributions to all loops [43]. For
higher unquenched orders the analysis is still pending.
Nonholographic renormalization of QED was treated in

the worldline formalism before [42,43]. There, obtaining
the two-loop term in the analog of (62) required knowledge
of the counterterm from mass renormalization, where the
mass was used as an infrared regulator. Here, we work with
massless elementary matter. Hence, there is no mass
renormalization. Asking for the integrability of the saddle-
point solution led to an infrared finite result and the known
two-loop contribution.
We never forced ε to be small. [Equation (62) only

presents the behavior of Z̆ if ε were small.] Above, ε was
introduced to regularize the UV divergence of Z. Then, we
had in mind to sent the regulator to zero at the end of the
calculation. At nonzero ε the renormalization condition
(22) makes ε a scale. If we want to keep ε in its original role
as a regulator, we can introduce counterterms for the
divergent pieces. In (62), for instance,

Z̆ ¼ #2;2

Z
d4p
ð2πÞ4 η

νλ ~V⊥
ν
~V⊥�
λ p2

× flnðμ2εÞ þ lnðp2=μ2Þ þO½ðp2εÞ0�g; ð67Þ

the first addend inside the braces, which diverges when
ε → 0, must be compensated by the introduction of a
counterterm which can also contain additional finite parts.
Now μ2 plays the role of the scale, and ε remains the
regulator.

V. SUMMARY

We studied the worldline holographic framework
for fermionic elementary matter. Worldline holography
maps a d-dimensional quantum field theory onto a dþ 1-
dimensional field theory for the sources of the former, to all

14As usual, we subtract the bare contribution from the
induced term.

15In nonholographic worldline computations a finite mass was
needed as an IR regulator, and its behavior under renormalization
had to be determined in an additional computation to achieve
this result [42,43]. Here, we considered the massless case, chose
the integrable, i.e., the IR-finite solution, and did not need any
additional input.
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orders in the elementary fields and sources. The dþ 1-
dimensional metric is the Fefferman-Graham embedding
[45] of the d-dimensional one. For Minkd this results in
AdSdþ1. Worldline holography is the solution to a Wilson-
Polchinski renormalization condition (22), which guaran-
tees the independence of physical quantities from the
ultraviolet regulator. (Infrared scales can be handled analo-
gously [18].) As a consistency check we holographically
derived the QED beta-function coefficient to two loops in
Sec. IV. In Sec. III, we explicitly determined the worldline
holographic dual for a fermionic field theory onMinkd with
sources up to spin one and found a theory akin to the seminal
holographic model [5]. Turning to spin 2 in Sec. III A
allowed us to confirm that AdSdþ1 is a self-consistent
solution of the worldline holographic framework.
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APPENDIX: γ5-ODD TERMS

By inspection of the source (27), up to fourth order in the
fields and gradients taken together, one expects terms with
one γ5, O½ð∂ − iVÞ3A�, and three γ5, O½ð∂ − iVÞA3�, to
occur and to be contained in theO=O† part of (29) [40,41].
[To this order, there are no corresponding contributions
from the pseudoscalar P, as its γ5 would have to be
balanced by four γμ from vectors and/or (an even number
of) axial vectors, which would amount to order five.] These
terms encode the axial anomaly of the theory [40,41].
Confusingly, also the OO† part seems to yield such a

contribution,

Zε ⊃
1

ð8πÞ2
ZZ

∞

ε
d5x

ffiffiffi
g

p
T2ϵμνκλtrfðLμνLκλ − RμνRκλÞ;

contrary to the conclusions in [40,41]. Concentrating
on the Abelian part, in a momentum-space computation
the term drops out once momentum conservation is
imposed. In [41] this can be seen from their Feynman
rules on the first line of Table 1. There, the trace over the
products of the σμν terms in the vertices yields an ϵμνκλ,
which, however, is contracted with p and −p and thus
vanishes for symmetry reasons.
Independently, we have carried out a momentum-space

Feynman-diagram computation, where we encounter

tr½γμ ~ΓðpÞγν ~Γ�ðpÞ� ⊃ −4iϵμκνλð ~Aκ
~V�
λ − ~Vκ

~A�
λÞ; ðA1Þ

which is contracted with either pμpν or ημν and thus
vanishes in any case.
In coordinate space, though, also by inspection of (5)

in [41], one again identifies the combination

tr½ðOO†Þ2� ⊃ trðγ5σμνσκλAμνVκλÞ ðA2Þ

up to a numerical prefactor. The authors of [41] show that
the analogous contribution from O=O† saturates the axial
anomaly, such that OO† should not contribute here.
In any case, these terms are purely topological, they do

not contribute to the equations of motion, and they yield at
most surface contributions. They are readily embedded in
our five-dimensional setting. Using the five-dimensional
Levi-Civita tensor

EMNKLJ ¼ ϵMNKLJ=
ffiffiffi
g

p ¼ 2T3ϵMNKLJ ðA3Þ

and the T components of the (diagonal) fünfbein,

EA
T ¼ δAT

ffiffiffiffiffiffiffi
gTT

p ¼ δAT=2T; ðA4Þ

we get16

EMNKLTEA
T ¼ T2ϵμνκλδAT ðA5Þ

and can thus express all contractions in (A1) with five-
dimensional objects.17

Consistently, Eq. (A4) satisfies EA
ME

B
NHAB ¼ gMN ,

where HAB is a reference metric. [If chosen flat (and
“unity”) it gives rise to the last of the equalities in (A4).]
This is also in line with the expression for theCP-even term
(only coming in at higher orders)

T4ðϵμνκλVμνVκλÞ2
¼ EμνκλTgT TEαβγδTVμνVκλVαβVγδ ðA6Þ

→
5d
EMNKLJgJEEABCDEVMNVKLVABVCD ðA7Þ

¼ 4!gMAgNBgKCgLDVMNVKLV ½ABVCD�; ðA8Þ

which ultimately can be expressed purely using (inverse)
metrics. (In this passage, V is a placeholder for L or R,
respectively.)
The introduction of the vielbein as the “square root” of the

metric is consistent, but its origin can be elucidated further.
Consider the five-dimensional Chern-Simons term [49]

16The index T stands for the fifth component. In particular, this
means that we do not sum over it, if it appears in pairs. We mark
that by an underline when necessary.

17One could still contract (A5) with a constant vector nA.
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CS5 ¼ ϵMNKLJtrf

�
VMNVKLVJ −

1

2
VMNVKVLVJ

þ 1

10
VMVNVKVLVJ

�
: ðA9Þ

Under local transformationsVM → Ω½VM þ iΩ†ð∂MΩÞ�Ω†,
it changes only by a total derivative. We are, however,
working on a manifold with a boundary (at T ¼ ε), which
can render such otherwise cyclic components physical.18

The gauge transformation parametrizes such degrees of
freedom, the longitudinal components of V. Making the
latter explicitly visible using the Stückelberg trick, one lifts
them to auxiliary fields and looks at whether they contribute
and, if so, where. Here the Stückelberg trick amounts to

VM → V̄M ¼ VM þ ∂MΣ; ðA10Þ
where the 5D longitudinal part ∂MΣ corresponds to
iΩ†ð∂MΩÞ.19 Then, perturbatively,
CS5½V̄� ¼ CS5½V� þ ϵMNKLJtrf½ð∂MΣÞVNKVLJ� þ…;

ðA11Þ
where the ellipsis stands for higher orders in ∂MΣ. For
configurations without fifth polarizations or gradients, CS5
vanishes exactly. On the contrary,ZZ

∞

ε
d5x

ffiffiffi
g

p
EMNKLJtrf½ð∂MΣÞVNKVLJ�

¼ −
ZZ

∞

ε
d5xϵMNKLJ∂Mtrf½ΣVNKVLJ� ðA12Þ

¼ þ
Z

d4xϵTNKLJtrf½ΣVNKVLJ�T¼ε ðA13Þ

→
4d þ

Z
d4xϵTνκλρ|fflffl{zfflffl}

¼ϵνκλρ

trf½ΣðT ¼ εÞVνκVλρ� ðA14Þ

is, in general, nonzero. The presence of the boundary makes
the zero mode of Σ physical. All other terms depend only on
derivatives of Σ. This term encodes the chiral anomaly [51].
Consistently, CS5 also contains the Wess-Zumino-Witten
term [52],

CS5½∂Σ�
¼ þϵMNKLJtrf½ð∂MΣÞð∂NΣÞð∂KΣÞð∂LΣÞð∂JΣÞ� ðA15Þ

¼ −ϵMNKLJ∂Mtrf½Σð∂NΣÞð∂KΣÞð∂LΣÞð∂JΣÞ�: ðA16Þ
We end this appendix with an interesting observation.

When doing the momentum-space Feynman-diagram com-
putation, for instance, of the two-point function, when
using the Feynman trick to exponentiate the denominators
of the propagators, one reproduces the fifth-dimensional
structure of the worldline framework,

Z
d4p
ð2πÞ4 tr

�
pþ q

2

ðpþ q
2
Þ2

~ΓðqÞ p − q
2

ðp − q
2
Þ2

~Γð−qÞ
�

ðA17Þ

¼
Z

d4p
ð2πÞ4

Z
∞

0

dT1dT2eT1ðpþq
2
Þ2þT2ðp−q

2
Þ2

× tr

��
pþ q

2

�
~ΓðqÞ

�
p −

q
2

�
~Γð−qÞ

�
ðA18Þ

¼ 1

ð4πÞ2
Z

∞

ε

dT
T2

Z
1

0

dτ̂TeTτ̂ð1−τ̂Þq2Tτ̂ð1 − τ̂Þ

× ð−q2ημν=2 − qμqνÞtr½γμ ~ΓðqÞγν ~Γð−qÞ�: ðA19Þ

One recognizes the sum of the Feynman parameters T ¼
T1 þ T2 as Schwinger’s proper time. The combination
Tτ̂ð1 − τ̂Þ is known as the worldline propagator [24,25].R
1
0 dτ̂eTτ̂ð1−τ̂Þq2 is also the basic second-order form factor in
the heat-kernel expansion in the background-field formal-
ism [53]. Hence, calling the present framework proper-time
holography or even heat-kernel holography, would not
seem amiss, but it was the worldline formalism that allowed
us to make the connection to AdS5 and renormalization to
all orders.
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