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The role of rescaling (expansion or squeezing) of quantized Skyrmions is studied for the spectrum of
baryons beginning with nucleon and Δð1232Þ and with flavors strangeness, charm, or beauty. The
expansion of Skyrmions due to the centrifugal forces has influence on the masses of baryons with u and d
flavors (N and especially Δ). In the chirally symmetrical case [Adkins, Nappi, and Witten, Nucl. Phys.
B228, 552 (1983)], numerical results are confirmed analytically. The rescaling of Skyrmions has some
influence on the spectrum of strange baryons, is more important for the case of charm, and is crucial for
baryons with a beauty quantum number, where strong squeezing takes place. Two competing tendencies
are clearly observed: expansion of Skyrmions when the isospin (or spin) of the baryon increases and
squeezing with the increasing mass of the flavor. For beauty the method seems to be not satisfactory,
because the ratio rb ¼ FB=Fπ necessary to obtain the observed masses of baryons is different for Λb and Σb

and should be considerably greater than this ratio (theoretical), given in the literature. The approach itself
for the case of beauty can be considered as some kind of a "toy model"; however, the necessity of rescaling
of quantized Skyrmions is firmly established. Some pentaquark states with hidden strangeness, charm, or
beauty are considered as well.
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I. INTRODUCTION

Studies of the baryon spectrum are one of the important
directions of elementary particle physics, and the chiral
soliton approach [1,2] provides an attractive possibility for
this, after different kinds of quark models. The pioneer
papers are well known [3,4], where the static properties of
baryons [nucleon and Δð1232Þ] have been calculated
within an accuracy of about 30% of experimental values.
Two parameters of the model—pion decay constant Fπ

and the Skyrme constant e—were defined in Refs. [3,4] by
fitting the masses of the nucleon and Δð1232Þ, which
allowed one to calculate other properties of these baryons.
The classical mass of the soliton, Skyrmion with baryon
(winding) number B ¼ 1, was obtained by direct minimi-
zation of the static energy functional. The energy (mass) of
the quantized states (baryons) is the sum of the classical
mass and isospin-dependent quantum correction. The chiral
fields configuration for each of the quantized states does not
satisfy the Euler-Lagrange equation; therefore, the sum of
the classical mass of the Skyrmion plus the isospin- (spin-)
dependent quantum correction could be minimized further.
This issue has not been discussed in Refs. [3,4], because the
quantum correction turned out to be small enough for the
nucleon—less than ∼10%—although greater and much

more important for the Δð1232Þ, because it is responsible
for the mass splitting between nucleon and Δ.
The SUð3Þ extension of the model has been proposed

somewhat later in Ref. [5], which allowed one to calculate
the mass splittings between components of the SUð3Þ
multiplets of baryons. The SUð3Þ violating mass term,
added to the model Lagrangian, was considered as a small
enough perturbation, similar to the quantum correction in
the SUð2Þmodel [3], although in some cases this correction
is even greater. Therefore, the problem that the energy of
the quantized state is not the minimal energy appears here
again, even in greater scale.
In present paper, we investigate this problem using the

simple variant of the quantization scheme, proposed by
Westerberg and Klebanov [6] and slightly modified in
Refs. [7,8].
For the quantized states with u and d flavors [nucleon

and Δð1232Þ], the expansion of the state due to the
centrifugal forces takes place, which decreases consider-
ably the mass splitting between N and Δ. This effect,
established numerically for several variants of the model, is
confirmed analytically in the chirally symmetrical case of
Ref. [3] and leads to certain changes of the model
parameters defined in Ref. [3] to fit the masses of the
nucleon and Δð1232Þ.
We study numerically the influence of the change of the

scale (dimension) of the whole Skyrmion on the energy of
quantized states with strangeness (strange hyperons) and
with heavy flavors, charm, or beauty. The squeezing of the
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Skyrmion, attracting heavy flavor, leads to a considerable
decrease of the energy (mass) of the quantized state with a
charm quantum number. This effect is striking for beauty,
but not so important for strangeness, where it is compen-
sated to a large extent by the tendency of expansion due to
the contribution of isospin- and spin-dependent terms in the
mass of the state.
Features of the chiral soliton approach are described

briefly in the next section, where some static characteristics
of the Skyrmion are presented. The quantization scheme is
described in Sec. III, where the moments of inertia of the
Skyrmion, their scaling properties, and flavor excitation
energies are given as well. The spectrum of baryon states is
presented in Sec. IV. The masses of some positive parity
pentaquarks with hidden flavor (strangeness, or charm, or
beauty) are estimated in Sec. V within the same approach.
The final section contains some conclusions and discussion
of prospects. An analytical treatment of rescaling quantized
Skyrmions in the case of chiral symmetry is presented
in the Appendix, where required changes of the model
parameters, defined in Ref. [3], are estimated as well.

II. FEATURES OF THE CHIRAL SOLITON
APPROACH; SOME STATIC PROPERTIES

OF THE SKYRMION

The starting point of the chiral soliton approach (CSA),
as well as of the chiral perturbation theory, is the effective
chiral Lagrangian written in terms of the chiral fields
incorporated into the unitary matrix U ∈ SUð2Þ in the
original variant of the model [1,2], U ¼ cos f þ i sin fτ⃗ n⃗,
nz ¼ cos α; nx ¼ sin α cos β; ny ¼ sin α sin β, where func-
tions f (the profile of the Skyrmion) and angular functions
α and β in the general case are the functions of three
coordinates x, y, and z. To get the states with flavor s, c, or
b, we make an extension of the basic U ∈ SUð2Þ to U ∈
SUð3Þ with ðu; d; sÞ, ðu; d; cÞ, or ðu; d; bÞ degrees of
freedom.
It is convenient to write the Lagrangian density of the

model in terms of the left (or right) chiral derivative

lμ ¼ ∂μUU† ¼ −U∂μU†; ð1Þ

L ¼ −
F2
π

16
lρlρ þ

1

e2
½lρlτ�2 þ

F2
πm2

π

16
TrðU þ U† − 2Þ; ð2Þ

where Fπ is the pion decay constant, its experimental value
is now Fπ ≃ 185 MeV [9], and e is the constant introduced
by Skyrme [1]. It can be defined experimentally as well, but
the allowed interval for this parameter is wide enough
presently. Meson properties—mass, decay constants—are
input of the model, and baryon properties are deduced from
meson properties, according to Refs. [1–3]. This, the
original variant of the model [1], where soliton stabilization
takes place due to the fourth-order term in the Lagrangian
density (2), is called now the SK4 variant.

Mass splittings within SUð3Þ multiplets of baryons are
due to the term in the Lagrangian [10] (see also [7]):

Lbr ¼ F2
π ~m2

D

24
Trð1 −

ffiffiffi
3

p
λ8ÞðU þ U† − 2Þ

þ F2
D − F2

π

48
Trð1 −

ffiffiffi
3

p
λ8ÞðUlμlμ þ lμlμU†Þ; ð3Þ

where λ8 is the SUð3Þ Gell-Mann matrix and ~m2
D ¼

F2
Dm

2
D=F

2
π −m2

π includes the SUð3Þ-symmetry violation
in flavor decay constants, as well as in meson masses. mD
denotes the mass of the kaon, D meson, or B meson, for
strangeness, charm, or beauty; similar holds for FD.
The Wess-Zumino term in the action of the model is

crucially important in the quantization procedure [6] (see
below), but it cannot be presented as the integral of some
Lagrangian density over space-time; it can be presented as
the differential form [2] (see [7,8] as well).
In this section, we present some static properties of the

Skyrmion which are necessary to perform the procedure of
the SUð3Þ quantization and to obtain the spectrum of states
with definite quantum numbers. The quantity Γ, propor-
tional to the sigma term,

ΓðλÞ≃ λ3
F2
π

2

Z
ð1 − cfÞd3r; ð4Þ

plays an important role in any of known quantizationmodel,
in a rigid (or soft) rotator model, and in the bound state
model, which simplified version we exploit here. The
scaling properties of this quantity (i.e., the behavior under
a change of the dimension of the soliton r → λr) are
shown, which will be important in our consideration.
Numerically, for the baryon number B ¼ 1 configuration,
Γðλ ¼ 1Þ ∼ 5 GeV−1. The moments of inertia of the
Skyrmion, the isotopical ΘI ∼ ð5–6Þ GeV−1 and the flavor
ΘF ∼ ð2–3Þ GeV−1, play an important role as well; see, e.g.,
[7,8], and references there. All moments of inertia Θ ∼ Nc,
where Nc is the number of colors of underlying QCD [2].
Expressions for the moments of inertia will be given in the
next section.
One of the main advantages of the CSA1consists in

the possibility to consider baryonic states with different
flavors—strange, charmed, or beautiful—and with different
atomic (baryon) numbers from a unique point of view, using
one and the same set of themodel parameters. The properties
of the system are evaluated as a function of external quantum
numbers which characterize the system as a whole, whereas
the hadronic content of the state plays a secondary role. This
is in close correspondence with the standard experimental
situation where, e.g., in the missing mass experiments the
spectrum of states is measured at fixed external quantum
numbers—strangeness or other flavor, isospin, etc. The
so-called deeply bound antikaon-nuclei states have been

1It is the authors’ opinion, probably not accepted widely.
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considered from this point of view in Ref. [11] not in
contradiction with data (this is probably one of most striking
examples).
Remarkably, the moments of inertia of Skyrmions carry

information about their interactions. Probably the first
example of how it works are the moments of inertia of
the toroidalB ¼ 2 bi-Skyrmion [12]. The orbital moment of
inertia ΘJ is greater than the isotopic moment of inertia ΘI;
as a result, the quantized statewith the isospin I ¼ 0 and spin
J ¼ 1 (analogue of the deuteron) has smaller energy than the
state with I ¼ 1, J ¼ 0 (quasideuteron, or nucleon-nucleon
scattering state), in qualitative agreement with the exper-
imental observation that deuteron is bound stronger.
In the pioneer paper [3], the masses of the nucleon andΔ

isobar have been fitted, and as a result the pion decay
constant turned out to be considerably lower than the
experimental value Fπ ≃ 185 MeV. Later, another
approach has been developed, in particular, by the Siegen
University theory group (Holzwarth, Schwesinger,Walliser,
and Weigel). The idea is that the value of the classical mass
of the Skyrmion is controlled by poorly known loop
corrections of the order of N0

c, or so-called Casimir energy
[13]. Therefore, it makes more sense to calculate the
differences of masses of baryons with different quantum
numbers, like the difference of masses of the nucleon and
Δð1232Þ isobar (as it wasmade first inRef. [3]), nucleon and
hyperons, i.e., mass splittings inside SUð3Þ multiplets of
baryons, calculated first in Ref. [5].
The classical mass of the Skyrmion is calculated usually

with the pion mass term included in the Lagrangian and
consists of three parts which scale differently:

Mcl ¼ m1λþm−1=λþm3λ
3 ð5Þ

with

m1 ¼ F2
π
π

2

Z �
f02 þ 2

s2f
r2

�
r2dr;

m−1 ¼
2π

e2

Z s2f
r2

�
2f02 þ s2f

r2

�
r2dr;

m3 ¼ πF2
πm2

π

Z
ð1 − cfÞr2dr ¼

m2
π

2
Γ; ð5aÞ

which satisfy the Derrick relation

m1 þ 3m3 ¼ m−1;

see Table I.

III. RIGID OSCILLATOR QUANTIZATION
MODEL, MOMENTS OF INERTIA

OF THE SKYRMION

We shall use the following mass formula for the
quantized state derived in Ref. [6] for the quantization
scheme used here:

MðB ¼ 1; F; I; JÞ ¼ Mcl þ jFjωF þ ΔE1=Nc
: ð6Þ

The flavor (antiflavor) excitation energies are

ωF ¼ 3

8ΘF
ðμF − 1Þ; ω̄F ¼ 3

8ΘF
ðμF þ 1Þ ð7Þ

with

μF ¼
�
1þ 16½m̄2

DΓþ ðF2
D − F2

πÞ ~Γ�ΘF

9

�1=2
; ð8Þ

~Γ ¼ 1

4

Z
cf½cfð∂⃗fÞ2 þ s2fð∂⃗niÞ2�d3r; ð9Þ

see [7,8]. Evidently, ~Γ ∼ λ under the scaling procedure. The
so-called flavored moment of inertia ΘF and isospin (spin)
inertia ΘI are given below.
Different terms in (6) scale differently as the number of

colors in this expression:

Mcl ∼ Nc; ωF ∼ N0
c;

all moments of inertia Θ ∼ Nc.
The difference between flavor and antiflavor excitation

energies appears just due to the Wess-Zumino-Witten term
in the action [2] mentioned above. Previously, estimates of
the flavor excitation energies were made mostly in the
perturbation theory; i.e., the flavor excitation energy has
been simply added to the Skyrmion energy. This is not
justified, however, when the flavor excitation energy is
large. Here we include this energy into a simplified
minimization procedure which is made by means of the

TABLE I. Numerical values of the quantities used in present paper, which have definite scaling behavior. t1, t3, f1, f3, Γ, and ~Γ are
in GeV−1, and m1, m2, and m3 are in MeV. The first line corresponds to the original parametrization of Ref. [3], Fπ ¼ 129 MeV,
e ¼ 5.452 the second line corresponds to the parametrization of Ref. [4], Fπ ¼ 108 MeV, e ¼ 4.84; and the third line corresponds to the
parametrization of the Siegen University group with Fπ ¼ 186 MeV, e ¼ 4.12.

t1 f1 t3 f3 Γ ~Γ m1 m−1 m3

ANW 2.039 � � � 3.078 � � � � � � � � � 432 432 0
AN 3.216 � � � 1.902 � � � � � � � � � 357 470 38
Siegen 3.180 0.83 2.370 1.20 4.80 15.6 759 897 46

2We used the values of the soliton mass and the moment of
inertia given in Ref. [3] by formulas after Eq. (9).
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change of the soliton dimension (rescaling of the soliton).
This procedure takes into account the main degree of
freedom of the B ¼ 1 Skyrmion (hedgehog) and Skyrmions
given by the rational map ansatz [14] which has been
applied successfully to describe some properties of nuclei.
As we show here, the rescaling leads to a considerable
decrease of the energy of states, beginning with the
Δð1232Þ. A similar (although not the same) modification
of the quantized Skyrmion was made, in particular, by
Kopeliovich, Schwesinger, and Stern [15] to improve the
description of strange dibaryon configurations.
The hyperfine splitting correction to the energy of states,

which is formally of the 1=Nc order in the number of
colors, has been obtained previously in Ref. [6] and
reproduced in Refs. [7,8]:

ΔE1=Nc
¼ 1

2ΘI
½cFIrðIr þ 1Þ þ ð1 − cFÞIðI þ 1Þ

þ ðc̄F − cFÞIFðIF þ 1Þ�; ð10Þ

where I is the isospin of the state, IF is the isospin carried
by a flavored meson (K;D, or B meson, for unit flavor
IF ¼ 1=2), and Ir can be interpreted as a "right" isospin or
an isospin of the basic nonflavored configuration. The
hyperfine splitting constants

cF ¼ 1 −
ΘIðμF − 1Þ
2ΘFμF

; c̄F ¼ 1 −
ΘIðμF − 1Þ

ΘFμ
2
F

: ð11Þ

This correction is considered usually as a small one, but
it should be included into the minimization procedure,
especially when isospin I is large. Here we include this
correction to the masses for all baryons.
At large enough mD the expansion can be made:

μF ≃ 4m̄DðΓΘFÞ1=2
3

þ 3

8m̄DΓΘF
;

therefore,

ωF ≃ 1

2
m̄D

�
Γ
ΘF

�
1=2

−
3

8ΘF
: ð12Þ

Here we take the ratio of decay constants FK=Fπ≃
1.1928, FD=Fπ ≃ 1.58 according to the analysis performed
by Rosner, Stone, and Van de Water in Ref. [9]. The value
of rb ¼ FB=Fπ given in Ref. [9], rb ≃ 1.45, is a theoretical
one, not confirmed experimentally. Our results presented in
this paper suggest that the ratio FB=Fπ should be greater,
between 2 and 2.6.
The flavored moment of inertia equals (we added the

rescaling factor—some power of the parameter λ to make
evident the behavior under the rescaling procedure r → rλ)

ΘF ¼ λf1 þ λ3fð0Þ3

F2
D

F2
π
¼ Θð0Þ

F þ λ3fð0Þ3

�
F2
D

F2
π
− 1

�
ð13Þ

with

f1 ¼
π

2e2

Z
ð1 − cfÞ

�
f02 þ 2

s2f
r2

�
r2dr;

fð0Þ3 ¼ π

2
F2
π

Z
ð1 − cfÞr2dr: ð14Þ

In the integrands, f denotes the profile function of the
soliton (Skyrmion). Here we show explicitly the depend-
ence of different parts of the inertia on the rescaling
parameter λ. In Table I, we present numerical values for
f1, f3, t1, and t3 and other quantities used to perform
calculations of the masses of quantized states.
There is a simple connection between the total moment

of inertia in the SK4 variant of the model, the ΘF, and the
sigma term:

Θtot
F ¼ F2

D

4F2
π
Γþ ΘF ¼ F2

D

F2
π
fð0Þ3 þ f1: ð15Þ

Similarly, the isotopic moment of inertia ΘI within the
rational map approximation can be written as

ΘI ¼ λt1 þ λ3t3 ð16Þ

with

t1 ¼
4π

3

Z
2s2f
e2

�
f02 þ s2f

r2

�
r2dr;

t3 ¼
2π

3
F2
π

Z
s2fr

2dr: ð17Þ

The value of isotopic inertia for the B ¼ 1 Skyrmion
(which coincides with the value of usual spin inertia) ΘI
was defined in many papers, beginning with Refs. [3,4], but
the distribution of ΘI between t1 and t3 was not known. For
this reason, we recalculated the static properties of the unit
hedgehog Skyrmion. The results are shown in Table I. It
turned out that the ratio t3=t1 is different for different
parametrizations; the largest is for the chiral symmetric
case of Ref. [3], as shown in Table I.

IV. RESCALING OF MASSES OF THE
LOWEST BARYONS

For the B ¼ 1 Skyrmion, the static configuration of
lowest energy is of the so-called hedgehog type; i.e., it
possesses generalized spherical symmetry, and its profile
function f is spherically symmetrical. This type of con-
figuration was proposed at first in Ref. [1] and used in
Ref. [3]. We did not find, and to our knowledge, up to now
there is no idea which kind of configuration could provide
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the energy of the B ¼ 1 configuration lower than the
hedgehog-type configuration.3 The situation is quite differ-
ent for Skyrmions with baryon numbers B ≥ 2. In these
cases, known Skyrmions of lowest energy have a form
quite different from the hedgehog one (i.e., with general-
ized spherical symmetry). For B ¼ 2 the Skyrmion of
lowest energy has a toruslike form of the mass and baryon
number distribution [12]. The form of many Skyrmions
with B ≥ 2 is well described within the rational map
approximation, as established in Ref. [14].
For these reasons, we investigated first the influence of

the change of the Skyrmion dimension without changes of
the symmetry properties. The results turned out to be
striking.
We are using the following expressions for the masses of

baryons (for MN and MΔ they were given at first in
Refs. [3,4], for hyperons in Ref. [6]):

MN ¼ Mcl þ
3

8ΘI
; MΔ ¼ Mcl þ

15

8ΘI
; ð18Þ

MΛ ¼ Mcl þ
3

8ΘI
þ ωF −

3ðμF − 1Þ
8μ2FΘF

;

MΣ ¼ Mcl þ
3

8ΘI
þ ωF −

3ðμF − 1Þ
8μ2FΘF

þ μF − 1

2μFΘF
: ð19Þ

The flavor inertia Θð0Þ
F is the same for all three flavors

[see Eq. (13)], but the quantity μF and the flavor excitation
energy ωF are different for different flavors.
It is not difficult algebraic work to define the parameters

of the model Fπ and e in the chiral symmetry limit
of Ref. [3]. It has been obtained in Ref. [3] for the soliton
mass Mcl ¼ ð5MN −MΔÞ=4 ¼ aFπ=e, a ¼ 36.5, and for
the mass splitting between Δð1232Þ and nucleon,
ΔM ¼ MΔ −MN ¼ 3=ð2ΘIÞ, with the moment of inertia
ΘI (λ in notations of Refs. [3,4]), ΘI ¼ λ ¼ 2πb=ð3e3FπÞ,
the constant b ¼ 50.9 [3], as indicated after Eq. (9) of
Ref. [3]. It follows then immediately that

Fπ ¼
�
πbΔMð5MN −MΔÞ3

144a3

�
1=4

;

e ¼
�

16πabΔM

9ð5MN −MΔÞ
�
1=4

: ð20Þ

Recall that in Eq. (20) MN and MΔ should be taken from
the experiment, and one obtains then Fπ ≃ 129 MeV, e≃
5.45 [3]. After rescaling, there are no such simple relations,
but Fπ and e should be somewhat greater, Fπ ∼ 140 MeV;
see the Appendix of the present paper.

Expressions for masses of Λ and Σ hyperons in Eq. (19)
are natural generalizations of those for the nucleon and Δ,
given in Refs. [3,4]. The description of the masses of
strange hyperons Λs and Σs is not perfect in Table II,
because the configuration mixing, i.e., the mixing between
the states with the same isospin and strangeness but which
belong to different SUð3Þ multiplets, is not taken into
account in our approach. Moreover, after rescaling these
states cannot mix, because they have different properties
(dimensions, in particular). Satisfactory agreement with
data has been obtained in Ref. [10] just due to including
such mixing into consideration. An improvement of the fit
is certainly possible in our case as well, by changing the
model parameters, first of all.
For the case of baryons with u and d flavors, the

expansion of the configuration takes place due to centrifu-
gal forces. Technically, it appears from the contribution of
the spin- or isospin-dependent term in the energy of
quantized state, which contains the isotopic (or spin) inertia
ΘI in the denominator. This moment of inertia consists of
two terms proportional to the scale factor λ, or λ3, and an
increase of λ (expansion of the Skyrmion) leads to the
decrease of energy.
As can be seen from Table II, in the case of N − Δ

baryons, the largest effect due to a rescaling (expansion) of
the Skyrmion takes place for the chirally symmetric variant
of the model, considered in Ref. [3]: the nucleon mass
decreases by 11.5 MeV, but the mass of Δð1232Þ drops
by 155 MeV, which makes the Δ − N mass difference

TABLE II. The values of λmin at the minimal total energy (mass)
of quantized baryon states. The decrease of masses δM due to the
change of λ from 1 to λmin is given in MeV. The differences of
masses MB −MN , theoretical and experimental values, are
presented as well (in MeV). The first two lines correspond to
the parametrization in the chiral symmetry limit, considered at
first in Ref. [3]. Lines 3 and 4 correspond to the parametrization
of Ref. [4], the pion mass included into the Lagrangian. Other
calculations were performed taking the Siegen parametrization,
Fπ ¼ 186 MeV, e ¼ 4.12 [10].

λmin δM MB −MN ðMB −MNÞexp
NANW 1.1534 11.5 � � � � � �
Δð1232ÞANW 1.4956 155 150 293
NAN 1.0978 6.0 � � � � � �
Δð1232ÞAN 1.3558 100 199 293
N 1.0568 3.5 � � � � � �
Δð1232Þ 1.2312 66 208 293
Λs 0.8545 24 247 177
Λc 0.5594 129 1290 1347
Λbðrb ¼ 1.45Þ 0.2929 1991 3104 4680
Λbðrb ¼ 2.60Þ 0.2226 2784 4705 4680
Σs 1.0262 0.6 369 251
Σc 0.8983 9.1 1684 1515
Σbðrb ¼ 1.45Þ 0.2843 1242 4041 4874
Σbðr ¼ 1.95Þ 0.2507 1438 4946 4874

3The question, are there some configurations for the B ¼ 1
Skyrmion which have the static energy lower than the hedgehog
one, has been raised by a referee of the present paper.
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∼150 MeV, considerably lower than experimental value
293 MeV. The effect of rescaling is not so striking for the
model [4], where the physical pion mass is included into
consideration. Even somewhat smaller is the effect of
expansion for the Siegen model, which, therefore, seems
to be more realistic.
The flavor excitation energies are proportional to the

mass m̄D, which is large for charm or beauty [see Eq. (12)],
and to

ffiffiffi
Γ

p
∼ λ3=2, and this explains why λmin is so small for

beauty (that means squeezing is strong).
As can be seen in Table II, masses of beautiful baryons

Λb and Σb obtained with the value of rb ¼ 1.45 given in
Ref. [9] are too low in comparison with the data. The values
rb ≃ 2.6 and rb ≃ 1.95 are more preferable to get the
masses of Λb and Σb near the experimental values. The
considerable difference between these values is a clear
indication that the approach used here is not satisfactory for
the case of a beauty quantum number.

V. ESTIMATES OF THE MASSES OF
PENTAQUARKS WITH HIDDEN FLAVOR

For the case of pentaquarks with hidden flavor, i.e.,
containing the pair of quark and antiquark or the pair
of D and D̄ (or K and K̄, or B and B̄) mesons, we take in
Eq. (10) Ir ¼ I and IF ¼ 0 and come to the energy (mass)
of the state

MPF
¼ Mcl þ

3μF
4ΘF

þ IðI þ 1Þ
2ΘI

; ð21Þ

which we minimize numerically. Some results are shown in
Table III.
Tables II and III illustrate well two competing tendencies

for quantized Skyrmion states: the squeezing with

increasing flavor excitation energy and the expansion
due to centrifugal forces which become stronger with
increasing spin (isospin). For beauty, squeezing dominates
in all cases considered here.
The states considered in Table III have positive parity, as

a consequence of the quantization scheme used, and isospin
which coincides with the right isospin and equals the spin
of the state—because the quantized configuration of fields
is of the hedgehog type. Pentaquarks with I ¼ J ¼ 1=2
could belong to the antidecuplet of the corresponding
SUð3Þ group, ðp; qÞ ¼ ð0; 3Þ, those with I ¼ J ¼ 3=2
could belong to the f27g-plet, ðp; qÞ ¼ ð2; 2Þ, and penta-
quarks with I ¼ J ¼ 5=2 could belong to the f35g-plet
with ðp; qÞ ¼ ð4; 1Þ.
To obtain the masses of pentaquarks predicted by this

simplified model, one should add the nucleon mass,
939 MeV, to the numbers of the fourth column of
Table III; see the last column. The hidden strangeness
pentaquark states, presented in Table III, have masses by
few hundreds of MeV greater than such states discussed
previously in connection with the low-lying positive
strangeness pentaquark Θþð1540Þ; see, e.g., the discussion
in Ref. [16]. For example, M½PsðJ ¼ 1=2Þ� ¼ 1892 MeV.
The hidden charm pentaquark state has a mass near to the
mass of the state observed by the LHCb Collaboration,
MðPcÞ≃ 4450 MeV [17]: M½PcðJ ¼ 3=2Þ�≃ 4553 MeV;
see Table III.

VI. CONCLUSIONS AND PROSPECTS

We have demonstrated that a considerable decrease of
the energy of quantized Skyrmion states (baryons) takes
place due to a change of the Skyrmion dimension (rescal-
ing). Even for baryons with ðu; dÞ flavors, nucleon and
Δð1232Þ isobar, the expansion of the Skyrmion due to
centrifugal force decreases the mass splitting between N
and Δ considerably and destroys the fit of masses made in
Refs. [3,4]. This fit could be recovered by some increase of
the parameters of the model—towards a better agreement
with the data. We proved this analytically for the chirally
symmetrical case of Ref. [3] (see Appendix), and certain
technical work is necessary to study if it is possible in
other cases.
The change of the Skyrmion dimensions leads to a

considerable lowering of the energy (mass) of the quantized
states with quantum numbers charm or beauty. For strange-
ness, the effect takes place as well, but not so important—
small enough in most of the cases. In our estimates, we used
a simple and transparent variant of the quantization
procedure, originally proposed in Ref. [6] and modified
later in Ref. [8]. It is quite obvious that the effect is
important in any variant of the quantization scheme, but we
do not pretend here to provide the accurate description of
the rescaling phenomenon; improvements and modifica-
tions of the approach could be necessary for this in
many cases.

TABLE III. The values of λmin at the minimal total energy
(mass) of some pentaquark states. The decrease of masses δM due
to the change of λ from 1 to λmin is given in MeV, similar to
Table II. The differences of masses MB −MN , theoretical values
only, are presented as well (in MeV). Calculations are performed
taking parametrization Fπ ¼ 186 MeV, e ¼ 4.12 [10].

BðI ¼ JÞ λmin δM MP −MN MP

Psð1=2Þ 1.0600 5.2 953 1892
Psð3=2Þ 1.2068 63 1166 2105
Psð5=2Þ 1.3931 247 1422 2361
Pcð1=2Þ 0.7297 82 3261 4200
Pcð3=2Þ 0.9993 0.0 3614 4553
Pcð5=2Þ 1.2814 105 3959 4898
Pbð1=2; rb ¼ 1.45Þ 0.3263 2980 7505 8444
Pbð1=2; rb ¼ 1.95Þ 0.2843 3729 8969 9908
Pbð3=2; rb ¼ 1.45Þ 0.3812 2025 8730 9669
Pbð3=2; rb ¼ 1.95Þ 0.3324 2564 10403 11342
Pbð5=2; rb ¼ 1.45Þ 0.4973 885 10321 11260
Pbð5=2; rb ¼ 1.95Þ 0.4357 1139 12279 13218
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There are two competing tendencies, to decrease the
dimension of the Skyrmion when the flavor excitation
energy becomes large and to expand the Skyrmion due to
centrifugal forces when the spin (or isospin) becomes
greater. For a large enough spin (isospin) of the state,
the expansion takes place due to centrifugal force—instead
of squeezing. For strangeness, this effect dominates already
for the Σs hyperon (see Table II) and takes place for all
hidden strangeness pentaquarks and for a hidden charm
pentaquark with J ¼ 5=2 (Table III).
There is some discrepancy in the description of masses

of beauty baryons Λb and Σb, which indicates that the
method itself is limited in its applicability. To describe the
mass of the Λb baryon the ratio rb ¼ FB=Fπ should be
about 2.6, but to obtain a satisfactory description of the
mass of the Σb baryons there should be rb ∼ 2.0. The value
of rb given in the literature is rb ≃ 1.45 [9], and this is a
theoretical value, not confirmed experimentally. In spite of
this big problem, the necessity to include the rescaling of
the quantized Skyrmion seems to be without doubt.
The investigation of the role of rescaling is a viable

problem for quantized multi-Skyrmions with baryon num-
ber B ¼ 2; 3;…, etc. The disappearance of some flavored
bound states, which have been interpreted as possible
hypernuclei, is expected.
Studies of the SK6 variant of the model, where Skyrmion

stabilization takes place due to the sixth-order term (in
chiral derivatives) in the Lagrangian density, proportional
to the baryon number density squared (see, e.g., [18]), are
of interest. We shall consider this variant of the model
elsewhere.
Modifications and improvements of the approach,

including its fine-tuning, seem to be of interest.
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APPENDIX: ANALYTICAL TREATMENT OF
RESCALING; REQUIRED CHANGES OF THE

MODEL PARAMETERS

It is possible and instructive to perform analytical treat-
ment of the rescaling phenomenon, if the expected change
of the Skyrmion dimension is not large. We shall write the
rescaling factor as λ ¼ 1þ δ0, make an expansion in δ0
assuming that it is small, and then find the value of δ0 and a
decrease of the mass (energy) of the quantized state.
In the case of the chiral symmetry [3] m3 ¼ 0;

m1 ¼ m−1 ¼ Mcl=2, and expansion of masses of quantized
states in a small parameter δ0 is

MN ¼ m1 þm−1ð1þ δ02Þ

þ 3

8ΘI

�
1 − δ0

t1 þ 3t3
ΘI

þ δ02
�
t1 þ 3t3

ΘI

�
2

− δ02
3t3
ΘI

�
;

ðA1Þ

ΘI ¼ t1 þ t3. For Δð1232Þ we have a similar relation:

MΔ ¼ m1 þm−1ð1þ δ02Þ

þ 15

8ΘI

�
1 − δ0

t1 þ 3t3
ΘI

þ δ02
�
t1 þ 3t3

ΘI

�
2

− δ02
3t3
ΘI

�
:

ðA2Þ
Evidently, the contribution of the classical mass becomes
greater after rescaling, because the classical mass is
minimized by itself (the Derric condition is satisfied by
this reason).
In both cases we should minimize the addition to the

mass of the state which has the form

δM ¼ −Aδ0 þ Bδ02: ðA3Þ
Evidently,

δ0min ¼
A
2B

; ðA4Þ

and the decrease of the energy (mass) of the state due to
rescaling is

δM ¼ −
A2

4B
: ðA5Þ

For a nucleon we have

AN ¼ 3

8Θ2
I
ðt1 þ 3t3Þ;

BN ¼ m−1 þ
3

Θ3
I
ðt21 þ 3t1t3 þ 6t23Þ; ðA6Þ

for the Δ isobar

AΔ ¼ 15

8Θ2
I
ðt1 þ 3t3Þ;

BΔ ¼ m−1 þ
15

Θ3
I
ðt21 þ 3t1t3 þ 6t23Þ: ðA7Þ

As a result, we obtain numerically

AN ≃ 161.45 MeV; BN ≃ 655.44 MeV;

δ0N ≃ 0.123; δMN ≃ −9.94 MeV;

AΔ ≃ 807.25 MeV; BΔ ≃ 1549.2 MeV;

δ0Δ ≃ 0.261; δMΔ ≃ −105.2 MeV; ðA8Þ

in moderate agreement with the results of numerical
minimization, presented in Table II.
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The next question of interest to be addressed here is the
change of the model parameters Fπ and e which is
necessary to compensate the decrease of masses of the
nucleon and Delta due to rescaling. We will show for the
case of the chiral symmetry considered at first in Ref. [3]
that some increase of the parameter Fπ is needed to
compensate the decrease of the masses of N and Δ due
to centrifugal forces. This consideration is valid if the
changes of masses are small, δMN ≪ MN , δMΔ ≪ MΔ,
and the changes of the model parameters are small as well,
δFπ ≪ Fπ , δe ≪ e.
Let us denote new model parameters as

Fr
π ¼ Fπ þ δF; er ¼ eþ δe; ðA9Þ

and then the condition of compensation is

MN ¼ a
Fr
π

er
þ 9

16πb
ðerÞ3Fr

π − δMN ;

MΔ ¼ a
Fr
π

er
þ 45

16πb
ðerÞ3Fr

π − δMΔ; ðA10Þ

where δMN and δMΔ are given in (A8) (for convenience we
operate here and below with absolute values of δM).
It is convenient to denote the changes of certain

combinations of the model parameters in the following
way:

δ

�
Fπ

e

�
¼ C; δðFπe3Þ ¼ Q; ðA11Þ

which leads to the following equality:

δFπ ¼
1

4e3
ð3Ce4 þQÞ;

δe ¼ 1

4Fe2
ð−Ce4 þQÞ: ðA12Þ

Functions C and Q can be connected with decreases of the
nucleon and Delta masses by the relations

aCþ bNQ ¼ δMN; aCþ bΔQ ¼ δMΔ; ðA13Þ
with bN¼9=ð16πbÞ≃0.00352; bΔ¼5bN≃0.0176, which
leads to

C ¼ bΔδMN − bNδMΔ

aðbΔ − bNÞ
; Q ¼ δMΔ − δMN

bΔ − bN
ðA14Þ

and

δFπ ¼
1

4ae3ðbΔ − bNÞ
½aðδMΔ − δMNÞ

− 3e4ðbNδMΔ − bΔδMNÞ�: ðA15Þ
This gives numerically δFπ ≃ 8.9 MeV.
For the constant e, we have similarly

δe ¼ 1

4aFe2ðbΔ − bNÞ
½aðδMΔ − δMNÞ

þ e4ðbNδMΔ − bΔδMNÞ� ðA16Þ
and numerically

δe≃ 0.463:

After these corrections, we have new values of the model
parameters:

Fr
π ≃ 137.9 MeV; er ≃ 5.91; ðA17Þ

Fπ being somewhat nearer to the experimental value
Fexp
π ≃ 185 MeV.
A similar analytical consideration of rescaling in other

variants of the model, e.g., within the variant of Ref. [4], is
possible but technically more complicated.
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