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The simultaneous creation of multiple electron-positron pairs by localized strong electric fields is studied
by utilizing a time- and space-resolved quantum field theory approach. It is demonstrated that the number
of simultaneously created pairs equals the number of the potential’s supercritical quasibound states in the
Dirac sea. This means it can be controlled by tuning the potential parameters. Furthermore, the energy of
the created particles corresponds to the energy of the supercritical quasibound states. The simultaneously
created electrons and positrons are statistically correlated, which is reflected in the spatial distribution and
the momentum distribution of these particles and antiparticles.

DOI: 10.1103/PhysRevD.96.056017

I. INTRODUCTION

The vacuum is the lowest energy eigenstate of the field-
free quantum field Hamiltonian. In the presence of a strong
external field this state, however, may become instable.
This leads to the spontaneous emission of electron-positron
pairs, which is one of the most striking predictions of the
Dirac equation in its quantum field theoretical formulation
[1]. While early predictions of this possibility date back
to Heisenberg and Euler [2], Sauter [3] and others in the
early part of the past century, the first calculation of the
pair-production rate based on a nonperturbative approach
was accomplished by Schwinger [4] in the early 1950s.
Using Schwinger’s formula, one finds that a sizable

pair-creation rate requires an electric field of the strength
Ecr ¼ mec2=e ¼ 1.3 × 1018 V=m, which is very difficult
to produce in the laboratory. Here me, e, and c denote the
electron mass, the elementary charge, and the speed of
light. Further studies [5,6] extended Schwinger’s pioneer-
ing work to calculate the long-time pair-creation behavior
for spatially inhomogeneous electric fields. Several inves-
tigations involving the combination of different static
electric, magnetic, and time-dependent laser fields [7–10]
suggest that pair creation may be realized below the
Schwinger critical field strength Ecr.
In theoretical terms, the breakdown of the vacuum is

associated with a depopulation of states in the initially filled
negative-energy Dirac sea. In Ref. [11], it was suggested
that quasibound states that are embedded in the negative-
energy continuum may be solely responsible for pair
creation. If the charge of a combined nucleus is so large
that the energies of the lowest lying bound states drift
below −mec2, these states can dive into the negative energy
continuum and trigger pair creation. Recently, several
works [12–14] have also argued that discrete states can
act as a transfer channel for population between the

positive-energy and negative-energy states and thus
enhance the creation rate.
In fact, starting in the early 1980s heavy ion collision

experiments [15,16] were performed with the hope that the
combined Coulomb field of two colliding nuclei would be
sufficient to break down the vacuum [17] and to produce
electron-positron pairs. However, the observed positrons
can also be caused by the presence of the unavoidable
transitions associated with the internal nuclear structure and
not triggered by the Coulomb field alone. There is also the
prospect that future focused laser pulses could provide
sufficiently large fields to trigger the purely spontaneous
creation of particle pairs from the vacuum.
In recent years, quantum control has become a mature

and active research field which deals with the active
manipulation of physical processes on the quantum level
[18]. Usually sophisticated schemes are required to drive a
quantum system into a specific desired final state. It is well
known that tuning the parameters of the binding potential
can be utilized to control the average number of created
pairs [19,20]. However, it remains unknown to which field
states these pairs actually belong. For example, an expect-
ation value for the number of created pairs of one can
correspond to a system that is definitely in a single-pair
state. The same count can, however, also characterize a
different state that is an equal-weight superposition of the
vacuum and a two-pairs state. Furthermore, to the best of
our knowledge there is also no method to control a quantum
system such that it evolves into a certain field state during
the pair-creation dynamics. Both issues will be addressed in
this article, which focuses on the pair production caused by
a strong external binding potential.
In this contribution we employ a quantum field theo-

retical description of the pair-creation dynamics to study
the creation of single-pair states, two-pair states, and so on.
The numerical time-dependent solution of the correspond-
ing theoretical equations on a space-time grid will give us
deeper insight than the standard S-matrix approach, which
can only represent the system’s asymptotic behavior. For
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example, it allows one to determine the space-resolved
densities of multipair states with a given number of
electron-positron pairs. We will demonstrate that a strong
localized binding potential can be tuned to create selec-
tively multipair states with a specific number of electrons
and positrons, e. g., single-pair states or two-pair states.
This paper is organized as follows. In order to render the

presentation self-contained, Sec. II describes the theoretical
framework of numerical time-dependent quantum field
theory, which allows us to investigate the field states as
well as the pair-creation dynamics via arbitrary external
force fields. In Sec. III, we discuss the pair-creation process
for fermionic systems induced by a localized binding
potential and investigate the spatial and temporal signatures
of the final field states. In Sec. IV, we give a brief summary.

II. THEORETICAL DESCRIPTION OF THE
PAIR-CREATION DYNAMICS

The creation of particle-antiparticle pairs can be viewed as
the vacuum turns into different field states in the Fock space,
i.e., the vacuum state, single-pair states, two-pair states, etc.
All these states are the eigenstates of the field-free quantum

field Hamiltonian and can be used as a basis to span the
Hilbert space. Starting from the vacuum, the final state of the
system is a superposition of several states in this basis. As
illustrated below, this quantum field state can be determined
by solving the time-dependent Dirac equation for all basis
vectors of the corresponding single-particle Hilbert space
[21–24]. The number of field states that contain a specific
count of particles and antiparticles with different quantum
numbers grows exponentially with the amount of particles.
Consequently, it is very challenging both analytically as well
as numerically to predict the probability to which particular
states will be finally occupied.
During electron-positron pair creation by strong electro-

magnetic fields, the initial vacuum state kvac⟫ evolves into
a general Fock state kΩðtÞ⟫, which is a superposition of the
vacuum state and several multipair states, each containing a
specific number of pairs of particles and antiparticles.
These multipair states are characterized by a set of various
quantum numbers, e. g., the kinematic momentum p and
the spin s ¼ �ℏ=2. In the Schrödinger picture, the quantum
field state consisting of particle-antiparticle multipairs can
be written as

kΩðtÞ⟫ ¼ c0ðtÞkvac⟫þ
c1;1ðtÞkeþp1;s1e−p0

1
;s0
1
⟫þ c1;2ðtÞkeþp1;s1e−p0

2
;s0
2
⟫þ c1;3ðtÞkeþp2;s2e−p0

1
;s0
1
⟫þ � � �

c2;1ðtÞkeþp1;s1eþp2;s2e−p0
1
;s0
1
e−p0

2
;s0
2
⟫þ c2;2ðtÞkeþp1;s1eþp3;s3e−p0

1
;s0
1
e−p0

2
;s0
2
⟫þ c2;3ðtÞkeþp1;s1eþp2;s2e−p0

1
;s0
1
e−p0

3
;s0
3
⟫þ � � �

c3;1ðtÞkeþp1;s1eþp2;s2eþp3;s3e−p0
1
;s0
1
e−p0

2
;s0
2
e−p0

3
;s0
3
⟫þ c3;2ðtÞkeþp1;s1eþp2;s2eþp4;s4e−p0

1
;s0
1
e−p0

2
;s0
2
e−p0

3
;s0
3
⟫þ � � � ; ð1Þ

where kvac⟫ denotes the vacuum state, keþp1;s1e−p0
1
;s0
1
⟫ is a

single-pair state with an electron (eþ) and a positron (e−)
[25], keþp1;s1eþp2;s2e−p0

1
;s0
1
e−p0

2
;s0
2
⟫ refers a two-pair state and so

on. A superposition of multipair states with all of the same
number of particle-antiparticle pairs is called a “number
state” in the following. Mathematically, a multipair state
with n pairs is created from the vacuum state by applying
the creation operators âþp;s† and â−p;s† for the particle and the
antiparticle, respectively, on it, i.e.,

keþp1;s1…eþpn;sne
−
p0
1
;s0
1
…e−p0n;s0n⟫ ¼

Yn
i¼1

âþpi;si
†â−p0i;s0i

†kvac⟫: ð2Þ

The corresponding annihilation operators will be denoted
by âþp;s and â−p;s. These fermionic annihilation and creation
operators satisfy the anticommutator relations

fâþp;s; âþp0;s0†g ¼ fâ−p;s; â−p0;s0†g ¼ δp;p0δs;s0 ; ð3Þ

where δi;j denotes a Kronecker delta. The amplitudes of
these states are represented by c0ðtÞ for vacuum and ci;jðtÞ

for the jth single- or multipair state containing i electrons
and positrons. As the number of ways to combine particle-
antiparticle pairs into multipair states grows rapidly with
the number of pairs it is not feasible to calculate the
amplitudes for all states. Instead, we define various
observables based on the quantum field operator to char-
acterize the quantum field state in the following.
The quantum field operator of a fermionic many-

particle system can be expressed as an integral or a sum
(in the case of a discretized Hamiltonian) over the elec-
tronic annihilation operators and the positronic creation
operators,

Ψ̂ðrÞ ¼
X
p;s

âþp;sψþ
p;sðrÞ þ

X
p;s

â−p;s†ψ−
p;sðrÞ: ð4Þ

Here, ψþ
p;sðrÞ denotes a normalized eigenstate of the free

Dirac equation with positive energy, the momentum eigen-
value p, and the spin s, and correspondingly ψ−

p;sðrÞ denotes
an eigenstate with negative energy. This means, ψþ

p;sðrÞ and
ψ−
p;sðrÞ are eigenfunctions of the first-quantization Dirac

Hamiltonian
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ĤD ¼ cα · ðp̂ − qAðr; tÞÞ þ βmec2 þ qϕðr; tÞ ð5Þ

in the special case of a vanishing electric potential ϕðr; tÞ
and a vanishing magnetic vector potential Aðr; tÞ. Here, we
also introduced the momentum operator p̂, the electron’s
charge q ¼ −e, as well as the Dirac matrices α ¼
ðα1; α2; α3ÞT and β. Adopting the Heisenberg picture, the
operators Ψ̂ðrÞ and â�p;s become time dependent. The time-

dependent field operator Ψ̂ðr; tÞ is given in terms of time-
dependent creation and annihilation operators by

Ψ̂ðr; tÞ ¼
X
p;s

âþp;sðtÞψþ
p;sðrÞ þ

X
p;s

â−p;sðtÞ†ψ−
p;sðrÞ: ð6Þ

Stripping the antiparticle part from the quantum field
operator (6), we define the operator [26]

Ψ̂þðr; tÞ ¼
X
p;s

âþp;sðtÞψþ
p;sðrÞ: ð7Þ

With this definition operators representing various physical
observables can be established, e. g., the generalized
particle-number density operators

N̂nðtÞ ¼
1

n!
Ψ̂þðr1; tÞ† � � � Ψ̂þðrn; tÞ†Ψ̂þðrn; tÞ � � � Ψ̂þðr1; tÞ

ð8Þ

can be introduced for n ¼ 1; 2;…. The average density
ϱðr1;…; rn; tÞ of finding simultaneously particles at the
positions r1;…; rn at time t if the system was initially in the
quantum field state kΩ⟫ is given by

ϱðr1;…; rn; tÞ ¼ ⟪ΩkN̂nðtÞkΩ⟫: ð9Þ

Integrating over the whole space leads to the expectation
values of the generalized particle number operators,

NnðtÞ ¼
Z

� � �
Z

ϱðr1;…; rn; tÞd3r1 � � � d3rn: ð10Þ

The quantity N1ðtÞ denotes the average number of particles
at time t. In general, NnðtÞ is the average number of
n-tuples of particles present at time t. These n-tuples may
originate from a number state with n particles or from some
state containingm > n particles. In the special case that the
initial state kΩ⟫ has evolved into a single number state ofm
pairs then NnðtÞ ¼ ðmnÞ because there are ðmnÞways to pick n
particles from a set of m particles. This can also be
confirmed by an explicit calculation of NnðtÞ for some
m-particle state. Consequently, we can also write

NnðtÞ ¼
X∞
m¼n

�
m
n

�
CmðtÞ; ð11Þ

where CmðtÞ denotes the total probability that kΩ⟫ has
evolved into some number state with m pairs. This means
with respect to the expansion coefficients cn;m of a quantum
field state in the Schrödinger picture as in Eq. (1)

CnðtÞ ¼
X
m

jcn;mðtÞj2: ð12Þ

The set of linear equations (11) can be inverted to yield
[27,28]

CnðtÞ ¼
X∞
m¼n

ð−1Þmþn
�
m
n

�
NmðtÞ: ð13Þ

The CnðtÞ characterize how many particle-antiparticle pairs
are created preferably by the external strong electromag-
netic fields. In analogy to the n-pair probability CnðtÞ as
given in Eq. (13), we find the n-pair probability density

ρðr1;…;rn;tÞ

¼
X∞
m¼n

ð−1Þmþn
�
m
n

�Z
���

Z
ϱðr1;…;rm;tÞd3rnþ1 ���d3rm:

ð14Þ

Here, position variables rnþ1;…; rm are integrated out. The
choice of the integration variables, however, is of no
relevance as the density ρðr1;…; rm; tÞ is invariant under
permutation of the position variables. Note that if the
quantum field state is a superposition of n-pair states only,
i.e., CnðtÞ ¼ 1, then ρðr1;…; rn; tÞ ¼ ϱðr1;…; rn; tÞ.
To determine the densities defined in Eq. (9) and the

expectation values (10) and (13), which are of main interest
here, we need to solve the time dependence of the quantum
field operator. The time-dependent quantum field operators
as well as the creation and the annihilation operators fulfill
the Heisenberg equations of motion

iℏ
∂Ψ̂ðr; tÞ

∂t ¼ ½Ψ̂ðr; tÞ; Ĥ� ð15Þ

and

iℏ
∂â�p;sðtÞ

∂t ¼ ½â�p;sðtÞ; Ĥ�; ð16Þ

respectively, with the Hamilton operator

Ĥ ¼
Z

Ψ̂†ðr; tÞĤDΨ̂ðr; tÞd3r: ð17Þ

The equation of motion (15) can be further simplified via
Eq. (17) to the Schrödinger-like equation [29]

iℏ
∂Ψ̂ðr; tÞ

∂t ¼ ĤDΨ̂ðr; tÞ: ð18Þ
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Consequently, the time-dependent field operator Ψ̂ðr; tÞ can
also be expressed as

Ψ̂ðr; tÞ ¼
X
p;s

âþp;sψþ
p;sðr; tÞ þ

X
p;s

â−p;s†ψ−
p;sðr; tÞ; ð19Þ

where the functions ψþ
p;sðr; tÞ and ψ−

p;sðr; tÞ denote the
solutions of the time-dependent Dirac equation with ψþ

p;sðrÞ
and ψ−

p;sðrÞ, respectively, as initial conditions at time t ¼ 0

and with âþp;s ¼ âþp;sð0Þ and â−p;s† ¼ â−p;s†ð0Þ. Equating
Eqs. (6) and (19), we can solve for âþp;sðtÞ and â−p;s†ðtÞ
and finally find [30,31]

âþp;sðtÞ ¼
X
p0;s0

GðþjþÞp;s; p0;s0 âþp0;s0 þGðþj−Þp;s; p0;s0 â−p0;s0† ð20Þ

and

â−p;s†ðtÞ ¼
X
p0;s0

Gð−jþÞp;s; p0;s0 â−p0;s0† þ Gð−j−Þp;s; p0;s0 âþp0;s0

ð21Þ

with the transition amplitudes

Gðνjν0 Þp;s; p0;s0 ¼ hψν
p;sðrÞjψν0

p0;s0 ðr; tÞi: ð22Þ
Assuming that initially the pure vacuum state kΩ⟫ ¼

kvac⟫ is given, the density ϱðr1;…; rn; tÞ can be written by
employing Eq. (3) and â�p;skvac⟫ ¼ 0 and introducing the
Hermitian matrix

Sp;s; p0;s0 ðtÞ ¼
X
p00;s00

Gðþj−Þ�p;s; p00;s00Gðþj−Þp0;s0; p00;s00 ð23Þ

as

ϱðr1;…; rn; tÞ ¼
1

n!

X
p1 ; p2 ;…;pn
s1 ;s2 ;…;sn
p0
1
; p0
2
;…;p0n

s0
1
;s0
2
;…;s0n

� X
ði1;i2;…;inÞ∈Pn

σi1;i2;…;inSp1;s1; p0i1 ;s
0
i1
ðtÞSp2;s2; p0i2 ;s0i2 ðtÞ…Spn;sn; p0in ;s

0
in
ðtÞ

�

× ψþ
p1;s1ðr1Þ†ψþ

p2;s2ðr2Þ†…ψþ
pn;snðrnÞ†ψþ

p0n;s0n
ðrnÞ…ψþ

p0
2
;s0
2
ðr2Þψþ

p0
1
;s0
1
ðr1Þ; ð24Þ

where the innermost sum runs over all permutations ði1; i2;…; inÞ of the set of the natural numbers 1 to n and σi1;i2;…;in
denotes the permutation’s sign. Integrating (24) over the whole space, one gets

NnðtÞ ¼
1

n!

X
p1 ; p2 ;…; pn
s1 ; s2 ;…;sn

X
ði1;i2;…;inÞ∈Pn

σi1;i2;…;inSp1;s1; pi1 ;si1 ðtÞSp2;s2; pi2 ;si2 ðtÞ…Spn;sn; pin ;sin ðtÞ: ð25Þ

Note that the innermost sums in (24) and (25) represent a determinant. The outer sum over momenta and spins in (24)
contains for each summand also its complex conjugate, thus ϱðr1;…; rn; tÞ is real valued. Furthermore, the outer sum over
momenta and spins in (25) runs over determinants of Hermitian matrices, thus also NnðtÞ is real valued. For n ¼ 1 and
n ¼ 2, Eqs. (24) and (25) simplify to

ϱðr1; tÞ ¼
X
p1 ; s1
p0
1
; s0
1

Sp1;s1; p01;s01ðtÞψþ
p1;s1ðr1Þ†ψþ

p0
1
;s0
1
ðr1Þ; ð26aÞ

ϱðr1;r2;tÞ¼
1

2

X
p1 ; p2 ;s1 ;s2
p0
1
; p0
2
;s0
1
;s0
2

ðSp1;s1; p01;s01ðtÞSp2;s2; p02;s02ðtÞ−Sp1;s1; p02;s02ðtÞSp2;s2; p01;s01ðtÞÞψþ
p1;s1ðr1Þ†ψþ

p2;s2ðr2Þ†ψþ
p0
2
;s0
2
ðr2Þψþ

p0
1
;s0
1
ðr1Þ; ð26bÞ

and

N1ðtÞ ¼
X
p1;s1

Sp1;s1; p1;s1ðtÞ; ð27aÞ

N2ðtÞ ¼
1

2

X
p1;s1;p2;s2

ðSp1;s1; p1;s1ðtÞSp2;s2; p2;s2ðtÞ − Sp1;s1; p2;s2ðtÞSp2;s2; p1;s1ðtÞÞ: ð27bÞ

Similarly to the position-space distribution ϱðr1;…; rn; tÞ one can introduce a momentum-space distribution
χnðp1;…; pn; tÞ of the created particles, which reads
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χnðp1;…; pn; tÞ ¼
1

n!

X
s1;s2;…;sn

X
ði1;i2;…;inÞ∈Pn

σi1;i2;…;inSp1;s1; pi1 ;si1 ðtÞSp2;s2; pi2 ;si2 ðtÞ…Spn;sn; pin ;sin ðtÞ: ð28Þ

Accordingly, the single-particle and double-particle distributions simplify to

χ1ðp1; tÞ ¼
X
s1

Sp1;s1; p1;s1ðtÞ; ð29aÞ

χ2ðp1; p2; tÞ ¼
1

2

X
s1;s2

ðSp1;s1; p1;s1ðtÞSp2;s2; p2;s2ðtÞ − Sp1;s1; p2;s2ðtÞSp2;s2; p1;s1ðtÞÞ: ð29bÞ

Note that densities and expectation values of particle numbers for the antiparticle part of the created pairs can be derived,
too, analogously to the particle case as outlined above. For this purpose, one has to replace the operator (7) in the definition
of the particle-number density operator (8) by

Ψ̂−ðr; tÞ ¼
X
p;s

â−p;sðtÞ†ψ−
p;sðrÞ: ð30Þ

In particular, the momentum-space distribution χ−n ðp1;…; pn; tÞ of the created antiparticles yields

χ−n ðp1; p2;…; pn; tÞ ¼
1

n!

X
s1;s2;…;sn

X
ði1;i2;…;inÞ∈Pn

σi1;i2;…;inS
−
p1;s1; pi1 ;si1

ðtÞS−p2;s2; pi2 ;si2 ðtÞ…S−pn;sn; pin ;sin ðtÞ; ð31Þ

where the matrix S−p;s; p0;s0 ðtÞ ¼
P

p00;s00Gð−jþÞ�p;s; p00;s00Gð−jþÞp0;s0; p00;s00 has been introduced.

III. CONTROLLING PAIR CREATION
TRIGGERED BY A STRONG
LOCALIZED POTENTIAL

A. Energy spectrum of a strong localized potential

The Coulomb binding potential supports several elec-
tronic bound states and with increasing potential depth
these bound states can dive into the negative-energy
continuum [32]. These embedded states can be viewed
as the supercritical quasibound states, which build up the
connection between positive and negative energy levels
and in this way trigger spontaneous pair creation. The
essential physics of this process can be represented by a
one-dimensional model system, which we will employ
for the remainder of this article. Note that in one dimension
the Dirac equation reduces to an equation for a two-
component wave function with no spin [33]. For numerical
feasibility, we choose a localized scalar potential well of
the form

qϕðx; tÞ ¼ V0ðSðxþD=2Þ − Sðx −D=2ÞÞfðtÞ ð32Þ

instead of the long range Coulomb field. Here the
parameter D is related to the spatial width of the well,
which is formed by two smooth unit-step functions,

SðxÞ ¼ 1

2

�
1þ tanh

x
W

�
; ð33Þ

where W is the extent of the associated localized electric
fields [3]. The time-dependent function fðtÞ describes the
temporal profile of the external field. In our calculation, we
employ

fðtÞ ¼

8>><
>>:

sin2 πðt−ΔTÞ
2ΔT for − ΔT ≤ t ≤ 0;

1; 0 ≤ t ≤ T

cos2 πðt−TÞ
2ΔT for T ≤ t ≤ T þ ΔT;

ð34Þ

where T denotes the period of the flat plateau and ΔT the
duration of turn-on and turn-off.
The field configuration at the plateau phase 0 ≤ t ≤ T

can support several electronic bound states and as the
potential height V0 increases, the lower bound states
can overlap with the negative-energy continuum. The
resulting degeneracy between the quasibound states and
the negative-energy continuum leads in the case of a
discretized Dirac Hamiltonian, as it is employed in our
numerical calculations, to an increased density of states as
shown in Fig. 1. By varying the potential strength V0 (or its
width W), we can control the number of supercritical
quasibound states in the negative continuum. As each
number state has some energy that is at least 2mec2 times
the number of pairs, it is commonly believed that single-pair
states are preferably created over states consisting of several
pairs. However, wewill show in the following that if there is
more than one supercritical quasibound state in the Dirac
sea, the system will prefer to populate multipair states rather
than single-pair states, which can be strongly suppressed.
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B. Number states in pair creation

Figure 2 presents the probability Cn to create a number
state of n pairs as a function of the interaction time T after
the potential has been smoothly turned off at time T þ ΔT.
In Fig. 2(a) with V0 ¼ −2.85mec2, the quantum field state
evolves into a superposition of single-pair states as C1ðT þ
ΔTÞ ≈ 1 for sufficiently long interaction times. There is
only a small probability to populate two-pair states. The
quantities CnðT þ ΔTÞ for n > 2 are so small that they
cannot be distinguished from zero on the scale of Fig. 2 and
are therefore not shown. As further numerical simulations
show, the nonzero probability C2ðT þ ΔTÞ results from the
nonadiabatic turn-on and turn-off and can be reduced by

switching the potential on and off more slowly. Apparently
the creation of sole single-pair states is related to the fact
that exactly one quasibound state in the negative continuum
is present for the chosen potential parameters. Increasing
the depth of the potential to V0 ¼ −3.6mec2 creates a
second quasibound state as indicated in Fig. 1. The n-pair
probabilities Cn for this setup are presented in Fig. 2(b). For
short interaction times we find a superposition of single-,
two-, and three-pair states. Similar to the former case the
nonzero probability C3ðT þ ΔTÞ results from the non-
adiabatic turn-on and turn-off. More interestingly, the
single-pair states present for short interaction times dis-
appear after some transient interval of interaction times T
and for sufficiently long interaction times the quantum field
state is almost only a superposition of two-pair states,
i.e., C2ðT þ ΔTÞ ≈ 1.
Our numerical results indicate that the number of the

potential’s quasibound states determines into what kind of
number state the quantum field state evolves for sufficiently
long interaction times. This is also illustrated in Fig. 3,
where the probability Cn to create a number state of n pairs
is shown as a function of the maximal potential strength V0

and as a function of the number of supercritical quasibound
states b. For potential parameters with b supercritical
quasibound states we find Cb ≈ 1, except for parameters
close to a change of the value of b. This means one can
control into which particle-number state the system will
eventually evolve just by changing the number of super-
critical quasibound states in the system. At least in
principle, this number can be easily adjusted by varying
the strength and the shape of the supercritical electric
potential as the only two relevant parameters.
The supercritical quasibound states are commonly inter-

preted as different channels for pair creation. As shown in
Refs. [20,34], the complex scaling method can be utilized
to determine the asymptotic pair-creation rate for each
channel. As a (rather unexpected) central result, there is no
competition between the different pair-creation channels,
i.e., the number of created particles follows a single
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FIG. 2. n-pair probabilities Cn as a function of the interaction
time T after the potential has been smoothly turned off
with ΔT ¼ 4.7ℏ=ðmec2Þ for V0 ¼ −2.85mec2 in (a) and V0 ¼
−3.6mec2 in (b). Other parameters are as in Fig. 1.
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FIG. 3. n-pair probabilities Cn as a function of the maximal
potential strength V0 after the potential has been smoothly turned
off with a total interaction time T ¼ 93ℏ=ðmec2Þ. Other param-
eters are as in Fig. 2. The gray shaded areas indicate parameter
regions with a particular number of supercritical quasibound
states b.
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FIG. 1. Energy eigenvalues E of the discretized one-dimen-
sional Dirac Hamiltonian with the potential (32) with W ¼ 0.3λC
and D ¼ 3.2λC as a function of the potential strength V0 with λC
denoting the Compton wavelength. Gray shaded areas indicate
the continuous spectrum of the underlying Dirac Hamiltonian
ĤD. For the discretization of the Dirac Hamiltonian a regular
spatial grid running from −34.25λC to 34.25λC with 512 grid
points was applied. The two vertical lines indicate the potential
strengths that are employed in Figs. 2(a) and 2(b).
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exponential law with a rate given by the sum of rates of the
individual channels. Our results provide an intuitive
explanation of this phenomenon. The presence of n quasi-
bound states favors the population of multipair states; this
means the simultaneous creation of n particle-antiparticle
pairs. In other words, the n supercritical quasibound states
actually represent a single channel to create number states
with n electron-positron pairs. To provide a more quanti-
tative analysis, we define the quantity

dnðTÞ ¼ jCnðT → ∞Þ − CnðTÞj: ð35Þ

It characterizes how the initial vacuum state decays into a
certain number state that is occupied with probability
CnðT → ∞Þ for an asymptotically long interaction time
T. The quantity d2ðTÞ corresponding to the decay of the
vacuum state into two-pair states is shown on a logarithmic
scale in Fig. 4. It follows approximately a straight line,
which indicates that the decay process is exponential,
namely d2ðTÞ ∼ expð−γTÞ with the exponential parameter
γ ≈ 0.16mec2=ℏ. According to Ref. [20], the exponential
decay rate of the occupation of the particle-number state to
its asymptotic value, which results from the complex
scaling approach, is γ ≈ 0.18mec2=ℏ for the same field
configuration as in Figs. 2(b) and 4. The small discrepancy
between these two exponents may be attributed to the
occurrence of the intermediate single-particle states seen in
Fig. 2(b), which slows down the transition from the vacuum
into the final two-particle states.

C. Position- and momentum-space distributions

Our numerical space- and time-resolved analysis of
the pair-creation dynamics allows us not only to determine
how many particles and antiparticles are created but also
where these are created. Figure 5 shows the asymptotic
single- and two-particle probability densities ϱðx1Þ and
ϱðx1; x2Þ for the position of the electrons as calculated for
the parameters as employed before and a potential strength
of V0 ¼ −2.85mec2 and V0 ¼ −3.6mec2, i.e., where the
final quantum field state consists asymptotically mainly of

single-pair states and two-pair states, respectively, as
discussed above. The single-particle densities are concen-
trated in the vicinity of the localized potential (32) for both
cases. However, the origins of these distributions are
different. For the case V0 ¼ −2.85mec2, ϱðx1Þ reflects
the single-pair states, which are the dominating states for
this potential strength. Furthermore, the two-particle den-
sity ϱðx1; x2Þ is close to zero for V0 ¼ −2.85mec2. For
V0 ¼ −3.6mec2 the two-pair states are the dominating
states and single-pair states are not occupied as we
mentioned before. Consequently, the two-particle density
ϱðx1; x2Þ is substantial in this case. It has two maxima
at ðx1; x2Þ ≈ ð−7λC; 7λCÞ and ðx1; x2Þ ≈ ð7λC;−7λCÞ. The
single-particle density ϱðx1Þ is just the marginal distri-
bution of ϱðx1; x2Þ as there are no single-pair contributions
to ϱðx1Þ. As a consequence of the fermionic nature of
the created particles and the Pauli exclusion principle,
the density ϱðx1; x2Þ vanishes along the line x1 ¼ x2.
Furthermore, the two created electrons that emerge at
�7λC are strongly correlated, i.e., the spatial distributions
of the two electrons are not statistically independent.
To complete our understanding of the decay process of

the vacuum into multiple electron-positron pairs, we also
investigate the properties of the created electrons and
positrons in momentum space. The positrons are best
characterized by its momentum spectrum, because for
the positrons the localized potential is repulsive leading
to a strong acceleration and delocalization. In contrast, the

0 5 10 15 20 25 30 35 40 45
T / ( / (mec2))

10−3
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10−1

100

exp(−0.16Tmec2/ )

d2(T )

FIG. 4. Decay probability d2 as a function of the interaction
time T after the potential has been smoothly turned off (dashed
black line) and an exponential fit to the data (solid gray line). The
potential height is V0 ¼ −3.6mec2 and other parameters are as
in Fig. 1.

FIG. 5. Single- and two-pair spatial densities ϱðx1Þ and
ϱðx1; x2Þ as calculated for the parameters as in Fig. 2 and a
total interaction time T ¼ 90ℏ=ðmec2Þ. The left column corre-
sponds to a potential strength of V0 ¼ −2.85mec2 and the right
one is for V0 ¼ −3.6mec2.
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electrons are captured in the potential. This means the
momentum distribution of the created electrons χðp1Þ is
concentrated around zero as shown in Fig. 6. Due to
the narrow potential and the resulting strong localization
of the created electrons, the electrons’ momentum dis-
tribution is rather broad, i.e., it has a width of the order of
mec. The momentum distribution of the positrons χ−ðp1Þ
exhibits two peaks at p1 ≈�1.01mec for the parameter
V0 ¼ −2.85mec2, as presented in Fig. 7. This means that
the individual positrons, which emerge for this parameter
set, travel with relativistic velocities to the left or to the
right with equal probability. The distributions χðp1; p2Þ
and χ−ðp1; p2Þ almost vanish for V0 ¼ −2.85mec2 as also
indicated in Figs. 6 and 7, which again proves that single-
pair states dominate the pair-creation process in this case.
For V0 ¼ −3.6mec2, the creation process is triggered by
two different channels leading to an occupation of two-
pair states and to a rich structure of the asymptotic
positron momentum distribution χ−ðp1; p2Þ. This distri-
bution features eight sharp maxima approximately at
�0.96mec and �1.98mec. As there are no single-pair
states for V0 ¼ −3.6mec2, there are no single-pair con-
tributions to the momentum distributions χðp1; tÞ and
χ−ðp1; tÞ which therefore follow from χðp1; p2Þ and
χ−ðp1; p2Þ, respectively, by integrating out one momen-
tum degree. Because of the Pauli exclusion principle for
indistinguishable fermions, the corresponding two elec-
trons/positrons cannot have the same momentum and,

therefore, the distributions χðp1; p2Þ and χ−ðp1; p2Þ van-
ish along the line p1 ¼ p2.
Signatures of the supercritical quasibound states are

observable also in the energy spectrum of the created
electrons and positrons. Most likely, the created electrons
have close-to-zero momentum, thus their energy distribu-
tion is sharply peaked at mec2. Furthermore, the energy of
the created positrons equals approximately the absolute
value of the energy of the supercritical quasibound states.
For V0 ¼ −2.85mec2, for example, the individual positrons
of the single-pair states travel with relativistic velocities
to the left or right with equal probability having a total
energy of about 1.4mec2, which equals the absolute value
of the energy of the supercritical quasibound state for
this potential strength; see Fig. 1. For V0 ¼ −3.6mec2, the
energies that correspond to the positions of maxima in
the momentum distribution of Fig. 7 are 1.39mec2 and
2.22mec2, which agree again with the energy values of the
supercritical quasibound states in Fig. 1. Consequently,
the net energy of the created particles equals approximately
the energy gap between the energies of the supercritical
quasibound states and the rest-mass energy of a real
particle, i.e., mec2.

IV. CONCLUSIONS

In this work, we applied a time- and space-resolved
formulation of quantum field theory to study fermionic

FIG. 7. Single- and two-pair momentum spectra χ−ðp1Þ and
χ−ðp1; p2Þ of the created positrons as calculated for the param-
eters as in Fig. 2 and a total interaction time T ¼ 50ℏ=ðmec2Þ.
The left column corresponds to a potential strength of V0 ¼
−2.85mec2 and the right one is for V0 ¼ −3.6mec2.

FIG. 6. Single- and two-pair momentum spectra χðp1Þ and
χðp1; p2Þ of the created electrons as calculated for the parameters
as in Fig. 2 and a total interaction time T ¼ 50ℏ=ðmec2Þ. The left
column corresponds to a potential strength of V0 ¼ −2.85mec2

and the right one is for V0 ¼ −3.6mec2.

Q. Z. LV and HEIKO BAUKE PHYSICAL REVIEW D 96, 056017 (2017)

056017-8



strong-field pair creation. The theoretical foundation of
this framework is based on the observation that the
quantum field theoretical state can be directly related to
the evolution of the time-dependent field operator in the
Heisenberg picture. The evolution of the latter can be
obtained from the dynamics of single-particle states of the
Dirac Hamiltonian. This approach provides access to the
full quantum field states and to expectation values of any
physical observable for arbitrary external field configu-
ration, e. g., the probability to create a certain number of
electron-positron pairs. The Coulomb binding energy can
become supercritical, i.e., quasibound states embedded in
the negative-energy continuum initiate pair creation from
the vacuum. For bosonic systems, it was demonstrated in
Ref. [35] that the energy spectrum of the corresponding
single-particle Hamiltonian determines the dynamics of
the pair-creation process. Here, we studied the relation
between the energy spectrum and pair creation for
fermionic systems.
As a main result, we showed that the number of quasi-

bound states of the Dirac Hamiltonian at maximal potential
strength equals the number of created electron-positron

pairs for a sufficiently long interaction time. This means
that the pair-creation dynamics populates selectively multi-
pair states with a specific number of electron-positron pairs.
Consequently, one can control the number of created pairs
by varying the applied potential such that it has a specific
number of supercritical quasibound states. Furthermore, the
sum of the mean energy of the created particles equals
approximately the difference between the energy of the
quasibound states and mec2 summed over all quasibound
states. As the applied localized potential is attractive for
electrons their energy is close to their rest-mass energy,
while positrons are accelerated to relativistic velocities. If
there are several electrons/positrons created, they are
strongly statistical dependent as a consequence of the
Pauli exclusion principle.
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