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The mass splitting between the quarkonium spin-singlet state h (JPC ¼ 1þ−) and the spin average of the
quarkonium spin-triplet states χ (JPC ¼ 0þþ; 1þþ; 2þþ) is seen to be astonishingly small, not only in the
charmonium and bottomonium cases where the relevant masses have been measured, but in positronium
as well. We find, both in nonrelativistic quark models and in nonrelativistic quantum chromodynamics
(NRQCD), that this hyperfine splitting is so small that it can be used as a test of the pureQQ̄ content of the
states. We discuss the 2P states of charmonium in the vicinity of 3.9 GeV, where the putative exotics
Xð3872Þ and Xð3915Þ have been seen and a new χc0ð2PÞ candidate has been observed at Belle.
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I. INTRODUCTION

The spectrum of charmoniumlike states in the region
near 3.9 GeV is exceptionally intricate and interesting.
In addition to containing states that are believed to be the
conventional cc̄ 13D1 [ψð3770Þ], 13D2 [ψð3823Þ], and 23P2

[χc2ð2PÞ] [1], this range has produced several unexpected
states, including the most famous exotic candidate Xð3872Þ
(JPC ¼ 1þþ), as well as the 0þþ (or even possibly 2þþ [2])
Xð3915Þ, the 1þ− Z0

cð3900Þ that is the neutral isospin
partner of the Zþ

c ð3900Þ, and the Xð3940Þ, whose JPC

remains unknown. For a review of these states and more,
see Ref. [3].
Missing from this list are several expected states in the

2P band, such as the conventional 0þþ χc0ð2PÞ and 1þþ

χc1ð2PÞ, and the 1þ− hcð2PÞ. Indeed, the Xð3872Þ has long
been argued to have at least a substantial χc1ð2PÞ compo-
nent, while the Xð3915Þ was briefly listed by the Particle
Data Group as χc0ð2PÞ until serious doubts were raised
about this identification (especially its lack of DD̄ final
states) [4–6]; for example, Xð3915Þ might even be the
lightest cc̄ss̄ state [7]. The crucial importance of sorting
out the states in the 2P charmonium sector, in order to
determine which states are (mostly) exotic and which are
not, was emphasized as a central experimental goal in
Ref. [8]. A very recent attempt in this direction appears
in Ref. [9].
The latest chapter in this saga is the Belle observation

[10] of a χc0ð2PÞ candidate decaying to DD̄, with mass
3862þ26þ40

−32−13 MeV and width 201þ154þ88
−67−82 MeV. While these

uncertainties are quite large, the significance of the signal is
substantial (6.5σ). With the χc2ð2PÞ and hopefully the

χc0ð2PÞ now in hand, one can at last begin a serious study
of mass splittings within this multiplet, with an eye toward
testing the expectations for pure cc̄ composition versus
mixing with multiquark or hybrid components.
Themass difference of interest in this paper is the hyperfine

splitting between the quarkonium spin-singlet state h
(1P1; JPC ¼ 1þ−) and the spin average of the quarkonium
spin-triplet states χ (3P0;1;2; JPC ¼ 0þþ; 1þþ; 2þþ):

Δ≡Mh −
1

9
½1 ·Mχ0 þ 3 ·Mχ1 þ 5 ·Mχ2 �: ð1Þ

A complete set of experimental data for determining Δ is
currently available in only 4 cases: 2P positronium (which, in
the standard notation for positronium, is the lowest P wave)
[11,12], 1P charmonium, and 1P and 2P bottomonium [1].
The correspondingΔ values are presented in Table I. In every
case, the value of Δ is zero to within experimental uncer-
tainties, making the tight relationship among P-level states
highly predictive for cases (such as 2P charmonium) inwhich
some of the states have not yet been observed.
In this short paper we explore the physical reason for

this remarkable relationship in quarkonium; indeed, Δ is so
small that one may call it an ultrafine splitting. We then
show how it may be applied to the confusing set of
charmonium states around 3.9 GeV to uncover an unam-
biguous signal of exoticity, by which we mean a non-cc̄
state component. Finally, we remind the reader of the
ongoing and proposed experiments designed to uncover
missing quarkonium states.
This paper is organized as follows. In Sec. II we identify

and discuss the operators potentially contributing to the
“ultrafine” mass difference in Eq. (1) and related combi-
nations. Section III identifies the origin of the relevant
operator in quark potential models and explains the origin
of its numerical suppression; Sec. IV does the same for the
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nonrelativistic quantum chromodynamics (NRQCD) effec-
tive theory. In Sec. V we discuss the nonperturbative heavy-
quark limit and the effect of the appearance of partonic
degrees of freedom beyond the heavy quark-antiquark pair,
and in Sec. VI describe the use of the “ultrafine” relation in
identifying the presence of exotic (non-QQ̄) components
in the candidate states and the prospects for observing the
missing states. Section VII summarizes and concludes.

II. OPERATORS CONTRIBUTING TO Δ

The hyperfine interaction is defined, as usual, as a direct
coupling between the intrinsic spins of the component
fermions of the state. In the case of ff̄ bound states, where
f is a spin-1

2
fermion, one can produce only a finite number

of linearly independent operators contributing to the mass
from the basic ingredients of quark-spin Sf, Sf̄ and orbital
angular momentumL operators. For example, a quark-spin
operator that transforms under an irreducible representation
with spin greater than two cannot, by the Wigner-Eckart
theorem, contribute to matrix elements of states containing
only two spin-1

2
quarks. On the other hand, operators

sensitive to arbitrarily high powers of squared quark
momenta (but no spin dependence) might be generated
by the fine details of quark distributions within the hadron,
but their contributions to hadron masses are proportional to
those arising from any spin-symmetric operator, such as the
quark-mass operator.
To put the discussion on a firm footing, we define the

usual operators in configuration space:

Sf · Sf̄ ðhyperfineÞ; ð2Þ

S ·L ðspin-orbitÞ; ð3Þ

T
↔ ≡ ðSf · r̂ÞðSf · r̂Þ −

1

3
Sf · Sf̄ ðtensorÞ; ð4Þ

where S≡ Sf þ Sf̄. The operators can be expressed just
as easily in momentum space by replacing f − f̄ relative
position operator r with the relative momentum operator q
and replacingLwith q × p, where p is the total momentum
operator. In any case, these are the only three independent

spin-dependent operators that arise up to quadratic order in
Sf;f̄; and since all linearly independent operators arising
beyond quadratic order transform as spin greater than two,
the list in Eqs. (2)–(4) is complete. For example, the
operator ðS ·LÞ2 can be shown1 for any given multiplet
of ff̄ states to be linearly dependent on the ones above plus
the operator S2L2.
Now consider any multiplet of ff̄ states that, in the

language of a quark potential model, carry the same
principal quantum number n and orbital angular momen-
tum L. For states with S ¼ 0 (and hence J ¼ L: quarko-
nium η and h), matrix elements of both the spin-orbit and
tensor operator vanish by the Wigner-Eckart theorem since
the operators transform as S ¼ 1 and S ¼ 2, respectively.
The same matrix elements vanish for all L ¼ 0 states,
so one immediately sees that any n3S1 − n1S0 hyperfine
splitting—in which all spin-independent mass terms
cancel—depends only on the hyperfine operator, as one
might expect. For L > 0 and S ¼ 1, J ¼ L − 1, L, and
Lþ 1 are allowed, and using the results

hS ·Li ¼ 1

2
½JðJ þ 1Þ − LðLþ 1Þ − SðSþ 1Þ�; ð5Þ

and

hT↔i ¼

8>><
>>:

− Lþ1
6ð2L−1Þ ; J ¼ L − 1;

þ 1
6
; J ¼ L;

− L
6ð2Lþ3Þ ; J ¼ Lþ 1;

ð6Þ

one can quickly check that adding these matrix elements
weighted by the 2J þ 1 degenerate spin states for each level
gives a vanishing result. In other words, the spin-averaged
matrix elements of any trio of spin-triplet states n3LJ¼L−1,
n3LJ¼L, n3LJ¼L−1 with orbital angular momentum larger
than zero vanish for the spin-orbit and tensor operators.
The reason is not so mysterious: Although expressed in the
jJ; Jz; L; S ¼ 1i basis, the states form a complete multiplet

TABLE I. Experimental values of Δ in MeV for quarkonium and in MHz for positronium. For quarkonium the state masses entering
Eq. (1) are listed, while for positronium the differences ð23S1 − 22Sþ1PJÞ are presented.

System hð1P1Þ χ0ð3P0Þ χ1ð3P1Þ χ2ð3P2Þ Δ

cc̄ð1PÞ 3525.38(11) 3414.75(31) 3510.66(7) 3556.20(9) þ0.08ð13Þ
cc̄ð2PÞ · · · 3862þ26þ40

−32−13 · · · 3927.2(2.6) · · ·

bb̄ð1PÞ 9899.3(8) 9859.44(42)(31) 9892.78(26)(31) 9912.21(26)(31) −0.57ð88Þ
bb̄ð2PÞ 10 259.8(1.2) 10 232.5(4)(5) 10 255.46(22)(50) 10 268.65(22)(50) −0.44ð1.31Þ
Ps 11 180(5)(4) 18 499.65(1.20)(4.00) 13 012.42(67)(1.54) 8624.38(54)(1.40) þ4.31ð6.50Þ

1This fact provides one convenient method [13] for calculating
matrix elements of T

↔
, such as those given in Eq. (6).

RICHARD F. LEBED and ERIC S. SWANSON PHYSICAL REVIEW D 96, 056015 (2017)

056015-2



in the jL;Lz; S ¼ 1; Szi basis, while the spin-orbit and
tensor operators, being irreducible operators of rank greater
than zero, are traceless. On the other hand, all of these states
have the same spin-independent mass terms, which is also
the same as that of the corresponding spin-singlet n1SJ¼L.
In total, the mass combination for orbital angular momen-
tum larger than zero defined by:

Δn;L ≡Mðn1LJ¼LÞ−
2L− 1

3ð2Lþ 1ÞMðn3LJ¼L−1Þ

−
2Lþ 1

3ð2Lþ 1ÞMðn3LJ¼LÞ−
2Lþ 3

3ð2Lþ 1ÞMðn3LJ¼Lþ1Þ;

ð7Þ

of which Eq. (1) is simply the case L ¼ 1 for quarkonium,
receives contributions only through the hyperfine operator.
All mass combinations Δn;0 ≡Mðn1S0Þ −Mðn3S1Þ and

Δn;L of Eq. (7) for L > 0 are thus pure hyperfine splittings.
In order to see why the latter deserve the label “ultrafine,”
we consider the origin of the hyperfine operator in three
useful dynamical formalisms: quark-potential models, non-
relativistic QCD (pNRQCD), and the heavy-quark expan-
sion of QCD, including nonperturbative effects.

III. QUARK POTENTIAL MODELS

The form of the operator multiplying Sf · Sf̄ is clearly
crucial for determining the relative size of various hyperfine
interactions. In the case of electromagnetic interactions, the
direct spin-spin coupling is pointlike, being proportional to
the wave function of the state at zero spatial separation r
between the spins, a fact first noted by Fermi [14]. Such a
term is proportional to δð3ÞðrÞ, and arises naturally in the
nonrelativistic reduction of terms in the Dirac equation [and
more generally, quantum electrodynamics (QED)] describ-
ing the interaction of two charged particles, known as the
Breit Hamiltonian [15]. In that context, it appears through
the Laplacian operator acting upon the Coulomb potential
1=r. Of course, this 1=r simply occurs as the Fourier
transform of the momentum-space propagator 1=q2 of the
massless photon.
The equivalent Breit Hamiltonian for the case of poten-

tial interactions in quark systems, as applied to hadron
masses, was expressed in De Rujula, Georgi, and Glashow
[16]. Since QCD also has massless gauge bosons in the
form of gluons, one finds that the corresponding spin-spin
term is proportional to δð3ÞðrÞ in the short-distance limit in
which the interaction is dominated by one-gluon exchange.
Any quark potential model in which the potential VðrÞ
contains a piece representing one-gluon exchange will
exhibit this feature. This term is represented for example,
in the most thorough recent analysis of charmoniummasses
[17] as a Gaussian of width 1=σ:

δð3ÞðrÞ → ~δσðrÞ≡
�

σffiffiffi
π

p
�

3

e−σ
2r2 : ð8Þ

“Smearing” of this sort is necessary to regularize the
delta function (thereby making it a well-defined three-
dimensional quantum-mechanical operator), and because
nonzero hyperfine splitting is evident in the spectrum for
radially excited S-wave states.
The most interesting feature of the δð3ÞðrÞ dependence

is that it is only supported by wave functions that are
nonvanishing at the origin. Of course, one well-known
feature of quantum mechanics is that wave functions with
orbital angular momentum quantum number L scale as rL

near the origin. Therefore, one naturally expects the S-wave
hyperfine splittings to be numerically much larger than
those with L > 0, hence the term “ultrafine.” The evidence
from Table I strongly supports this conclusion; for example,
the S-wave hyperfine splitting in the n ¼ 1 level of
charmonium is mJ=ψ −mηc ¼ 113.5ð5Þ MeV. One antici-
pates that theD-wave splittings would be even smaller than
those in the P-wave.
Using the smearing function of Eq. (8) and the parameter

value [17] σ ¼ 1.0946 GeV, we find values ofΔn;1 of order
3–10 MeV, which are much larger than those observed.
This result is a reflection of the relatively small value of σ
used in the model, which is driven by the much larger
observed S-wave hyperfine splittings, Δn;0.

IV. NRQCD

In the heavy-quark limit of QCD, all operators dependent
upon the heavy-quark flavor or spin are suppressed by
powers of the heavy-quark mass mQ, and the relevant
finite dynamical parameter becomes the heavy-quark four-
velocity v. Effects at energy scales higher than mQ are
integrated out in the usual Wilsonian fashion, leading to
the heavy-quark effective theory [18]. Spin-spin and tensor
operators, containing two heavy-quark spin operators, are
therefore suppressed by 1=m2

Q.
When more than one heavy quark is present, as in

quarkonium, new scales arise, and their modes must be
integrated out successively: in decreasing magnitude, these
are the “hard” scale mQ (leading to the effective theory of
nonrelativistic QCD (NRQCD) [19,20], the “soft” scale
mQv, and the “potential” scale (energies ∼mQv2, momenta
∼mQv), leading to the effective theory called potential
nonrelativistic QCD (pNRQCD) [21,22]. The remaining
modes are “ultrasoft” (energies and momenta ∼mQv2).
The state-of-the-art calculations in this program are

now performed at next-to-next-to-next-to leading order
(NNNLO) in NRQCD; the corresponding Hamiltonian
was obtained in Ref. [23] and the heavy-quarkonium
spectrum for states of arbitrary quantum numbers, includ-
ing terms of OðmQα

5
s ln αsÞ, was presented in Ref. [24].
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The corresponding expressions including OðmQα
5
sÞ terms,

which we use here, appear in Ref. [25].
Using the NNNLO results from Ref. [25], one computes

the 1S hyperfine splitting:

Δ1;0 ¼
1

3
mQα

4
sC4

F −
mQα

5
sC4

F

108π

�
6π2β0 − 72β0 þ 20CA

þ 18CF þ 63CA log
�

1

αsCF

�
− 72β0 log

�
μ

αsCFmQ

�

þ 8TFnl − 54TF þ 54TF log 2

�
; ð9Þ

where β0 ¼ ð11CA − 2nlÞ=3, with nl being the number of
light fermion species appearing in loop corrections (i.e., as
short-distance degrees of freedom only) and μ being the
renormalization point. The usual color and trace factors
CA ¼ Nc → 3, CF ¼ ðN2

c − 1Þ=2Nc →
4
3
, and TF ¼ 1

2
also

appear. It is worth noting that the leading ½Oðα4sÞ� term
in this expression gives only 13 MeV for αs ¼ 0.3 and
mc ¼ 1.5 GeV, too low by a factor of nearly 9 compared to
the experimental value given above; however, the Oðα5sÞ
term not only exhibits a strong dependence upon μ but turns
out to be of the same numerical order as the leading term.
One concludes that the splitting Δ1;0 is not yet under
control in the NRQCD result Eq. (9).
In comparison, the ultrafine combination at this order in

NRQCD computed using Ref. [25] is much simpler:

Δn;1 ¼
mQC4

Fα
5
s

432πðnþ 1Þ3 ð8TFnl − CAÞ: ð10Þ

This expression is smaller both parametrically [by a power
of αsðmQÞ] and numerically (by the large denominator
factor) than the usual hyperfine splitting.
The origin of the extra suppression, leading to the

“ultrafine” label, arises for precisely the same algebraic
reason as it does for the nonrelativistic quark potential
model: the same set of spin-dependent operators as in
Eqs. (2)–(4) arises in NRQCD, and the spin-spin operator
Eq. (2) again appears with the contact interaction coef-
ficient δð3ÞðrÞ [23]. The L > 0 overlap integrals are again
severely suppressed, and indeed only survive due to the
renormalization of the αs coefficient to Eq. (2) to include
terms of the form lnðrÞ that are singular for r → 0. One thus
obtains the ultrafine suppression in effective field theory
treatments of QCD.
The values obtained from Eq. (10) are remarkably small:

one obtains 9.5 keV, 2.8 keV, 3.8 keV, and 1.1 keV for 1P
and 2P charmonium, and 1P and 2P bottomonium, respec-
tively; such differences are far smaller than the central
values given in Table I. The positronium result is expected
to be even further suppressed, to Oðα6Þ [26].

In comparison, the Schnitzer ratio [27],

R1 ≡Mð3P2Þ −Mð3P1Þ
Mð3P1Þ −Mð3P0Þ

; ð11Þ

is known to be exactly 4
5
at leading order in αs, and this

result is borne out in NRQCD calculations [25]. However,
the OðαsÞ corrections to this ratio have a strong μ
dependence, which can be used to accommodate its rather
different experimental value for 1P charmonium, ∼0.47.
One may anticipate a similar strong μ dependence to arise
in the next (uncomputed)Oðα6sÞ corrections to Eq. (10), but
one still expects the measured values for Δn;1 to remain no
larger than Oð10 keVÞ.

V. NONPERTURBATIVE HEAVY-QUARK LIMIT

The matrix elements that appear in the NRQCD results
reported in the previous section are evaluated in the heavy-
quark limit, for which nonrelativistic Coulombic meson
wave functions are appropriate. This approximation breaks
down as the quarks become lighter and the scale ΛQCD

becomes more relevant. Furthermore, the nonperturbative
regime also becomes more relevant as the radial quantum
number increases, because larger spatial scales are probed.
Under these conditions, mass splittings that had been
proportional to the heavy quark mass can scale as
Λ3
QCD=m

2
Q. It is thus prudent to enquire into the regime

of validity of the NRQCD computations presented above.
An analogous problem arises in the application of the

operator-product formalism to the interaction of heavy
mesons with hadronic matter. In this case, Peskin [28–31]
has estimated that the method is reliable if:

mQ ≫ n2
ΛQCD

α2sðr−1Q Þ : ð12Þ

It was subsequently argued that this expression should
contain a numerical coefficient of order 10 [32]. As a result,
the operator-product expansion (in this context) is never
valid for physical quarks.
In view of this issue, we seek to estimate the non-

perturbative behavior of the hyperfine matrix element
that contributes to the hyperfine and ultrafine splittings.
A formalism for examining this question was developed
long ago by Eichten and Feinberg [33], who applied the
heavy-quark expansion to the Wilson loop to obtain
expressions for the spin-dependent interaction of heavy
quarks at order 1=m2

Q. The result for the coefficient of the
spin-spin term is proportional to the temporal integral of the
matrix element of chromomagnetic fields. Subsequently, a
somewhat more transparent, but equivalent, expression was
obtained with a Foldy-Wouthuysen reduction of the QCD
Hamiltonian in Coulomb gauge [34]:
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VðnRÞ
hyp ðR ¼ rQ − rQ̄Þ

¼ αs
4π

3mQmQ̄
Sf · Sf̄ ×

X
m≠n

1

ϵnðRÞ − ϵmðRÞ

×

�
nR; rQ; rQ̄

����
Z

d3xh†ðxÞBðxÞhðxÞ
����mR; rQ; rQ̄

	

·

�
mR; rQ; rQ̄

����
Z

d3yχ†ðyÞBðyÞχðyÞ
����nR; rQ; rQ̄

	

þ ðh ↔ χÞ: ð13Þ

States are labeled with the coordinates of the static quarks,
rQ, rQ̄, and gluonic quantum numbers are denoted by mR,
nR. Heavy-quark and -antiquark creation operators are
labeled by h† and χ†, respectively. The operators B are
chromomagnetic fields. One of the fields is evaluated at
the position of the quark rQ, while the other is evaluated at
the antiquark position rQ̄. Evaluating both fields on a single
quark line is possible, but does not yield a spin-dependent
interaction.
Perturbatively, the matrix element of Eq. (13) becomes

VðnRÞ
hyp ðRÞ ∝ ∇Q ·∇Q̄hAðrQ; tÞ ·AðrQ̄; t0Þi:

The matrix element is proportional to 1=R, and the hyper-
fine interaction is then proportional to δð3ÞðRÞ. A simple
nonperturbative estimate can be made by introducing a
gluon effective mass term into the gluon propagator. In this
case, one obtains a Yukawa-type interaction, with a range
given by the inverse gluon effective mass, which is also
seen to be short-ranged.
More generally, one can argue that infinitely many

strongly interacting virtual gluons tend to decorrelate the
chromomagnetic fields rapidly as the interquark separation is
increased [34]. This expectation is confirmed in quenched
lattice computations of the chromomagnetic field correlation
in the presence of a Wilson loop [35], in which it is found
that a Yukawa potential with a gluon mass of approximately
2.5 GeV fits the simulation well. The potential itself is zero,
within statistical error, for R > 0.2 fm.

VI. ULTRAFINE SPLITTINGS AND EXOTICS

All of the previous discussion leads to the sameconclusion:
The heavy-quark hyperfine interaction is short-ranged. Thus,
matrix elements of the interaction must decrease with radial
and orbital quantum number. Furthermore, experiment indi-
cates that Δ1;1ðcc̄Þ, Δ1;1ðbb̄Þ, and Δ2;1ðbb̄Þ are all small,
and hence this quantity must be small for all n and L in the
charmonium and bottomonium systems.
This conclusion follows from the quark model, which

does not consider coupled channels; NRQCD, which only
considers the short-range contribution of light quarks;
heavy-quark QCD, which suppresses the effect of light

quarks; or quenched lattice computations. Thus it is possible
that long-distance light-quark effects—such as those man-
ifested in meson-meson contributions to quarkonium states,
or by QQ̄qq̄ wave function components—can ruin the
relationship Δn;L ≪ ΛQCD. But this condition can be taken
as the definition of a crypto-exotic state that contains
important light-quark degrees of freedom.
In view of this observation and the putative exotic nature

of the Xð3872Þ, we suggest that measuring the mass of the
hcð2PÞ and computing Δ2;1ðcc̄Þ will unambiguously reveal
if the Xð3872Þ contains important light-quark degrees of
freedom. This conclusion, of course, relies upon assuming
that χc2ð2PÞ, the new χc0ð2PÞ candidate, and the undis-
covered hcð2PÞ are pure cc̄ states; at minimum, one can
conclude that a substantial violation of the relation Δn;L ≪
ΛQCD in heavy quarkonium points to at least one of the
states containing a significant non-QQ̄ component. Indeed,
even an effect giving Δn;L > OðΛ3

QCD=m
2
QÞ, the heavy-

quark spin-symmetry expectation, will warrant close
attention.
The same comments hold for the D-wave cc̄ states: the

ψð3770Þ and ψð3823Þ are believed to be 13D1 and 13D2,
respectively; the observation of a spin-0 ηc 11D1 or spin- 3ψ
13D3 will allow a precise prediction of the mass of the
other, while a measurement of both will allow one to test for
a non-cc̄ component in this multiplet.
The prospects for experimentally measuring the 2P

charmonium ultrafine splitting are encouraging. For
example, BESIII observed the Z0

cð4020Þ in the reaction
eþe− → ππhcð1PÞ [36]. A similar effort could yield a
signal for ππhcð2PÞ, with the hcð2PÞ being detected in its
DD̄� decay mode [37].
Alternatively, attempting to find χcJð2PÞ with J > 0

in the recoil mass products X of eþe− → J=ψX is not
expected to be profitable, since this channel has been seen
to be dominated by ηcð1SÞ, ηcð2SÞ, χc0ð1PÞ, and the
Xð3940Þ, with little evidence for χc1ð1PÞ, χc2ð1PÞ, or
any of the expected χcJð2PÞ [38].
Examining the process B → KωJ=ψ should shed light

on the enigmatic Xð3915Þ, which likely plays a role in
the charmonium 2P spectrum. Finally, collecting sufficient
data in B → KDD̄� should permit observation of the
hcð2PÞ and the χc1ð2PÞ [39].

VII. CONCLUSIONS

We have argued that the splitting Δn;L defined in Eq. (7)
is robustly “ultrafine” in the absence of explicit long-
distance light-quark degrees of freedom, and therefore can
serve as an unambiguous test of the “coupled-channel
exoticity” of quarkonium states. Prospects for applying this
test in the charmonium 2P sector appear to be good.
It is interesting to speculate on the applicability of

this idea to quarkonium hybrid states. The chromomagnetic
matrix element of Sec. V, which gives the direct
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quark-antiquark spin coupling Sf · Sf̄, depends upon the
gluonic state of the heavy-quark meson [which is explicit in
Eq. (13) and is implicit in the Eichten-Feinberg formalism].
Naively, the ultrafine splitting could be large in states with
substantial hybrid components. However, the arguments
of Sec. V lead us to believe that this will not be the case,
because the addition of valence gluonic degrees of freedom
should not reverse the rapid decorrelation of the chromo-
magnetic fields. This expectation can be checked directly

with lattice measurements of VðhybridÞ
hyp [Eq. (13)], which

should be readily achievable with present capabilities.

The application of this result to splittings in complete
hybrid multiplets will be complicated by the addition of
many new spin-dependent operators in the heavy-quark
expansion, but should, nevertheless, also be of interest.
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