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The properties of magnetized color superconducting cold dense quark matter under compact star
conditions are investigated using an SUð2Þf Nambu Jona-Lasinio (NJL)-type model in which the
divergences are treated using a magnetic field independent regularization scheme in order to avoid
unphysical oscillations. We study the phase diagram for several model parametrizations. The features of
each phase are analyzed through the behavior of the chiral and superconducting condensates together
with the different particle densities for increasing chemical potential or magnetic field. While confirming
previous results derived for the zero magnetic field or isospin symmetric matter case, we show how the
phases are modified in the presence of β-equilibrium as well as color and electric charge neutrality
conditions.
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I. INTRODUCTION

In the last decades, the QCD phase diagram as a function
of the temperature and baryon chemical potential has been
the focus of intense research [1,2]. Particularly, during the
last years many works in the literature were devoted to
the study of quark matter under the influence of strong
magnetic fields (see e.g. [3–5] and refs. therein). One of the
reasons is that the estimated magnetic field created in
relativistic heavy ion collisions is of the order 1018–1020 G
[6–8]. Another motivation is that, in the astrophysics
scenario, certain compact objects called magnetars can
have surface magnetic fields up to 1015 G [9,10], with
estimates for the magnetic field values at their centers of a
few orders of magnitude larger [11–14]. In that case, the
relevant region of the QCD phase diagram is that of low
temperature and intermediate values of density, where color
superconducting phases of quark matter are expected to
exist. At asymptotically large chemical potentials, the
characteristics of the color superconducting phases can
be analyzed using perturbative methods [15]. These meth-
ods, however, are not expected to be valid for the range
of moderate densities relevant for magnetars. In addition,
the well-known sign problem prevents the lattice QCD
approach from being applied to this sector of the phase
diagram [16,17]. In this situation, effective models of QCD
arise as a powerful tool to circumvent these problems. One
of the most popular effective models that preserves QCD
chiral symmetries is the Nambu Jona-Lasinio (NJL) model
[18]. In this model, gluon degrees of freedom are integrated
out in favor of some local quark-antiquark interactions
and chiral symmetry is dynamically broken. When effective
quark-quark interactions are added, quarks can form

Cooper pairs that give rise to a variety of color super-
conducting phases [19,20]. In this context, the effect of a
constant magnetic field has been analyzed by several
authors [21–28]. At this point, it is important to remark
that the local character of the interactions considered in the
NJL-type models leads to divergences in the momentum
integrals. These divergences need to be handled in some
way in order to completely define the model and yield
meaningful results. Several regularization procedures are
possible even in the absence of magnetic fields [18].
Moreover, when the magnetic field is introduced, the
vacuum energy acquires a Landau level (LL) structure
and additional care is required in the treatment of the
divergences. Many of the existing calculations of the
properties of magnetized superconducting quark matter
within this type of models remove these divergences by
introducing some type of regulator function for each LL
separately [24–28]. This procedure, however, might in
general introduce unphysical oscillations. A discussion
on this can be found in Refs. [29–31], where it is also
observed that the use of smooth regulator functions
improve the situation. In fact, this allows to identify
possible physical oscillations appearing in some cases
[22,23]. However, an even clearer interpretation of the
results can be obtained if the unphysical oscillations are
completely removed with another scheme, especially at
finite chemical potential and in the presence of color
superconductivity. A regularization scheme of this type
has been reported in Ref. [32] for the model in the absence
of color superconductivity. The procedure follows the steps
of the dimensional regularization prescription. This allows
us to isolate the divergence into a term that has the form of
the zero magnetic field vacuum energy and that can be
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regularized in the standard fashion. It should be stressed
that similar expressions for the magnetic field dependent
terms can be obtained using a method based on the proper-
time formulation [33]. In a previous paper [34], some of the
present authors used this scheme [so-called “magnetic field
independent regularization” (MFIR) scheme] to study the
influence of intense magnetic fields on the behavior of
(isospin) symmetric color superconducting cold quark
matter. The aim of the present work is to extend the
corresponding results to the situation in which the con-
ditions relevant for compact star applications are taken into
account. Namely, our objective is to apply a NJL-type
model within the MFIR scheme to study how the magnetic
field affects the properties of cold dense two flavor quark
matter under the constraints of color and electric charge
neutrality as well as β-equilibrium. It is known that these
constraints, which will be also referred to as compact star
conditions, substantially modify the phase structure by
suppressing some phases and favoring others [19,20,
35–38]. As in the case of symmetric matter, the removal
of unphysical oscillations induced by the regularization will
allow us to construct and discuss the corresponding phase
diagrams.
This article is organized as follows. In Sec. II we present

the NJL model with magnetic field and diquark interactions
in the MFIR scheme for dense two flavor quark matter.
We also impose compact star conditions in the limit of
vanishing temperature. The model parameters used in our
numerical calculations are also given. In Sec. III we present
our numerical results, discussing in detail the behavior of
the different relevant quantities as functions of the magnetic
field or the chemical potential. The corresponding phase
diagrams are also presented and discussed. In Sec. IV we
present our conclusions. Finally, in the Appendix we
review some relevant features of the dependence of the
zero magnetic field results on the strength of the quark-
quark pairing interaction.

II. THE MODEL AND ITS REGULARIZATION

A. The thermodynamical potential in the
mean field approximation

In order to study the properties of cold dense two flavor
quark matter under compact star conditions and in the
presence of an external strong magnetic field, we consider
the following Lagrangian density

L ¼ Lq þ Llep: ð1Þ

The quark sector is described by a NJL-type SUð2Þf
Lagrangian density Lq which includes scalar-pseudoscalar
and color pairing interactions and Llep corresponds to the
leptonic contribution. In the presence of an external
magnetic field and finite chemical potentials, Lq reads

Lq ¼ ψ̄ ½i~D −mc þ μ̂γ0�ψ þ G½ðψ̄ψÞ2 þ ðψ̄ iγ5τ⃗ψÞ2�
þH½ðiψ̄Cϵfϵ

3
cγ5ψÞðiψ̄ϵfϵ3cγ5ψCÞ�: ð2Þ

Here, G and H are coupling constants, ψ ¼ ðu; dÞT
represents a quark field with two flavors, ψC ¼ Cψ̄T and
ψ̄C ¼ ψTC, with C ¼ iγ2γ0, are charge-conjugate spinors
and τ⃗ ¼ ðτ1; τ2; τ3Þ are Pauli matrices. Moreover, ðϵ3cÞab ¼
ðϵcÞ3ab and ðϵfÞij are antisymmetric matrices in color and
flavor space respectively. Furthermore, mc is the (current)
quark mass that we take to be the same for both up and
down flavors, and the diagonal chemical potential matrix μ̂
is μ̂ ¼ ðμur; μug; μub; μdr; μdg; μdbÞ, where the six quantities
μfc are in principle independent parameters, but become
related among themselves under compact star conditions.
In Eq. (2) we have introduced the covariant derivative

~Dμ ¼ ∂μ − i~e ~Q ~Aμ. Note that here we are dealing with
“rotated” fields. As is well known, in the presence of a
nonvanishing superconducting gap Δ, the photon acquires
a finite mass. However, as shown in Ref. [39], there is a
linear combination of the photon field Aμ and the eighth
component of the gluon field G8

μ that leads to a massless

rotated Uð1Þ field ~Aμ. The associated rotated charge matrix
~Q is given by

~Q ¼ Q −
T8ffiffiffi
3

p ¼ Qf ⊗ 1c − 1f ⊗
T8
cffiffiffi
3

p ; ð3Þ

where Qf¼diagð2=3;−1=3Þ and T8
c ¼ diagð1;1;−2Þ=2 ffiffiffi

3
p

.
Then, in a six dimensional flavor-color representation
ður; ug; ub; dr; dg; dbÞ, the rotated charges for the different
quarks in units of ~e are: ~qub ¼ 1, ~qur ¼ ~qug ¼ 1=2, ~qdr ¼
~qdg ¼ −1=2 and ~qdb ¼ 0. The rotated unit charge ~e is
given by ~e ¼ e cos θ, where θ is the mixing angle which is
estimated to be ≃1=20 [40]. In the present work we
consider a static and constant magnetic field in the
3-direction, ~Aμ ¼ δμ2x1B, which in fact is a mixture of
the electromagnetic and color fields. Although here we are
basically interested in the massless component of the
rotated field, it is interesting to keep in mind that there
also exists a massive X-component which can be either
Meissner expelled or nucleated into vortices [41].
The leptonic contribution Llep in Eq. (1) is given by the

Dirac Lagrangian with chemical potential

Llep ¼
X
l

ψ̄ l½iγμð∂μ − ieAμÞ −ml þ μlγ
0�ψ l; ð4Þ

where l ¼ e; μ and we use me ¼ 0.511 MeV and
mμ ¼ 105.66 MeV. In order to describe the system as a

function of ~eB, we will take e≃ ~e and Aμ ≃ ~Aμ as a good
approximation based on the small value of θ.
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The quark chemical potential matrix can furthermore be
expressed in color-flavor space as μ̂ ¼ μþQμQ þ T8μ8 by
introducing μ, the common chemical potential for nonzero
baryonic density, and the chemical potentials μ8 and μQ,
which are added to ensure color and electric charge
neutrality conditions respectively. Here, we have used
the fact that since the red and green quarks paired by
the interaction are degenerate, their densities will be equal
and we can impose μ3 ¼ 0. Furthermore, assuming that no
neutrinos are trapped in the system, β-equilibrium con-
ditions lead to μμ ¼ μe and μdc ¼ μuc þ μe, where the latter
implies μQ ¼ −μe. While μ8 induces a difference between
the chemical potentials of color paired (red and green) and
unpaired (blue) quarks of the same flavor, μe differentiates
the chemical potentials of flavored quarks (u and d).
Therefore, when β-equilibrium is taken into account, each
chemical potential can be expressed in the following way:

μur ¼ μug ¼ μ −
2

3
μe þ

1

3
μ8; μub ¼ μ −

2

3
μe −

2

3
μ8;

μdr ¼ μdg ¼ μþ 1

3
μe þ

1

3
μ8; μdb ¼ μþ 1

3
μe −

2

3
μ8:

ð5Þ

Again, the equality between chemical potentials of red and
green quarks comes from the fact that the interaction pairs
them in a degenerated way. For calculational simplicity, it is
also convenient to define

μ̄≡ 1

2
ðμdg þ μurÞ ¼

1

2
ðμdr þ μugÞ ¼ μ −

1

6
μe þ

1

3
μ8;

δμ≡ 1

2
ðμdg − μurÞ ¼

1

2
ðμdr − μugÞ ¼

1

2
μe; ð6Þ

where the last equality in each line follows from β-
equilibrium.
In what follows wework in the mean field approximation

(MFA), assuming that the only nonvanishing expectation
values are hψ̄ψi¼−ðM−mcÞ=2G and hiψ̄Cϵfϵ

3
cγ5ψi¼

−Δ=2H, which can be chosen to be real. Here, M and
Δ are the so-called dressed quark mass and superconduct-
ing gap, respectively. Following the standard procedure
described in e.g. Refs. [4,26], the resulting MFA thermo-
dynamic potential at vanishing temperature reads

ΩMFA ¼ ðM −mcÞ2
4G

þ Δ2

4H
−
X

j ~qj¼0;1
2
;1

Pj ~qj − Plep; ð7Þ

where Plep is the leptonic contribution to be explicitly given
below [see Eq. (29)] and

Pj ~qj¼0 ¼
Z

d3p
ð2πÞ3 ðE

þ
db þ jE−

dbjÞ; ð8Þ

Pj ~qj¼1 ¼
~eB
8π2

X∞
k¼0

αk

Z
∞

−∞
dpzðEþ

ub þ jE−
ubjÞ; ð9Þ

Pj ~qj¼1=2 ¼
~eB
8π2
X∞
k¼0

αk

Z
∞

−∞
dpzðEþ

Δþ þ jEþ
Δ− jþE−

Δþ þ jE−
Δ− jÞ:

ð10Þ

Here, we have introduced αk ¼ 2 − δk0 and

E�
db ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
� μdb ¼ Ep � μdb; ð11Þ

E�
ub ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2k~eBþM2

q
� μub ¼ Epz;k � μub; ð12Þ

E�
Δ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þk~eBþM2

q
� μ̄

�
2

þΔ2

s
�δμ¼E�

Δ;k�δμ:

ð13Þ

Clearly, Eqs. (8)–(10) are divergent and, thus, require
to be regularized. In the next subsection we discuss the
regularization scheme used to achieve this.

B. MFIR regularization in the presence of pairing
interactions and compact star conditions

We start by considering the contributions corresponding
to Pj ~qj¼0;1. Since they do not involve the superconducting
gap their treatment turns out to be simpler. In particular,
Pj ~qj¼0 does not depend explicitly on the magnetic field.
Thus, it can be treated in the usual way [18]. Namely, the
expression in Eq. (8) can be separated into two terms

Pj ~qj¼0¼ 2

Z
d3p
ð2πÞ3Epþ2

Z
d3p
ð2πÞ3 ðμdb−EpÞΘðμdb−EpÞ:

ð14Þ

The first term in this expression represents a vacuum
contribution which turns out to be divergent. Typically,
it can be regularized by introducing a cutoff function
hΛðpÞ, which goes to zero for high momenta in order that
the integral remains finite. The simplest choice is to take
hΛðpÞ ¼ ΘðΛ − pÞ. In this case, we get

Preg
VACðMÞ ¼ 1

π2

Z
Λ

0

dpp2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
: ð15Þ

On the other hand, the presence in the second term of
Eq. (14) of a chemical potential dependent Heaviside
function makes it finite. Thus, no regularization is needed
in this case. Explicitly, such term takes the form
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PMEDðμdb;MÞ ¼ Θðμdb −MÞ
π2

"
μdbðμ2db −M2Þ3=2

3
−
ðμ2db −M2Þ2

8
h

 
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2db −M2
q

!#
; ð16Þ

where hðzÞ ¼ ð2þ z2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
þ z4 ln½z=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
Þ�.

Consequently, the regularized form of Pj ~qj¼0 reads

Preg
j ~qj¼0

¼ Preg
VACðMÞ þ PMEDðμdb;MÞ: ð17Þ

The term Pj ~qj¼1 is explicitly dependent on magnetic
field. As in the previous case, it is convenient to separate it
into two terms

Pj ~qj¼1 ¼
~eB
4π2

X∞
k¼0

αk

Z
∞

−∞
dpzEpz;k þ

~eB
4π2

X∞
k¼0

αk

×
Z

∞

−∞
dpzðμub − Epz;kÞΘðμub − Epz;kÞ: ð18Þ

In this case the first contribution consists of an infinite sum
of Landau level (LL) integrals, each of which is in turn
divergent. As is discussed in the literature there are several
possible regularization procedures (see e.g. [42] and
references therein). Here we perform the so-called “mag-
netic field independent regularization” (MFIR) described in
[32], in which the divergence is removed by subtracting a
vacuum term with the form of the ~eB ¼ 0 case. This
method has the advantage of removing spurious oscilla-
tions in the order parameters which show up in other
procedures where each LL is regularized individually.

Following the steps discussed in that reference, and taking
into account that the only difference with respect to the
no-pairing case is the rotated charge, we get the following
replacement

~eB
4π2

X∞
k¼0

αk

Z
∞

−∞
dpzEpz;k → Preg

VACðMÞ þ PMAGðM; ~eBÞ;

ð19Þ

where Preg
VACðMÞ was defined in Eq. (15) and the (finite)

vacuum magnetic term is

PMAGðM; ~eBÞ ¼ ð~eBÞ2
2π2

�
ζ0ð−1; xÞ þ x − x2

2
ln xþ x2

4

�
:

ð20Þ

Here, ζðs; xÞ is the Hurwitz zeta function and
x ¼ M2=ð2~eBÞ. Therefore, the divergence has been iso-
lated into a vacuum term with the form of Eq. (15), which is
regularized with a sharp cutoff, while the explicit magnetic
field dependence is contained in PMAG. The medium term,
which is finite, can be integrated explicitly once again,
resulting in

PMEDðμub;M; ~eBÞ ¼ Θðμub −MÞ ~eB
4π2

Xkmax

k¼0

αk

"
μub

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ub − s2k

q
− s2k ln

 
μub þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ub − s2k

q
sk

!#
; ð21Þ

where kmax¼Int½ðμ2ub−M2Þ=ð2~eBÞ� and sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ2k~eB

p
.

Gathering these expressions we get

Preg
j ~qj¼1

¼ Preg
VACðMÞ þ PMAGðM; ~eBÞ þ PMEDðμub;M; ~eBÞ:

ð22Þ

Finally, we treat the case of the quark species with
j ~qj ¼ 1=2 which corresponds to the paired quarks and is
therefore more involved. First, we separate the contribu-
tions including the parameter δμ, much in the same way in
which the medium term is separated from the vacuum term
in Eq. (18). The resulting expression is

Pj ~qj¼1=2 ¼ PΔðM;Δ; μ̄; ~eBÞ þ PδμðM;Δ; μ̄; δμ; ~eBÞ; ð23Þ

where

PΔðM;Δ; μ̄; ~eBÞ ¼ ~eB
4π2

X∞
k¼0

αk

Z
∞

−∞
dpz

X
s¼�

Es
Δ;k; ð24Þ

PδμðM;Δ; μ̄; δμ; ~eBÞ

¼ ~eB
4π2

X∞
k¼0

αk

Z
∞

−∞
dpz

X
s¼�

ðδμ − Es
Δ;kÞΘðδμ − Es

Δ;kÞ:

ð25Þ

Next, noting that the first term in Eq. (23) is divergent,
we regularize it following the steps in the Appendix of
Ref. [34]. We obtain
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Preg
Δ ðM;Δ; μ̄; ~eBÞ ¼ 2

π2

Z
Λ

0

dpp2ðEþ
Δ þ E−

ΔÞ þ
ð~eBÞ2
2π2

�
ξ0ð−1; yÞ þ y − y2

2
ln yþ y2

4

�

þ ð~eBÞ2
2π2

Z
∞

0

dp

�X∞
k¼0

αkfðp2 þ kÞ − 2

Z
∞

0

dtfðp2 þ tÞ
�
; ð26Þ

where E�
Δ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

p
� μ̄Þ2þΔ2

q
, y¼ðM2þΔ2Þ=ð~eBÞ

and

fðzÞ¼
X
s¼�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffiffiffiffiffiffiffiffiffiffi

zþ2x
p þ sμ̄=

ffiffiffiffiffiffi
~eB

p
Þ2þy−2x

q
−

ffiffiffiffiffiffiffiffiffiffi
zþy

p �
:

ð27Þ

As in previous cases, the first term in Eq. (26) has been
regularized with a sharp cutoff. This term contains con-
tributions from vacuum and matter which do not explicitly
depend on the magnetic field, and cannot be disentangled
into two separate terms unless Δ ¼ 0. The second term is
the vacuum magnetic contribution which was also found
in the j ~qj ¼ 1 case, now generalized to the case Δ ≠ 0.
Finally, the third term is an additional explicitly magnetic
field dependent matter contribution which is finite, as
proved in Ref. [34].
Turning finally to the second term in Eq. (23), we note

that some conditions have to be satisfied for this term to be
nonzero. This is more clearly seen when Pδμ is rewritten in
the following form

PδμðM;Δ; μ̄;δμ; ~eBÞ

¼ Θðδμ−ΔÞ ~eB
2π2

X
s¼�

sΘðksÞ
XInt½ks�
k¼0

αk

Z
ps

0

dpzðδμ−E−
Δ;kÞ;

ð28Þ

where k� ¼ ½ðμ̄�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − Δ2

p
Þ2 −M2�=~eB and p� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk� − kÞ~eBp

. The first Heaviside function serves to
distinguish between two possible situations within a
Δ ≠ 0 phase: a “gapless phase” (g2SC) when δμ > Δ,
and an ordinary two color superconducting phase (2SC)
when Δ > δμ and this term vanishes. The source of the
differences between these phases comes from the changes
in the quasiparticle spectrum in Eq. (13). As explained in
Refs. [37,38], when δμ ≠ 0 the gap equation has two
branches of solutions and the modes are no longer
completely degenerate, but they split into pairs of two
with gaps Δ� ¼ Δ� δμ. While in the 2SC phase the four
modes are gapped, in the g2SC phase the lower dispersion
relation for the quasiparticle crosses the zero-energy axis
and two of the four modes become gapless.
Having discussed the regularization of the quarks con-

tribution to Eq. (1), only the leptonic term Plep remains to

be considered. However, since leptons also have unit
charge, the total leptonic pressure is quickly recovered
from Pj ~qj¼1 upon performing the replacements M → ml

and μub → μe. Since ml and B are fixed, the vacuum and
magnetic terms can be ignored when one looks for the
minimum of the potential and we have

Plep ¼
X
l¼e;μ

PMEDðμe; ml; ~eBÞ: ð29Þ

Therefore, as a result of the regularization procedure we
finally get

Ωreg
MFA ¼ ðM −mcÞ2

4G
þ Δ2

4H
− 2Preg

VACðMÞ−PMEDðμdb;MÞ
−PMAGðM; ~eBÞ−PMEDðμub;M; ~eBÞ
−
X
l¼e;μ

PMEDðμe;ml; ~eBÞ

−Preg
Δ ðM;Δ; μ̄; ~eBÞ−PδμðM;Δ; μ̄;δμ; ~eBÞ; ð30Þ

where the corresponding terms have been defined in
Eqs. (15), (16), (20), (21), (26), (28). Given this form
for Ωreg

MFA, the minimum for fixed values of μ and ~eB is
found by solving the gap equations

∂Ωreg
MFA

∂ξ ¼ 0; ξ ¼ M;Δ; ð31Þ

subject to the neutrality and β-equilibrium conditions.
Neutrality for electric and color charge can be expressed
in the following form

2

3
nu −

1

3
nd ¼ ne þ nμ ð32Þ

nr ¼ ng ¼ nb: ð33Þ

In these equations, we have introduced

nf ¼
X
c

nfc; nc ¼
X
f

nfc; ð34Þ

where the density for each quark (lepton) species is
obtained by deriving the thermodynamical potential with
respect to the corresponding quark (lepton) chemical
potential μfc (μl). For this purpose, the chemical potentials
of the eight particle species must be treated as independent
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variables. Then, the system consisting of Eqs. (31), (32),
(33) must be solved forM,Δ, μe and μ8, where the relations
(5) are to be applied to express all chemical potentials in
terms of μ, μe and μ8 (it must be taken into account that
since we have already taken μ3 ¼ 0, the equation nr ¼ ng is
automatically satisfied, hence (33) is actually only one
equation). For each value of μ and ~eB, several solutions
of these equations will generally exist, corresponding to
different possible phases. In particular there is a larger
amount of solutions with respect to the zero magnetic field
case due to the fact that there can be different solutions with
different values of kmax. The most stable solution is that
associated with the absolute minimum of the thermody-
namic potential.
Finally, it is interesting to note that, on imposing β-

equilibrium conditions and re-expressing the chemical
potentials in terms of μ, μe and μ8, the neutrality conditions
(32) and (33) can be written in the alternative form

∂Ωreg
MFA

∂μe ¼ 0;
∂Ωreg

MFA

∂μ8 ¼ 0: ð35Þ

For future reference, it is useful at this point to
comment on some details concerning the densities of the
different quark species. For the unpaired species, that is, the
b-quarks, they are given by

ndb ¼ Θðμdb −MÞ 1

3π2
ðμ2db −M2Þ3=2; ð36Þ

nub ¼ Θðμub −MÞ 1

2π2
Xkmax

k¼0

αkj~eBj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ub −M2 − 2kj~eBj

q
:

ð37Þ

The lepton densities can be obtained from nub by replacing
μub → μe and M → ml. The explicit expressions for the
paired quarks densities are more complicated. They cannot
be obtained from the thermodynamical potential as written
in Eq. (30) since it is already evaluated at μ3 ¼ 0. We can
however relax this condition through the replacement

Preg
Δ ðM;Δ; μ̄; ~eBÞ→ 1

2
Preg
Δ

�
M;Δ;

μurþμdg
2

; ~eB

�

þ 1

2
Preg
Δ

�
M;Δ;

μugþ μdr
2

; ~eB

�
; ð38Þ

where a similar one must be made for PδμðM;Δ; μ̄; δμ; ~eBÞ.
Deriving the obtained expression with respect to μfc and
evaluating at μ3 ¼ 0 afterwards, we obtain:

nfc ¼
1

4

�∂Preg
Δ

∂μ̄ þ ∂Pδμ

∂μ̄ � ∂Pδμ

∂ðδμÞ
�

for c ¼ r; g; ð39Þ

where the plus (minus) sign corresponds to down (up)
quarks and nfr ¼ nfg.
While the behavior of the db quarks is quite simple, we

see that for ub quarks, which interact with the magnetic
field, nub contains a sum up to a kmax value which is
determined by μub,M and ~eB. These quarks will occupy all
LL’s up to this kmax number. The leptonic densities are
analogous. On the other hand, the sum over LL’s inside the
PΔ term is infinite, which means that all LL’s are occupied
for the paired quarks. Furthermore, when Pδμ is finite the u
and d densities of the paired quarks will not be equal. It is
interesting to note that nur ¼ nug and ndr ¼ ndg, since they
have identical chemical potentials, and

ndr − nur ¼ ndg − nug ¼
1

2

∂Pδμ

∂ðδμÞ : ð40Þ

While in the 2SC phase Pδμ ¼ 0 and the densities of the
quark species that participate in pairing dynamics are equal,
they can get separated in the g2SC phase.

C. Model parametrization

In order to analyze the dependence of the results on the
model parameters, wewill consider two SUð2Þf NJLmodel
parametrizations. Set 1 leads to M0 ¼ 340 MeV while
Set 2 to M0 ¼ 400 MeV. Here, M0 represents the vacuum
effective quark mass in the absence of external magnetic
fields. The corresponding model parameters are listed in
Table I.

III. NUMERICAL RESULTS

In this section we present our results for the properties of
cold color superconducting quark matter subject to com-
pact star conditions under the influence of an external
magnetic field. We will carry out a detailed study of the
order parameters as a function of the model parameters and,
in particular, the coupling constant ratio H=G. The corre-
sponding phase diagrams for both Set 1 and Set 2 will be
presented as well. Concerning the strength of the diquark
interaction, it should be mentioned that although the ratio
H=G ¼ 0.75 is favored by various models of the quark
effective interaction, from a more phenomenological point
of view this value is subject to rather large uncertainties

TABLE I. Parameter sets for the SUð2Þf NJL model. In both
cases, empirical values in vacuum for the pion observables are
reproduced, mπ ¼ 138 MeV and fπ ¼ 92.4 MeV.

Parameter
set M0 MeV mc MeV GΛ2 Λ MeV −huūi1=3 MeV

Set 1 340 5.59 2.21 621 244
Set 2 400 5.83 2.44 588 241
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[19]. Thus, here we will consider the representative values
H=G ¼ 0.75 and 1, which in fact give rise to different
possible phase structures of the system, as will be seen. The
situation corresponding to other values of H=G will be
briefly addressed.

A. Order parameters as a function
of the chemical potential

In this subsection we analyze the behavior of the order
parameters as a function of μ for given values of the
magnetic field. We will refer mainly to the results for Set 1
since they exhibit a richer structure. Given the potential
complexity of the phase structure, it is convenient to start
with a presentation of the results for a particular value of
~eB, which we display in Fig. 1. Here, we describe the main
features of the phases present in the model and introduce
the corresponding notation, following the one used in
previous studies [33,34,43–46]. The massive, vacuum
and nonsuperconducting phase which is present for lower
chemical potentials in the displayed figures is denoted as
the B-phase. On the other hand, the (almost) chirally
restored and Δ ≠ 0 phase appearing for the larger chemical
potentials is denoted as the A-phase. Depending on the
model parameters and magnetic field, a phase which we
refer to as a D-phase may also be present at intermediate

chemical potentials, in which both the chiral and super-
conducting order parameters are finite and fairly large. For
this reason, this phase is sometimes referred to as a “mixed
phase” [47], even though this is not the only meaning
which has been given to it in the literature [48].
Furthermore, the superconducting phases D and A can
in turn find themselves in two possible modes, depending
on the relative values of δμ and Δ. When δμ > Δ, the
associated phase is said to be gapless (g2SC), and in the
opposite case the phase is simply referred to as a 2SC
type phase.
In Fig. 2 we plot the results for M, Δ, μe and μ8 as a

function of μ for three representative values of ~eB. The B
phase is always found for low enough chemical potentials.
Here, the superconducting gap is zero and μ is not high
enough to populate the quark and lepton species. As a
matter of fact, this phase bears no difference with respect
to the vacuum phase found in the case without diquark
interactions, except for the fact that the magnetic field that
modifies the constituent mass is rotated. The order param-
eter M is independent of μ in this phase because the
corresponding μ-dependent terms in the thermodynamic
potential vanish. In the vanishing ~eB limit, M takes the
value M0 determined by the set of parameters and it
increases with the magnetic field, as expected from the

FIG. 1. M, Δ, μ8 and μe vs μ for H=G ¼ 0.75 and ~eB ¼ 0.07 GeV2, Set 1. Black dotted vertical lines separate B-D-A phases while
the red ones separate 2SC-g2SC phases.

MAGNETIZED COLOR SUPERCONDUCTING QUARK MATTER … PHYSICAL REVIEW D 96, 056013 (2017)

056013-7



magnetic catalysis effect in vacuum [49,50]. Furthermore,
since the vacuum is electric and color charge neutral, both
μe and μ8 can be taken to be zero. For later reference we
note here that, strictly speaking, there is a finite range of

values for μ8 and μe that also lead to the vacuum solution.
We choose to set μe ¼ 0 and μ8 ¼ 0 for simplicity.
For a given magnetic field, the system always finds itself

in the A phase for large enough chemical potentials. It is

FIG. 2. M, Δ, μ8 and μe vs μ for the two values of H=G considered and three representative values of ~eB, Set 1.
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characterized by a large value of Δ and the property that
chiral symmetry is restored. However, due to the presence
of a finite current quark mass, such restoration will only be
approximate. Near the transition,M will take values around
100 MeV and diminish toward a value slightly above mc
for higher chemical potentials. Since μ is well above the
dressed mass, all quark species will be populated, so μ8 and
μe will take nonzero values in order to enforce the neutrality
conditions. When, for example, μ8 is negative we have
that μfp < μfb for p ¼ r, g. In order to maintain a zero net
colour charge, an excess of blue quark density is generated
with respect to the case without neutrality conditions. In the
cases displayed in Fig. 2, μ8 is negative for the two lower
values of themagnetic field, and canvary down to−40 MeV.
In general, it will lie in the range jμ8j < 70 MeV and, as can
be seen for example for ~eB ¼ 0.20 GeV2, it can also take
positive values for higher magnetic fields. As for Δ and μe,
they increase with μ in the range considered and can both
acquire high values, of the order of 150 MeV. When the B
andA phases connect directly, they do so through a first order
transition, as observed in Fig. 2 for ~eB ¼ 0.20 GeV2.
It should be noted that in all cases once the system is in

the A phase the order parameters display some tiny features
(sometimes even hardly visible in the figures) at certain
values of the chemical potential. They correspond to the
so-called “van Alphen-de Haas”(vA-dH) effect [33] and
will be discussed in detail in the following subsections.
Finally, theD phase is present for the two lower values of

~eB in Fig. 2. In this phase, M is lower than in vacuum but
typically much larger than in the A phase, hence chiral
symmetry can be said to be only partially restored. The
parameters Δ and μe increase from zero, acquiring rather
large values in a short range of μ. In fact, since M and Δ
change continuously when going from B to D, the
corresponding transition is of the second order type. We
should also note that μ8 appears to be discontinuous along
this transition for both H=G values. However, we bear in
mind that in the B phase its value is actually not well-
defined, and since it is arbitrarily taken to be zero, such
discontinuity has no physical meaning. In the D phase, it
can actually occur that there is quark population for a given
species even when μ < M, which means that H=G is large
enough to dynamically break the symmetry of the color
gauge group even at chemical potential and dressed mass
values that would correspond to vacuum in the no-pairing
case. The diquark interaction hence induces a density of r
and g quarks. In order to satisfy color charge neutrality,
blue quarks must be present as well, so μ8 acquires large
and negative values such that μfb > M, for at least one of
the two flavors. The D phase is connected to the A phase
through a first order transition. When going fromD to A, μ8
is still negative but takes a smaller absolute value. Both Δ
and μe jump to larger values, but the rate of increase with
respect to μ is smaller. Also, comparing the left and right
panels we see that increasing the diquark interaction will

always induce a larger gap in both the A and D phases. It is
important to note that superconductivity is suppressed with
respect to the non-neutrality case, where the D phase is
only present for larger values of H=G as was noted in [34].
It can be interpreted that, due to this suppression, the D
phase exists because the A phase with larger Δ is ener-
getically disfavored with respect to the former. The origin
of the suppression lies in the fact that the presence of μe
separates the Fermi momenta of the up and down quarks
with respect to each other. Since the quark pairing occurs
between particles of equal and opposite momenta, this
splitting reduces the diquark condensate.
For the particular caseH=G¼ 0.75 and ~eB ¼ 0.07 GeV2,

we see that immediately after the second order transition
from B to D, Δ≳ δμ, so the system finds itself in the 2SC
mode. However, these two quantities are very similar, and
when the chemical potential is increased δμ becomes
larger than Δ for μ≃ 342 MeV, leading to a g2SC region.
We see that when the transition occurs,M and μe diminish
slightly while Δ and μ8 drop sharply, where the latter also
changes sign. This phase exists in a very short μ range, so
another first order transition occurs almost immediately to
the A phase.
In Fig. 3 we illustrate the corresponding densities which,

of course, satisfy the neutrality conditions in Eqs. (32),
(33). We recall that due to Eq. (5), one has nfr ¼ nfg. Thus,
of these four densities, only those corresponding to the red
quarks are given. As expected, all densities are zero in the B
phase, while in the A phase the chemical potential is well
above the quark dressed mass, therefore resulting in finite
densities for all quarks. Furthermore, the lepton chemical
potential is above 120 MeV, so both muon and electron
population will be finite. As stated before, in the D phase
one finds quark population even for μ < M. The densities
of the u and d quarks forming diquark pairs are equal in
the 2SC region because Pδμ ¼ 0. On the other hand, we
observe in the inset of the intermediate left panel that nur
and ndr separate in the g2SC region according to Eq. (40),
since Pδμ ≠ 0. When the D phase begins, Δ becomes
positive populating the densities of the paired quarks, while
the blue quarks also acquire a nonzero density to ensure
neutrality. Because of electric charge neutrality, μe becomes
positive. Electron population will therefore be finite, as a
very small value of μe is enough to excite the corresponding
lowest Landau level (LLL). As for the muons, since a
higher μe is required to overcome mμ, the condition for
their population does not get satisfied. Since μe ≠ 0 makes
μub lower than μdb, the density ndb will be finite immedi-
ately after the transition, while nub will be null until a value
of μ slightly larger (barely visible in Fig. 3).
We end this subsection by briefly mentioning the

situation concerning Set 2. For this set of parameters when
one starts from the B phase and steadily increases μ there is
always a certain critical chemical potential at which the
system undergoes a first order phase transition to an A
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phase in the 2SC mode. Therefore, the behavior of the order
parameters and densities is basically smooth except for the
discontinuity at the critical μ and the quite small features
related to the vA-dH effect.

B. Phase diagrams in the ~eB− μ plane

After having described the behavior of the order param-
eters, we consider in this subsection the corresponding
phase diagrams in the ~eB − μ plane. They are given in

FIG. 3. Quarks and leptons densities vs μ for the two values of H=G considered and three representative values of ~eB, Set 1. The
labels in the intermediate left panel indicate the different phases described in Fig. 1.
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Fig. 4 for the two coupling ratios and parameter sets
considered. Comparing the top and bottom panels, we see
that as the H=G ratio is increased all the transition lines in
the diagram are brought downwards: for a more intense
pairing, a lower chemical potential is necessary to produce
the superconducting phases. Regarding the left and right
panels, we observe that Set 1 exhibits a more complex
structure while in Set 2 there are less phases. The fact that
the phase diagram is simplified when the parameters are
modified such that M0 is increased is in agreement with
previous results [34,45,46]. Furthermore, since Set 2
corresponds to a higher value of M0 the transitions are
displaced to higher chemical potentials. As mentioned
above, in Set 2 only phases B and A exist, the last one
being in the 2SC mode in its whole range. In Set 1, instead,
phases B, D and A are present, where the latter two can
exist both in the g2SC or the 2SC modes. We will
concentrate on Set 1 in what follows. As mentioned, the
intermediate D phase connects to the B phase through a
second order transition and to the upper A phase through a
first order transition, while A and B connect directly

through a first order transition. The behavior as a function
of ~eB of the first order transition leading to the A-type
phases is worth noting: for small fields, the transition has a
small downward slope, which becomes sharper as the
magnetic field is increased. The critical chemical potential
reaches a minimum around ~eB≃ 0.15–0.25 GeV2, after
which it increases indefinitely with ~eB, therefore forming a
well-shaped curve. This effect is related to the so-called
“inverse magnetic catalysis” (IMC) effect [49,50] in that, in
a certain range of chemical potentials, an increase of the
magnetic field at intermediate values favors the chirally
restored phases. Therefore, we refer to this curve as the
“IMC well.” It is interesting to note that when we increase
H=G, the depth of the IMC well diminishes and its width
increases. Also, compact star conditions tend to decrease
the IMC effect: the depth of the well decreases, in agree-
ment with what is observed in [45] for the case with vector
interactions and without superconductivity.
The existence of the D phase is a consequence of the

diquark pairing alone and hence is already present for zero
magnetic field, extending itself in the horizontal direction.

FIG. 4. Phase diagrams for the two values ofH=G considered, for both Set 1 (left panels) and Set 2 (right panels). Full lines correspond
to first order transitions and dotted lines to second order transitions. Black lines represent phase transitions. VA-dH transitions for unit
charged species are colored as: blue for ub quarks, violet for electrons and green for muons. Red lines indicate g2SC − 2SC transitions.
Note that the sets are plotted in different intervals of the μ axis, even though the scale is the same.
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The two transitions delimiting it are almost horizontal for
small ~eB and then move closer together until they meet
around ~eB≃ 0.085 GeV2 for bothH=G values, after which
there is a unique transition connecting B with A. The
extension of this phase in the μ direction is only
10–15 MeV in range and it varies only slightly with
H=G, but it is interesting to note that when charge
neutrality effects are not taken into account, the D phase
does become wider when H=G is increased. As we have
seen, in this phase the densities are usually finite (except for
the muonic one) with the LLL populated.
In the A phase we see a series of near vertical first order

transitions, whose origin lies in the quantization in LL’s of
the dispersion relations of quarks and leptons under the
influence of magnetic fields, according to Eq. (12). This
behavior is in turn related to the already mentioned vA-dH
effect, and is common to the populated phases of any NJL-
type model with magnetic fields, where the medium
contribution to the thermodynamical potential contains a
sum over such LL’s. In the basic NJL model, this effect is
associated to all quark species, and the transitions occur
when the maximum LL populated of a given species
changes in one unit, giving rise to a weak jump in the
order parameters. However, in the superconducting case
with a rotated magnetic field under compact star conditions
the behavior depends on the particle species, and only the
ub quarks and leptons exhibit ordinary vA-dH transitions
as in the basic NJL model. On the other hand, db quarks are
not coupled to the field, so the form of the dispersion
relation is that of the free quark, therefore not exhibiting
the vA-dH effect. As for the paired r and g quarks, the
corresponding medium sum in Eq. (26) is not cut off by a
Heaviside function like for the ub quark. This means that
all of their LL’s are populated, unless we find ourselves in
the particular case Δ ¼ 0 for which a Heaviside function is
recovered. In the phase diagram, the A phase is divided into
sub-phases denoted as Ai, which in turn correspond to the
phase where the ub quark populates up to the ith LL. If we
traverse the phase diagram horizontally in the increasing ~eB
direction, the highest populated LL of a particular unit
charged species decreases in one unit every time one of the
corresponding transitions is crossed. In the A0 phase, both
ub quarks and leptons are in the LLL. It should be noted
that the maximum LL populated in these phase diagrams is
smaller than the one obtained in: (a) the symmetric matter
case, because μe reduces μub, and (b) the model without
superconductivity, because ~qub > qu; jqdj. Naturally, since
μμ ¼ μe and mμ > me, a lower value of μe is required to
populate the electronic LL’s. This is why there are more
electronic transitions in the phase diagram, which occur for
smaller values of ~eB than the muonic ones. It is interesting
to note that, in the case without superconductivity, the
leptons exhibit an opposite behavior. There, since μe
increases with the magnetic field, they become populated

when the phase diagram is traversed in the increasing
magnetic field direction [45].
Regarding the g2SC-type phases, we see that forH=G ¼

1 both A and D phases are of the 2SC-type. However, for
H=G ¼ 0.75 there exists a region in the A phase at low
fields which is of the g2SC type. The transition to the 2SC
region is first order and occurs around ~eB≃ 0.024 GeV2.
Similarly, it is interesting to note that in the D phase
there is a small gapless region, bounded by first order
transitions, which has already been discussed in Fig. 2 for
~eB ¼ 0.07 GeV2, and occurs when δμ > Δ. It is found
in the intervals 0.062 GeV2 < ~eB < 0.073 GeV2 and
342 MeV < μ < 344 MeV. For the present value of
H=G this region is very small, but as we will discuss in
the Appendix it is expected to grow rapidly when H=G is
decreased between 0.75 and 0.7.
The Pδμ term in Eq. (28), which may be finite in the

g2SC phase, also contains a sum over LL’s which is cut off
by a Heaviside function. Therefore, this term will also give
rise to transitions in the phase diagram, but their origin is
different from that of the vA-dH ones. Subject to the
condition that δμ > Δ, the densities of the u and d paired
quarks will be equal if kþ ≤ 0, where the Pδμ term will be
zero. For kþ > 0, on the other hand, Pδμ will be finite and
the densities of the paired quarks will split. Furthermore,
it can be noted that for a given kþ, the densities of the
kth Landau level will be different if k < kþ and equal if
k > kþ. Every time that kþ increases in one unit, therefore,
the densities of the corresponding Landau level split,
signaled by the corresponding transition. However, the
effect of these transitions is smeared out as H=G is
increased. Since they are numerous and become rather
weak to affect the order parameters in a visible way, we
have not included them in the phase diagram.
By comparing both diagrams for different values of

H=G, it is easy to see how the phase diagram is modified
when this ratio is swept between 0.75 and 1. Even though
values of H=G≳ 1 are unlikely to be realized in QCD, the
structure of the phase diagram would be maintained in such
a case, with the difference that the first order transition
between the D and A phases weakens and eventually turns
into a crossover around H=G ∼ 1.15. For H=G < 0.75,
numerical difficulties arose when solving the system of
equations, due to the fact that solutions with lowΔ values are
almost degeneratewith the always presentΔ ¼ 0 solution. In
order to shed some light on this issue, the ~eB ¼ 0 case is
discussed in the Appendix. There, it is seen that the
corresponding phase structure can also present qualitative
differences belowH=G ¼ 0.75, such that the majority of the
D and A phases can become gapless in a short range and
eventually lose their superconducting behavior.

C. Order parameters as a function of the magnetic field

In order to provide some further understanding of the
characteristics of the phases of the system under
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investigation we discuss here the behavior of the order
parameters and densities as a function of the magnetic field.
The results corresponding to Set 1 are shown in Fig. 5.
Three different representative values of μ have been

considered, chosen so as to include the different phases
appearing in Fig. 4.
In the B phase, M always increases with the magnetic

field according to the magnetic catalysis effect, which

FIG. 5. M, Δ, μ8 and μe vs ~eB for the two values of H=G considered and three representative values of μ, Set 1.
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occurs principally in vacuum. For the lowest chemical
potential in the diagram, and owing to the presence of the
IMC well, an increase in ~eB for constant μ first causes a
transition from the B phase to a restored phase, and a

subsequent increase causes the system to return to the B
phase, which is always present for large enough fields. The
latter effect takes place because, for large magnetic fields,
the vacuum magnetic terms in Eqs. (22), (26) become

FIG. 6. Quarks and leptons densities vs ~eB for the two values of H=G considered and three representative values of μ differents for
each value of H=G, Set 1.
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dominant, favoring large masses. For intermediate chemi-
cal potentials (μ ¼ 342.5 MeV for H=G ¼ 0.75 and μ ¼
320 MeV for H=G ¼ 1), the system is in the D phase for
low magnetic fields and in the A0 phase for higher values,
where the LLL of all species with charge 1 is populated. In
the D phase, M decreases slowly with ~eB, exhibiting the
behavior of inverse magnetic catalysis. Once again, Δ and
μe increase steadily, while μ8 tends to more negative values.
It is interesting to note that it can change sign in the A
phase. For μ ¼ 360 MeV, which corresponds to the A
phase for ~eB < 0.60 GeV2 approximately, the parameters
exhibit oscillations and a series of peaklike discontinuities
which correspond to the already discussed vA-dH tran-
sitions present in Fig. 4, and are similar to those discussed
in [34].
We see that no oscillations are present in the B phase, in

contrast to previous studies which use smooth regulariza-
tion functions [24,26]. As mentioned before, the MFIR
scheme removes these strong unphysical oscillations, also
assuring that all of the oscillations present in the A phase
are real vA-dH transitions. Moreover, in this scheme the B
phase is always recovered for high enough magnetic fields,
and the presence of an intermediate mixed phase whose
existence depends on the set of parameters was revealed.
The aforementioned vA-dH oscillations in the A phase

are related to the densities of charge 1 species as can be
seen explicitly in Fig. 6, where we plot the densities of all
species as a function of the magnetic field. From Eq. (37),
we see that they originate from the competition between
the ~eB factor in the expression for the density, which
corresponds to the momentum degeneracy in the direction
perpendicular to the field and increases with ~eB, and the
phase space available in the z direction for each LL, which
decreases as a function of ~eB. The product of these terms
results in density oscillations when k > 0, which translate
into opposite oscillations for the dressed mass due to Pauli
blocking effect. For k ¼ 0, nub is almost proportional to
the perpendicular momentum degeneracy, jqBj [51], and
increases steadily with the magnetic field growing faster
than the densities of the paired quarks, while ndb is
explicitly independent of ~eB (it depends slowly on ~eB
throughM). To compensate this blue color excess, μ8 tends
toward positive values for high magnetic fields, as seen in
Fig. 5 and also in Fig. 2 for ~eB ¼ 0.2 GeV2. This explains
the decrease of ndb with ~eB. Regarding the g2SC mode we
can check once again that the densities of the paired quarks
get separated in this region, as shown in the inset of the
intermediate left panel and in the lower left panel for small
enough ~eB.

IV. SUMMARY AND CONCLUSIONS

In the present work we explored the properties of
magnetized cold color superconducting quark matter under
compact star conditions within the framework of a two-
flavor NJL-type model using the so-called “magnetic field

independent regularization” (MFIR). Such regularization
schemewas originally described in [32] and extended to the
case with color pairing interactions in [34]. The chiral and
diquark condensates were obtained numerically iterating
the coupled and self-consistent gap equations, under the
constraints of color and charge neutrality as well as β-
equilibrium. We considered two parameter sets that adjust
to acceptable values of the dressed masses, and that were
already known to generate qualitatively different phase
diagrams in the symmetric matter case [34]. Moreover, two
representative values of the coupling constant ratio H=G
were considered. We presented the corresponding phase
diagrams, where we found chirally broken (B) and (almost)
restored (A) phases for both sets of parameters, connected
through a first order transition. In particular, for Set 1 an
intermediate mixed phase (D) was also found, where both
condensates are large. It is bounded from below by a
second order transition, from above by a first order one and
disappears around ~eB≃ 0.085 GeV2. We showed that both
A andD phases are composed of g2SC and/or 2SC regions,
depending on the values of H=G, μ and ~eB. We described
the behavior of the parameters for each phase as functions
of ~eB and μ, and found that in the superconducting phases
Δ can reach values of the order of 100 MeV for H=G ¼
0.75 and 200MeV forH=G ¼ 1, while μe < 200 MeV and
jμ8j < 70 MeV. We also studied the density of the various
particles present, and checked that in the B phase all
densities are null, in A they are usually finite and in D one
finds quark and electron population even though μ < M,
while the muon density tends to be null. In addition, we
verified that in the 2SC region the densities of the paired
quark are equal, and usually get separated in the g2SC one.
The nature of the vA-dH transitions was also discussed. We
explained that in the rotated base these exist only for the
unit charged species, ub quarks and leptons, and that even
though the j ~qj ¼ 1=2 quarks couple to the magnetic field
and present first order transitions in the g2SC phase, their
coupling to the superconducting gap smears these transi-
tions out, becoming inappreciable for the chosen values of
H=G. Furthermore, we found magnetic catalysis effects in
vacuum and inverse magnetic catalysis (IMC) effects in the
superconducting phases. As for other ratios of H=G, we
commented that for H=G≳ 1 the structure of the phase
diagram is maintained, with the difference that the phase
transition between the D and A phases weakens and
eventually turns into a crossover around H=G ∼ 1.15.
Since numerical difficulties arose when solving the system
of equations forH=G < 0.75, we developed predictions for
this regime based on the study of the ~eB ¼ 0 case. There we
observed that, depending on the ratio H=G, both A and D
phases could be in three different modes: (a) 2SC for
H=G≳ 0.75, (b) g2SC for 0.65≲H=G≲ 0.75 and
(c) Δ ¼ 0 for H=G≲ 0.65. Although the set of parameters
is not exactly the same, this result is in concordance with
[37]. From here we concluded that when H=G is decreased
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under 0.75 in the presence of a magnetic field, the A and D
phases are expected to become gapless and eventually have
null superconducting gap. We recover then the C phase
present in [34] with the difference that, when neutrality
conditions are imposed, Δ is not small but null. The effect
is more noticeable in the A phase, where Δwas of the order
of 40 MeV in the non-neutrality case.
We conclude that, as expected, several effects take place

on the behavior of the cold magnetized quark matter when
introducing compact star conditions. Their presence indu-
ces the existence of g2SC and 2SC modes, and reduces the
maximum Landau level reached in the vA-dH transitions.
In general, charge neutrality constraints tend to reduce the
superconducting effect, increasing the value of the critical
chemical potentials and attenuating the magnetic catalysis
effect, diminishing the depth of the IMC well. As a
consequence, the phase diagram is moved upwards favor-
ing different phases. In particular, for H=G < 0.65 it is
expected that the superconducting gap vanishes in the C
and A phases.
A possible next step in these studies would be the

inclusion of vector interactions in the model. The recent
observation of neutron stars with masses of approximately
2 M⊙ [52,53] places a strong limit on the equation of state
of cold and dense matter. Studies performed including
vector interactions typically lead to an increase of the
calculated stellar masses [54–56], and it has been suggested
that without these, the two-solar mass constraint cannot
be satisfied. Therefore it could be interesting to study the
effect of vector interactions on the phase diagram of
magnetized color superconducting matter under compact
star conditions.
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APPENDIX: H/G DEPENDENCE OF
THE PHASE STRUCTURE IN THE ABSENCE

OF MAGNETIC FIELD

Although within the present type of models the impact of
compact star conditions on the behavior of dense quark
matter in the absence ofmagnetic fieldswas already analyzed
almost 15 years ago [37,47], we find it useful to review some
issues concerning the parameter dependence of the results. In
fact,most of the existing literaturemakes use of the particular
choiceH=G ¼ 0.75. Given the uncertainties associated with
the determination of that quantity we find it convenient to
present in this Appendix some results concerning the
dependence of the model predictions as the diquark inter-
action strength is swept from zero to a realistic value. As
discussed in the main text, this provides some help to infer
what might happen in some cases as an external magnetic

field is turned on.Wewill concentrate on results within Set 1.
The thermodynamic potential is given in this case by

ΩMFA ¼
ðM−m0Þ2

4G
þ Δ2

4H
−
X
l¼e;μ

PMEDðμl;mlÞ− 2Preg
VACðMÞ

−
X
f¼u;d

PMEDðμfb;MÞ−Preg
Δ ðM;Δ; μ̄Þ

−PδμðM;Δ; μ̄;δμÞ; ðA1Þ

where

Preg
Δ ðM;Δ; μ̄Þ ¼ 2

π2

Z
Λ

0

dpp2ðEþ
Δ þ E−

ΔÞ; ðA2Þ

PδμðM;Δ; μ̄; δμÞ ¼ 1

π2
Θðδμ − ΔÞ

X
s¼�

sΘðμ̄s −MÞ

×
Z

ps

0

dpp2ðδμ − E−
ΔÞ: ðA3Þ

Here, μ̄� ¼ μ̄�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − Δ2

p
, p� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ̄�Þ2 −M2

p
and

E�
Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
� μ̄Þ2 þ Δ2

q
, while Preg

VAC and PMED

were defined in Eqs. (15) and (16) respectively.
The phase diagram in the μ −H=G plane is displayed in

Fig. 7. As we can see, it is roughly divided into three
regions in terms of the degree of symmetry breaking: the
vacuum B phase where chiral symmetry is broken, the A
phase where symmetry is restored, and a region of
intermediate chemical potentials where restoration is par-
tial. Here we see that in addition to the already found D
phase, a new intermediate phase appears, denoted as C in
concordance with previous studies. Their difference lies in
the fact that, for finite magnetic field, the C phase is
separated from the B one by a first order transition. The

FIG. 7. Phase diagram of μ vs H=G for ~eB ¼ 0, Set 1. Full
black lines correspond to first order transitions and dotted lines to
second order transitions.
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superconducting properties of these phases will naturally
depend on the value of H=G. To the left of the diagram, in
both C and A phases, the gap is zero, in agreement with
what was discussed in Ref. [37]. Actually, it can be shown
thatΔ ¼ 0 is the only solution to the system of equations. It
is interesting to note that, in the symmetric matter case, the
gap is finite for arbitrarily small values of H=G [38]. When
a magnetic field is added this remains to be so, as seen in
Ref. [34] where Δ is rather small until around H=G ¼ 0.5.
One can therefore expect that the Δ ¼ 0 behavior present
under compact star conditions is also mantained when an
external magnetic field is imposed.
WhenH=G is increased beyond 0.65, the system enters a

superconducting phase in the g2SCmode, which occurs for
values in the intermediate range 0.65≲H=G≲ 0.75. Since
Δ exhibits a very weak dependence with μ in the gapless
mode of the A phase, the transition is almost vertical,
occurring at H=G ¼ 0.64. For intermediate chemical
potentials, the transition from C to D occurs in the range
H=G≃ 0.64 − 0.7, where the line is slightly tilted upwards
and to the right. This tilting is reasonable since for lower
values of H=G it is expected that a higher chemical
potential should be necessary to induce the gap. It is also
noted that these transitions are second order. The g2SC −
2SC transition occurs for H=G ¼ 0.77 in the A phase and
for H=G≃ 0.72 − 0.75 in the D phase, where both
transitions are second order again. Above this value, there
are no qualitative differences in the diagram, except for the
transition to the A phase which turns from first order to
crossover for H=G > 1.05.

It is interesting to observe from this phase diagram that
H=G ¼ 0.75 corresponds to a very particular case in which
theD phase is found in the 2SCmode, while the A phase is
gapless. For this particular ratio, the model is therefore very
sensitive to small changes of the parameters, a property
that is expected to extend for the finite magnetic field
case. As we saw in the corresponding phase diagram
of Fig. 4, for H=G ¼ 0.75 and Set 1 there is a small
gapless region inside the D phase, in the range
0.062 GeV2 < ~eB < 0.073 GeV2. This suggests that if
H=G is decreased from 0.75, this region would grow
horizontally toward the lower magnetic field zone (occupy-
ing first the upper part of the D region), until the whole D
phase becomes gapless for H=G ¼ 0.72. Conversely, this
would mean that if we start slightly to the right of the
g2SC − 2SC transition, in the 2SC region, and increase the
magnetic field from zero, the transition would displace
towards the right, so that the system eventually returns to
the gapless mode. In the A phase, the behavior of the
g2SC − 2SC transition is opposite. For zero magnetic field,
the system is in the gapless mode forH=G ¼ 0.75, while in
the phase diagram in the μ − ~eB plane there is a transition
to the 2SC region around ~eB≃ 0.024 GeV2. Therefore,
this transition is expected to move to lower magnetic field
values when H=G is increased, until it reaches the vertical
axis forH=G ¼ 0.77. Once again, conversely, the transition
line displayed in the μ −H=G plane would be displaced to
the left when the magnetic field is increased, traversing the
vertical line H=G ¼ 0.75 for ~eB≃ 0.024 GeV2.
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