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We use Lagrangian effective field theory techniques to construct the equations of motion for an ideal
relativistic fluid of which the constituent degrees of freedom have microscopic polarization. We discuss the
meaning of such a system and argue that it is the first term in the Effective Field Theory (EFT) appropriate
for describing polarization observables in heavy ion collisions, such as final-state particle polarization and
chiral magnetic and vortaic effects. We show that this system will generally require nondissipative
dynamics at higher order in the gradient than second order, leading to potential stability issues known with
such systems. We comment on the significance of this in the light of conjectured lower limits on viscosity.
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I. INTRODUCTION

Relativistic hydrodynamics is a topic of very active
theoretical and phenomenological development [1].
Phenomenologically, it seems to provide a good description
of physics in heavy ion collisions, making numerical
hydrodynamic solvers an indispensable tool in this field.
One phenomenon that has not been taken into account
dynamically in hydrodynamics is polarization. This is
understandable because it is not immediately straightfor-
ward to link it to flow observables. Hydrodynamics deals
with macroscopic, coarse-grained quantities, while particle
polarization is a microscopic one. Moreover, spin polari-
zation is a particle physics concept, while hydrodynamics
can be defined (and is used) even when there are no known
(quasi)particle excitations. The direct observation of polari-
zation of Λ particles in heavy ion collisions [2] has the
potential to change this. A reliable set of tools to analyze
this observable theoretically is, however, still lacking. For
instance, Israel-Stewart equations (the most commonly
used for second-order viscous hydrodynamics) are usually
thought of as a limit of the relativistic Boltzmann equation.
Spin dynamics has been completely neglected in the
derivation, appearing only as a degeneracy factor, which
is equivalent to an assumption of the equiprobability of
polarization. This is at odds with statistical equilibrium
with nonvanishing angular momentum [3–5].
Polarization, vorticity, and chirality observables have

received some amount of attention in the literature in the
context of vorticity-induced polarization [6–8], hadronic
reactions [9,10], and generic transport theory including
chirality [11–14], the latter motivated by the hypothesis of
the chiral magnetic effect [15] and its hydrodynamic [16]
and magnetohydrodynamic [17,18] incarnation. Note that
spin-orbit coupling, unlike the effects described here, is not
anomalous, since vortical susceptibility is directly related to
spin-orbit coupling [19]. That said, if the system arising in
heavy ion collisions is an ideal fluid and polarization is

non-negligible, anomalous transport, as a deviation from
local equilibrium, should be subleading to the effect of
spin-orbit interactions in an evolving fluid.
An effective theory for describing the relationship

between vorticity and polarization is, however, still miss-
ing. The problem is that vorticity does not emerge in the
transport limit but rather close to the thermodynamic and
hydrodynamic regime. Thermodynamics was studied with
the usual techniques, updated with the inclusion of angular
momentum [3–5], but this is not generally a good approxi-
mation for a strongly coupled dynamical system, in which
equilibrium is local rather than global. Reference [8]
used thermodynamic equilibrium within an isochronous
Cooper-Frye formula, assuming polarization is zero before
freeze-out, but this assumption violates the detailed balance
across the freeze-out hypersurface [20]. If hadrons after
freeze-out carry both vorticity and spin polarization, then so
must the constituents of a fluid before freeze-out. Such a
fluid, however, while being studied in condensed matter
systems [21,22], still needs to be developed for the ultra-
relativistic limit. Even intuitively, the idea that only
quasiparticles carry polarization makes envisioning such
a fluid confusing.
The problem is a conceptual one: local isotropy,

one definition of an ideal fluid, forbids the transfer of
angular momentum to spin as that would create an
anisotropy independent of the coarse-graining scale [6]
(such anisotropy, in normal hydrodynamics, is directly
proportional to the mean free path). However, local
equilibration and entropy maximization in the presence
of angular momentum and spin explicitly necessitates such
an anisotropy [3]. And, of course, vorticity conservation,
the Noether current of the diffeomorphism invariance
underlying perfect fluid dynamics [23], should be broken
if angular momentum can be transferred to local polariza-
tion. While attempts to resolve this issue go back decades
[24,25], the contradiction between the various definitions
of hydrodynamics can still elicit confusion.
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To clarify this situation, one can turn to microscopic
transport theory [26]. Polarization is not a purely transport
phenomenon since it can occur in equilibrium if the
system acquires angular momentum. However, nonequili-
brium microscopic polarization is a violation of molecular
chaos, since it means that the distribution function is
generalized into polarization components fðx; pÞ →
ffiðx; pÞg of which the correlation cannot be factorized,
hfifji ≠ hfiihfji, within a microscopic volume element. It
is describable fully only within higher terms of the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy with respect to the average. In the strongly coupled
limit [27], boson-fermion couplings (the interaction
between color D3 and higher-order flavor branes [28])
are suppressed by factors of Nc (following the hierarchy
studied in Ref. [29]), lending support to the idea that this
qualitative picture also applies at strong coupling (trans-
verse polarization of the spin degrees of freedom in N ¼ 4
SYM is a more subtle issue since gauge invariance there has
a nontrivial effect; to calculate this exactly, one would need
to calculate the two-point function of vorticity beyond
leading order, a work in progress).
To summarize this argument, as is well known,

hydrodynamics is based on a hierarchy of three length
scales [30–36]

n−1=3 ≪ lmfp ≪ ð∂uμÞ−1; ð1Þ

where n1=3 ≡ T0 is the separation of the microscopic degrees
of freedom (the effects of which are nondissipative but
probabilistic [32]), lmfp is the mean free path (the effect of
which is deterministic but dissipative), and ∂uμ is the
gradient of the velocity. The second inequality controls
leading-order dissipative phenomena, such as viscosity,
conductivity, and sound attenuation. The first inequality
regulates the departure frommolecular chaos, the irrelevance
of thermodynamic fluctuations to hydrodynamic evolution.
If one considers hydrodynamics as a gradient expansion,

as is done in Ref. [37], one generally forgets the first
inequality and uses the second inequality to define an
effective theory expansion parameter (the Knudsen num-
ber), which can be developed into a gradient effective
theory. The current of the angular momentum with respect
to the point x0 reads

Mλμν
x0 ¼ ½ðx − x0ÞμTλν − ðx − x0ÞνTλμ�; ð2Þ

in which Tμν is the expectation value of the stress-energy
tensor (before coarse graining), defined as the derivative of
the action with respect to the metric tensor. At global
equilibrium, the flux of this, namely, the total angular
momentum, is given by the total 4-momentum and the
vorticity. In the ideal hydrodynamic limit, the latter is
linked to the circulation, which is used to define, through
the Stokes theorem, another antisymmetric rank-2 tensor

also called vorticity. This is a conserved quantity in the
usual perfect fluid approach, the symmetry of which is the
theory’s volume-preserving diffeomorphism invariance
[23,38]. To avoid confusion, we will refer to this definition
of vorticity as circulation, even if we refer to the rank-2
tensor and not to the line integral. If we insert polarization
effects in ideal hydrodynamics, one can expect that (as we
will show later) the new degrees of freedom could act as a
source of circulation, therefore breaking explicitly the
circulation theorem. This can be considered as a feedback
of the polarization degrees of freedom (order 0 in a gradient
expansion) to the circulation (linked to the geometric
vorticity, even if it the two are not exactly proportional
in general), which is expressed as gradients of the hydro-
dynamical variables. Hence, one would expect the gradient
expansion to break down in a very specific way, which
should be related to the enriched structure of the conserved
angular momentum, the divergence of Eq. (2), if polariza-
tion effects cannot be neglected. Unlike a normal EFT
expansion, however, the appropriate terms will not be
generic higher-order gradient terms but will be precisely
constrained by symmetries (as we show in Ref. [39], this
can be clearly seen in the linearized limit when the
dispersion relation is considered) and will coincide with
the gradient terms expected in the global equilibrium state
with angular momentum [4].
To quantify the latter, in a relativistic setting with a small

chemical potential, our intuition tells us that the micro-
scopic density of degrees of freedom ðgTÞ3 where g ∼ N2

c is
the microscopic degeneracy [numerically, ðgTÞ3 × volume
is Oð102–3Þ in heavy ion collisions and Oð104Þ in ultracold
atom systems] might increase the amount of angular
momentum stored microscopically by equipartition.
However, experience with magnets tells us that in the high
temperature limit the net polarization decreases as
∼ tanhðμS=TÞ, where μS is the microscopic polarizability
and, generically, spin-orbit couplings between gauge
bosons and Fermions in the fundamental representation
are suppressed in the planar limit.
Summarizing these considerations, one naively expects

polarization in a hydrodynamic system to be small
(Ref. [40] argues parametrically smaller than the total
vorticity) but not necessarily parametrically smaller than
the mean free path (the experimental measurement of
polarization in a system commonly thought to be hydro-
dynamic confirms this expectation). We therefore aim to
see how the gradient expansion is altered in the limit when
polarization is non-negligible. As we show in the next
section, combining the EFT picture with the symmetry
properties of angular momentum can accomplish this.

II. HYDRODYNAMICS AS AN
EFFECTIVE THEORY

The theoretical tools necessary to develop hydrodynam-
ics in this limit [32–35,41] and to relate it to dissipation [42]
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are well known. One writes down hydrodynamics in
Lagrangian form and treats the microscopic scale as an
effective Planck constant [32], treats the Knudsen
number as an effective theory scale hierarchy, and
develops fluctuation-driven terms within the effective
field theory.
A perfect fluid without polarization can be described by

three fields ϕI, describing the three Lagrangian coordinates
of the systems. The fact that it is a fluid can be imposed
through a volume-preserving diffeomorphism invariance
[23,37,41]:

LðϕI → ξIðϕJÞÞ → L; det

�∂ξI
∂ϕJ

�
¼ 1: ð3Þ

It therefore follows that the Lagrangian with the lowest
possible order of gradients is of the form (notation of
Ref. [37])

L ¼ FðbÞ; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detIJ½BIJ�

p
; BIJ ¼ ∂μϕI∂μϕJ:

ð4Þ

The Lagrangian above can be shown in a straightforward
way to yield the energy-momentum tensor of which the
conservation yields Euler’s equations [23,37,41],

∂μTμν ¼ 0; Tμν ¼ ðpþ eÞuμuν − pgμν: ð5Þ

If one wants to include a chemical potential μ, the energy
density and pressure read instead [37]

e ¼ μ
dFðb; μÞ

dμ
− Fðb; μÞ; p ¼ Fðb; μÞ − dFðb; μÞ

db
b:

ð6Þ

Note that the Lagrangian Fðb; μ ¼ 0Þ coincides with the
energy density for vanishing chemical potential and cor-
responds, in general, to a Legendre-transformed energy.
The chemical potential is also related to the Noether
current generating the scalar conserved charge, a Uð1Þ
symmetry, by

Lðexp½iψ �Þ → Lðexp½iðψ þ cÞ�Þ; μ ¼ uμ∂μψ : ð7Þ

The flow velocity uμ is defined as uμ∂μϕJ ¼ 0 ∀ J, which
in four dimensions leads uniquely to a 4-vector normalized
to unity,

uμ ¼
1

6b
ϵIJKϵμαβγ∂αϕI∂βϕJ∂γϕK; ð8Þ

with the comoving projector being

Δμν ¼ gμν − uμuν ¼ B−1
IJ ∂μϕI∂νϕJ; ð9Þ

where we used the mostly plus convention for the metric
tensor gμν. Since the 4-velocity defined in (8) is by
construction the direction of a local conserved 4-current,

Kμ ¼
1

6
ϵIJKϵμαβγ∂αϕI∂βϕJ∂γϕK ¼ buμ ⇒ ∂μKμ ¼ 0;

ð10Þ

it is natural to identify it with the entropy current, since
entropy is the only locally conserved current in a perfect
fluid with no conserved charges.
The relativistic extension of the Kelvin circulation

theorem, usually referred to as vorticity conservation, arises
in this description as a nonlocal Noether current of the
diffeomorphism invariance of the theory, specifically
[23,38]

I
Ω
dxiui

dFðbÞ
db

¼ −
Z

1

0

dτ

×
Z

d3x
∂L

∂ð∂0ϕ
IÞ
dΩI

dτ
δ3ðϕJ −ΩJðτÞÞ:

ð11Þ

That is the circulation of the 3-velocity (times a function)
along the flux tubes1 defined by the loop ΩI . The lhs of the
equation is one definition of vorticity, and the rhs is the
Noether current ∂F

∂ð∂μϕIÞ ζ
I
ΩðϕIÞ for an infinitesimal volume-

preserving diffeomorphism with generator2

ζIΩðϕJÞ ¼ −
Z

1

0

dτ
dΩI

dτ
δ3ðϕJ −ΩJðτÞÞ; ð12Þ

which moves coordinates among the loop between the
parameter values τ ¼ 0 and τ ¼ 1.

III. POLARIZATION DEGREES OF FREEDOM

If the system has intrinsic polarization, a net spin
direction to which a fraction of microscopic degrees of
freedom points, the coordinates ϕIðxÞ are not enough
because they do not contain information about polarization.
To find the appropriate additional degrees of freedom,

we need to understand how to generalize hydrodynamics
in a situation in which some of what are considered
fundamental principles of it, such as local isotropy, are
inappropriate. The principles we choose to use are:

(i) The dynamics within each cell is faster than macro-
scopic dynamics, and it is expressible only in term
of local variables and with no explicit reference to

1The circulation is on the flux lines sinceΩI has components in
the internal indices space, the Lagrange coordinates, and not the
space coordinates themselves.

2It can be proven that ζJΩ fulfills
P

I∂ζI=∂ϕI as it has to for
being a generator of volume-preserving diffeomorphisms.
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4-velocity uμ (gradients of flow are, however,
permissible, and in fact required to describe local
vorticity).

(ii) This dynamics is dictated by local entropy maximi-
zation, within each cell, subject to constraints of that
cell alone. In the ideal limit, macroscopic quantities
are assumed to be in local equilibrium inside each
macroscopic cell (even if gradients are not vanishing
and the system can be relatively far away from
global equilibrium). This point is what distinguishes
our approach from previous treatments, including
the widely cited works in this subject from decades
ago [24,25].

(iii) The only excitations allowed around a hydrostatic
medium are sound waves and vortices.

We shall examine the consequences of each assumption in
detail throughout the paper. The intrinsic angular momen-
tum of a fluid cell is the integral around a small hyper-
volume δΣ of the flux of angular momentum

δJμνðxÞ ¼
Z
δΣ
dΣλM

λμν
x : ð13Þ

According to principle i, the integral is performed in the
local comoving frame dΣμ ¼ dVuμ. Since angular momen-
tum can be exchanged (in macroscopic time scales)
between cells, this is not a conserved quantity. To have
a polarization that is not infinitesimally small, we normal-
ize to the small volume of the coarse graining δV ¼ R

δΣ dΣ:

ΨμνðxÞ ¼ δJμν

δV
: ð14Þ

In this way, the variable Ψμν can be considered the local
“angular momentum” of the fluid cell, which is usually
neglected in a coarse-graining procedure. For a mathemati-
cal simplification, during the remainder of this work, we
will assume that only the part of Ψμν orthogonal to the
4-velocity will be the relevant one to be included in the
effective Lagrangian treatment. This is the part related to
the classical part of the angular momentum (the one that
ends up in the generator of rotations, as opposed to the
timelike one that is related to the boost generator); note how
in Ref. [3] this is the part that is actually responsible for
particle polarization in global equilibrium and the weak
coupling limit. We will call this variable yμν,

yμν ¼ Δμ
αΔν

βΨαβ; ð15Þ

where Δμν ¼ gμν − uμuν is the projector on the hyperplane
orthogonal to the local 4-velocity uμ.
It must be noted that yμν depends on the coarse-graining

scale. This is unavoidable because of the nonextensivity of
the angular momentum. However, contrary to what one
might expect, it is not vanishing in the vanishing volume

limit in the case of constituents with spin. Using the
physical intuition from classical mechanics, one expects
for a system at global equilibrium an orbital part (which
vanishes since moments of inertia over volume vanish in
the small volume limit) and a polarization contribution.
This contribution was calculated explicitly in Ref. [4] as
seen from the lab frame, for a rotating gas of particles with
spin in global equilibrium. It shows a “spin component” of
the angular momentum density that becomes constant in
the nonrelativistic limit. The spin component of the total
angular momentum is almost proportional (exactly in the
nonrelativistic limit) to the volume, and, in particular, the
ratio with the volume is not vanishing in the small volume
limit. This provides an example of a physical situation in
which yμν is not vanishing. The Lagrangian approach will
allow us to study how yμν behaves when equilibrium is
local rather than global.

IV. EFFECTIVE THEORY LAGRANGIAN

According to point ii, the fluid cells are supposed to be in
local equilibrium. It is known that in the case of thermo-
dynamical equilibrium angular momentum is proportional
to the antisymmetric part of the 4-velocity gradients [3,4]

1

2
½∂μuν − ∂νuμ� ¼

1

2
½Aμuν − Aνuμ� þ ωμν; ð16Þ

with Aμ ¼ _uμ ¼ uρ∂ρuμ being the 4-acceleration and ωμν

being the vorticity (the space part of the antisymmetric part
of the gradient). Equilibrium, local or global, implies that
the space part of polarization has to be in a one-to-one
correspondence to the vorticity subject to entropy maxi-
mization. More specifically, if sound waves and vortices are
the only excitations within the hydrostatic limit, this means
polarization and vorticity have to point in the same
direction; therefore,

yμν ¼ χðb;ω2Þωμν: ð17Þ

This is a very general point; if we allow polarization and
vorticity at equilibrium to be aligned by an angle θ ≠ 0, it
would generate a broken continuous symmetry (the longi-
tudinal angle φ where the polar θ is defined by vorticity
could take any value), with Eq. (17) updated to yμν ¼
χðb;ω2ÞΛμ

αðθ;φÞΛν
βðθ;φÞωαβ and Λμ

νðθ;φÞ being, in the
comoving frame, a rotation matrix. This carries with it a
Goldstone mode (excitation in φ) with nontrivial topologi-
cal structures (rings in φ have to be continuous). A detailed
investigation of this model is left for another work, though
we suspect that dissipative corrections, where polarization
relaxes to vorticity, make the ideal limit of such a system
unrealizeable. Beyond the ideal fluid limit, as discussed in
Ref. [43], an Israel-Stewart approach in which yμν relaxes
to the vorticity tensor will be likely.
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We note that yμν is an auxiliary field interacting with ϕI
rather than an extension of ϕI to internal degrees of
freedom. This reflects the fact that spin is not conserved
separately from angular momentum. In Noether’s language,
diffeomorphisms such as Eq. (3) act on ϕI but not yμν, since
the latter represents an internal symmetry. However, if we
combine a Lagrangian invariant under Eq. (3) with a locally
invariant term for the internal rotation diffeomorphisms, a
conserved current comprising space and internal sym-
metries, physically represented by a current combining
spin current and vorticity-carried angular momentum,
would arise. This can be seen more explicitly by consid-
ering that the diffeomorphism in (13) moves around ϕI but
does not affect yμν thereby breaking the volume-preserving
and SO(3) diffeomorphism invariances. For instance, con-
sider an effective Lagrangian of the form Fðb; � � � y � � �Þ,
where � � � y � � � stands for the dependency of the Lagrangian
density on a scalar combination of yμν, its derivatives, and
eventual mixed terms with the gradients ∂μϕ

I which
respects volume preserving diffeomorphisms. The con-
served current corresponding to the loop ΩJ reads

JμΩ ¼ ∂F
∂ð∂μϕ

IÞ ζ
I þ higher-order derivatives terms; ð18Þ

and the term proportional to ∂F=∂b will give one term that
is again a circulation of a function times ui, but the
additional terms will add, in general, a circulation of an
object that is not proportional to the velocity, preventing a
further extension of the circulation theorem. For instance,
looking in Sec. V, one can find one instance of the
derivatives of the effective Lagrangian, and it is straightfor-
ward to check that in this case there is a, rather complex,
source term for the circulation of ui. In the end, this means
that the conserved current for the volume-preserving
diffeomorphisms cannot be related to a familiar concept
like the relativistic version of the circulation theorem.
To proceed, one has to insert the new variables tracking

microscopic polarization in the effecting Lagrangian. The
combination has to be a scalar, and as a first attempt, we
assume that only the lowest order in gradients will be
needed. Hence, by counting gradients and enforcing
symmetries, the lowest-order scalar term is yμνyμν. For
example, as an illustration of the above, det½y� is higher
order in gradients, since yμν is a microscopic quantity and
the determinant is a fourth power of it, ϵαβγρ∂μKνyγρ would
violate parity and, as we will show, the part non-vanishing
by symmetry of, ∂μKνyμν must be proportional to yμνyμν.
Parity-violating terms would, of course, be permitted in the
context of anomalous hydrodynamics, but we will not
consider them in the present work. To handle more easily
the resulting equations, we now make use of some phe-
nomenological Ansätze, which can be, however, easily
relaxed if one wants to study the more general case.
Considering that polarization introduces a correlation

between microstates, the presence of polarization at a given
entropy b should change the free energy, to leading order in
gradients, as b → bð1 − cyμνyμνÞ, where c is a dimensionful
constant representing polarizability (it can be positive for a
ferromagnetic material and negative for an antiferromagnetic
one). For dimensional reasons, and because of Eq. (1),
c ∼ T2

0. Given this, a physically reasonable way to introduce
polarization is

Fðb; yÞ → Fðb × fðyÞÞ; fðyÞ ¼ 1 − cyμνyμν þOðy4Þ;
ð19Þ

where y is a shorthand notation for yμνyμν.
In principle, one should know the exact form of the

effective Lagrangian in order to solve the equations of
motion. However, only a few (constant) parameters are
necessary for the study of the small perturbations over a
static background (linearized theory). The next section will
be dedicated to that. We will end this section by explaining
the possible ways to fix (without phenomenological
assumptions like the last one, if needed) the form F,
linking the Lagrangian formulation and usual thermody-
namics using the methods of Ref. [37] but with the angular
momentum in lieu of the chemical potential (note that the
collinearity between the angular momentum and polariza-
tion is what makes this analogy possible).
One has to be careful with this because, as illustrated, for

example, in Refs. [4,44], entropy in systems with angular
momentum is generally nonextensive. Polarization is,
however, intensive, as any other property dealing with
microscopic properties. Because of this, one cannot, as is
usual in ideal hydrodynamics without polarization, assume
the thermodynamic limit for the equation of state. However,
one can still define local equilibrium within a microscopic
cell in its comoving frame, starting from a finite-size
statistical treatment [4,44].
By analogy with Ref. [37], in which it was said about the

effective Lagrangian density Fðb; μÞ in Eq. (6) that “It can
be thought as a somewhat unusual thermodynamic poten-
tial where: dF ¼ −Tdsþ ndμ,” we can expect that the
Lagrangian density in Eq. (19) would correspond to
thermodynamic potential

dFðb; yÞ ¼ ∂bFdsþ ∂yμνFdy
μν

¼ −ð1 − cy2ÞF0ds − 2cbF0yμνdyμν: ð20Þ

If the system is in local equilibrium, F can be related to a
partition function Z, of a form examined in detail in
[45–47]. Note that this makes explicit the fact, inferred
from ii, that yμν, while being a source of a conserved
quantity, is not a dynamical degree of freedom, since the
amount of angular momentum is not determined by initial
conditions but rather by entropy maximization. A solution
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with a boundary condition with different y, b and velocity
should generate the sort of shock wave studied in Ref. [14].
To recognize the derivatives of this thermodynamic

potential, one should do like in Ref. [37], namely, compute
the stress-energy tensor; consider b ¼ s, since there is no
other conserved vector current except the entropy density;
and check which one is the form of F that will reproduce
the thermodynamical relations obtained from another
source (for instance, lattice gauge results for the equation
of state of QCD).
In hydrodynamics without polarization, for instance, the

analogue of Eq. (20) gives rise to the Gibbs-Duhem relation
relating pressure and energy density to temperature and
entropy density. Here, because of the presence of angular
momentum, terms like pressure and energy density will not
have such a simple relationship to actual energy and
momentum flow within the fluid. Unfortunately, the exact
form of the entropy density for a spinning system is not
known, mainly because of the difficulty of computing the
logarithm of the partition function for a generic relativistic-
quantum system. In Refs. [3,4], in any case, we can see that
in the weak coupling limit and for small vorticity the
angular momentum of a spinning system is proportional to
the vorticity itself as in (17), and we can guess that

−2cbF0yμν ¼ −2cbχF0ωμν ∝
1

T
; ð21Þ

with T being the local temperature.
The derivative of F with respect to yμν is related to the

vortical susceptibility in the way described in Ref. [19]. As
such, it will be strictly related to the magnetic susceptibility
[17,18] (in one case, one deforms Aμ, and in the other, one
deforms the perpendicular components of the metric [19])
and can be inferred from lattice results at finite magnetic
field [48]. It can also be computed explicitly [49].
One important point to note is that we inserted the

polarization related degrees of freedom in the effective
Lagrangian and, in order to enforce local equilibration, we
substituted yμν with a functional of the old degrees of
freedom to enforce local equilibrium on each fluid cell.
Thanks to (17), the effective Lagrangian becomes second
order in the derivatives of the fundamental effective fieldsϕI .
The reason to consider these gradients and not, for instance,
the symmetric part of the 4-velocity gradient lies in the
assumption of local equilibration, namely, point ii. Contrary
to most expectations, global equilibrium does not imply
vanishing gradients. It does only in the case of homogeneous
equilibrium (translationally and rotationally symmetric);
however, an average angular momentum is breaking rotation
and translation invariance. In general, equilibrium requires a
timelike direction fulfilling a killing equation; see, for
instance, Refs. [3,17]. The case we are interested in is the
one with average angular momentum; in this case, it is
straightforward to prove that the 4-velocitymay have only an
antisymmetric gradient. This one, remaining at equilibrium,

should not be considered a dissipation-inducing gradient,
and therefore it can enter the effective Lagrangian for ideal
hydrodynamics with polarization. The symmetric part,
however, being vanishing at equilibrium, should be safely
considered a dissipation-inducing term, like it has always
been in hydrodynamics, and it is reasonable towait to extend
the model to nonideal hydrodynamics with polarization
before including it in the effective Lagrangian, suppressed
by factors of the order of the Knudsen number.
The equilibrium calculation with angular momentum can

be used to justify the choice of considering only the spacelike
part of the fluid cell internal angular momentum in the
definition of yμν, i.e., the one proportional to the vorticity at
equilibrium, while the space-time mixing term (correspond-
ing to the boost generator) is proportional to the acceleration.
At global equilibrium, the 4-acceleration is the only one
consistent with the vorticity profile (providing the necessary
centripetal force and allowing a rotation). Indeed, even the
temperature gradient is proportional to the acceleration. The
only gradient we need to consider in global rotating equi-
librium is then the vorticity; the other ones can be extracted
from it. Therefore, we include in the Lagrangian density the
only gradient necessary for equilibrium.

V. DYNAMICS

The most common way to study the evolution of a
fluid is to extract from the Lagrangian the stress-energy
tensor Tμν and close the system of equations using the
equation of state and local 4-momentum conservation.
From a generic Lagrangian density an energy momentum
tensor can be constructed [50]. However, a crucial differ-
ence between polarized and unpolarized hydrodynamics is
that in the former, due to lack of isotropy, conservation of
energy momentum does not close the equations of motion.
From the Lagrangian, we can, of course, match the

number of unknowns and equations, but at the price of
promoting spin waves to independent degrees of freedom,
which will generally violate local entropy maximization.
Since, however, local equilibrium requires spin and vor-
ticity to be aligned, Eq. (17) and the Ansatz for F in (19)
reduce the whole system to 3 degrees of freedom. One can
than use the Hamilton principle of action minimization,

δ

Z
d4xL ¼ 0;

with the proviso that the functional implementation of this
principle will lead to a generalization of the usual Euler-
Lagrange equations since this Lagrangian in our case
depends on second derivatives of fields. Given there is
no explicit dependence on the fields themselves, rather than
their derivatives, the correct equation is

∂μ∂ν
∂F

∂ð∂μ∂νϕ
IÞ ¼ ∂μ

∂F
∂ð∂μϕ

IÞ : ð22Þ
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Since

∂2F
∂ð∂μ∂νϕ

IÞ ¼ 4cF0χðχ þ 2ω2∂ω2χÞωαβgαfμP
νgβ
I ; ð23Þ

∂F
∂ð∂μϕ

IÞ ¼ −F0½uρPρμ
I ð1 − cy2 − 2cbχω2∂bχÞ�

− 2cðχ þ 2ω2∂Ω2χÞF0

×

��
χω2 −

1

b
yρσðuα∂αKρ − uα∇ρKαÞ

�
Pσμ
I

−
1

6b
yρσεμραβϵIJK∇σ∂αϕ

J∂βϕ
K

�
: ð24Þ

This leads to three conservation law equations, ∂μJ
μ
I ¼ 0,

in which

JμI ¼ 4c∂νfF0½χðχ þ 2∂Ω2χÞωαβgαfμP
νgβ
I �g

− F0½uρPρμ
I ð1 − cy2 − 2cbχω2∂bχÞ�

− 2cðχ þ 2ω2∂Ω2χÞF0

×

��
χω2 −

1

b
yρσðuα∂αKρ − uα∇ρKαÞ

�
Pσμ
I

−
1

6b
yρσεμραβϵIJK∇σ∂αϕ

J∂βϕ
K

�
; ð25Þ

with Pμν
K ¼ ∂Kμ=∂ð∂νϕKÞ, ∇α ¼ Δαβ∂β, and ½…�; f…g

corresponding to, respectively, antisymmetrization and
symmetrization of the indices, as done in Ref. [51].
In addition to generally breaking isotropy and the

circulation theorem, unlike the nonpolarized case, the
higher gradient of the 4-velocity will be the third one
(fourth one in the fields ϕI). This system of equations has
no easy solutions; however, the situation is much simper if
one considers the small perturbations from a static back-
ground, as has already been done for the nonpolarized case
(see, for instance, Ref. [37]). To understand the conse-
quences of this, we linearize the hydrostatic limit, with a
background (leading-order) entropy density b0,

ϕI ¼ b1=30 ½δIμxμ þ πIðt;xÞ�: ð26Þ

Using the notation in Ref. [52], we can use as definitions
(written in the rest frame of the hydrostatic background)
_πI ¼ ∂tπ

I ¼ ∂tϕ
I , while the contraction π · ∂ stands for

δμI π
I∂μ and ½∂π � � � ∂π� is a shorthand notation for the trace

δiJ∂iπ � � � ∂πJ. Note that, since the lowercase indices are
Lorentz indices, while the uppercase (and only latin) ones
are internal indices that do not change under a coordinate
change, all these definitions become more complicated in
other reference frames. It is, however, convenient in this
situation to write everything in this particular frame. We can
add another shorthand notation: π · π ¼ P

Iπ
IπI . The non-

polarized hydrodynamics gives the usual wave equation for
sound waves, the stationary vortex-state polarization terms
that will increase the gradients at each order by one unit.
The free part of the equation (second order in the small
fields πI) will be, up to an additional Fðb0Þ constant that is
not relevant for the equations of motion,

F≃ A

�
½∂π� − 1

2
½∂π · ∂π� − 1

2
_π2
�

þ Bfð∂ρ _πÞ · ð∂ρ _πÞ þ ½∂ _π · ∂ _π�g þ
�
1

2
Aþ C

�
½∂π�2;

ð27Þ

and the constants A, B, and C are obtained by Taylor
expanding the Lagrangian around the usual hydrostatic
limit

A ¼ b0F0ðb0Þ; B ¼ Acχ2ðb0; 0Þ; C ¼ 1

2
b20F

00ðb0Þ;
ð28Þ

At the level of the action, the part independent of B is
equivalent to that obtained in Ref. [41], as can be verified
by an integration by parts.
If one is interested in the quantum corrections to fluid

dynamics, these equations provide the free part of the
theory. The lowest-order interacting part of the expansion
around small perturbation of a static background, which is
the third-order contribution of the effective Lagrangian of
the fields πI , is the integral of

L3 ≃ A

�
1

6
½∂π · ∂π · ∂π� − 1

4
½∂π�½∂π · ∂π�

þ ð _π · ∂πÞ · π −
1

2
½∂π� _π2 þ cχ2ðb0; 0Þ½ð∂μ _πÞ · ð∂μ _πÞ þ ½∂ _π · ∂ _π� − ð∂μ _πÞ · ð∂μ _π · ∂πÞ

− ð∂μ _πÞ · f _π · ∂ð∂μπÞg − 2ðπ̈ · ∂ _πÞ · _π − ½∂ _π · ∂ _π · ∂π� − _π · ∂ð∂Iπ
JÞ∂J _π

I þ ð _π · ∂ _πÞ · π̈ þ π̈ · _π · π̈�

þ cχðb0; 0Þ½χðb0; 0Þ þ 2b0∂bχðb0; 0Þ�½½∂π�ð∂μ _πÞ · ð∂μ _πÞ þ ½∂π�½∂ _π · ∂ _π��
�

þ C½∂π�f½∂π�2 − ½∂π · ∂π� − _π2 þ 2cχ2ðb0; 0Þ½ð∂μ _πÞ · ð∂μ _πÞ þ ½∂ _π∂ _π��g þ 1

6
b30F

000ðb0Þ½∂π�3: ð29Þ
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We note that the Lagrangian becomes, already at leading
order with no dissipative corrections, dependent on second-
derivative terms. As has been known since the 19th Century
(Ostrogradski’s theorem [53]), such Lagrangians are inher-
ently unstable, something that can be used, in the context of
dissipative hydrodynamics, for motivating the introduction
of nonhydrodynamic degrees of freedom [34]. The pres-
ence of higher-order gradient terms at the “lowest level”
therefore means that dissipative corrections or the appear-
ance of new degrees of freedom becomes necessary to
preserve the hydrostatic vacuum even in the ideal limit, a
realization that we explore in detail in Ref. [39].
What this means is that the instabilities plaguing such a

higher-order system could lead to a local “thermalization”
between hydrodynamic and polarizing degrees of freedom,
imposing an effective viscosity also on “ideal” fluid
dynamics systems. This idea, related to the existence of
a lower limit of viscosity [54], will be explored in a
subsequent paper [39]. On the other hand, the nonlinear
terms, however, all depend on derivatives of χðb;ω2Þ that
are expected, for sensitive equations of state, to be high at
small vorticity and diminish at high vorticity, when particle
polarizations saturate and cannot contribute any longer to

the angular momentum of the fluid cell (Fig. 1; at small
vorticity, creating polarization is preferable to creating
vortices, and at large vorticity, this effect is small).
Hence, we expect this nonlinearity to create an effective
“soft energy gap” for vortices, ensuring they only form
when applied angular momentum is large enough. Such a
gap could alleviate the instabilities seen in Ref. [41], and it
will be interesting to see if a more quantitative estimate of
this effect can be made.
In conclusion, we developed the effective theory for

hydrodynamics in the limit where the mean free path is
negligible but the microscopic degrees of freedom exhibit
microscopic polarization. This theory is likely to be highly
relevant to the phenomenology of global polarization of
hadronic collisions [2] and might have an impact on the
description of chiral observables [15]. The third-order
gradient nature of this theory might also impact the
question of whether a lower quantum viscosity limit is
realized in nature. We hope understanding of all these areas
will increase in the coming years.
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