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Rapidity dependence of transverse-momentum multiplicity correlations

Adam Bzdak”

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science,
30-059 Krakow, Poland
(Received 27 June 2017; published 18 September 2017)

Following previous work [A. Bzdak and D. Teaney, Longitudinal fluctuations of the fireball density in
heavy-ion collisions, Phys. Rev. C 87, 024906 (2013)], we propose to analyze the rapidity dependence of
transverse momentum and transverse-momentum multiplicity correlations. We demonstrate that the
orthogonal polynomial expansion of the latter has the potential to discriminate between models of particle

production.
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I. INTRODUCTION

One of the central problems in high-energy hadronic
collisions is to understand the longitudinal structure of
systems created in proton-proton (p + p), proton-nucleus
(p + A) and nucleus-nucleus (A + A) collisions.

Not long ago, it was argued that an event-by-event long-
range fluctuation of the fireball rapidity distribution results
in rather peculiar two-particle and multiparticle rapidity
correlations [1,2]. Recent measurement by the ATLAS
collaboration at the LHC [3] revealed new and rather
unexpected scaling results on asymmetric rapidity fluctua-
tions in p+p, p+ A and A + A interactions. Recently,
this problem has drawn a noticeable theoretical [4-11] and
experimental [3,12,13] interest, see also [14-23] for recent
related studies.

To summarize the main idea, the single-particle rapidity
distribution in each event, N(y), can be written as

=l+tay+ay+---, (1)

where a describes the rapidity independent fluctuation of
the fireball. a, represents the fluctuating long-range for-
ward-backward rapidity asymmetry.l This coefficient can
be driven for example by the difference in the number of
left- and right-going sources of particles, e.g., wounded
nucleons [24,25]. (N(y)) is the average rapidity distribu-
tion in a given centrality class. By definition (a;) = 0.

It is straightforward to calculate the two-particle rapidity
correlation [1]
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We are not interested in statistical fluctuations, which can also
generate nonzero values of a;. These are removed by measuring
correlation functions.
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where

C(y1,y2) = (NOYI)N(y2)) = (N(y))N(y2)).  (3)

As seen in Eq. (2), the long-range fluctuation of the fireball
rapidity distribution, parametrized by fluctuating a;, results
in rather nontrivial correlations. The first term corresponds
to a well-known rapidity independent multiplicity fluc-
tuation, and it can be driven by, e.g., the impact parameter
or volume fluctuation. The second term, ~y; y,, is related to
the fluctuating forward-backward asymmetry in rapidity. In
the wounded nucleon model [24,25] (a3) ~ ((w; — wg)?),
where wpg) is the number of left(right)-going wounded
nucleons [1]. Recently, the ATLAS collaboration observed
(a?)y,y, in the two-particle rapidity correlation functions
measured in p + p, p + Pb and Pb + Pb collisions [3]. They
found that at a given event multiplicity N, (a?) approx-
imately scales with 1/Ng, and numerically is very similar
for all colliding systems.” This surprising result still calls
for a quantitative explanation.

II. TRANSVERSE-MOMENTUM
MULTIPLICITY CORRELATIONS

It is proposed here to analyze, in a similar way, the
rapidity dependence of transverse momentum and espe-
cially transverse-momentum multiplicity correlations.

Analogously to Eq. (1) we have

P(y)
(Pi(y))

where P,(y) is the average (in one event) transverse
momentum of particles in a given rapidity bin y

=1+by+byy+---, (4)

*For clarity we skip (aqa; ), which vanishes in symmetric (e.g.,
p + p) collisions.

One would expect rather different results in, e.g., peripheral
Pb + Pb and ultracentral p + p collisions (N, ~ 150 [3]). The
ATLAS result suggests that the number of particle sources (at a
given N,) and their fluctuations are actually similar in all
measured systems.
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where N is the number of particles (in a given event) at y.

Here pgi) is the transverse momentum magnitude of the ith

particle. (P,(y)) is the average of P,(y) over many events in
a given centrality class. We note that (b;) =0, in close
analogy to the a; coefficients.

The transverse momentum correlation function (studied
extensively in the literature for rather different reasons, see,
e.g., [26-28]) reads

_Cenbiya) oy e
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where

Cip.p)(V1,y2) = (P,(y1)P(y2)) = (P,(y1)){P:(y2)).  (7)

The first term in Eq. (6) describes an event-by-event
rapidity independent transverse momentum fluctuation.
This could be driven for example by an event-by-event
long-range multiplicity fluctuation (if event multiplicity
is correlated with P,). The second term describes the
forward-backward rapidity asymmetric transverse momen-
tum fluctuation. A possible source of this effect is the
forward-backward fireball multiplicity fluctuation.

It would be especially interesting to measure an event-
by-event relation between a; and b; coefficients. In order to
do this, one can construct a simple correlation function

C[N,P](Yl’yZ) = (N(y1)P,(y2)) = (N(y1))(P:(¥2))s (8)

witch correlates multiplicity and transverse momentum,
see, e.g., [28]. This results in

Civ.p Vi, ¥2)
(NP (32))

The meaning of mixed coefficients (a;b;) is easy to
understand. The first term describes the relation between
rapidity independent fluctuation of multiplicity and trans-
verse momentum. The second term is particularly interest-
ing and describes how rapidity asymmetry in multiplicity
is related to rapidity asymmetry of transverse momentum.
If the particle multiplicity and P, are not correlated then
(aiby) = (a;)(by) = 0.

In general, the above correlation functions can be
expanded in terms of the orthogonal polynomials [1].
For example,

= (apbo) + {a1b)y 1y, + . (9)
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with T; being, e.g., the Chebyshev or the Legendre
polynomials [1,4], and analogously for Eqgs. (2) and (6).

III. DISCUSSION AND CONCLUSIONS

Several comments are in order.

Consider a set of events with a; > 0, i.e., the fireball
multiplicity is larger for positive y, N(y)~a;y. The
question is what is the rapidity dependence of the trans-
verse momentum in this case. If P, is also larger for
positive y then b; > 0 and thus (a;b;) > 0. This scenario
is expected in a typical hydrodynamical framework, see,
e.g., [29].

For example, in the color glass condensate (CGC)
framework [30,31] one could expect a rather different
conclusion. Consider a proton-proton event, where the
two protons are characterized by different saturation
scales, O, and Q,. The importance of such fluctuations
was recently discussed in Refs. [9,32-35]. Here Q%:
Qf e™ and Q3 = Qf,e™ with 1~0.3, see, e.g., [36].
We choose Qp; > Qg so that in a given rapidity interval,
say |y| <2, Q) > Q,, resulting in rapidity asymmetric
N(y). In this case [29,37]

N(y) ~ 5,032+ In (Q1/03)]. (11)
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that is, in CGC the multiplicity is driven by the smaller
scale in contrast to the transverse momentum controlled
by the larger one [37]. Since 0} ~ ¢™ and Q3 ~ e~ the
multiplicity and the transverse momentum rapidity asym-
metries have different signs. If N(y) is growing with
rapidity, then P,(y) is decreasing with y. Consequently
a, = 0 means b; S0 and (a,b;) < 0. Clearly, this obser-
vation should be treated with caution and more detailed
calculations are warranted, see, e.g., [38,39]. The sole
purpose of this exercise was to demonstrate that the
sign of (a;b;) is not at all obvious, and could poten-
tially discriminate between different models of particle
production.

As discussed earlier, the ATLLAS collaboration reported a
surprising scaling of (a?) in p +p, p +Pb and Pb + Pb
collisions [3]. At a given event multiplicity N, (a?) scales
with 1/Ng, and is quantitatively very similar for all three
systems. It would be very interesting to see if (h?) and
(aiby) satisfy similar scaling.

Obviously, it would be also desired to study higher order
correlation functions [2,40].

An alternative way to analyze the above correlation
functions is the principal component analysis, discussed
in Ref. [41].

In conclusion, it is proposed to analyze the rapidity
dependence of transverse momentum and in particular
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transverse-momentum multiplicity correlation functions
using the orthogonal polynomial expansion. A careful
study of the coefficients (a?), (b?) and (a;b;) could
potentially discriminate between different models of par-
ticle production, and reveal detailed information on the
longitudinal structure of systems created in p+p, p+ A

and A + A collisions.
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