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We study the possibility of an ultraviolet (UV) zero in the six-loop beta function of an OðNÞ λjϕ⃗j4 field
theory in d ¼ 4 spacetime dimensions. For general N, in the range of values of λ where a perturbative
calculation is reliable, we find evidence against such a UV zero in this six-loop beta function.

DOI: 10.1103/PhysRevD.96.056010

I. INTRODUCTION

A topic of fundamental importance in quantum field
theory is the renormalization-group (RG) behavior of a real
N-component scalar field theory in d ¼ 4 spacetime
dimensions. This theory is defined by the path integral

Z ¼
Z Y

x

½dϕ⃗ðxÞ�eiS; ð1:1Þ

where S ¼ R
d4xL, and the Lagrangian L is given by

L ¼ 1

2
ð∂μϕ⃗Þ · ð∂μϕ⃗Þ −m2

2
jϕ⃗j2 − λ

4!
jϕ⃗j4; ð1:2Þ

where ϕ⃗ ¼ ðϕ1;…;ϕNÞT is the real scalar field. The
Lagrangian for this λjϕ⃗j4 theory is invariant under a global
OðNÞ symmetry group whose elements R are rotations
acting on ϕ⃗. Quantum loop corrections lead to a depend-
ence of the physical quartic coupling λ ¼ λðμÞ on the
Euclidean energy/momentum scale μ at which this coupling
is measured. The dependence of λðμÞ on μ is described by
the renormalization-group beta function of the theory,

βλ ¼
dλ
dt

; ð1:3Þ

where dt ¼ d ln μ [1]. At a reference scale μ0, the quartic
coupling λðμ0Þ is taken to be positive for the stability of the
theory. The beta function has a series expansion

βλ ¼ λ
X∞
l¼1

blal; ð1:4Þ

where

a ¼ λ

ð4πÞ2 ; ð1:5Þ

and bl is the l-loop coefficient. The n-loop (nl) approxi-
mation to βλ is obtained by replacing l ¼ ∞ by l ¼ n in
the summand in Eq. (1.4), and is denoted as βλ;nl. Since

the one-loop coefficient, b1, is positive, it follows that
λðμÞ → 0 as μ → 0 in the infrared (IR), i.e., the theory is
free in this limit. This perturbative result was confirmed by
nonperturbative analyses [2–5].
An important question is whether, for the region of λ

where a perturbative calculation of the beta function is
reliable, the beta function of this theory exhibits evidence
for a zero away from the origin, at some (positive) value,
λUV, or equivalently, aUV ¼ λUV=ð4πÞ2. If so, then this
would be an ultraviolet fixed point (UVFP) of the renorm-
alization group, i.e., as μ → ∞, aðμÞ would approach
the limiting value aUV (from below). Correspondingly, if
the n-loop beta function has one (or more) zero(s) on the
positive real a axis, we denote the one closest to the origin
as aUV;nl. A necessary condition for the n-loop beta
function to exhibit evidence for a UV zero at a value
aUV;nl, is that the beta functions calculated to (n − 1)-loop
and (nþ 1)-loop order should also exhibit respective zeros
at values aUV;ðn�1Þl close to aUV;nl. In previous work, we
have investigated this question for generalN up to five-loop
order in [6] and for N ¼ 1 up to six-loop order in [7],
finding evidence against a UV zero. Our analysis in [7]
made use of the calculation of the six-loop beta function for
the special case N ¼ 1 in [8].
In this paper, using the results of the recent calculation of

the six-loop beta function for general N in [9], we
investigate the question of whether the beta function for
the general OðNÞ λjϕ⃗j4 theory exhibits robust evidence for a
UV zero. We treat the λjϕ⃗j4 theory in isolation and do not
try to study possible embeddings in larger theories. Since
we will investigate the UV properties of the theory, the
value of m2 will not play an important role in our analysis,
because m2=μ2 → 0 in the UV limit, independent of the
value of m2. For technical convenience, we take m2 to be
positive.
As background, it is worthwhile to inquire whether there

is a known quantum field theory that is IR-free and has a
beta function with a UV zero, which is thus a UVFP of the
renormalization group. The answer to this question is yes;
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an example of such a theory is the nonlinear OðNÞ σ model
in d ¼ 2þ ϵ spacetime dimensions, where ϵ is small. In
Ref. [10], an exact solution of this theory was calculated in
the limit N → ∞ with λðμÞN ¼ ξðμÞ equal to a fixed finite
function of μ. In this limit, the beta function for this
coupling ξ was calculated to be

βξ ¼
dξ
dt

¼ ϵξ

�
1 −

ξ

ξUV

�
ð1:6Þ

for small ϵ, where ξUV ¼ 2πϵ is a UV fixed point of the
renormalization group. Hence, in this theory, as the
Euclidean reference scale μ increases from small values
in the IR to large values in the UV, the running coupling
ξðμÞ increases but approaches the UVFP at ξ ¼ ξUV as
μ → ∞. The question, then, is whether there is evidence for
a similar type of behavior in the OðNÞ λjϕ⃗j4 theory in d ¼ 4
dimensions for a fixed, finite N, at the six-loop level.
The organization of the paper is as follows. In Sec. II we

discuss relevant properties of the coefficients of the beta
function. In Sec. III, after a brief review of our previous
results up to the five-loop level, we present the results of
our new investigation of a possible UV zero in the beta
function for general N up to the six-loop level. Section IV
includes a further analysis of this question using Padé
approximants. Our conclusions are given in Sec. V. We
include some formulas on beta function coefficients and on
discriminants in Appendices A and B, and an analysis using
Padé approximants of the series for an illustrative test
function in Appendix C.

II. COEFFICIENTS OF THE BETA FUNCTION
UP TO SIX-LOOP ORDER

A. General

It will be convenient to study a beta function that is
equivalent to βλ in (1.3), namely

βa ¼
da
dt

¼ 1

ð4πÞ2 βλ: ð2:1Þ

This has the series expansion

βa ¼ a
X∞
l¼1

blal: ð2:2Þ

The corresponding n-loop beta function, denoted βa;nl, is
given by Eq. (2.2) with the upper limit of the loop
summation index being l ¼ n instead of l ¼ ∞. As is
well known, the series expansion for βa is not a Taylor
series with finite radius of convergence, but instead only an
asymptotic expansion. For the tabular listings to be given
below, it is useful to define the scaled coefficients

b̄l ¼ bl
ð4πÞl : ð2:3Þ

We also define a reduced beta function with the factor
b1a2 divided out, which is thus normalized to unity at
a ¼ 0, namely

βa;red ¼ 1þ 1

b1

X∞
l¼2

blal−1: ð2:4Þ

Analogously with the full beta function, the n-loop trun-
cation of this reduced beta function is

βa;nl;red ¼ 1þ 1

b1

Xn
l¼2

blal−1: ð2:5Þ

This function serves as a quantitative measure of how much
the n-loop beta function differs from the one-loop beta
function, since it is equal to the ratio

Ra;nl ≡ βa;nl
βa;1l

¼ βa;nl;red: ð2:6Þ

The one-loop and two-loop coefficients in Eq. (2.2) are
independent of the scheme used for regularization and
renormalization [11,12], while the bl with l ≥ 3 are
scheme-dependent. In the following, unless otherwise
stated, we use the bl coefficients as calculated in the
MS scheme [13], since most higher-loop computations
have been performed with this scheme. Effects of scheme
transformations were discussed in [6].
The one-loop and two-loop coefficients are [11]

b1 ¼
1

3
ðN þ 8Þ ð2:7Þ

and

b2 ¼ −
1

3
ð3N þ 14Þ: ð2:8Þ

In our study of the five-loop beta function of the OðNÞ
λjϕ⃗j4 theory in [6], we discussed the behavior of the
coefficients bl with 1 ≤ l ≤ 5 as functions of N, and
we refer the reader to [6] for this discussion. Here we
briefly review this behavior. Where necessary, we general-
ize N from the positive integers to the positive real
numbers. Except for b1, which is a polynomial of degree
1 in N, the coefficients bl are polynomials of degree l − 1
in N [14], and hence can be written as

bl ¼
Xl−1
k¼0

bl;kNk for l ≥ 2; ð2:9Þ

where the bl;k are independent of N. In Table I we list
numerical values of the bl up to the l ¼ 6 loop level,
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expressed in terms of the rescaled quantities b̄l defined
in Eq. (2.3).
The three-loop coefficient, b3, [11,15], given in Eq. (A1)

in Appendix A, is positive for all (physical) N. The four-
loop coefficient, b4 [5,15], is negative for N ¼ 1 and
decreases (that is, −b4 increases) as N increases up to
the value N ¼ 2143, at which it reaches a minimum and
then increases, passing through zero to positive values as N
increases through the value [16]

Nb4z ¼ 3218.755; ð2:10Þ

where and below, numerical values are given to the
indicated floating-point accuracy. [In Eq. (2.10) the sub-
script b4z means “b4 zero”.] For larger values of N, b4
remains positive. The five-loop coefficient, b5, given in
Eq. (A5) [15], is positive for N ¼ 1 and increases with
increasing N, reaching a maximum at N ¼ 374 and then
decreasing, passing through zero to negative values as N
increases through the value

Nb5z ¼ 504.740: ð2:11Þ

This coefficient remains negative for larger N.
We next discuss the behavior of the six-loop coefficient,

b6, recently calculated in [9], as a function of N for N ≥ 1

(in the MS scheme). This coefficient is a polynomial of

degree 5 in N involving rational coefficients and Riemann
zeta functions ζðsÞ with s up to 9, where ζðsÞ ¼ P∞

n¼1 n
−s.

We refer the reader to [9] for the analytic expression, which
we have used in our calculations. Numerically,

b6 ¼ ð2.10179 × 10−4ÞN5 − 0.113332N4 − 42.4818N3

− 1252.5593N2 − 10166.274N − 23314.7030:

ð2:12Þ

At N ¼ 1, this coefficient b6 is negative and as N increases,
it decreases through negative values (i.e., −b6 increases),
reaching a minimum and then increasing and passing
through zero at

Nb6z ¼ 800.9505; ð2:13Þ

and remaining positive for larger N.
With these beta function coefficients now calculated up

to six-loop order (with bl for 3 ≤ l ≤ 6 computed in the
MS scheme), we can make some comments about them.
The first concerns an alternating-sign property. The
(scheme-independent) coefficients, b1 and b2, are of
opposite sign for all N, and the sign of the three-loop
coefficient, b3 is opposite to that of b2 for all N. Over a
large range of N values up to 3218 inclusive, b4 < 0 while
for N up to 504 inclusive, b5 > 0. Additionally, for N up to

TABLE I. Values of the b̄l coefficients for 1 ≤ l ≤ 6 as functions of N for 1 ≤ N ≤ 10 and illustrative larger values of N. Notation a e
n means a × 10n.

N b̄1 b̄2 b̄3 b̄4 b̄5 b̄6

1 0.2387 −0.03588 0.01640 −0.01089 0.09090 −0.008831
2 0.2653 −0.04222 0.02013 −0.01406 0.01227 −0.012443
3 0.2918 −0.04855 0.02401 −0.01755 0.01595 −0.016822
4 0.3183 −0.05488 0.02805 −0.02137 0.02016 −0.022035
5 0.3448 −0.06121 0.03224 −0.02553 0.02492 −0.028147
6 0.3714 −0.06755 0.03658 −0.03001 0.03024 −0.035229
7 0.3979 −0.07388 0.04108 −0.03482 0.03616 −0.043347
8 0.4244 −0.08021 0.04573 −0.03996 0.04269 −0.052571
9 0.4509 −0.08655 0.05054 −0.04542 0.04984 −0.062971
10 0.4775 −0.09288 0.05550 −0.05121 0.05765 −0.074616
30 1.00798 −0.21953 0.18703 −0.23539 0.38036 −0.682937
100 2.8648 −0.6628 1.1324 −1.87505 5.4152 −16.57724
200 5.5174 −1.2961 3.7918 −6.7359 26.0096 −1.28518e2
300 8.1700 −1.9293 7.9910 −14.2812 54.2973 −4.24105e2
400 10.8225 −2.5626 13.7300 −24.2014 63.0752 −0.932587e3
500 13.4751 −3.1958 21.0087 −36.1873 5.42998 −1.560139e3
600 16.1277 −3.8291 29.8273 −49.9293 −1.85262e2 −2.02581e3
700 18.7803 −4.4624 40.1856 −65.1180 −5.95335e2 −1.79749e3
800 21.4329 −5.0956 52.0837 −81.4440 −1.33083e3 −27.8255
900 24.0854 −5.7289 65.5216 −98.5980 −2.51752e3 4.50979e3
1.0e3 26.7380 −6.3621 80.4992 −1.16270e2 −4.30084e3 1.34853e4
2.0e3 53.2639 −12.6947 3.149645e2 −2.53435e2 −1.01045e5 1.15991e6
3.0e3 79.7897 −19.0273 7.03408e2 −1.02078e2 −5.63816e5 1.03446e7
4.0e3 1.063155e2 −25.3598 1.24583e3 6.472275e2 −1.86330e6 4.65918e7
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800, b6 < 0. Thus, in the interval 1 ≤ N ≤ 504, the signs of
the bl alternate as a function of loop order l for 1 ≤ l ≤ 6.
We will comment further on this below.
A second salient property is that in each one of these

coefficients, considered as a polynomial in N, the magni-
tudes of the coefficients of terms of increasing degree in N
decrease as a function of the degree. This is a relatively mild
effect at low loop level but becomes quite prounounced as
the loop level increases. Thus, in b1 ¼ ðN þ 8Þ=3, the ratio
of the magnitude of the term proportional to N to the
constant term is 1=8, while for b5, the ratio of the magnitude
of the coefficient of theN4 term to that of the constant term is
ð2.57 × 10−3Þ=ð2.004 × 103Þ ¼ 1.28 × 10−6 and for b6, the
ratio of the coefficient of the N5 term to that of the constant
term is ð2.10 × 10−4Þ=ð2.33 × 104Þ ¼ 0.901 × 10−8.
A third property is that in b4, b5, and b6, the coefficient

of the term of highest degree in N is opposite in sign
relative to the constant term. This property, combined
with the second property, means that, as N increases from
1, each of these coefficients passes through zero and
reverses in sign at quite large values of N, namely the
values Nb4z, Nb5z, and Nb6z as given in Eqs. (2.10), (2.11),
and (2.13). In turn, this means that the asymptotic large-N
behavior of these coefficients only sets in for very large N.
From general analyses, it has been concluded that coef-
ficients in perturbative series expansions of quantities in
this λjϕ⃗j4 theory in powers of a at OðanÞ grow asymp-
totically for large n as a factorial, ∼n! (with additional
factors including annb, where a and b are constants)
[4,9,17]. Given the fact that higher-order terms are
scheme-dependent, one understands that this is the generic
behavior. This property underlies the proof that perturba-
tive power series expansions in this theory are only
asymptotic expansions instead of Taylor series expansions
with finite radii of convergence. Here, at least in the
commonly used MS scheme, since b4, b5, and b6 vanish
for respective large values of N, one must go to much
larger values of N before this asymptotic growth applies.
Fortunately, this is not a complication for our study of a
possible UV zero of the beta function because a very
simple analysis applies in the large-N limit, as will be
discussed below.

III. ZEROS OF THE BETA FUNCTION

A. General

In this section we proceed to the main object of this
paper, namely the investigation of a possible UV zero of the
six-loop beta function of the OðNÞ λjϕ⃗j4 theory. The beta
function of this theory has a double zero at the origin,
a ¼ 0, which is an IR fixed point of the renormalization
group. In general, the condition that the n-loop beta
function, βa;nl, has a zero away from the origin a ¼ 0 is
the equation of degree n − 1 in a,

Xn
l¼1

blal−1 ¼ 0: ð3:1Þ

Here and below, unless otherwise indicated, we use the bl
with l ≥ 3 from the calculations up to six-loop order in the
MS scheme [9]. The roots of Eq. (3.1) depend on the n − 1
ratios bl=b1, 2 ≤ l ≤ n. The investigation of zeros of βa;nl
away from the origin thus amounts to the study of the zeros
of the reduced n-loop beta function, βa;nl;red, defined in
Eq. (2.5). Although only one of the roots of the equa-
tion (3.1), or equivalently, βa;nl;red ¼ 0, will be relevant for
our analysis, it will be useful to characterize the full set of
roots. A valuable quantity for this purpose is the discrimi-
nant of the equation (3.1), denoted Δn−1ðb1; b2;…; bnÞ
[18]. We record some relevant definitions and formulas on
discriminants in Appendix B.

B. Zeros of the n-loop beta function for 2 ≤ n ≤ 5

Before presenting our new calculations, we briefly
summarize some relevant results that we have obtained
in [6] concerning possible UV zeros of the beta function of
the general OðNÞ λjϕ⃗j4 theory up to the five-loop level.
Because b1 and b2 are of opposite sign, the two-loop beta

function, βa;2l, has a a UV zero for all physical N (i.e.,
N ≥ 1). This UV zero occurs at a ¼ aUV;2l, where

aUV;2l ¼ −
b1
b2

¼ N þ 8

3N þ 14
: ð3:2Þ

As N increases from 1 to ∞, aUV;2l decreases monoton-
ically from 9=17 to 1=3. As noted above, one must examine
higher-loop results to judge whether this two-loop zero is a
robust, reliable prediction of perturbation theory or
whether, on the contrary, it occurs at too large a value
of a (equivalently, λ) to be a reliable prediction.
At the three-loop level, the condition that βa;3l ¼ 0 at a

nonzero value of a is that b1 þ b2aþ b3a2 ¼ 0. This
equation does not have any physical solutions, but instead,
two complex-conjugate solutions, for all physical N. This
result follows from the fact that the discriminant (given
explicitly as Eq. (3.6) in [6]) is negative-definite for all
physical values of N.
We investigated how robust this conclusion is to scheme

transformations in [6]. A natural approach is to devise a
scheme transformation as specified in [19–20] that renders
b03 ¼ 0 in the transformed scheme. We showed, however,
that although, by construction, the resultant three-loop beta
function in this transformed scheme would be equal to the
two-loop beta function and would hence have a UV zero at
a0UV;3l ¼ aUV;2l ¼ −b1=b2, the four-loop and five-loop
beta functions in this transformed scheme do not yield
UV zeros close to this value (see Table III in [6]). For
example, for N ¼ 1, while a0UV;3l ¼ a0UV;2l ¼ 0.5294, the
zero in the scheme-transformed four-loop beta function
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occurs at quite a different value, a0UV;4l ¼ 0.1917, and the
five-loop beta function in this transformed scheme has no
physical UV zero. Similar results hold for other values
of N.
At the four-loop level, as the n ¼ 4 special case of

Eq. (3.1), the equation for βa;4l ¼ 0 with a ≠ 0 is
b1 þ b2aþ b3a2 þ b4a3 ¼ 0. The properties of the solu-
tions to this equation are determined by the discriminant
Δ3ðb1; b2; b3; b4Þ given by Eqs. (B5) and (B2) in
Appendix B. This is negative for all physical N, and hence
these solutions consist of one real value and a complex-
conjugate pair of values of a. In [6] we showed that forN in
the range 1 ≤ N < Nb4z, the real root is positive, so that the
four-loop beta function has a physical UV zero, aUV;4l, but
for N > Nb4z, this real root becomes negative, so that this
four-loop beta function has no physical UV zero. Values of
aUV;4l for a large range of values of N are listed in Table II.
At the five-loop level, the condition for a zero of βa;5lwith

a ≠ 0 is obtained fromEq. (3.1)withn ¼ 5 and is the quartic
equation b1 þ b2aþ b3a2 þ b4a3 þ b5a4 ¼ 0. The dis-
criminant of this equation, Δ4 ≡ Δ4ðb1; b2; b3; b4; b5Þ, is
given by Eqs. (B3) and (B6) with (B2), in Appendix B. For
physical N, this discriminant is positive for 1 ≤ N < NΔ4z,
where NΔ4z ¼ 493.0957 [16] and negative for larger N.
From this information or the equivalent analysis of b5Δ4 in
[6], one then determines the nature of the roots of the above

quartic equation. For values ofN from 1 to 493, the five-loop
beta function has no physical UV zero. For larger values of
N, the quartic equation has two real positive roots (and a
complex-conjugate pair of roots), and the smaller of these is
aUV;5l. This is listed in Table II. For the interval of N in
which both the four-loop and five-loop beta functions have
UV zeros, namely 494 ≤ N ≤ 3218, these zeros, aUV;4l and
aUV;5l are not close to each other. The values of aUV;4l and
aUV;5l are only approximately equal ifN is close toNb5z, so
that b5 ¼ 0 and βa;5l ¼ βa;4l, whence aUV;4l and aUV;5l are
automatically equal. As will be discussed next, in this small
region of N close to Nb5z where aUV;4l ≃ aUV;5l, these are
not approximately equal to aUV;6l, as would be expected if
this were a reliably indication of a UV zero in the full beta
function. For example, as indicated in Table II, at N ¼ 500,
where aUV;4l ¼ 0.07341, close to aUV;5l ¼ 0.08045, these
values are not close to the six-loop value, aUV;6l ¼ 0.03074.

C. Zeros of βa;6l
We now present our new results from our investigation of

a possible UV zero in the six-loop beta function of the OðNÞ
λjϕ⃗j4 theory. The condition for a zero of βa;6l with a ≠ 0 is
the special case of Eq. (3.1) with n ¼ 6, namely, the quintic
equation b1 þ b2aþ b3a2 þ b4a3 þ b5a4 þ b6a5 ¼ 0.
The discriminant, Δ5 ≡ Δ5ðb1; b2; b3; b4; b5; b6Þ, of this
equation is given by Eqs. (B3) and (B7) with (B2), in
the Appendix B. This discriminant is negative in the
interval 1 ≤ N ≤ 760.24, positive for the physical values
761 ≤ N ≤ 892, and negative for N > 892.218 [16]. We
find that the quintic equation above has a real positive root in
the interval 1 ≤ N ≤ 892, but no such physical root for
N ≥ 893. Values of the real positive root are listed in
Table II.
A necessary condition for a perturbative calculation of

the beta function to be reliable is that the fractional change

���� βa;nl − βa;ðn−1Þl
βa;nl

���� ð3:3Þ

should generally decrease as the loop order n increases, at
least away from a zero of βa;nl. Another necessary
condition for the reliability of a result on a zero of the
n-loop beta function, βa;ðn−1Þl, is that when one calculates
the beta function to the next higher-loop order, viz., βa;nl,
the zero should still be present and its value should not shift
very much. For the specific case at hand, where we are
investigating a possible UV zero of the beta function, this
condition is that the fractional shift

jaUV;nl − aUV;ðn−1Þlj
aUV;nl

ð3:4Þ

should be small. Our new calculations extend our previous
findings, showing to the six-loop order that these two

TABLE II. Values of the UV zero aUV;nl of the n-loop beta
function, βλ;nl, for n ¼ 2;…; 6, as a function of N, with bn
calculated in the MS scheme for 3 ≤ n ≤ 6. The notation “u”
means that βλ;nl has only unphysical (complex and/or negative)
zeros for a ≠ 0.

N aUV;2l aUV;3l aUV;4l aUV;5l aUV;6l

1 0.5294 u 0.2333 u 0.1604
2 0.5000 u 0.2217 u 0.1529
3 0.4783 u 0.2123 u 0.1467
4 0.4615 u 0.2044 u 0.1414
5 0.4483 u 0.1978 u 0.1368
6 0.4375 u 0.1920 u 0.1328
7 0.4286 u 0.1869 u 0.1292
8 0.42105 u 0.1823 u 0.1259
9 0.4146 u 0.1783 u 0.1229
10 0.4091 u 0.1746 u 0.1202
30 0.3654 u 0.1362 u 0.09033
100 0.3439 u 0.1012 u 0.05965
300 0.3370 u 0.07944 u 0.03783
500 0.3355 u 0.07341 0.08045 0.03074
800 0.3347 u 0.07137 0.02871 0.02866
890 0.3346 u 0.07164 0.02559 0.03829
900 0.3346 u 0.07170 0.02530 u
1000 0.3344 u 0.07241 0.02276 u
2000 0.3339 u 0.1054 0.01231 u
3000 0.3337 u 0.5475 0.008850 u
4000 0.3336 u u 0.007042 u
104 0.3334 u u 0.003460 u
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necessary conditions are not satisfied for this theory. In
much of this interval 1 ≤ N ≤ 892 where the six-loop beta
function βa;6l has a UV zero, the five-loop beta function
βa;5l does not have any UV zero. In the interval N ≥ 893,
βa;5l has a UV zero, but βa;6l does not, and, furthermore,
the five-loop UV zero, aUV;5l, is quite different from the
four-loop value, aUV;4l. For example, as is evident in
Table II, for N ¼ 2000, aUV;5l ¼ 0.01231, almost a factor
of ten smaller than the four-loop value, aUV;4l ¼ 0.1054. In
the small region of N close to Nb5z where aUV;4l ≃ aUV;5l,
these are not approximately equal to aUV;6l, as would be
expected if this were a reliable indication of a UV zero in
the full beta function. For example, as indicated in Table II,
at N ¼ 500, where aUV;4l ¼ 0.07341, close to aUV;5l ¼
0.08045, these values are not close to the six-loop value,
aUV;6l ¼ 0.03074. For the limited interval where both βa;5l
and βa;6l have UV zeros, the five-loop and six-loop values
aUV;5l and aUV;6l are not very close to each other. The only
exception to this is in the immediate vicinity of N around
the special value Nb6z where b6 ¼ 0; at this point, βa;6l ¼
βa;5l, so it is automatic that aUV;6l ¼ aUV;6l. Finally, for
larger N, the general analysis given in [6] and briefly
reviewed below shows the absence of a UV zero.
Another way of understanding the absence of a UV zero

is by plotting the reduced n-loop beta function, which is
equal to the ratio Rn given in Eq. (2.6) measuring the
relative agreement between the beta functions at adjacent-
loop orders. In [7] in the case N ¼ 1 we showed these
curves up to the six-loop level, and here we show them for
an illustrative higher value,N ¼ 10, in Fig. 1. One sees that
the Rn ratios for adjacent values of n ranging from
2 ≤ n ≤ 6 behave quite differently and do not exhibit the
sort of agreement with each other that one would expect if
the beta function had a reliably calculable UV zero.
It is not necessary to carry out specific searches for a UV

in the beta function for large N, because in this regime we

can apply a more general type of analysis. This was done in
[6] and showed the absence of a UV zero in the λjϕ⃗j4 theory
for N ≫ 1. As in [6], we define the limit

N → ∞; with xðμÞ≡ NaðμÞ a finite function of μ:
ð3:5Þ

This is denoted as the LN limit, with the symbol limLN .
The two scheme-independent coefficients, b1 and b2,
are both polynomials of degree 1 in N, and the higher-
loop coefficients bl are polynomials of degree l − 1 in N
[14], as indicated in Eq. (2.9). Thus, one can write
b1 ¼ b1;1N þ b1;0, where b1;1 ¼ 1=3 and b1;0 ¼ 8=3. We
extract the leading-N factors and define

b̂l ¼ lim
LN

bl
Nl−1 for l ≥ 2: ð3:6Þ

so that these b̂l with l ≥ 2 are finite in the large-N limit.
The explicit values of the b̂l follow from the expressions
for the bl and are

b̂2 ¼ −1; ð3:7Þ

b̂3 ¼
11

72
¼ 0.152778; ð3:8Þ

b̂4 ¼
5

3888
¼ 1.2860 × 10−3; ð3:9Þ

b̂5 ¼
13

62208
−
ζð3Þ
432

¼ −ð2.57356 × 10−3Þ; ð3:10Þ

and

b̂6 ¼
29

933120
þ 11

19440
ζð3Þ − ζð4Þ

2160

¼ 2.10179 × 10−4: ð3:11Þ

[where ζð4Þ ¼ π4=90].
Since the LN limit is defined so that xðμÞ is a finite

function of μ, the appropriate beta function that is finite in
this limit is

βx ¼
dx
dt

¼ lim
LN

Nβa

¼ x2
�
b1;1 þ

1

N

X∞
l¼2

b̂lxl−1
�
: ð3:12Þ

The n-loop beta function in the LN limit, denoted βx;nl, is
defined via Eq. (3.12) with the upper limit on the sum being
l ¼ n rather than l ¼ ∞. From Eq. (3.12), is it clear that in
the LN limit [6], for any given loop order n, βx;nl has no
UV zero xUV;nl, since

–0.2
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0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.1 0.2 0.3 0.4 0.5 0.6

FIG. 1. Plot of the ratio Rn ≡ Ra;n defined in Eq. (2.6), as a
function of a, for N ¼ 10 and (i) n ¼ 2 (red), (ii) n ¼ 3 (green),
(iii) n ¼ 4 (cyan), (iv) n ¼ 5 (blue), and (v) n ¼ 6 (black) (colors
in online version). Along a counterclockwise path around the
point ða; RnÞ ¼ ð0; 1Þ starting at the point ða; RnÞ ¼ ð0.1; 0Þ, the
curves are for n ¼ 6, n ¼ 4, n ¼ 2, n ¼ 3, and n ¼ 5.

ROBERT SHROCK PHYSICAL REVIEW D 96, 056010 (2017)

056010-6



lim
LN

1

N

Xn
l¼2

b̂lxl−1 ¼ 0: ð3:13Þ

Hence, in the N → ∞ limit, as μ increases, xðμÞ increases,
eventually exceeding the range of values where the
perturbative n-loop expansion of βx;nl is reliable. This
result in the LN limit agrees with our specific calculations
up to the six-loop level for large finite values of N as shown
in Table II. For example, for N ¼ 104 (chosen to be larger
than Nb4z, Nb5z, and Nb6z), the three-loop, four-loop,
and six-loop beta functions have no UV zero, and although
the five-loop beta function βa;5l has a UV zero, at
aUV;5l ¼ 0.003460, it is a factor of 100 smaller than the
two-loop value, aUV;2l ¼ 0.3334. Thus, neither of the
necessary criteria for a reliably calculable UV zero of
the six-loop beta function is satisfied here.

IV. ANALYSIS WITH PADÉ APPROXIMANTS

A. General

In the search for a possible UV zero of the six-loop beta
function of the OðNÞ λjϕ⃗j4 theory, it is also instructive to
calculate and analyze Padé approximants (PAs) to this
function. Moreover, these approximants can be used to
investigate the general analytic structure of the beta
function. Since the zero in question would occur away
from the origin in coupling-constant space, it is convenient
to extract an overall prefactor of b1a2 and compute Padé
approximants to the reduced beta function, βa;nl;red defined
in Eq. (2.5). Our six-loop results on a possible UV zero for
this OðNÞ λjϕ⃗j4 theory extend our previous studies of Padé
approximants to the beta function that were carried out up
to the five-loop level for general N in [6] and up to the six-
loop level for N ¼ 1 in [7].
For a function fðaÞ satisfying fð0Þ ¼ 1, with a finite

series expansion about a ¼ 0 given by fðaÞ ¼
1þP

n−1
s¼1 csa

s, the ½p; q� Padé approximant is the rational
function

½p; q� ¼
Pp

j¼0NjajPq
k¼0 Dkak

; ð4:1Þ

with polynomials in the numerator and denominator of
degree p and q, respectively, where pþ q ¼ n − 1 and
N0 ¼ 1 ¼ D0 [21]. The coefficients Nj with j ¼ 1;…; p
and Dk with k ¼ 1;…; q are determined by the m coef-
ficients c1;…; cn−1, so that the Taylor series expansion of
the ½p; q� Padé approximant about a ¼ 0 matches the
corresponding expansion of fðaÞ up to its maximal order,
Oðan−1Þ. For our application, fðaÞ ¼ βa;nl;red and cs ¼
bsþ1=b1 for 1 ≤ s ≤ n − 1.
We recall some general properties of these Padé approx-

imants. The [n − 1, 0] PA to βa;nl;red is this function itself, i.e.,

½n − 1; 0� ¼ βa;nl;red: ð4:2Þ

Since we have already analyzed the zeros of βa;nl;red above,
we do not discuss the [n − 1, 0] approximants here.
Moreover, the ½0; n − 1� PA approximant has no zeros and
hence is not useful for investigating a possible UV zero in the
beta function.Thus, for the purposeof investigating a possible
UV zero in the beta function, we shall use the ½p; q� PAs with
p ≠ 0 in addition to the analysis that we have already carried
out for βa;nl;red.
In order for a zero of Padé approximant to βa;nl;red to be

physically meaningful, (i) it must occur on the positive real
a axis, and (ii) calculations of Padé approximants to the
(reduced) n-loop beta functions with different loop orders
should yield approximately the same value for this zero.
Furthermore, (iii) if the Padé approximant has a pole on the
positive real a axis, this pole must not occur closer to the
origin than the zero. This is clear, since if there were such a
pole, then as μ increases from small values in the IR to large
values in the UVand aðμÞ increases from the vicinity of the
origin, it would approach the pole before it reached the
zero. In order for a zero of a ½p; q� Padé approximant to be
considered physically meaningful, one might also consider
imposing a stricter condition, namely that this zero must
occur within the disk in the complex a plane in which the
PA has a convergent Taylor series expansion. Since the
radius of this disk is determined by the real pole or pair of
complex-conjugate poles closest to the origin, this con-
dition would be that, in addition to properties (i)–(iii), the
zero must be closer to the origin than any pole(s), even if a
pole occurs on the negative real axis or if the PA has
complex-conjugate pairs of poles. However, we will not
have to consider imposing this last condition, since the
zeros of PAs that we find do not satisfy the first three
conditions. It should also be noted that ½p; q� Padé
approximants in which both p and q are nonzero may
exhibit nearly or exactly coincident pairs of zeros and
poles. This type of behavior typically occurs if one tries to
approximate (from the series expansion) a function that has
fewer than p zeros and q poles with a ½p; q� Padé
approximant. As will be evident from our results below,
a number of the higher-order Padé approximants that we
compute exhibit poles and zeros at points that are quite
close to each other. In this case, it is expected that one may
ignore these zero-pole pairs; i.e., the approximant is
indicating that the actual function does not have a zero
or pole at the nearly coincident points.
As was noted above, the one-loop and two-loop coef-

ficients in the beta function have the opposite sign, and for a
large range of values of N, this sign alternation also holds
for the higher-loop coefficients up to the highest-loop level
to which they have been calculated, namely the six-loop
level (in the MS scheme). A function with a pole on the
negative real axis could produce this type of sign alter-
nation in a series expansion. For this reason, we will
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analyze the ½p; q� Padé approximants to βa;nl;red with q ≠ 0

to investigate indications of a possible pole in this function
on the negative a axis.
The coefficientsNj andDk in the ½p; q� Padé approximant

(4.1) are, themselves, rational functions of the coefficients
blwith 1 ≤ l ≤ n. For example, the three-loop reduced beta
function is given by the n ¼ 3 special case of Eq. (2.5),
namely βa;3l;red ¼ 1þ ðb2=b1Þaþ ðb3=b1Þa2, which is
identical to the [2,0] PA. This function βa;3l;red has no

physical zeros, but instead a complex-conjugate pair of zeros
for all N ≥ 1 [6]. The [1,1] PA to this function is

½1; 1� ¼
1þ ðb22−b1b3b1b2

Þa
1 − ðb3b2Þa

: ð4:3Þ

This [1,1] PA has no physical zeros; the formal zero is
given by

a½1;1�zero ¼
b1b2

b1b3 − b22
¼ −

72ðN þ 8Þð3N þ 14Þ
33N3 þ ð538þ 480ζð3ÞÞN2 þ ð4288þ 5952ζð3ÞÞN þ ð9568þ 16896ζð3ÞÞ : ð4:4Þ

This is manifestly negative for all physical N. This [1,1] PA also has a pole at

a½1;1�pole ¼
b2
b3

¼ −
72ð3N þ 14Þ

33N2 þ ð922þ 480ζð3ÞÞN þ ð2960þ 2112ζð3ÞÞ ; ð4:5Þ

which is also clearly negative for all physical N. We note
that the pole occurs closer to the origin than the zero, as is
evident from the fact that the difference is a positive
quantity.
Similar but progressively more complicated analytic

expressions can be given for the higher-order ½p; q� Padé
approximants in terms of the coefficients bn and explicitly
as rational functions of N, but these are sufficient to
illustrate the results.

B. Analysis for theory with N = 1

The six-loop beta function for the case N ¼ 1 was
calculated in [8] and analyzed for a possible UV zero in
[7]. The ½p; q� Padé approximants (with p ≠ 0) to the
n-loop beta functions with 3 ≤ n ≤ 6 were calculated and
studied in [7]. The ½0; q� approximants were not considered

in [7], since they have no zeros. Because we are also
investigating a possible pole on the negative real axis
here, we calculate and analyze these ½0; q� Padé approx-
imants. At the three-loop level, we calculate the [0,2] PA to
βa;3l;red to be

½0; 2� ¼ 1

1þ 1.88889a − 7.28199a2
: ð4:6Þ

At the four-loop level, we find, for the [0,3] PA to βa;4l;red,
the result

½0; 3� ¼ 1

1þ 1.88889a − 7.28199a2 þ 56.2861a3
: ð4:7Þ

At the five-loop level, the [0,4] PA to βa;5l;red is

½0; 4� ¼ 1

1þ 1.88889a − 7.28199a2 þ 56.2861a3 − 593.1846a4
: ð4:8Þ

Finally, at the six-loop level, we find, for the [0,5] Padé approximant to βa;6l;red, the result

½0; 5� ¼ 1

1þ 1.88889a − 7.28199a2 þ 56.2861a3 − 593.1846a4 þ 7408.0652a5
: ð4:9Þ

We list the real zeros and poles of all of the ½p; q� Padé
approximants to βa;nl;rmd for 2 ≤ n ≤ 6 in Table III. In
order for these various ½p; q� Padé approximants to the
reduced n-loop beta functions βa;nl;red to give evidence for
a UV zero in the actual beta function, or equivalently, in
βa;red ¼ βa;∞l;red, the ones with p ≠ 0 would have to

consistently feature a zero at approximately the same value
of a. Clearly, they do not do this. Many of the approximants
have no physical (real, positive) zero and for the ones that
do, the respective values are significantly different from
each other. Furthermore, for the loop orders n ¼ 2, 4, 6
where the respective n-loop beta functions do exhibit
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UV zeros (namely aUV;2l ¼ 0.5294, aUV;4l ¼ 0.2333, and
aUV;6l ¼ 0.1604), the corresponding sets of Padé approx-
imants do not reproduce these zeros. This is automatic at
the two-loop level, since the only PA other than βa;2l;red
itself is [0,1], which has no zero. At the n ¼ 4 loop level,
the [1,2] PA has no physical UV zero, and although the
[2,1] has one physical zero, it occurs at a ¼ 1.4543, six
times larger than the UV zero aUV;4l in the four-loop beta
function. Moreover, the perturbative expansion of the [2,1]
PA only converges in the disk jaj < 0.1198 whose radius is
set by the position of its pole at a ¼ −0.1198, and both the
physical zero and the unphysical zero of this [2,1] PA lie
outside this disk. Similarly, the unphysical zero of the [1,2]
PA lies outside the radius of convergence of the Taylor
series expansion of this PA, which is set by its unphysical
pole at a ¼ −0.1138. At the six-loop level, none of the
Padé approximants exhibits a zero near to the UV zero in
the six-loop beta function, at aUV;6l ¼ 0.1604.
Aside from the two-loop level, where the pole in the [0,1]

PA always occurs at minus the value of the zero in the [1,0]
PA, in each case where p ≠ 0 so that a ½p; q� PA has one or
more zeros, this approximant has a pole closer to the origin
than the zero(s). Moreover, one can also observe many
examples of nearly coincident zero-pole pairs. For exam-
ple, at the six-loop level, the [4,1] PA has a zero at a ¼
−0.085 and a pole at a ¼ −0.082, the [3,2] PA has a zero at
a ¼ −0.074 and a pole at a ¼ −0.072, and the [2,3] PA has

a zero at a ¼ −0.073 and a pole at a ¼ −0.072, and so
forth for other approximants (see Table III for values listed
with more digits).
We may also use these Padé approximants to investigate

the possible presence of a pole in the n-loop beta functions.
As noted above, for a large range of values of N, the
coefficients bn alternate in sign. In general, if the Taylor
series expansion of a function fðaÞ around a ¼ 0 has this
property of alternating signs, it can indicate the influence of
a pole on the negative a axis. The ½p; q� Padé approximants
with q ≠ 0 thus provide a test for a possible pole in the beta
function. In general, one would expect that if a pole were
present in the full beta function, then for many values of p
and q ≠ 0, the ½p; q� Padé approximant would feature a
pole at approximately the position of the pole in this
full beta function. However, these Padé approximants do
not do this. Our results in Table III do not yield persuasive
evidence for such a pole, although they do not exclude
this possibility. In particular, although the [2,2] PA to
βa;5l;red and the [1,4] PA to βa;6l;red both exhibit a pole
at a ¼ −0.301, this pole is not present in the other ½p; q�
Padés to the βa;nl;red functions with 2 ≤ n ≤ 6.
Furthermore, as was true with a number of the zeros in
various Padé approximants, we find that many poles are
members of nearly coincident zero-pole pairs, indicating
that they are not likely to actually be present in the beta
function.

C. Cases with larger N

It is also valuable to carry out a corresponding calcu-
lation and analysis of Padé approximants for the (reduced)
six-loop beta function of the λjϕ⃗j4 theory with higher
values of N. We have performed this study. We show the
resultant zeros and poles of Padé approximants for the
illustrative value N ¼ 10 in Table IV. These are qualita-
tively similar to our results for the theory with N ¼ 1, and
lead to the same conclusions. We find similar results for
other values of N.
Thus, from our calculation and analysis of Padé approx-

imants to the n-loop beta function up to the n ¼ 6 loop
level, we add to the evidence that we obtained from the
analysis of the zeros of βa;nl;red against a reliably calculable

UV zero in the beta function of the λjϕ⃗j4 theory.

D. Extensions

Here we have considered an OðNÞ λjϕ⃗j4 scalar field
theory in isolation. This type of analysis complements
studies of more complicated theories with scalar, fermion,
and gauge fields and hence multiple (quartic, Yukawa, and
gauge) couplings. The beta functions in the latter theories
involve not only powers of single couplings, but also
terms containing products of different couplings, and,
understandably, have not been calculated in general to an
order as high as six loops. The renormalization-group

TABLE III. Values of real zeros and poles in the ½p;q� Padé
approximants to the n-loop reduced beta function, βa;nl;red for
2≤n≤6 and N¼1, with bn, 3≤n≤6, calculated in the MS
scheme. Note that the [n−1, 0] Padé approximant is the function
βa;nl;red itself, whose zeros are given in Table II. The symbol “na”
means “not applicable,” and the symbols “ccp” and kðccpÞ mean
a complex-conjugate pair of values and k complex-conjugate
pairs of values, respectively.

n ½p;q� zeros poles

2 [0,1] na −0.5294
3 [1,1] −0.2594 −0.1741
3 [0,2] na −0.2629, 0.5223
4 [2,1] −0.1400, 1.4543 −0.1198
4 [1,2] −0.1294 −0.1138, −1.2005
4 [0,3] na −0.1893, ccp
5 [3,1] −0.1024, ccp −0.09535
5 [2,2] −0.08736, −0.5298 −0.08401, −0.3013
5 [1,3] −0.09489 −0.08986, −0.4644, 1.1714
5 [0,4] na −0.1538, 0.2334, ccp
6 [4,1] −0.085055, 0.4675, ccp −0.08191
6 [3,2] −0.07366, −0.2637,

2.8463
−0.07233, −0.1968

6 [2,3] −0.07279, −0.2430 −0.07156, −0.1878,
−2.2495

6 [1,4] −0.08007 −0.07784, −0.3012, ccp
6 [0,5] na −0.1327, 2(ccp)
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behavior of theories with scalar and fermion fields have
been studied both perturbatively [22] and nonperturba-
tively [23]. For fully nonperturbative analyses, the lattice
formulation has provided a powerful tool. Recent studies
using perturbatively calculated beta functions that have
found RG fixed points include [24], motivating continued
interest in the phenomenon of asymptotic safety in these
multiple-coupling theories.

V. CONCLUSIONS

In this work we have investigated whether the beta
function for the OðNÞ λjϕ⃗j4 theory in d ¼ 4 spacetime
dimensions exhibits evidence for an ultraviolet zero, using
the six-loop beta function recently calculated in [9]. For the

range of quartic coupling λ, or equivalently, a ¼ λ=ð16π2Þ,
where a perturbative calculation is reliable, we do not find
evidence for such a UV zero. This conclusion is in accord
with, and extends, our five-loop analysis in [6] for general
N and our six-loop analysis in [7] for N ¼ 1. Our methods
include both analysis of the zeros of the six-loop beta
function itself and calculation and study of the zeros of
Padé approximants. Our conclusion provides further sup-
port for the modern view of the OðNÞ λjϕ⃗j4 theory as an
effective field theory that is applicable only over a restricted
range of momentum scales μ. In view of the alternating
nature of the series expansion for the beta function, we have
also used Padé approximants to investigate possible indi-
cations for a pole in the beta function at negative a, but we
have not found persuasive evidence for this.
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APPENDIX A: BETA FUNCTION COEFFICIENTS
AT LOOP ORDERS n= 3, 4, 5

In this appendix, for reference, we list the n-loop
coefficients bn in the beta function (2.2) for 3 ≤ n ≤ 5,
as calculated in the widely used MS scheme. Numerical
values of the equivalent coefficients b̄n ¼ bn=ð4πÞn are
given in Table I for a relevant set of values of N.
The coefficient b3 is [5,11,15]

b3 ¼
11

72
N2 þ

�
461

108
þ 20ζð3Þ

9

�
N þ 370

27
þ 88ζð3Þ

9
: ðA1Þ

Numerically,

b3 ¼ 0.15278N2 þ 6.93976N þ 24.4571; ðA2Þ

to the indicated floating-point accuracy. Clearly, for all
physical N, b3 is positive and is a monotonically increasing
function of N.
The four-loop coefficient is [15]

b4 ¼
5

3888
N3 þ

�
−
395

243
−
14ζð3Þ

9
þ 10ζð4Þ

27
−
80ζð5Þ
81

�
N2 þ

�
−
10057

486
−
1528ζð3Þ

81
þ 124ζð4Þ

27
−
2200ζð5Þ

81

�
N

−
24581

486
−
4664ζð3Þ

81
þ 352ζð4Þ

27
−
2480ζð5Þ

27
: ðA3Þ

Numerically,

b4 ¼ ð1.2860 × 10−3ÞN3 − 4.11865N2 − 66.5621N − 200.92637: ðA4Þ

The coefficient b5 is [15]

TABLE IV. Values of real zeros and poles in the ½p; q� Padé
approximants to the n-loop reduced beta function, βa;nl;red for
2 ≤ n ≤ 6 and N ¼ 10, with bn, 3 ≤ n ≤ 6, calculated in the MS
scheme. Note that the [n − 1, 0] Padé approximant is the function
βa;nl;red itself, whose zeros are given in Table II. The notation is
the same as in Table III.

n ½p; q� zeros poles

2 [0,1] na −4091
3 [1,1] −0.1974 −0.1332
3 [0,2] na −0.2021, 0.3996
4 [2,1] −0.09864, 1.01465 −0.08623
4 [1,2] −0.08989 −0.0808, −0.8352
4 [0,3] na −0.1426, ccp
5 [3,1] −0.07576, ccp −0.07069
5 [2,2] −0.06870, −0.5462 −0.06547, −0.2812
5 [1,3] −0.071475 −0.06757, −0.3892,

1.0716
5 [0,4] na −0.1154, 0.1743, ccp
6 [4,1] −0.06388, 0.3526, ccp −0.06149
6 [3,2] −0.05486, −0.1701,

1.5187
−0.05391, −0.1362

6 [2,3] −0.05259, −0.1412 −0.05188, −0.1194,
−1.1224

6 [1,4] −0.06071 −0.05892, −0.2352, ccp
6 [0,5] na −0.0099505, 2(ccp)
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b5 ¼
�

13

62208
−
ζð3Þ
432

�
N4 þ

�
6289

31104
þ 26ζð3Þ

81
−
2ζð3Þ2
27

−
7ζð4Þ
24

þ 305ζð5Þ
243

−
25ζð6Þ
81

�
N3

þ
�
50531

3888
þ 8455ζð3Þ

486
−
59ζð3Þ2

81
−
347ζð4Þ

54
þ 7466ζð5Þ

243
−
1775ζð6Þ

243
þ 686ζð7Þ

27

�
N2

þ
�
103849

972
þ 69035ζð3Þ

486
þ 446ζð3Þ2

81
−
2383ζð4Þ

54
þ 66986ζð5Þ

243
−
7825ζð6Þ

81
þ 343ζð7Þ

�
N

þ 17158

81
þ 27382ζð3Þ

81
þ 1088ζð3Þ2

27
−
880ζð4Þ

9
þ 55028ζð5Þ

81
−
6200ζð6Þ

27
þ 25774ζð7Þ

27
: ðA5Þ

Numerically,

b5 ¼ −ð2.57356 × 10−3ÞN4 þ 1.152827N3

þ 72.23315N2 þ 771.20866N þ 2003.97619: ðA6Þ

APPENDIX B: DISCRIMINANTS

The analysis of the zeros of βa;nl requires an analysis of
the zeros of the equation (3.1), of degree n − 1 in the
variable a, given by Eq. (1.5). For this purpose, we use the
discriminant. Given a polynomial equation of degree m in
the variable a, PmðaÞ ¼ 0, where PmðaÞ ¼

P
m
s¼0 csa

s, we
will label the m roots as PmðaÞ ¼ 0 as fa1;…; amg. The
discriminant of this equation is [18]

Δm ≡
�
cm−1
m

Y
i<j

ðai − ajÞ
�
2

: ðB1Þ

Since Δm is a symmetric polynomial in the roots of the
equation PmðaÞ ¼ 0, the symmetric function theorem
shows that it can be written as a polynomial in the
coefficients of PmðaÞ [25], as indicated in the notation
Δmðc0;…; cmÞ. For our purposes in analyzing the roots of
Eq. (3.1), we have

cs ¼ bsþ1 ðB2Þ

for s ¼ 0;…; m. Since Eq. (3.1) for the zeros of the n-loop
beta function away from the origin is of degree m ¼ n − 1
in a, its discriminant is Δn−1ðb1; b2;…; bnÞ.
The discriminant Δm can be calculated in terms of

the ð2m − 1Þ × ð2m − 1Þ Sylvester matrix of PmðaÞ
and PmðaÞ0 ¼ dPðaÞ=da, proportional to the matrix
SPm;P0

m
[18]:

Δm ¼ ð−1Þmðm−1Þ=2c−1m detðSPm;P0
m
Þ: ðB3Þ

The m ¼ 2 discriminant is well known; Δ2ðc0; c1; c2Þ ¼
c21 − 4c0c2.

For Δ3, the SP3;P0
3
matrix is

SP3;P0
3
¼

0
BBBBBB@

c3 c2 c1 c0 0

0 c3 c2 c1 c0
3c3 2c2 c1 0 0

0 3c3 2c2 c1 0

0 0 3c3 2c2 c1

1
CCCCCCA
; ðB4Þ

yielding the discriminant

Δ3ðc0; c1; c2; c3Þ ¼ c21c
2
2 − 27c20c

2
3 − 4ðc0c32 þ c3c31Þ

þ 18c0c1c2c3: ðB5Þ

For Δ4 and Δ5, the relevant SPm;P0
m
matrices are

SP4;P0
4
¼

0
BBBBBBBBBBBB@

c4 c3 c2 c1 c0 0 0

0 c4 c3 c2 c1 c0 0

0 0 c4 c3 c2 c1 c0
4c4 3c3 2c2 c1 0 0 0

0 4c4 3c3 2c2 c1 0 0

0 0 4c4 3c3 2c2 c1 0

0 0 0 4c4 3c3 2c2 c1

1
CCCCCCCCCCCCA

ðB6Þ

and
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SP5;P0
5
¼

0
BBBBBBBBBBBBBBB@

c5 c4 c3 c2 c1 c0 0 0 0

0 c5 c4 c3 c2 c1 c0 0 0

0 0 c5 c4 c3 c2 c1 c0 0

5c5 4c4 3c3 2c2 c1 0 0 0 0

0 5c5 4c4 3c3 2c2 c1 0 0 0

0 0 5c5 4c4 3c3 2c2 c1 0 0

0 0 0 5c5 4c4 3c3 2c2 c1 0

0 0 0 0 5c5 4c4 3c3 2c2 c1

1
CCCCCCCCCCCCCCCA

ðB7Þ

From these matrices we calculate the corresponding
discriminants according to Eq. (B3) with (B2). At the n-
loop level, the relevant equation for a UV zero is Eq. (3.1),
of degree n − 1 in a. It follows from Eqs. (B2) and (B3) that
the disciminant for this Eq. (3.1), namely Δn−1ðb1;…; bnÞ,
is a homogeneous polynomial of degree 2ðn − 2Þ in the
beta function coefficients bl, 1 ≤ l ≤ n, i.e.,

degfblg½Δn−1ðb1;…; bnÞ� ¼ 2ðn − 2Þ: ðB8Þ

This is illustrated at the n ¼ 3 loop level, by
Δ2ðb1; b2; b3Þ ¼ b21 − 4b1b3, at the n ¼ 4 loop level by

Δ3ðb1; b2; b3; b4Þ ¼ b22b
2
3 − 27b21b

2
4 − 4ðb1b33 þ b4b32Þ

þ 18b1b2b3b4 ðB9Þ

and so forth for higher loop order n.

APPENDIX C: ILLUSTRATIVE FUNCTION
AND ANALYSIS

As an illustration of the effectiveness of Padé approx-
imants in testing for indications of zeros and poles in a
function based on information from its Taylor series
expansion, in this appendix we construct and analyze a

test function using these approximants. Thus, let us con-
sider the rational function

fðaÞ ¼ 1þ ra
1þ sa

; ðC1Þ

where r and s are real constants with s > 0 and r ≥ 0. This
function has a zero at a ¼ −1=r and a pole at a ¼ −1=s. It
has the Taylor series expansion about a ¼ 0

fðaÞ ¼ 1þ ðr − sÞ
X∞
k¼1

ð−1Þk−1sk−1ak: ðC2Þ

As is evident from Eq. (C2), given that s > 0,
the coefficients of the ak terms in the sumP∞

k¼1ð−1Þk−1sk−1ak alternate in sign. This property holds,
independent of whether r is zero or nonzero and, in the
latter case, independent of the sign of r. The additional
condition that s > r guarantees that the OðaÞ term is
opposite in sign from the constant term, and hence that
the full series is alternating in sign. The resultant alternat-
ing-sign property of the terms in the Taylor series (C2)
reproduces the alternating-sign property of the Taylor series
expansion of βa;red which holds for a large range of values
of N, namely 1 ≤ N ≤ 504. Recall that all of the Padé
approximants that we have calculated for βa;nl;red up to
n ¼ 6 loop order that have p ≠ 0 and hence have zeros,
also have the property that they contain a pole closer to the
origin than the zero of minimal magnitude. This property is
incorporated in the test function (C1), since we take s > r.
Then fðaÞ ¼ 1 − ðs − rÞa½1 − saþ ðsaÞ2 − ðsaÞ3 þ � � ��.
As was discussed in the text, one of the purposes of our

analysis with Padé approximants was to test for a stable
zero and/or pole in βa;red. This Padé method has the
capability of doing this, as is evident from the fact that
when one calculates ½p; q� Padé approximants to the series
(C2) with p ≥ 1 and q ≥ 1, they successfully identify the
exact function, fðaÞ, given in (C1).
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