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The Nambu–Jona-Lasinio model with two flavors, three colors, and diquark interactions is analyzed in
the context of optimized perturbation theory (OPT). Corrections to the thermodynamical potential that go
beyond the large-Nc (LN) approximation are taken into account, and the region of the phase diagram
corresponding to intermediate chemical potentials and very low temperatures is explored. The simulta-
neous presence of both the quark-antiquark and diquark condensates can cause the system to behave as a
fluid composed of a Bose-Einstein condensate (BEC) or a color superconductor one, in the form of a
Bardeen-Cooper-Schrieffer (BCS) superfluid. The BEC-BCS crossover is then studied in the non-
perturbative OPT scheme. The results obtained in the context of the OPT method are then contrasted with
those obtained in the LN approximation. We show that there are values for the coupling constants related
to quark-quark and quark-antiquark interactions where the corrections beyond LN brought by the OPT
method can influence the behavior of the diquark condensate and the effective quark mass as a function of
the baryon chemical potential. These changes in the behavior of the phase structure of the model modify the
location of the critical point related to the phase structure as a whole of the model. Also, when we impose
the color neutrality condition, our results show that the nature of the phase transition can change as well,
shifting the ratio of the quark-antiquark and quark-quark interactions to higher values in the OPT case as
compared to the LN approximation.
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I. INTRODUCTION

Unveiling the phase structure of quantum chromody-
namics (QCD) is one active research area today. This is not
only because of its intrinsic theoretical interest, but also due
to interest across many different fields, ranging from the
current heavy-ion collision experiments, to processes able
to happen in the astrophysics of compact stellar objects like
neutron stars, and also in cosmology. While QCD itself
might be considered a well-defined theory, to study its
properties deep in the strong coupled nonperturbative
regime, like at low temperatures (energies) is notably
extremely difficult. Furthermore, when one also tries to
study processes at high quark densities (large chemical
potential μ)—even state-of-the-art numerical techniques,
like lattice Monte Carlo QCD simulations (for a recent
review, see, e.g., Ref. [1] and references therein)—one
faces tremendous difficulties due to the so-called “sign
problem” (associated with the calculation of the determi-
nant of the quarks matrix, which takes on a complex value
when μ ≠ 0), and progress in this direction has been
painfully slow [2,3]. As an alternative to bypass the above
mentioned difficulties, one typically recourses to low-
energy effective models for quantum chromodynamics

(QCD), like for example the Nambu–Jona-Lasinio (NJL)
type of models [4,5], which are valuable tools widely used
to try to understand the underlying phase structure of QCD,
otherwise unaccessible either through the direct QCD
Lagrangian density or lattice QCD techniques.
Of particular interest is the region of the QCD phase

diagram at low temperatures and intermediate chemical
potentials, even though there is still no consensus on the
exact phase in which the quark matter is expected to be
found in this region. It corresponds to a portion of the phase
diagram not able to be probed by standard methods in
QCD, lattice QCD, or through current experiments on
particle accelerators. From the point of view of astrophys-
ics, it is estimated that in the cores of so-called compact
stars, these conditions are present [6]. This then strongly
motivates studies towards the understanding of the physics
in this region of the phase diagram, sometimes also called
the region of dense and cold matter, through the use of
effective low-energy models that contain characteristics
common to QCD, and which highlight some of the
expected and relevant behaviors for the system in that
region.
One of the most exciting possibilities is the occurrence

of quark Cooper pairing (color superconductivity) in this
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region of cold and dense quark matter, a possibility that has
been considered already in Ref. [7], and whose idea has
gained considerable interest since then (see, e.g., Ref. [8]
for a detailed review on this subject). In addition, many
works have considered the possibility that the transition at
low temperature and baryon densities, going from the chiral
broken phase to a color superconducting phase at large
densities, could proceed through an intermediary phase.
In this intermediate phase, the quark matter would undergo
a crossover between a regime where diquark pairs form
difermion molecules, giving origin then to a Bose-Einstein
condensation (BEC), and a weakly coupled Bardeen-
Cooper-Schrieffer (BCS) superfluid phase [9–17] (for a
recent review, see, e.g., Ref. [18]).
Typically, we can employ an extended NJL model,

where besides the usual quark-antiquark four-Fermi inter-
action, which is responsible for the formation of the chiral
condensate of quark-antiquark pairs, a four-Fermi inter-
action for quark-quark pairs is also added, making possible
the formation of diquark condensates, akin to the pairing
mechanism in the BCS theory, as the magnitude of this
coupling is increased. We can then study the combined
competition between these two types of condensates in the
system, the chiral and diquark ones. Several works (see,
e.g., Refs. [10–12,17]) show that it is possible for the
condensate of diquarks initially to form a BEC phase,
before the system goes to the BCS state, as we increase the
baryon chemical potential going through this BEC-BCS
crossover [13,14,16]. Some possible observational signa-
tures for the BCS regime and the possibility of coexistence
of the chiral and diquark phases have been explored in the
literature [19], while a connection with high-temperature
superconductors and a possible pseudogap was studied in
Refs. [20,21].
We should note that the NJL model, since it does not

include gluon degrees of freedom and thus cannot be used
to study confinement, finds applications in the low-energy
(temperature) regime of QCD and quark matter, where the
gluon degrees of freedom and their effects, e.g., in the
physics of (de)confinement, become less relevant. But this
low-energy regime corresponds exactly to the regime where
the strong coupling and nonperturbative nature of the
nuclear matter is relevant, which then likewise requires
the use of appropriate nonperturbative methods. The use of
the NJL and similar models, as far as the studies in this
context are concerned, have mainly focused on the use of
the large-Nc (LN) method (where Nc is the number of
colors), or the Hartree approximation [5]. In practice, the
LN method consists of making the changeG → λ=ð2NcÞ in
the four-Fermi quark-antiquark coupling constant of the
model, by keeping λ fixed while making Nc large and then
keeping only the leading term in the expansion when taking
Nc → ∞, even though we take Nc ¼ 3 at the very end for
practical calculations. However, such a method cannot
predict physical phenomena that might eventually be

related to terms of the next order in 1=Nc in the expansion,
which have to be analyzed through some other self-
consistent method and that are required if we want to
improve the precision of the results. Even though other
approaches have been employed to obtain the thermody-
namic potential, going beyond the leading LN result to
study the phase structure of QCD in the context of the NJL
model, these other methods can quickly become more
involved or add further free parameters in the analysis (let
us recall that with the NJL model, being a nonrenormaliz-
able model, introducing higher-order corrections to the
leading-order thermodynamic potential is usually accom-
panied by the addition of extra renormalization parame-
ters), which is not always welcome.
In this work, we will make use of the OPT method (for a

long, but still far from complete, list of past applications of
the OPT method in quantum field theory problems, see e.g.,
Refs. [22–32]). In particular, let us mention that the OPT
method has very successfully been applied to NJL-similar
types of models in low dimensions, in particular in the
Gross-Neveu models in 2þ 1 dimensions [33], revealing
novel properties in the phase diagram in that context—e.g.,
a tricritical point, not accessed by previous methods.
Recent work on the OPT method tries to combine its
properties also with those of the renormalization group to
further push its applicability as far as renormalization
properties are concerned [34–36].
Previous applications of the OPT method for the study of

the phase structure in effective models of QCD include, for
example, its use in Walecka-type models [37], in the linear
sigma model [38–40], and also in the SUð2Þ NJL model
[41], whose work in particular we will follow here closely,
but in the context of the NJL model with diquark inter-
actions. As already mentioned, with the use of the NJL
model, we can only hope to capture some of the low-energy
features of QCD at a qualitative level. Given its non-
renormalizability and the other shortcomings already
mentioned above, the model itself is not a controlled
approximation to QCD. Yet, it is still a valuable tool, in
particular to test different methods that can improve over
the simpler approximations used in the literature. This is in
particular true when considering the NJL in the context of
the OPT approximation. By going beyond the simple mean
field theory, or LN approximation, the OPT at first order in
its implementation already includes some relevant mesonic
fluctuations—and, in the present work, also contributions
from the diquark interaction, which are absent in the LN
approximation and which would appear only at the next-to-
leading order in an expansion in 1=Nc. In a way, we hope
that by including these additional contributions lacking in
the LN case, we can improve the applicability of the NJL.
At the same time, we can also determine how the inclusion
of these corrections performs as compared to the LN
approximation and determine whether they can provide
both qualitatively and quantitatively relevant corrections
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beyond the LN case that can be relevant for QCD. The aim
of the present work is to present a detailed understanding of
the BEC-BCS crossover, making use of the nonperturbative
OPT method and applying it to the NJL model endowed
with diquark interactions. We will analyze both the cases of
absence and presence of color neutrality, and we will use
parameters such that a comparison with previous results
obtained within the LN method—in particular, those
obtained by the authors of Ref. [42]—can be made.
This work is organized as follows: In Sec. II, we briefly

introduce the NJL model with diquark interactions. In
Sec. III, we explain the OPT scheme and how it is applied
to the present model. In Sec. IV, we present the derivation
of the effective potential for the model and the relevant
equations. In Sec. V, we discuss the determination of the
parameters of the model and the modifications required
when applying the OPT scheme. In Sec. VI, we perform
our numerical analysis of the BEC-BCS crossover, and the
results obtained in the context of the OPT are contrasted
with those obtained in the LN approximation. In Sec. VII,
we present our conclusions. An Appendix is included
showing some of the technical details required in the
determination of the model parameters.

II. THE NJL WITH DIQUARK INTERACTIONS

In this work, we will consider the NJL model with two
flavors and three colors (Nc ¼ 3) that includes both the
usual chiral four-Fermi quark-antiquark interaction and
also the diquark channel, with the Lagrangian density then
given by [42–46]

L ¼ ψ̄ðiγμ∂μ −mÞψ þGs½ðψ̄ψÞ2 þ ðψ̄ iγ5τ⃗ψÞ2�
þ
X

a¼2;5;7

Gd½ðψ̄iγ5τ2λaCψ̄TÞðψTiγ5τ2λaCψÞ�; ð2:1Þ

where ψ represents the quark fields with a flavor doublet
ðu; dÞ and color triplet (Nc ¼ 3), as well as a four-
component Dirac spinor. In Eq. (2.1), τ⃗ ¼ ðτ1; τ2; τ3Þ and
λa are the Pauli and Gell-Mann matrices in the flavor and
color spaces, respectively. C≡ iγ2γ0 is the charge con-
jugation operator, and ψT is the transposed quark field. The
mass m is the current quark mass, while Gs and Gd are the
coupling constants for quark-antiquark and quark-quark
interactions, respectively. In principle, these coupling con-
stants, if followed from the QCD one-gluon exchange
approximation and from the Fierz transformation [11,44],
would be related like Gd ¼ Nc=ðNc − 1ÞGs=2, such that
for Nc ¼ 3, then Gd ¼ 3Gs=4. Here, however, we follow
the philosophy of Refs. [12,42], where these couplings are
treated as free parameters and we will not fix relations
between them. In practice, as we will see later on when
studying the numerical results, there will always be a ratio
of couplings Gd=Gs below a certain minimum value such
that the transition from the chiral phase to the diquarks with

a nonvanishing vacuum expectation value will tend to be
first order, thus preventing a BEC phase, while for larger
values of the ratio there will be a maximum value for this
ratio beyond which diquarks would already condense at a
baryonic chemical potential μB ¼ 0—i.e., the diquarks
would become massless and the vacuum unstable [46,47].
We will discuss these issues in more detail later on in
the text.
By making use of a Hubbard-Stratonovich transforma-

tion in Eq. (2.1), the four-Fermi interactions can be
rewritten in terms of bosonic fields, given by ζ, π⃗, ϕa,
and ϕ�

a, and can be expressed in the form

LB ¼ ψ̄ ½iγμ∂μ −m − ðζ þ iγ5π⃗ · τ⃗Þ�ψ

þ 1

2

X
a¼2;5;7

ψTϕ�
aiγ5τ2λaCψ

þ 1

2

X
a¼2;5;7

ψ̄ ϕaiγ5τ2λaCψ̄T −
1

4Gs
ðζ2 þ π⃗2Þ

−
1

4Gd

X
a¼2;5;7

jϕaj2: ð2:2Þ

From the use of the Euler-Lagrange equations for ζ, π⃗,
ϕa, and ϕ�

a, we have that

ζ ¼ −2Gsψ̄ψ ; ð2:3Þ

π⃗ ¼ −2Gsψ̄ iγ5τ⃗ψ ; ð2:4Þ

ϕa ¼ 2Gdψ
TCiγ5τ2λaψ ; ð2:5Þ

ϕ�
a ¼ −2Gdψ̄iγ5τ2λaCψ̄T; ð2:6Þ

and upon substitution in Eq. (2.2), we recover the original
Lagrangian density of Eq. (2.1).
We will consider, without loss of generality (see, for

instance, Ref. [42]), that only the quarks with colors 1 and 2
form diquarks. This condition is satisfied when ϕ2 ¼ ϕ and
ϕ5 ¼ ϕ7 ¼ 0. Therefore, we can write the Lagrangian
density (2.2) in the form

LB ¼ q̄3½iγμ∂μ −m − ðζ þ iγ5π⃗ · τ⃗Þ�q3
þ q̄1;2½iγμ∂μ −m − ðζ þ iγ5π⃗ · τ⃗Þ�q1;2
þ ϕ�

2
qT1;2iCγ

5τ2t2q1;2 þ
ϕ

2
q̄1;2iγ5Cτ2t2q̄T1;2

−
1

4Gs
ðζ2 þ π⃗2Þ − 1

4Gd
jϕj2; ð2:7Þ

where we have used

ψT ≡ ð qT1;2 qT3 Þ qT1;2 ≡ ð qT1 qT2 Þ; ð2:8Þ
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with qi (i ¼ 1, 2, 3) representing the color quark fields and
t2 being the second Pauli matrix in the color space 1 and 2
(green and red). This form of Eq. (2.7) makes explicit the
fact that quarks with color 3 (blue) do not participate in the
formation of the diquark condensate.

III. THE OPT APPLIED TO THE NJL MODEL
WITH DIQUARKS

The OPT method consists of initially defining an
interpolated (or deformed) Lagrangian density in the form

Lδ ≡ δLþ ð1 − δÞL0ðηiÞ
¼ L0ðηiÞ þ δ½L − L0ðηiÞ�; ð3:1Þ

where L0 is the Lagrangian density of a solvable theory,
modified by the introduction of arbitrary parameters (which
in the present model will be associated with the interaction
channels between fermions and their condensates) with
mass dimension terms ηi, and δ is a (bookkeeping)
parameter that is used to enable a perturbative expansion;
it is set to δ ¼ 1 at the end. We can note that if δ ¼ 1, we
then immediately recover the Lagrangian density of the
original theory; if δ ¼ 0, we have the solvable Lagrangian
density L0. Any physical quantity Pn that is calculated up
to a given order n in δ will, however, depend explicitly on
the parameters ηi, which are not part of the original theory.
Thus, we must impose an appropriate condition that best
fixes the values for these arbitrary parameters in a self-
consistent way. The criterion we will use in this work,
which was also used in many other previous OPT appli-
cations (for other alternative optimization criteria, see, e.g.,
Refs. [28,31]), is the principle of minimum sensitivity
(PMS), by requiring that [23]

∂Pn

∂ηi
����
ηi¼η̄i

¼ 0; ð3:2Þ

through which the parameters η̄i are those that make the
computed quantities an extremum (a minimum) with
respect to these mass parameters and guarantee that Pn
is locally independent (sensitive) of η̄i. The convergence of
the OPT under different contexts has been shown in the
many papers cited in Ref. [28].
The interpolation in the present model is performed as

follows: Starting from the Lagrangian density in terms
of the auxiliary fields, Eq. (2.2), and following, e.g., the
procedure shown in Ref. [41], we can define the OPT
Lagrangian density L0 in Eq. (3.1) as

L0 ≡ ψ̄ðiγμ∂μ −mÞψ − ψ̄ðηþ iγ5τ⃗ · η⃗πÞψ
−
X

a¼2;5;7

ðψ̄iγ5τ2λaCα01aψ̄T þ ψTiγ5τ2λaCα02aψÞ:

ð3:3Þ

In Eq. (3.3), the OPT mass parameters η and ηπ are the
ones related to the scalar and pseudoscalar channels,
respectively, while α01a and α02a are those for the quark-
quark interaction scalar channel. Since hπ⃗i ¼ 0, we can
then set η⃗π ¼ 0 consistently [41].
Overall, the interpolated Lagrangian density used in the

OPT scheme in the present model can then be expressed in
the form

Lδ;B ¼ −δ
ðζ2 þ π⃗2Þ

4Gs
− δ

jϕj2
4Gd

þ ψ̄ ½iγμ∂μ −m − δðζ þ iγ5τ⃗ · π⃗Þ − ð1 − δÞη�ψ

þ ψTCiγ5τ2
λ2
2
½δϕ� þ ð1 − δÞα2�ψ

þ ψ̄iγ5τ2
λ2
2
C½δϕþ ð1 − δÞα1�ψ̄T; ð3:4Þ

in which we have defined α1 ≡ −2α012 and α2 ≡ −2α022, and
we have also again performed the rotation ϕ2 ≡ ϕ and
ϕ5 ¼ ϕ7 ¼ 0, resulting in α1k ¼ α2k ¼ 0, with k ¼ 5, 7. It
is important to note that when δ ¼ 1, we retrieve the
original theory given by Eq. (2.2). We can also conven-
iently rewrite Eq. (3.4) as

Lδ;B ¼ q̄3½iγμ∂μ −m − δðζ þ iγ5π⃗ · τ⃗Þ − ð1 − δÞη�q3
þ q̄1;2½iγμ∂μ −m − δðζ þ iγ5π⃗ · τ⃗Þ − ð1 − δÞη�q1;2
þ 1

2
qT1;2iCγ

5τ2t2½δϕ� þ ð1 − δÞα2�q1;2

þ 1

2
q̄1;2iγ5Cτ2t2½δϕþ ð1 − δÞα1�q̄T1;2

−
δ

4Gs
ðζ2 þ π⃗2Þ − δ

4Gd
jϕj2: ð3:5Þ

IV. THE EFFECTIVE POTENTIAL
IN THE OPT METHOD

We are now in position to derive the thermodynamic
effective potential for the NJL model with diquark inter-
actions within the OPT scheme. We evaluate the effective
potential up to order δ1 in the OPT method, which will by
itself already supply us with correction terms going beyond
the standard LN approximation.
All relevant Feynman rules regarding the propagators

and vertices within the OPT scheme are represented in
Fig. 1.
Up to order δ in the OPT, we will have both one-loop

terms, as shown in Fig. 2, and also two-loop terms, as
shown in Fig. 3.
Below, we will evaluate separately the one-loop and two-

loop contributions shown in Figs. 2 and 3, respectively.

DUARTE, FARIAS, MANSO, and RAMOS PHYSICAL REVIEW D 96, 056009 (2017)

056009-4



A. The one-loop contribution to the effective
potential in the OPT expansion

At order δ, the one-loop Feynman diagrams’ contri-
bution to the effective potential in the OPT is shown in
Fig. 2. In Fig. 2, a full line is associated with a fermionic
propagator related to all quarks, and it is a function of δ.
By expanding it in powers of δ and truncating to Oðδ1Þ,
we obtain the resulting contributions shown on the
right-hand side of Fig. 2. The effective potential can

be obtained by the usual functional integral technique
most easily when one makes use of the standard Nambu-
Gor’kov formalism [48,49] applied to the quark fields. By
also using the Matsubara formalism of finite-temperature
quantum field theory [50] and performing the sum over
the Matsubara frequencies for the fermions, the obtained
effective potential at one loop and order δ at finite
temperature (T ¼ 1=β) and chemical potential can be
expressed explicitly in the form

Vμ;μb;β
eff;1−loop;δ1 ¼ δ

σ2

4Gs
þ δ

jΔj2
4Gd

−N
Z

d3p
ð2πÞ3

�
½E−

αp⃗ðμÞ þ Eþ
αp⃗ðμÞ� þ δ

�
d
dδ

Eδ−
αp⃗ðμÞ þ

d
dδ

Eδþ
αp⃗ðμÞ

�
δ¼0

�

− Nf

Z
d3p
ð2πÞ3

�
½E−

p⃗ðμbÞ þ Eþ
p⃗ ðμbÞ� þ δ

�
d
dδ

Eδ−
p⃗ ðμbÞ þ

d
dδ

Eδþ
p⃗ ðμbÞ

�
δ¼0

�

− 2N
Z

d3p
ð2πÞ3

�
1

β
ln ð1þ e−βE

−
αp⃗
ðμÞÞ þ 1

β
ln ð1þ e−βE

þ
αp⃗
ðμÞÞ

− δ

�
1

eβE
δ−
αp⃗
ðμÞ þ 1

d
dδ

Eδ−
αp⃗ðμÞ þ

1

eβE
δþ
αp⃗
ðμÞ þ 1

d
dδ

Eδþ
αp⃗ðμÞ

�
δ¼0

�

− 2Nf

Z
d3p
ð2πÞ3

�
1

β
ln ð1þ e−βE

−
p⃗
ðμbÞÞ þ 1

β
ln ð1þ e−βE

þ
p⃗
ðμbÞÞ

− δ

�
1

eβE
δ−
p⃗
ðμbÞ þ 1

d
dδ

Eδ−
p⃗ ðμbÞ þ

1

eβE
δþ
p⃗
ðμbÞ þ 1

d
dδ

Eδþ
p⃗ ðμbÞ

�
δ¼0

�
; ð4:1Þ

where we have defined N ≡ ðNc − 1ÞNf and

Eδ�
αp⃗ðμ0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Eδ�

p⃗ ðμ0Þ�2 þ
Y2
s¼1

½αs þ δðΔs − αsÞ�
vuut ; ð4:2Þ

Eδ�
p⃗ ðμ0Þ ¼ Eδ

p⃗ � μ0; ð4:3Þ

Eδ
p⃗ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þ ½M0

ηðδ; σ; 0Þ�2
q

; ð4:4Þ

with μ0 ¼ μ; μb and

M0
ηðδ; σ; 0Þ≡M0

ηðδ; hζi; hπ⃗iÞ
¼ mþ δðhζi þ iγ5hπ⃗i · τ⃗Þ þ ð1 − δÞη
¼ mþ ηþ δðσ − ηÞ; ð4:5Þ

where we have used hζi ¼ σ and hπ⃗i ¼ 0. Note that the
chemical potentials were included by the usual prescription
i∂0 → i∂0 þ μj in Eq. (3.5), with μ1 ≡ μr, μ2 ≡ μg and
μ3 ≡ μb, but in order to ensure that SUð2Þ color symmetry
between red and green quarks is not explicitly broken,
we take μg ¼ μr ≡ μ. In addition, we have that Δ1 ≡ Δ,
Δ2 ≡ Δ�, with hϕi ¼ Δ and hϕ�i ¼ Δ�. (Without loss
of generality, we will assume Δ� ¼ Δ and α1 ¼ α2 ≡ α,

FIG. 1. The representation of the Feynman rule elements in the OPT method. (a) Fermionic propagator related to the δ-dependent
quark Ψ-field. (b) Fermionic propagator when δ ¼ 0. (c) Propagator related to the boson (auxiliary) ζ-field. (d) Propagator related to
each of three πi-fields. (e) Propagator related to the diquark auxiliary field, real component ϕR. (f) Propagator related to the diquark
auxiliary field, imaginary component ϕI . (g), (h), (i), (j) The vertices related to the point interactions between a bosonic and two
fermionic fields at δ ¼ 0. (If fermionic propagators depend on δ, the lines are represented here as thick ones.)
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since only the absolute values of these quantities appear at
the end.)
Then, in Eq. (4.1), we have that

d
dδ

Eδ�
p⃗ ðμ0Þ

����
δ¼0

¼ ðmþ ηÞðσ − ηÞ
Ep⃗

; ð4:6Þ

d
dδ

Eδ�
αp⃗ðμ0Þ

����
δ¼0

¼ 1

E�
αp⃗ðμ0Þ

"
E�
p⃗ ðμ0Þ
Ep⃗

ðmþ ηÞðσ − ηÞ

þ αðΔ − αÞ
#
; ð4:7Þ

with

E�
αp⃗ðμ0Þ≡ Eδ¼0�

αp⃗ ðμ0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½E�

p⃗ ðμ0Þ�2 þ α2
q

;

E�
p⃗ ðμ0Þ≡ Eδ¼0�

p⃗ ðμ0Þ ¼ Ep⃗ � μ0;

Ep⃗ ≡ Eδ¼0
p⃗ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þ ðmþ ηÞ2

q
: ð4:8Þ

Note that if we were already, at this one-loop level of the
OPT expansion, to apply the PMS condition Eq. (3.2) to
Eq. (4.1) to determine the optima η̄ and ᾱ, obtained,
respectively, from

∂Veff

∂η
����
η¼η̄

¼ 0 ð4:9Þ

and

∂Veff

∂α
����
α¼ᾱ

¼ 0; ð4:10Þ

we would simply find that η̄ ¼ σ and ᾱ ¼ Δ, thus recov-
ering immediately the usual LN approximation [note that in
this case, the terms in Eq. (4.1) involving the derivatives
(4.6) and (4.7) vanish], as expected.

B. The contributions of two loops
in the OPT expansion

Let us now give the explicit expressions for the two-loop
diagrams that also contribute with terms of order δ1 in the
OPT expansion. At two loops, the diagrams that contribute
at order δ1 are those shown in Fig. 3, which are constructed
from the Feynman rules where, from the Lagrangian
density in the OPT interpolation, Eq. (3.5), we have that
the fermionic propagators carry a dispersion relation
dependent on δ, as given by Eq. (4.2); each (nonpropagat-
ing) bosonic propagator contributes with a factor δ−1;
and each interaction vertex carries a factor δ. It is useful
to separate the contributions that contribute explicitly on
the diquark OPT mass parameter α, corresponding to the
contributions that involve the green and red quarks, and the
ones involving the blue quark (which has α ¼ 0).
The two-loop contributions of order δ from the OPT

expansion, and the contributions to the effective potential
at finite temperature and chemical potential due to the
quarks with colors 1 (red) and 2 (green), which are the ones
forming diquarks, can be expressed explicitly in the form

~Vμ;β
eff;2−loop;δ1 ¼N δ½ðnπ þ 1ÞGs − 2Gd�½F 1ðη;α;μ; TÞ�2

−N δðnπ þ 1ÞGs½F 2ðη;α;μ; TÞ�2
−N δðmþ ηÞ2½ðnπ − 1ÞGs þ 2Gd�
× ½F 3ðη;α;μ; TÞ�2 þN δðmþ ηÞ2ðnπ − 1ÞGs

× ½F 4ðη;α;μ; TÞ�2; ð4:11Þ

where again we are using N ¼ ðNc − 1ÞNf, nπ ¼ 3 is the
number of pions, and we have defined the functions

F 1ðη; α; μ; TÞ ¼
Z

d3p
ð2πÞ3

"
Eþ
p⃗ ðμÞ

Eþ
αp⃗ðμÞ

�
1

2
−

1

eβE
þ
αp⃗
ðμÞ þ 1

	

−
E−
p⃗ðμÞ

E−
αp⃗ðμÞ

�
1

2
−

1

eβE
−
αp⃗
ðμÞ þ 1

	#
; ð4:12Þ

FIG. 3. To the left of the equality, the sum of two-loop diagrams in OPT (∝ 1=N1
c) capable of generating contributions of order δ1.

To the right of the equality, sum of two-loops diagrams when expanded up to order δ1. All elements are defined according to the
legend of Fig. 1.

FIG. 2. One-loop diagrams in OPT expanded up to order δ1:
The thick, continuous line represents the fermionic propagator as
a function of δ. Thin lines represent the propagator when δ ¼ 0.
The dashed line represents the σ-field propagator, while the
dotted one is associated with the Δ-field propagator. The large
black dot represents a δη-vertex insertion, and the white one
represents a δα-vertex insertion.
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F 2ðη; α; μ; TÞ ¼
Z

d3p
ð2πÞ3

�
α

Eþ
αp⃗ðμÞ

�
1

2
−

1

eβE
þ
αp⃗
ðμÞ þ 1

	

þ α

E−
αp⃗ðμÞ

�
1

2
−

1

eβE
−
αp⃗
ðμÞ þ 1

	�
; ð4:13Þ

F 3ðη; α; μ; TÞ ¼
Z

d3p
ð2πÞ3Ep⃗

"
Eþ
p⃗ ðμÞ

Eþ
αp⃗ðμÞ

�
1

2
−

1

eβE
þ
αp⃗
ðμÞ þ 1

	

þ
E−
p⃗ðμÞ

E−
αp⃗ðμÞ

�
1

2
−

1

eβE
−
αp⃗
ðμÞ þ 1

	#
; ð4:14Þ

F 4ðη; α; μ; TÞ ¼
Z

d3p
ð2πÞ3Ep⃗

�
α

Eþ
αp⃗ðμÞ

�
1

2
−

1

eβE
þ
αp⃗
ðμÞ þ 1

	

−
α

E−
αp⃗ðμÞ

�
1

2
−

1

eβE
−
αp⃗
ðμÞ þ 1

	�
: ð4:15Þ

The two-loop terms’ contributions to the effective
potential for quarks with color 3 (blue) are very analogous
to the ones derived in Ref. [41], and they can be obtained
directly from Eq. (4.11) by simply making the changes
α → 0,N → Nf, Gd → 0, μ → μb, and ½E�

αp⃗ðμÞ; E�
p⃗ ðμÞ� →

½E�
p⃗ ðμbÞ; E�

p⃗ ðμbÞ�, from which we obtain

V̄μb;β
eff;2−loop;δ1 ¼ Nfδðnπ þ 1ÞGs

�Z
d3p
ð2πÞ3

�
1

eβE
−
p⃗
ðμbÞ þ 1

−
1

eβE
þ
p⃗
ðμbÞ þ 1

	�
2

− Nfδðmþ ηÞ2ðnπ − 1ÞGs

�Z
d3p

ð2πÞ3Ep⃗

�
1 −

1

eβE
þ
p⃗
ðμbÞ þ 1

−
1

eβE
−
p⃗
ðμbÞ þ 1

	�
2

: ð4:16Þ

Adding Eqs. (4.1), (4.11), and (4.16), we get finally the
total effective potential in the OPT expansion at order δ,

Vμ;μb;β
δ1

ðσ;Δ; η;αÞ≡ Vμ;μb;β
eff;1−loop;δ1ðσ;Δ; η; αÞ

þ ~Vμ;β
eff;2−loop;δ1ðη; αÞ þ V̄μb;β

eff;2−loop;δ1ðηÞ:
ð4:17Þ

C. The effective potential at zero temperature
and finite chemical potential

Since we are interested in describing the physics of dense
and cold matter, we will from now on specialize on the
expression for the effective potential at zero temperature.
By taking the zero-temperature limit (β → ∞) in Eq. (4.17),
we obtain, for each one of the terms in that equation, the
result

Vμ;μb;β→∞
eff;1−loop;δ1 ¼ δ

σ2

4Gs
þ δ

jΔj2
4Gd

−N ½JAðμÞ

þ δðmþ ηÞðσ − ηÞJEðμÞ þ δαðΔ − αÞJBðμÞ�
− 2NffIA þ ICðμbÞ þ δðmþ ηÞðσ − ηÞ
× ½ID − IEðμbÞ�g; ð4:18Þ

~Vμ;β→∞
eff;2−loop;δ1 ¼

N δ

4
f½ðnπ þ 1ÞGs − 2Gd�½JCðμÞ�2

− ðnπ þ 1ÞGsα
2½JBðμÞ�2g

−
N δðmþ ηÞ2

4
f½ðnπ − 1ÞGs þ 2Gd�½JEðμÞ�2

− ðnπ − 1ÞGsα
2½JDðμÞ�2g; ð4:19Þ

and

V̄μb;β→∞
eff;2−loop;δ1 ¼ Nfδðnπ þ 1ÞGs½IBðμbÞ�2 − Nfδðmþ ηÞ2

× ðnπ − 1ÞGs½ID − IEðμbÞ�2; ð4:20Þ

where IA and ID correspond to the vacuum terms

IA ≡
Z

d3p
ð2πÞ3 Ep⃗

¼ −
1

32π2

8>><
>>:M4

η ln

2
64


Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

η

q �
2

M2
η

3
75

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

η

q
ð2Λ3 þ ΛM2

ηÞ

9>>=
>>;; ð4:21Þ

ID≡
Z

d3p
ð2πÞ3

1

Ep⃗

¼ 1

4π2

8>><
>>:Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2þM2

η

q
−
M2

η

2
ln

2
64


Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2þM2

η

q �
2

M2
η

3
75
9>>=
>>;;

ð4:22Þ

where we have definedMη ¼ mþ η and we have explicitly
performed the integrals with a momentum cutoff Λ, whose
value will be fixed by fitting it together with the other
parameters of the model with the experimental observables
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(the pion mass, the pion decay constant, and the quark
condensate value).
The remaining terms, IBðμbÞ, ICðμbÞ, IEðμbÞ, JAðμÞ,

JBðμÞ, JCðμÞ, JDðμÞ, and JEðμÞ are the medium (chemical
potential)–dependent terms, given explicitly by the expres-
sions

IBðμbÞ≡
Z

d3p
ð2πÞ3 Θðμb − Ep⃗Þ

¼ Θðμb −MηÞ
6π2

ðμ2b −M2
ηÞ32; ð4:23Þ

ICðμbÞ≡
Z

d3p
ð2πÞ3 ðμb − Ep⃗ÞΘðμb − Ep⃗Þ

¼ Θðμb −MηÞ
32π2

8>><
>>:M4

η ln

2
64

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2b −M2
η

q
þ μb

�
2

M2
η

3
75

þ 10

3
μbðμ2b −M2

ηÞ32 − 2μ3b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2b −M2

η

q 9>>=
>>;; ð4:24Þ

IEðμbÞ≡
Z

d3p
ð2πÞ3

1

Ep⃗
Θðμb − Ep⃗Þ

¼ Θðμb −MηÞ
4π2

8>><
>>:μb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2b −M2

η

q

−
M2

η

2
ln

2
64

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2b −M2
η

q
þ μb

�
2

M2
η

3
75
9>>=
>>;; ð4:25Þ

and

JAðμÞ≡
Z

d3p
ð2πÞ3 ½E

−
αp⃗ðμÞ þ Eþ

αp⃗ðμÞ�; ð4:26Þ

JBðμÞ≡
Z

d3p
ð2πÞ3

�
1

E−
αp⃗ðμÞ

þ 1

Eþ
αp⃗ðμÞ

�
; ð4:27Þ

JCðμÞ≡
Z

d3p
ð2πÞ3

�Eþ
p⃗ ðμÞ

Eþ
αp⃗ðμÞ

−
E−
p⃗ðμÞ

E−
αp⃗ðμÞ

�
; ð4:28Þ

JDðμÞ≡
Z

d3p
ð2πÞ3

1

Ep⃗

�
1

Eþ
αp⃗ðμÞ

−
1

E−
αp⃗ðμÞ

�
; ð4:29Þ

JEðμÞ≡
Z

d3p
ð2πÞ3

1

Ep⃗

�E−
p⃗ðμÞ

E−
αp⃗ðμÞ

þ
Eþ
p⃗ ðμÞ

Eþ
αp⃗ðμÞ

�
; ð4:30Þ

with the momentum integrations in the above expressions
performed numerically, in practice (with the momentum
cutoff Λ).

V. DETERMINATION OF PARAMETERS IN
THE CONTEXT OF THE OPT

As already explained, theLagrangian density in Eq. (2.1) is
an effective model, and it is also nonrenormalizable,
such that the momentum cutoff Λ used to regularize the
momentum integrals, which along with the quark current
mass m and the coupling constants Gs and Gd (this last one
will be treated as an independent parameter, as mentioned
earlier), must be chosen in such a way as to fit the
experimental data (most conveniently for vacuum quantities,
i.e., when evaluated at zero temperature and chemical
potential, T ¼ μ ¼ 0). In the LN approximation, the pro-
cedure is verywell understood and explained in several places
(see, e.g., Ref. [4]). However, when using other nonpertur-
bative methods, we are led to possible corrections to these
basic quantities, most notably the pion mass and the pion
decay constant, which are required to be evaluated at the
appropriate order according to the method used. The same is
also true in the OPT method. How the fitting quantities
change in the context of the OPT was explained in detail in
Ref. [41]. Here, for completeness, we will review and extend
the results of Ref. [41] when the diquark interaction is also
present in theNJLLagrangiandensity, aswehave inEq. (2.1).
This is an important step required for the subsequent
numerical analysis to be performed in the next section, and
before one attempts to make predictions for other physical
quantities. We will start by first deriving consistently, in the
OPT method and at the order in which we are implementing
our study, the basic parameters from data. These parameters,
except forGd as alreadymentioned, can be estimated from the
experimental data—i.e., the mass of the pion mπ , the pion
decay constant fπ , and the quark condensate hψ̄ψi. For
definiteness, the values for these quantities are set throughout
this work to the values mπ ¼ 134 MeV, fπ ¼ 93 MeV, and
−hψ̄ψi1=3 ¼ 250 MeV.
Before discussing the appropriate fitting expressions, let

us first comment on the possible choices of values for the
diquark coupling constant Gd. Two possible constraints
can be imposed in principle on this constant: namely, that
diquarks come to exist in the vacuum as bound states
and that they are stable,1 which implies that the diquark
mass md must satisfy the condition 0 < md < 2Mq

[12,42,45–47], where Mq is the effective quark mass.
These two conditions can be translated in an lower and
upper limit for Gg, Gmin

d < Gd < Gmax
d , where Gmin

d and
Gmax

d are determined by the expressions [12,47]

1In fact, the condition of diquark stability might not be a
necessary condition in principle, because it is not known whether
the scalar diquark is really a bound state. (We thank L. He for
pointing this out to us.)
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Gmax
d ¼ 3

2
Gs

Mq

Mq −m
; ð5:1Þ

Gmin
d ¼ π2=4

Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

q

q
þM2

q ln

�
Λþ

ffiffiffiffiffiffiffiffiffiffiffi
Λ2þM2

q

p
Mq

	 : ð5:2Þ

For the typical parameters provided by the LN approxi-
mation, from the values for the mass of the pion mπ , the
pion decay constant fπ, and the quark condensate hψ̄ψi
given above, we find that m ≈ 4.99 MeV, Mq ≈ 314 MeV,
Gs ≈ 4.94 GeV−2, and Λ ≈ 653 MeV, which give values
for Gd in the range 0.81Gs ≲ Gd ≲ 1.52Gs. However, in
this work, we take these ranges of values for Gd mostly as
reference values. Since we are mostly interested in the
study of the BEC-BCS crossover region, we find that at
values of Gd around the minimum value Gmin

d , there is no
BEC phase—the transition from the chiral phase to that of
the condensate of diquarks is first order, preventing the
appearance of the BEC phase. A large value of Gd can
make diquarks condense already at very small values of the
chemical potential. But diquark condensation for chemical
potential below the nucleon mass value is unrealistic, so
these cases should be excluded. This is in fact a strong
condition, excluding the possibility of the BEC phase in the
NJL, at least in its simplest version. We will say more about
this when discussing our results in the next section. In the
present study, we find that a BEC phase can appear in the
LN case when 1.05Gs ≲Gd ≲ 1.52Gs. More specifically,
to allow comparison of our results with previous ones
obtained with the LN method and considered in Ref. [42],
we will use values of Gd such that 1.3Gs ≲ Gd ≲ 1.52Gs,
which was also the same range of values considered in
Ref. [42]. For the OPT case, we also find allowed values
of Gd close to these in the case of the absence of color
neutrality. When the condition of color neutrality is
imposed, these values shift in the case of the OPT and
give a much smaller window of values forGd allowing for a
BEC phase, as we will show in Sec. VI D.
Let us now turn to the problem of determining the

parameters of the model. The three basic parameters of the
NJL model—i.e., the values of the quark current mass m,
the quark-antiquark coupling Gs, and the ultraviolet cutoff
Λ, are determined from the system of equations, evaluated
at the vacuum (T ¼ μ ¼ μb ¼ 0) formed by Refs. [4,5].
The system of equations is composed by the equation for
the quark condensate,

σc ¼ −2Gshψ̄ψi ð5:3Þ

by the pion mass equation, which is determined by the pole
of the pion propagator and by the equation for the pion
decay constant. Note that since all fitting expressions are
determined in the vacuum, where the diquarks are not
condensed—i.e., Δc ¼ 0—the presence of a diquark

interaction will not affect the fitting parameters, at least
in the LN approximation, where diquark fluctuations do not
contribute. This is, however, not true in the OPT case,
where already at order δ there will be two-loop terms with
diquark fluctuations contributing to both the pion mass and
the pion decay constant. Thus, the fittings in the OPT case
will depend explicitly on the diquark coupling Gd, as we
will show below. The other parameters can be found by
solving a system of equations formed by the gap equation
determining the chiral condensate σc,

∂Veff

∂σ
����
σ¼σc

¼ 0; ð5:4Þ

and the diquark condensate,

∂Veff

∂Δ
����
Δ¼Δc

¼ 0; ð5:5Þ

and, in the OPT case, by the two PMS equations (4.9) and
(4.10) used to determine the optima η̄ and ᾱ. Note also that,
in the OPT case, in the vacuum, since the value of Δ that
minimizes the effective potential is Δc ¼ 0, it can be easily
shown that the PMS Eq. (4.10) for α provides a value
ᾱ ¼ 0. In practice, this means that we can get all the
vacuum equations for the parameter calculations from the
thermodynamic effective potential,

VðvacÞ
eff ðσc; η̄Þ ¼ Vμ¼0;μb¼0;β→∞

δ1
ðσc;Δc ¼ 0; η̄Þ; ð5:6Þ

which is found after we make the substitutions in, e.g.,
Eq. (4.17): ½α; E�

αp⃗ðμÞ� → ½0; E�
p⃗ ðμÞ�, μ ¼ μb ¼ 0, Δ ¼ 0,

and β → ∞, which gives the OPT expression for the
effective potential, at order δ and in the vacuum,

VðvacÞ
eff ðσc; η̄Þ ¼ δ

σ2c
4Gs

− 2NcNf½IA þ δðmþ η̄Þðσc − η̄ÞID�

− NcNfδðmþ η̄Þ2Gs

×

�
ðnπ − 1Þ þ 2

ðNc − 1Þ
Nc

Gd

Gs

�
I2D: ð5:7Þ

The gap equation (5.4) for σc, the relation with the chiral
condensate, and the PMS Eq. (3.2) to η̄ are easily obtained
from Eq. (5.7), and they result in

MOPT
q ¼ mþ 4GsNcNfMI2; ð5:8Þ

hψ̄ψi ¼ −
MOPT

q −m

4Gs
; ð5:9Þ

M ¼ MOPT
q þ fðGdÞGsMI2; ð5:10Þ

where we have defined MOPT
q ¼ mþ σc, M ¼ mþ η̄,
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fðGdÞ≡ ðnπ − 1Þ þ 2Gd

Gs

ðNc − 1Þ
Nc

; ð5:11Þ

and I2 in Eq. (5.10) is given by

I2≡
Z

d3p
ð2πÞ3

1

Ep⃗

¼ 1

4π2

8><
>:Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2þM2

p
−
M2

2
ln

2
64


Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2þM2

p �
2

M2

3
75
9>=
>;:

ð5:12Þ

The equations for the pion mass mπ and for the pion
decay constant fπ are evaluated next in the context of the
OPT approximation.
Note that from Eqs. (5.8) and (5.10), we obtain the

simple relation between η̄ and σc in the vacuum:

η̄ ¼ σc½1þ fðGdÞ=ð4NcNfÞ�

¼ σc

�
1þ nπ − 1

4NcNf
þ Gd

Gs

ðNc − 1Þ
2N2

cNf

�
; ð5:13Þ

which shows that in the large-Nc limit we reproduce the
result η̄ ¼ σc as expected in the LN approximation.

A. The pion mass equation

The pion mass is determined by the pole of the pion
propagator, which can be expressed as [41]

1 − 2GsΠπðq2Þ; ð5:14Þ

where Ππðq2Þ is the pion self-energy, evaluated consis-
tently at the required OPT order. In our case, where we are
evaluating quantities up to OðδÞ in the OPT expansion, we
will have contributions to the pion self-energy that include
both one- and two-loop terms, which are shown in Fig. 4.
The free fermion propagators shown in Fig. 4 and related

to the quarks q1 and q2 (red and green in color space) and to
q3 are given, respectively, by

iGvac
Ψ ðpÞ ¼ iGvacðpÞ1NG ð5:15Þ

and

iGvac
q3 ðpÞ ¼ iGvacðpÞ; ð5:16Þ

where

GvacðpÞ ¼ =pþM
p2 −M2 þ iϵ

; ð5:17Þ

and Ψ represents the quarks q1 and q2 in the Nambu-
Gor’kov space [48,49], with 1NG being the identity matrix
in this space.
The one-loop diagram shown in Fig. 4, when using the

vertex τiγ
5 and the Feynman rules obtained from Eq. (3.4),

can be written explicitly in the form

iΠð1Þ
π ðq2Þδij ¼ −

Z
d4p
ð2πÞ4 Trc;f;D½iG

vacðpÞðτiγ5Þ

× iGvacðpþ qÞðτjγ5Þ�; ð5:18Þ

where q denotes here the external momentum and δ ¼ 1 is
considered in this and in all subsequent terms evaluated in
the OPT expansion. After we perform the traces in flavor
and color spaces, we find

Πð1Þ
π ðq2Þ ¼ 2iNcNf½2IGðMÞ − q2Iðq2Þ�; ð5:19Þ

where

IGðMÞ ¼
Z

d4p
ð2πÞ4

1

p2 −M2 þ iϵ
¼ −

i
2
I2 ð5:20Þ

and

Iðq2Þ ¼
Z

d4p
ð2πÞ4

1

ðp2 −M2 þ iϵÞ½ðpþ qÞ2 −M2 þ iϵ� :

ð5:21Þ

The self-energy terms generated by the two-loop dia-
grams, given by the second and third diagrams shown in
Fig. 4 and related to the scalar ζ and pion π⃗ chiral fields can
be written, respectively, as

FIG. 4. Diagrams relevant to the calculation of the pion mass
and its decay constant in the OPT expansion up to OðδÞ. The
thick, continuous line represents vacuum fermionic propagators
for quarks with all colors, which are evaluated when
Δ ¼ Δc ¼ 0; the thin line represents vacuum fermionic propa-
gators for only quarks with colors 1 and 2; the dashed line
represents the chiral bosonic scalar ζ field propagator; the dash-
dotted one represents the pion π⃗-fields propagator; the dotted one
is related to the ϕR field; and the continuous-dotted line is
associated with the ϕI field. In addition, the vertex pairs
represented by an “X” in each diagram can be γ5τi;j (in the case
of the pion mass equation) or γ5γμ;ντi;j (in the case of the decay
constant equation). All quantities are calculated when δ ¼ 1.
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−iΠð2Þ;ζ
πij ðq2Þ ¼ −i2Gs

Z
p1;p2

Trc;f;D½ð−iÞiGvacðp1Þðτiγ5Þ

× iGvacðp1 þ qÞð−iÞiGvacðp2 þ qÞ
× ðτjγ5ÞiGvacðp2Þ� ð5:22Þ

and

−iΠð2Þ;π⃗
πij ðq2Þ ¼ −i2Gs

Z
p1;p2

Trc;f;D½ðτkγ5ÞiGvacðp1Þ

× ðτiγ5ÞiGvacðp1 þ qÞðτkγ5ÞiGvacðp2 þ qÞ
× ðτjγ5ÞiGvacðp2Þ�; ð5:23Þ

where

Z
p1;p2

≡
Z

d4p1

ð2πÞ4
d4p2

ð2πÞ4 : ð5:24Þ

Evaluating again the traces in the above expressions, we
obtain

Πð2Þ;ζ
π ðq2Þ ¼ −8GsNcNf

�
I2GðMÞ − q2

�
IGðMÞIðq2Þ

−M2I2ðq2Þ − q2

4
I2ðq2Þ

��
ð5:25Þ

and

Πð2Þ;π⃗
π ðq2Þ ¼−8ðnπ − 2ÞGsNcNf

�
I2GðMÞ

−q2
�
IGðMÞIðq2ÞþM2I2ðq2Þ−q2

4
I2ðq2Þ

��
;

ð5:26Þ

where

Πð2Þ;ζ
πij ðq2Þ ¼ Πð2Þ;ζ

π ðq2Þδij;
Πð2Þ;π⃗

πij ðq2Þ ¼ Πð2Þ;π⃗
π ðq2Þδij: ð5:27Þ

The contributions of the last two diagrams shown in
Fig. 4 are related to the real and imaginary components of
the diquark scalar field, ϕR and ϕI, respectively. In this
case, only the vacuum propagator relative to the Nambu-
Gor’kov spinor Ψ, given by Eq. (5.15), needs to be taken
into account. Explicitly, we have that

−iΠð2Þ;ϕR
πij ðq2Þ ¼ 1

2
ð−i2GdÞ

Z
p1;p2

Trall

�
i2γ5τ2t2

�
0 1

1 0

	
iGvac

Ψ ðp1Þγ5
�
τi 0

0 τTi

	
iGvac

Ψ ðp1 þ qÞ

× i2γ5τ2t2

�
0 1

1 0

	
iGvac

Ψ ðp2 þ qÞγ5
� τj 0

0 τTj

	
iGvac

Ψ ðp2Þ
�

ð5:28Þ

and

−iΠð2Þ;ϕI
πij ðq2Þ ¼ 1

2
ð−i2GdÞ

Z
p1;p2

Trall

�
ð−i2γ5τ2t2Þ

�
0 −i
i 0

	
iGvac

Ψ ðp1Þγ5
�
τi 0

0 τTi

	
iGvac

Ψ ðp1 þ qÞ

× ð−i2γ5τ2t2Þ
�
0 −i
i 0

	
iGvac

Ψ ðp2 þ qÞγ5
� τj 0

0 τTj

	
iGvac

Ψ ðp2Þ
�
; ð5:29Þ

where Trall also incorporates the trace in the Nambu-Gor’kov space.

It is easy to show that Πð2Þ;ϕR
πij ðq2Þ ¼ Πð2Þ;ϕI

πij ðq2Þ. Therefore, we only have to calculate Eq. (5.28)—or, equivalently,
Eq. (5.29). After the calculation of the traces, we obtain the joint contribution of the two diagrams:

Πð2Þ;ϕ
π ðq2Þ≡ Πð2Þ;ϕR

π ðq2Þ þ Πð2Þ;ϕI
π ðq2Þ

¼ 2Πð2Þ;ϕR
π ðq2Þ

¼ −16GdðNc − 1ÞNf

�
I2GðMÞ − q2

�
IGðMÞIðq2Þ þM2I2ðq2Þ − q2

4
I2ðq2Þ

��
: ð5:30Þ

The pion massmπ is the pole of its propagator. This means that Eq. (5.14) should be null when we make q2 → m2
π . Since

Ππðq2Þ is the sum of Eqs. (5.19), (5.26), (5.25), and (5.30), we can write
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0 ¼ 1 − 2GsΠπðm2
πÞ

¼ 1 − 4iGsNcNf½2IGðMÞ −m2
πIðm2

πÞ�
þ 4NcNfG2

sffðGdÞ½2IGðMÞ −m2
πIðm2

πÞ�2
− 4½fðGdÞ − 2�m2

πM2I2ðm2
πÞg; ð5:31Þ

where fðGdÞ was already defined in Eq. (5.11), and the
integral Iðm2

πÞ is given by

Iðm2
πÞ ¼

i
8π2

"
ln

 
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p

M

!
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
M2

m2
π
− 1

s

× tan−1
 

Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2=m2

π − 1
p

!#
: ð5:32Þ

Now, iterating once the PMS equation (5.10) and
substituting in the gap equation (5.8), we get the relation

m
MOPT

q
¼ 1 − 8iGsNcNfIGðMÞ

þ 16fðGdÞG2
sNcNfI2GðMÞ; ð5:33Þ

which, when inserted into Eq. (5.31), gives us the result

m
MOPT

q
¼ 4GsNcNfm2

π

�
−iIðm2

πÞ þ 4fðGdÞGs

×

�
IGðMÞIðm2

πÞ þ
�
M2 −

m2
π

4

	
I2ðm2

πÞ
�

− 8GsM2I2ðm2
πÞ
�
: ð5:34Þ

We can clearly see that Eq. (5.34) satisfies the Goldstone
theorem. When we take m ¼ 0 (the chiral case) in
Eq. (5.34), we automatically obtain mπ ¼ 0, consistent
with the Goldstone theorem.

B. The pion decay constant equation

Let us now evaluate the pion decay constant in the
OPT expansion to order δ. The pion decay constant can be
expressed as [41]

h0jTAi
μðqÞAj

νð0Þj0i ¼ igμνδijf2π þOðqμqνÞ; ð5:35Þ

where Ai
μ ≡ ψ̄γμγ5ðτi=2Þψ . In practice, we can take ad-

vantage of all the diagrams of Fig. 4 again, but we replace
the vertex γ5τi;j with γ5γμτi;j=2 to compute f2π . Since the
calculations are analogous, yet more laborious than those
made previously to obtain the expression containing the
pion mass, we show some of the details in the Appendix.
From the results given there, we extract that the contribu-
tion from each loop term contributing to fπ can be
expressed in the form

f2π;1 ¼ −2iNcNfM2Ið0Þ; ð5:36Þ

f2π;ζ ¼ 4GsNcNfM4I2ð0Þ; ð5:37Þ

f2π;π⃗ ¼ 4GsNcNfðnπ − 2ÞM4I2ð0Þ; ð5:38Þ

f2π;ϕ ¼ 8GdðNc − 1ÞNfM4I2ð0Þ; ð5:39Þ

with the integral Ið0Þ obtained from the limit q2 → 0
applied to Eq. (5.21), which gives

Ið0Þ ¼ i
8π2

�
sinh−1

�
Λ
M

	
−

Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p
�
: ð5:40Þ

The final expression for f2π is obtained by adding
Eqs. (5.36), (5.37), (5.38), and (5.39), which finally
gives

f2π ¼ −2iNcNfM2Ið0Þ þ 4NcNfGsfðGdÞM4I2ð0Þ:
ð5:41Þ

C. The complete fitting expressions
in the OPT expansion to OðδÞ

The complete set of consistent equations that need to be
solved in order to provide the values of the parameters,
once the numerical data for mπ, fπ , and hq̄qi are provided,
is then

MOPT
q ¼ mþ 4GsNcNfMI2; ð5:42Þ

M ¼ MOPT
q þ fðGdÞGsMI2; ð5:43Þ

hψ̄ψi ¼ −
MOPT

q −m

4Gs
; ð5:44Þ

f2π ¼ −2iNcNfM2Ið0Þ þ 4fðGdÞNcNfGsM4I2ð0Þ;
ð5:45Þ

and

m
MOPT

q
¼ 4GsNcNfm2

π

�
−iIðm2

πÞ þ 4fðGdÞGs

×

�
IGðMÞIðm2

πÞ þ
�
M2 −

m2
π

4

	
I2ðm2

πÞ
�

− 8GsM2I2ðm2
πÞ
�
: ð5:46Þ

From the input values, we obtain numerically sets of
parameters for some values of Gd=Gs, as shown in Table I.

DUARTE, FARIAS, MANSO, and RAMOS PHYSICAL REVIEW D 96, 056009 (2017)

056009-12



Note that, as compared to the LN approximation, the
corrections due to OPT cause a slight drop2 in all
parameters of the table, and this fall is intensified with
increasing coupling between quarks (represented by Gd).
The LN approximation, which can be obtained when we
neglect the OPT two-loop contributions in the equations
that compose the system, does not provide parameters that
depend on Gd, as already explained, since diquark fluctua-
tions would contribute with subleading 1=Nc correction
terms, but these terms do contribute in the OPT case. The
values corresponding to the ratiosGs=Gd ¼ 1.53, 1.54, and
1.55 and shown in the Table I will be used when imposing
the color neutrality condition, while the other values will be
used in the absence of color neutrality and in the com-
parison of our OPT results with those obtained in the LN
approximation.

VI. NUMERICAL RESULTS USING THE OPT
FOR THE COLD AND DENSE SYSTEM

Before presenting our results, it is useful to first recall a
few properties regarding the BEC-BCS crossover and the
requirement for color neutrality.

A. The BEC-BCS crossover

If we start from the dispersion relation—e.g., the
one from the mean field LN approximation, from
Eq. (4.2)—and set δ ¼ 0, μ0 ¼ μ (red and green quarks),
αs → Δ, and η → σ, we have, for example, E−

Δ;p⃗ðμÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q

q
− μ�2 þ Δ2

r
. For small chemical potential

μ ≤ Mq, the minimum of the dispersion is located at

jp⃗j ¼ 0, with particle gap energy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

q þ Δ2
q

, which would

correspond to the fermionic (quark) spectrum in the BEC
state. At values of chemical potential such that μ > Mq, the
minimum of the dispersion is shifted to jp⃗j ≠ 0, and the

particle gap is Δ. This corresponds to the fermionic
spectrum in the BCS state. It is then useful to define an
effective chemical potential μN ≡ μ −Mq, which will serve
as an indicator of the BEC-BCS crossover [42].

B. Color neutrality condition

In the model given by Eq. (2.1) for Nc ¼ 3, in the choice
that allows only red and green color quarks to form
diquarks and that leaves out the blue ones, for example,
it follows that when equal chemical potentials are intro-
duced for the three colors—μr ¼ μg ¼ μb ≡ μB=3, where
μB represents the baryon chemical potential—the phase
characterized by the absence of the diquark condensate,
Δc ¼ 0, keeps the color symmetry SUð3Þ, while the phase
at which the condensate is nonzero, Δc ≠ 0, breaks the
SUð3Þ color symmetry down to SUð2Þ. However, in the
latter case, the number densities of the quarks that form
the diquarks, nr and ng, are identical and are larger than the
density of the blue-colored quarks, nb [42,45,51,52]. This
means that in this phase, the system as a whole does not
have the property of color neutrality, which is physically
verified. In fact, such a situation also occurs in QCD when
we consider the two-flavor superconducting color phase,
but it is possible to generate the eighth gluon field, which
guarantees the color neutrality automatically [45] in theory.
Effectively, it generates a chemical potential μ8. Since in
the NJL model we do not have gluon degrees of freedom,
what is done to ensure color neutrality is to add by hand a
chemical potential term μ8 in the Lagrangian density of
the theory—μ8ψ̄γ

0T8ψ , with T8 ¼
ffiffiffi
3

p
λ8—and impose that

hQ8i ¼ 0, which is equivalent to demanding the condition

n8 ¼ −
∂Ω
∂μ8 ¼ 0; ð6:1Þ

where Ω is the thermodynamic potential in the desired
approximation. Furthermore, in practice, the chemical
potential μ8 enters in the final expressions obtained.
Until then, we can simply make the changes [42]
μg ¼ μr ¼ μ → μB=3þ μ8=3 and μb → μB=3 − 2μ8=3.
This will be the procedure we will also follow here when
demanding color neutrality.
Note that besides the imposition of color neutrality,

electric charge neutrality in principle should also be
considered. Including electric charge neutrality introduces
an extra chemical potential, μQ, which is proportional to the
electric charges for the u and d quarks and introduces an
explicit difference in chemical potentials for these quarks.
This difference in chemical potentials can lead to some
important effects, such as a gapless color superconducting
phase [53,54]. Since in this work we are primarily
interested in the comparison of the LN results for the
BEC-BCS crossover with the OPT ones, we will here
neglect for simplicity the condition of electric charge

TABLE I. Parameter values used in the OPT scheme and in
the LN approximation (last line). The inputs used are mπ ¼
134 MeV, fπ ¼ 93 MeV, and −hψ̄ψi1=3 ¼ 250 MeV.

Gd=Gs Mq (MeV) m (MeV) Gs (GeV−2) Λ (MeV)

1.3 293.445 4.777 4.619 640.112
1.4 292.973 4.760 4.611 639.597
1.5 292.520 4.744 4.604 639.077
1.53 292.389 4.739 4.602 638.920
1.54 292.345 4.737 4.602 638.867
1.55 292.302 4.735 4.601 638.815
LN 313.519 4.987 4.937 653.331

2Translating in percentages, there is a decrease of approx-
imately 2% in Λ, 6% to 7% in Gs, 3% to 5% in m, and 6% to 7%
in Mq.
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neutrality, as was the case also in the previous works
[42,45]. But we should keep in mind that for any realistic
application, such as in the determination of the equation
of state relevant for the physics of compact stellar objects,
both of the conditions of color—electric charge neutrality
and β equilibrium—should be imposed.

C. Numerical results: Absence of color neutrality

We now turn to the numerical results obtained with
the OPT method and the comparison of these results with
those obtained using the LN approximation. For simplicity
and making easier the comparison between the OPT
and LN results, we will first analyze the case of the
absence of color neutrality (e.g., we consider μ8 ¼ 0
initially), and we can assume simply, as previously stated,
that μr ¼ μb ¼ μg ≡ μB=3.
From the OPT thermodynamic potential at zero temper-

ature, VOPT
eff ðσc;ΔcÞ, given by the sum of Eqs. (4.18),

(4.19), and (4.20), together with the corresponding gap
equations for the chiral and diquark condensates,

∂Veff

∂σ
����
σ¼σc

¼ 0;
∂Veff

∂Δ
����
Δ¼Δc

¼ 0; ð6:2Þ

and the PMS conditions, Eqs. (4.9) and (4.10), applied to
the OPT mass parameters η and α, we can find numerically
the behavior for the chiral condensate σ (and consequently,
that for the effective quark mass Mq) and diquark con-
densate Δ, as well as all the relevant thermodynamic
properties of the system, as a function of the chemical
potential. (For convenience, we drop the subscript c in σ
and Δ from now on.) In the absence of color neutrality,
we can write the effective chemical potential characterizing
the BEC-BCS crossover simply as μN ¼ μB=3 −Mq. As is
conventional in the literature, we will present the results as
a function of the baryon chemical potential μB.
We start by showing in Fig. 5 the behavior of the

effective quark mass Mq and Δ with the increase of the
baryon chemical potential μB forGd=Gs ¼ 1.3, 1.4 and 1.5,
which were the same values considered in Ref. [42], which
studied the BEC-BCS crossover in the LN approximation.
The μN result for each method is also indicated in the plots,
such as to facilitate visualization of the BEC region, which
corresponds to the values of μB for which μN < 0, when
Δ ≠ 0, going to μN > 0, corresponding to the BCS region.
The results in Fig. 5 indicate that OPT disfavors the BEC
region and that this region seems to decrease more
significantly with the decrease of the ratio Gd=Gs. In
addition, we observe that the OPT also disfavors the region
in which Δ ≠ 0 for 1.3≲Gd=Gs ≲ 1.5, increasing the
value of critical chemical potential(s) μB;c (OPT) relative
to those of the LN approximation. From the qualitative
point of view, the variation of Δ and MOPT

q with the
variation of μB remain similar to the ones observed in

the LN case, while maintaining the phase transition as
being second order when color neutrality is not required, as
shown in Fig. 6.
By looking again at Fig. 5, we note that the value of the

condensate Δ given by the OPT is always smaller than the
one given by the LN approximation, and this difference
becomes larger with the increase of Gd=Gs. In addition,
we observe that MOPT

q increasingly approaches MLN
q for

increasing values ofGd=Gs and μB. The difference between
these quantities—for example, for the case Gd=Gs ¼ 1.5—
is visually insignificant from the critical chemical potential
μB;c (OPT) of the phase transition in OPT. Something

FIG. 5. Diquark condensate Δ, effective massMq, and effective
chemical potential μN as a function of the baryon chemical
potential μB for different values of the ratio Gd=Gs in the LN
approximation and OPT comparatively.
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similar occurs with the chemical potential for which occurs
the BEC-BCS crossover, obtained by the condition μN ¼ 0,
μBEC−BCSB;c . In the OPT, the crossover requires a value of
μBEC−BCSB;c (OPT) that is lower than that of in the LN
approximation case, and this difference tends to decrease
appreciably with the increase of Gd=Gs.
These results concerning the BEC-BCS crossover and

the differences between the LN and OPT critical values are
summarized in Table II, where, for completeness, we also
show the value for the pseudocritical chemical potential,
μchB;pc, for the chiral symmetry crossover (defined by the
position of the inflection point in Mq).
To also exemplify some of the differences between OPT

and LN for other thermodynamic quantities, in Fig. 7 we
show the vacuum subtracted pressure and energy densities,
Pnðσ;ΔÞ and εnðσ;ΔÞ, respectively, in addition to the
equation of state PnðεnÞ, where Pn ¼ P − Pvac and
εn ¼ ε − εvac, with (at T ¼ 0)

Pðσ;ΔÞ ¼ −Veffðσ;ΔÞ; ð6:3Þ

εðσ;ΔÞ ¼ −Pðσ;ΔÞ þ μBnB; ð6:4Þ

where nB is the baryon number density, given by

nB ¼ −
∂

∂μB Veffðσ;ΔÞ: ð6:5Þ

We have restricted Fig. 7 to show only the case
Gd=Gs ¼ 1.4 as an example. Visually, there is no signifi-
cant differences between such cases in the region of
interest. But in the region of intermediate baryon chemical

FIG. 7. The pressure (top plot), the energy density as a function
of μB (middle plot), and the equation of state (bottom plot), both
for the ratio Gd=Gs ¼ 1.4.

FIG. 6. The effective potential in the OPT at zero temperature
with the vacuum energy subtracted, Veff ≡ Veffðσ;Δ; η̄; ᾱ; μBÞ−
Veffðσvac;Δ ¼ 0; η̄vac; ᾱ; μB ¼ 0Þ, as a function of Δ for different
values of baryon chemical potential μB around the critical value
μB;c ¼ 0.4686 GeV, for the ratio Gd=Gs ¼ 1.4. The evolution of
the global mininum of potential when changing μB suggests a
second-order phase transition in the order parameter Δ, as occurs
in the LN case.

TABLE II. Values of critical chemical potentials for the LN and
OPT, in both cases in the absence of color neutrality.

No color neutrality case
Gd=Gs μB;c (GeV) μBEC−BCSB;c (GeV) μchB;pc (GeV)

1.3 0.6003 0.7051 0.7398
LN 1.4 0.4513 0.6334 0.6785

1.5 0.2010 0.5557 0.6104
1.3 0.5972 0.6820 0.7306

OPT 1.4 0.4686 0.6155 0.6742
1.5 0.2787 0.5454 0.6134

OPTIMIZED PERTURBATION THEORY APPLIED TO THE … PHYSICAL REVIEW D 96, 056009 (2017)

056009-15



potentials, the OPT slightly decreases its values compared
to the LN approximation for the value of Gd=Gs used
herein.

D. The OPT results in the case of color neutrality

Let us now consider the case of imposing the color
neutrality condition. As already discussed above, in this
case we set μ ¼ μB=3þ μ8=3, μb ¼ μB=3 − 2μ8=3, and the
condition of color neutrality, given by Eq. (6.1), must be
satisfied in the region where Δ ≠ 0, that represents the
physical case.
The main effect coming from the corrections due to the

OPT in relation to the case of LN, for the values of Gd=Gs
previously considered, is that there is a discontinuity in
ΔðμBÞ at the critical baryon chemical potential μB;c (OPT),
indicating a first-order phase transition. The emergence of a
first-order transition in this case can be confirmed and
illustrated in Figs. 8 and 9, where in both cases we have
considered the case Gd=Gs ¼ 1.3 as an example. In this
case, when the baryon chemical potential increases, the
potential presents a new (local) minimum around
μB ≃ 0.7113 GeV, and at the critical baryon chemical
potential μB;c ≃ 0.73226 GeV, this minimum is aligned
to the one at Δ ¼ 0. If we keep increasing the chemical
potential, the minimum at origin becomes local, and after
that, a maximum point around μB ≃ 0.7365 GeV emerges.
This interval, 0.7113 GeV≲ μB ≲ 0.7365 GeV, corre-
sponds to a metastable region, represented by the thin
vertical gray region in Fig. 9. In the LN case, the BEC
region, when contrasted with the case shown in Fig. 5
obtained when neglecting color neutrality, also shrinks, but
it does not disappear completely, consistent with the
observations made in Ref. [42].
We should remark that in the LN approximation, the

transition eventually also turns first order, but for values of

the ratio Gd=Gs ≲ 1.05, as observed in Refs. [42,43]. By
increasing the ratio Gd=Gs, we can again recover a second-
order transition for the phase with a diquark condensate and
a BEC-BCS crossover. For the OPT case, we find that the
minimum value required for a second-order phase tran-
sition shifts from Gd=Gs ≈ 1.05 in the LN case to a value
Gd=Gs ≈ 1.525, which is itself very close to the maximum
value allowed for the ratio Gd=Gs before the mass of the
diquark vanishes, precluding the instability of the vacuum.
In the OPT, for the parameters considered, this happens for
values Gd=Gs > 1.55.
In Fig. 10, we show the effective potential in the OPT for

the case ofGd=Gs ¼ 1.53, confirming the resurgence of the
second-order phase transition for diquark condensation.

FIG. 8. The vacuum subtracted effective potential in the OPT
at zero temperature as a function of Δ, for different values of the
baryon chemical potential μB around the critical value μB;c ¼
0.7323 GeV and for the ratio Gd=Gs ¼ 1.3. The behavior of the
global minimum of potential with the variation of μB and the
coexistence between the two minima suggests a first-order phase
transition in the order parameter Δ.

FIG. 10. The vacuum subtracted effective potential in the
OPT at zero temperature as a function of Δ for different values
of baryon chemical potential μB around the critical value
μB;c ¼ 0.4653 GeV, for Gd=Gs ¼ 1.53. The behavior of the
global minimum of potential with the variation of μB suggests
a second-order phase transition in the order parameter Δ. Color
neutrality is considered.

FIG. 9. The diquark condensate Δ, the effective quark mass
Mq, and the effective chemical potential μN as a function of the
baryon chemical potential μB for Gd=Gs ¼ 1.3, in the LN
approximation and OPT comparatively. Color neutrality is
considered. The thin vertical line indicates the position of the
first-order transition (discontinuity) in Δ.
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Next, we will restrict our attention to the cases where a
second-order phase transition for diquark condensation is
possible in the OPT, which will in particular correspond to
the cases where the ratio of Gd=Gs will assume the values
Gd=Gs ¼ 1.53, 1.54, and 1.55.
In Fig. 11, we show the results for Δ,Mq, and μN for the

values Gd=Gs ¼ 1.53, 1.54, and 1.55. It is possible to see
that, similarly to the LN case with results shown in Fig. 5,
as we increase the ratio Gd=Gs, the OPT favors the BEC
phase. The critical baryon chemical potential μB;c and the

crossover value μBEC−BCSB;c both decrease as the ratio Gd=Gs

increases. But μB;c is more affected by the value of Gd=Gs.
In the LN case, however, both μB;c and μBEC−BCSB;c suffer
similar influence due to a variation ofGd=Gs. Both of these
results can be seen in Fig. 12.
In Fig. 12, we illustrate the evolution of the critical points

μB;c, μBEC−BCSB;c , while in Fig. 13 we give the width of the
BEC region, defined by ðμBEC−BCSB;c − μB;cÞ as a function of
Gd=Gs, for both the LN and OPT cases.
In Table III, we summarize the values for the critical

chemical potentials obtained when considering the color
neutrality condition in the LN and OPT cases. For
completeness, we also give the values for the pseudocritical
chemical potential for chiral condensation, μchB;pc. Note that
the critical baryon chemical potential for the BEC transition
always tends to decrease as we increase the ratio Gd=Gs,
which is true in both the LN and OPT cases. Note also that
the results for the critical baryon chemical potentials always
remain below the value of the onset of baryonic matter
(e.g., when comparing with the nucleon mass), which
prompts the question of the reliability of these results
when applied to real QCD. In fact, the same trend we see
here is also seen in all previous studies for the BEC-BCS
crossover study in the NJL model (see, however, Ref. [17]).
As far as this issue is concerned, when we compare the LN
and OPT results, we see that while the LN gives a much
larger range of values for Gd=Gs allowing for the BEC
phase, in the OPT case this window shrinks considerably to
a very small range of values, 1.525≲Gd=Gs ≲ 1.55. In a
sense, by including further contributions from both meson
and diquark fluctuations (represented by the two-loop
contributions) which are absent in the LN approximation,
the OPT clearly disfavors the emergence of a BEC phase.
This seems more in accordance, based on these results, with
the expectancy that the appearance of a diquark BEC phase
at low density must be an artificial effect in the (three-color)
NJL model.
As already mentioned previously, the BEC-BCS cross-

over can be characterized by the shape of the dispersion
relation for the quark field, which for the OPT case is
given by Eq. (4.2) when setting δ ¼ 1, Δ1 ¼ Δ2 ¼ Δ,

α1 ¼ α2 ¼ α, and μ0 ¼ μ ¼ μB=3þ μ8=3, or Eδ¼1−
Δ;p⃗ ðμÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðMOPT

q Þ2
q

− μ�2 þ Δ2

r
(the same form as in the

LN). In Fig. 14, we illustrate the particle dispersion for the
OPT in the color neutrality case for the example of
Gd=Gs ¼ 1.53. For values of μB ≤ μBEC−BCSB;c , the minimum
of the dispersion is located at p⃗ ¼ 0, and the gap energy is
jμN j (remembering that μN ¼ μ −MOPT

q , where MOPT
q ¼

mþ σOPT). The BEC phase corresponds to the region
between μB;c and μBEC−BCSB;c . Increasing the chemical
potential beyond μBEC−BCSB;c , this minimum is shifted to

FIG. 11. Diquark condensate Δ, effective mass Mq, and
effective chemical potential μN as a function of baryon chemical
potential μB for different values of Gd=Gs in the OPT case. Color
neutrality is considered.
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jp⃗j≃ jμj and the gap becomes equal to Δ, indicating the
BCS phase. Note that the diquark condensate Δ, as can be
seen from Figs. 5 and 11, tends to remain smaller than the
baryon chemical potential. We also find that the critical
chemical potential for the BEC transition (μc ≡ μB;c=3)
corresponds exactly to half the mass of the diquarks. This
can be proofed as follows: The diquark mass can be
computed in the OPT scheme similarly to the calculation

of the pion mass shown in Sec. VA, with the appropriate
changes—e.g., by replacing the pion vertex −iγ5τi with
that of the diquark boson field with the quarks,
iCγ5τ2t2 obtained from the bosonized Lagrangian density
Eq. (2.2)—from which we then obtain that the diquark

TABLE III. Values of critical chemical potential, considering
color neutrality effects, for LN and OPT.

The color neutrality case
Gd=Gs μB;c (GeV) μBEC−BCSB;c (GeV) μchB;pc (GeV)

1.3 0.7137 0.7370 0.7361
LN 1.4 0.6144 0.6603 0.6459

1.5 0.4474 0.5767 0.5334
OPT 1.53 0.4653 0.5651 0.5213

1.54 0.4366 0.5573 0.5119
1.55 0.3939 0.5496 0.5025

FIG. 12. The critical chemical potentials associated with the BEC phase transition μB;c, as a function of Gd=Gs, for the LN and OPT
cases, in their correspondent validity range. Color neutrality is considered in both cases.

FIG. 13. The width of the BEC region, defined by ðμBEC−BCSB;c − μB;cÞ, as a function of Gd=Gs, for the LN and OPT cases, in their
correspondent validity range. Color neutrality is considered in both cases.

FIG. 14. Particle dispersion relation Eδ¼1−
Δ;p⃗ ðμÞ in the OPT

approximation for Gd=Gs ¼ 1.53. Color neutrality is considered.
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mass is determined by the pole equation obtained in terms
of the diquark self-energy Πdðq0; q⃗Þ as

0 ¼ 1 − 2GdΠdðq0 ¼ md; q⃗ ¼ 0Þ
¼ 1 − 2Gdf2iðNc − 1ÞNf½2IG −m2

dIðm2
dÞ�

− 8ðNc − 1ÞNfGs½2IG −m2
dIðm2

dÞ�2
þ 16ðNc − 1ÞNfGsm2

dM
2I2ðm2

dÞg; ð6:6Þ

where IG is given by Eq. (5.20) and IðmdÞ is obtained from
Eq. (5.21). Note that Eq. (6.6) in the LN limit reduces to

1¼ 4iGdðNc − 1ÞNf½2IG −m2
dIðm2

dÞ�

¼ 2GdðNc − 1ÞNf

Z
d3p
ð2πÞ3

�
1

Ep⃗ þmd=2
þ 1

Ep⃗ −md=2

	
;

ð6:7Þ

where we have evaluated the integral in p0 to obtain the
last line in the above equation. Equation (6.7) agrees with the
corresponding LN result of Refs. [42,47]. In the OPT case,
Eq. (6.6) is a function of the optimization parameter η and
must then be solved together with the PMS equation (4.9).
Equation (6.7) in the LN approximation can be compared
with the one determining the diquark condensate Δ
[Eq. (5.5)], and use of the PMS equations (4.9) and (4.10)
gives

Δ ¼ 2ðNc − 1ÞNfGdᾱJBðμÞjη¼η̄; ð6:8Þ

where JBðμÞ is given by Eq. (4.27). If we set again the LN
limit in Eq. (6.8) and recall that in this case the OPT
optimization parameters η̄ and ᾱ reduce to η̄ ¼ σ and
ᾱ ¼ Δ, respectively, then Eq. (6.8) becomes, at the diquark
condensation point μB → μB;c and where Δ → 0,

1¼ 2ðNc−1ÞNfGd

Z
d3p
ð2πÞ3

�
1

Ep⃗þμB;c=3
þ 1

Ep⃗−μB;c=3

	
;

ð6:9Þ

and we also recover the LN result for μB;c as given in
Refs. [42,47]. When comparing Eq. (6.7) with Eq. (6.9), we
see immediately that μB;c=3 ¼ md=2. Note also that when
accounting for color neutrality, the same result follows when
we consider that μ → μþ μ8=3 [note that the integral JB in
Eq. (6.8) is only a function of μ ¼ μr ¼ μg], and the critical
baryon chemical potential for diquark condensation shifts
accordingly: μB;c=3 → md=2 − μ8=3. Since μ8 is in general
negative, this corresponds to a increase of the diquark
condensation point when color neutrality is considered,
which agrees with the results shown, e.g., in Table III. In
the OPT scheme, this comparison between the diquark mass
and the value for the condensation point is more involved for
two main reasons: First, because now we have to solve

Eqs. (6.6) and (6.8) subject to the PMS Eqs. (4.9) and (4.10)
and also the gap equation determiningMq, which makes the
numerical work somewhat more involved. Second and most
importantly, there is clearly a mismatch between the order-1
OPT expression for the diquark self-energy leading to
Eq. (6.6) and the corresponding contributions considered
at the same order in the OPT for the effective potential. In
particular, note that the order-1 OPT contributions to the
diquarkmass, corresponding to the two-loop diagramswhich
are similar to the ones seen in Fig. 4 for the pion, turn out to be

FIG. 15. The thermodynamic quantities of the system (normal-
ized pressure Pn and normalized energy density εn) are given for
different values of Gd=Gs as a function of the baryon chemical
potential μB at zero temperature on the OPT approximation, as
well as the state equation PnðεnÞ. Color neutrality is considered.
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equivalent to three-loop vacuum diagrams in the effective
potential (e.g., when we close the external diquark legs in the
self-energy diagrams such as to construct equivalent vacuum
terms). These contributions would in fact be order 2 in the
OPT scheme when seen in the context of the effective
potential. Due to this mismatch of terms between the diquark
self-energy and the effective potential, we do not expect a
perfect agreement for the value of μB;c=3 obtained from the
optimization of the effective potential, with the value ofmd=2
obtained from Eq. (6.6). This is a feature of the OPT scheme.
Intrinsically, we should optimize a quantity that could
produce simultaneous values for both μB;c and md. This
could be, perhaps, the nonhomogeneous (space- or momen-
tum-dependent) effective action, instead of the effec-
tive potential (the zero-momentum homogeneous action).
Even so, when we compare results from these different
quantities, we obtain, taking as an example the ratio
Gd=Gs ¼ 1.4 in the absence of charge neutrality, the result
μB;c=3 ¼ 0.1562 GeV, while the result from Eq. (6.6) gives
md=2 ¼ 0.1596 GeV, a difference of around 2%. Though
not a proof, we can take this difference as a rough possible
indication of the convergence of the OPT and a signal that
when going to the next order, which will now include three-
loop terms with similar topology to the ones contributing at
the self-energy for the diquarkmass, these terms are expected
to produce an overall small contribution. This is a generic
expectation from the OPT scheme seen in studies of its
convergence properties in other models [28].
Finally, the observations already made in the absence of

color neutrality regarding the thermodynamic quantities, like
the pressure, energy density, and equation of state, remain
essentially the same for the case with color neutrality. In
Fig. 15, we show these quantities for the OPT for the three
values of Gs=Gd considered in the color neutrality example.

VII. CONCLUSIONS

We have studied the BEC-BCS crossover in an extended
two-flavor NJL model, with three colors and including the
diquark interactions, in the context of the nonperturbative
OPT method, and the results obtained were contrasted with
those of the usual LN approximation. We derived in detail
how the fitting of the parameters changes in the OPT case,
deriving the corresponding corrections due to the OPT for
the pion mass and decay constant. These quantities are
affected by the diquark fluctuations already at first order in
the OPT approximation and must be evaluated consistently.
We have studied the cases both without and with color

neutrality and have shown the differences between the two
cases. There is a region of parameter values corresponding to
the ratio between diquarks and the usual quark-antiquark
interactions, Gd=Gs, below which a BEC phase becomes
disfavored and the transition from the chiral phase with no
diquark condensate to the phase of diquark condensate is
first order, while for larger values diquarks become massless,
condensing already at vanishing baryon chemical potential,

signaling the instability of the vacuum. In the absence of
color neutrality, for both the LN and OPT cases, this
corresponds approximately to values of the ratio Gd=Gs
satisfying 1.05≲ Gd=Gs ≲ 1.52. When accounting for color
neutrality, this range of values remains roughly unaltered in
the LN case, but for the OPTand the values of the parameters
considered, it slightly shifts and shrinks to the values
1.525≲ Gd=Gs ≲ 1.55. This shows that the OPT tends to
suppress the BEC region, and consequently, the BEC-BCS
crossover. To our knowledge, this is the first time that a
method beyond the LN, when applied to the study of the
BEC-BCS crossover, has given an indication of a possible
suppression of the BEC regime. It would be interesting to
further explore this issue when using other nonperturbative
methods or including additional ingredients in the NJL
Lagrangian density, like asymmetries—for example, a chiral
imbalance and application of the recent regularization
method exposed in Ref. [55]—or by including a vector
meson interaction, as studied in the LN context for the BEC-
BCS crossover in Ref. [42]. With respect to this, it is
interesting to point out that the OPT is able to radiatively
generate vectorlike interactions [56,57], which in principle
could also be combined with other effects and possibly
change the BEC-BCS region in nontrivial ways, as already
indicated by the results of the present work.
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APPENDIX: THE PION DECAY CONSTANT
DERIVATION IN THE OPT EXPANSION

TO ORDER δ

At one-loop order, the expression of the pion decay
constant is (in this appendix, we will use the following
notation for the trace: Tr≡ TrcTrfTrD)

if2π;1gμνδij

¼1

4

Z
d4p
ð2πÞ4Tr

�
i

=p−M
ðτiγμγ5Þ

i
=pþ=q−M

ðτjγνγ5Þ
�

¼−
NcNf

4
δij

Z
d4p
ð2πÞ4

1

ðp2−M2þ iϵÞððpþqÞ2−M2þ iϵÞ
×TrD½ð=pþMÞγμγ5ð=pþ=qþMÞγνγ5�: ðA1Þ
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When q ¼ 0 (zero external momentum), we obtain

f2π;1gμν ¼ i
NcNf

4

Z
d4p
ð2πÞ4 ½8pμpν − 4gμνðp · pþM2Þ�

×
1

ðp2 −M2 þ iϵÞ½ðpþ qÞ2 −M2 þ iϵ�

¼ iNcNf

�
2

Z
d4p
ð2πÞ4

pμpν

ðp2 −M2 þ iϵÞ2

− gμνIGðMÞ − 2gμνM2Ið0Þ
�
; ðA2Þ

where

IGðMÞ ¼
Z

d4p
ð2πÞ4

1

p2 −M2 þ iϵ
ðA3Þ

and

Ið0Þ ¼
Z

d4p
ð2πÞ4

1

ðp2 −M2 þ iϵÞ2 : ðA4Þ

Then, using the relation from dimensional regularization [58]

Z
d4p
ð2πÞ4

pμpν

ðp2 −M2 þ iϵÞ2 ¼
gμν
2

IGðMÞ; ðA5Þ

we obtain [41]

f2π;1 ¼ −2iNcNfM2Ið0Þ: ðA6Þ

At two-loop order, we have diagrams that involve the
fluctuations from the scalar ζ, π⃗, and ϕ fields, that contribute
to f2π . Their expressions are given, respectively, by

if2π;ζgμνδij ¼
iGsNc

2

Z
d4p1

ð2πÞ4
Z

d4p2

ð2πÞ4 TrD
�
TrfðτiτjÞ

×
=p1 þM

p2
1 −M2 þ iϵ

γμγ
5

=p1 þ =qþM
ðp1 þ qÞ2 −M2 þ iϵ

×
=p2 þ =qþM

ðp2 þ qÞ2 −M2 þ iϵ
γνγ

5
=p2 þM

p2
2 −M2 þ iϵ

�
;

ðA7Þ

if2π;π⃗gμνδij ¼−
iGsNc

2

Z
d4p1

ð2πÞ4
Z

d4p2

ð2πÞ4

×TrD

�
TrfðτkτiτkτjÞγ5

=p1þM
p2
1−M2þ iϵ

γμγ
5

×
=p1þ=qþM

ðp1þqÞ2−M2þ iϵ
γ5

=p2þ=qþM
ðp2þqÞ2−M2þ iϵ

× γνγ
5

=p2þM
p2
2−M2þ iϵ

�
; ðA8Þ

and

if2π;ϕgμνδij ¼−iGdðNc− 1Þ
Z

d4p1

ð2πÞ4
Z

d4p2

ð2πÞ4TrD

×

�
Trfðτ2τTi τ2τjÞγ5

=p1þM
p2
1−M2þ iϵ

γμγ
5

×
=p1þ=qþM

ðp1þqÞ2−M2þ iϵ
γ5

=p2þ=qþM
ðp2þqÞ2 −M2þ iϵ

× γνγ
5

=p2þM
p2
2−M2þ iϵ

�
: ðA9Þ

When q ¼ 0, we have [recalling that TrfðτiτjÞ ¼ Nfδij,
TrfðτkτiτkτjÞ ¼ −ðnπ − 2ÞNfδij and Trfðτ2τTi τ2τjÞ ¼
−Nfδij]

f2π;ζgμν ¼
GsNcNf

2

Z
d4p1

ð2πÞ4
Z

d4p2

ð2πÞ4

×
1

ðp2
1 −M2 þ iϵÞ2ðp2

2 −M2 þ iϵÞ2
× TrD½ð=p1 þMÞγμγ5
× ð=p1 þMÞð=p2 þMÞγνγ5ð=p2 þMÞ�; ðA10Þ

f2π;π⃗gμν ¼
GsNcNf

2
ðnπ − 2Þ

Z
d4p1

ð2πÞ4
Z

d4p2

ð2πÞ4

×
1

ðp2
1 −M2 þ iϵÞ2ðp2

2 −M2 þ iϵÞ2
× TrD½γ5ð=p1 þMÞγμγ5ð=p1 þMÞγ5
× ð=p2 þMÞγνγ5ð=p2 þMÞ�; ðA11Þ

and

f2π;ϕgμν ¼ GdðNc − 1ÞNf

Z
d4p1

ð2πÞ4
Z

d4p2

ð2πÞ4

×
1

ðp2
1 −M2 þ iϵÞ2ðp2

2 −M2 þ iϵÞ2
× TrD½γ5ð=p1 þMÞγμγ5ð=p1 þMÞγ5
× ð=p2 þMÞγνγ5ð=p2 þMÞ�: ðA12Þ

The double integrals involving the traces in Eqs. (A11)
and (A12) are equivalent, andwe can define, for convenience,
the momentum integrals appearing in those equations as
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F≡
Z

d4p1

ð2πÞ4
Z

d4p2

ð2πÞ4
1

ðp2
1 −M2 þ iϵÞ2ðp2

2 −M2 þ iϵÞ2 TrD½ð=p1 þMÞγμγ5ð=p1 þMÞð=p2 þMÞγνγ5ð=p2 þMÞ�

¼ 4

�
gμν½−I2GðMÞ þ 2M4I2ð0Þ� þ 4

Z
d4p1

ð2πÞ4
Z

d4p2

ð2πÞ4
ðp1 · p2Þp1μp2ν

ðp2
1 −M2 þ iϵÞ2ðp2

2 −M2 þ iϵÞ2
�
: ðA13Þ

The calculations in order to find Eq. (A13) are relatively
laborious but straightforward. The double integral on the
right-hand side in Eq. (A13), which we will denote by L,
when using dimensional regularization and the relation
Eq. (A5), becomes

L≡4

Z
d4p1

ð2πÞ4
Z

d4p2

ð2πÞ4
ðp1 ·p2Þp1μp2ν

ðp2
1−M2þ iϵÞ2ðp2

2−M2þ iϵÞ2

¼4gαβ
Z

d4p1

ð2πÞ4
p1αp1μ

ðp2
1−M2þ iϵÞ2

Z
d4p2

ð2πÞ4
p2βp2ν

ðp2
2−M2þ iϵÞ2

¼4gαβ
gαμ
2
IGð0Þ

gβν
2
IGð0Þ

¼gμνI2GðMÞ: ðA14Þ

Substituting Eq. (A14) into Eq. (A13), and Eq. (A13) into
Eqs. (A10), (A11), and (A12), we obtain

f2π;ζ¼4GsNcNfM4I2ð0Þ; ðA15Þ

f2π;π⃗ ¼ 4GsNcNfðnπ − 2ÞM4I2ð0Þ; ðA16Þ

f2π;ϕ ¼ 8GdðNc − 1ÞNfM4I2ð0Þ: ðA17Þ

The final expression for f2π is obtained by summing
Eqs. (A6), (A15), (A16), and (A17), to finally give the
result

f2π ¼ −2iNcNfM2Ið0Þ

þ 4NcNfGs

�
ðnπ − 1Þ þ 2Gd

Gs

ðNc − 1Þ
Nc

�
M4I2ð0Þ

¼ −2iNcNfM2Ið0Þ þ 4NcNfGsfðGdÞM4I2ð0Þ;
ðA18Þ

where

fðGdÞ≡ ðnπ − 1Þ þ 2Gd

Gs

ðNc − 1Þ
Nc

: ðA19Þ
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