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We investigate the (z°,7,7') — 7"y transitions both for the spacelike region and the timelike region using
the light-front quark model (LFQM). In particular, we present the new direct method to explore the timelike
region without resorting to mere analytic continuation from the spacelike region to the timelike region. Our
direct calculation in timelike region shows the complete agreement not only with the analytic continuation
result from the spacelike region but also with the result from the dispersion relation between the real and
imaginary parts of the form factor. For the low energy regime, we compare our LFQM results of the transition

form factors (TFFs) for the low timelike momentum transfer region and the slope parameters at g> = 0 with
the recent experimental data from the Dalitz decays of (z°, 5, ). For the high energy regime, we incorporate
the QCD factorization in our LFQM to examine the asymptotic behavior of TFFs both for the spacelike region
and the timelike region. We compare our results with the available experimental data.
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I. INTRODUCTION

The meson-photon transition form factors (TFFs) such as
Fp,(Q*)(P = 7° 1, 1) have been known to be the simplest
exclusive processes involving the strong interaction. They
play a significant role in allowing both the low- and high-
energy precision tests of the standard model, in particular,
the quantum chromodynamics (QCD)[1].

For the low-energy regime, the TFFs enter the prediction
of important observables such as the rates of rare decays
P— £¢(¢ =e,u) [2] and the hadronic light-by-light
(HLbL) scattering contribution to the muon anomalous
magnetic moment (g —2), [3,4]. The HLbL contribution
is in principle obtained by integrating some weighting
functions times the product of a single-virtual and a dou-
ble-virtual TFFs for spacelike momentum [3,5]. While there
are currently no available data for the double-virtual TFFs,
the single-virtual TFFs are available from the y*y —
(7%, n,1') processes in the small and intermediate momen-
tum transfer range up to Q%> ~ 8 GeV?2. The (z°,1,%') — r*y
TFFs of the spacelike regon have been measured experi-
mentally by several collaborations [6—8]. Recently, the
single-virtual TFFs for small timelike momentum transfer
(¢*> = —0? > 0) regions and the slope parameters at g> = 0
have also been measured [9-14] from the Dalitz decays
P — £ty where (2my)* < ¢> < m3.

For the high-energy regime, the TFFs can be calculated
asymptotically at leading twist as a convolution of
the perturbative hard scattering amplitude and the
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gauge-invariant meson distribution amplitude (DA)
[15-17] which incorporates the nonperturbative dynamics
of QCD bound state. In particular, hadronic DA [15-17]
provides an essential information on the QCD interaction of
quarks, antiquarks and gluons inside the hadrons and plays
an essential role in applying QCD to hard exclusive
processes. The prediction for the single-virtual pion TFF,
F,,(Q?), at the asymptotic limit Q? — oo is given by the
well-known Brodsky-Lepage limit [15]: Q*F ,, (Q* — c0) =
V2f,=0.185GeV. However, the BABAR Collaboration
[18] has measured the F,,(Q?) up to about Q* ~ 35 GeV?
from reaction e*e~ — e*e 7 in the single tag mode and
have shown not only the serious violation of the Brodsky-
Lepage limit but also the rapid growth for Q> > 15 GeV?2.
On the other hand, the subsequent Belle Collaboration [19]
has reported their measurement for F,,(Q*) and has shown
that the measured values of Q?F,,(Q?) are consistent with
the asymptotic limit of QCD for Q% > 15 GeV>. For the
reaction ete” — eTe ), the subsequent BABAR data
[20] for the Q2*F ,,(/)Y(Qz) TFFs provided a consistency
with the perturbative QCD prediction unlike the case of
pion TFF [18]. These discrepancies for the results of
Q*F,,(0Q?) between the BABAR and the Belle data and
between Q°F, (Q*) and Q°F,,(Q*) TFFs for Q* >
15 GeV? region have motivated many theoretical studies
using various forms of the meson DAs to understand and
reconcile those discrepancies [21-53].
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To examine the issue of the scaling behavior of Q*F,, (Q?)
in the large Q2 it may be necessary to analyze the
corresponding form factor not only in the spacelike region
but also in the timelike region. To explore the timelike region
beyond the single Dalitz decays [9-14], the e e~ colliders
access the values g*> > m3 through the e*e~ — Py annihi-
lation processes. Although the data for F,,(g?) in the large
timelike g> region is not available yet, the BABAR
Collaboration [54] measured the timelike F 4y TFFs from

the reaction ete™ — )y atan average e™ e center of mass
energy of /s =10.58 GeV, which corresponds to
g*> = 112 GeV?. However, the theoretical analysis for the
timelike region going beyond ¢> > m? is highly nontrivial
due to the singular nature and the complexity of the timelike
form factor. Some theoretical subtleties regarding on the
analytic continuation from the spacelike region to the time-
like region can be found in [28,55]. While some theoretical
analyses [56,57] for the TFFs in timelike region can also be
found for some Dalitz decays ((2m,)? < ¢* < m3%), we do
not yet find any theoretical analysis going beyond the Dalitz
decay region, i.e. g> > m3 region.

Thus, we attempt to explore the entire timelike region as
well as the spacelike region in this work. We extend our
previous analysis [58-60] for the single-virtual P —
v*7(P = % n,n) transition in the spacelike region using
the light-front quark model (LFQM) [58-62] to include the
entire timelike region. For the low energy regime, we
compare our LFQM results of the TFFs for the low timelike
momentum transfer region and the slope parameters at
g*> = 0 with the recent experimental data from the Dalitz
decays of (z°,7,1') [9-14]. For the high energy regime, we
show the asymptotic behavior of TFFs for both space- and
timelike regions and compare them with the available
experimental data. In particular, we present the new direct
method to explore the timelike region without resorting to
mere analytic continuation from space- to timelike region.
Our direct calculation in timelike region shows the com-
plete agreement with not only the analytic continuation
result from spacelike region but also the result from the
dispersion relation (DR) between the real and imaginary
parts of the form factor.

The paper is organized as follows. In Sec. II, we discuss the
meson-photon TFFs in an exactly solvable model first based
on the covariant Bethe-Salpeter (BS) model of (3 + 1)-
dimensional fermion field theory. It has been a common
practice to utilize an exactly solvable manifestly covariant BS
model to check the existence (or absence) of the LF zero
mode [63—66] as one can pin down the zero mode exactly in
the manifestly covariant BS model [67-71]. Performing both
manifestly covariant calculation and the LF calculation, we
explicitly show the equivalence between the two results and
the absence of the zero-mode contribution to the TTF. In the
LF calculation, we analyze both ¢* (= ¢" + ¢*) # 0 and
g™ = 0 frames and show their equivalence in the numerical
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calculation. We explicitly demonstrate that our direct LFQM
result for the timelike form factor is in complete agreement
with the result obtained from the DR method. The n —#’
mixing scheme for the calculations of the (17,7") — y*y TFFs
isalso introduced in this section. In Sec. I1I, we apply the self-
consistent correspondence relations (see, e.g., Eq. (35) in
[70]) between the covariant BS model and the LFQM and
present the standard LFQM calculation with the more
phenomenologically accessible model wave functions pro-
vided by the LFQM analysis of meson mass spectra [58,61].
The self-consistent covariant descriptions of the meson TFFs
are confirmed in the standard LFQM as we discuss in this
section. In Sec. IV, we present our numerical results for the
(% n,n') = y*y TFFs for both spacelike and timelike
regions and compare them with the available experimental
data. Summary and discussion follow in Sec. V. In the
Appendix, we provide the comparison of the # — #' mixing
angle between the octet-singlet basis and quark-flavor basis.

II. MANIFESTLY COVARIANT MODEL

The transition form factor Fp, for the P — y*y (P = Y,
n,1') decay is defined from the matrix element of electro-
magnetic current I = (y(P — g)|J#|P(P)) as follows:

¥ = ie*Fp, (0P e,q,, (1)

where P and ¢ are the momenta of the incident pseudo-
scalar meson and virtual photon, respectively, and ¢ is the
transverse polarization vector of the final (on-shell) photon.
This process is illustrated by the Feynman diagram in
Fig. 1(a), which represents the amplitude of the virtual
photon being attached to the quark line. While we shall
only discuss the amplitude shown in Fig. 1(a), the total
amplitude should of course include the contribution from
the amplitude of the virtual photon being attached to the
antiquark line as well as the quark line.

In the exactly solvable manifestly covariant BS model,
the covariant amplitude I'* in Fig. 1(a) is obtained by the
following momentum integral

N, St 2
= legp /271'4N NN, 2)

where N, is the number of colors and ey is the
quark (antiquark) electric charge. The denominators
N, (= pj —mp +ie)(j = 1.2) and Ny(= k> —m}, + ie)
come from the intermediate quark and antiquark propa-
gators of mass mgy = mg carrying the internal four-
momenta p; = P —k, p, = P — q — k, and k, respectively.
The trace term S* in Eq. (2) is obtained as

St =Tr[Cp(p) + mo)r* (#a + mo)#(—K + myp)]
=4imye"r{q ek, + (P — k)yqpeg}, (3)
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FIG. 1.
the two LF time-ordered diagrams (b) and (c), respectively.

where we use I'p = y5 for the pseudoscalar vertex structure.
For the §q bound-state vertex function Hy = H(p3, k?) of
the meson, we simply take the dimensionless constant
parameter g since the covariant loop is regularized with this
constant vertex in our model calculation.

Using the following Feynman parametrization for the
three propagators

1 1 1—x
B / dx / dy
NP] NkNl’z 0 0

x .4
[N+ (Np, =Ne)x+ (N, =Ni)yl?
and shifting the variable k to k'=k—(x+y)P
+vq, we obtain the manifestly covariant result
by defining the amplitude in Fig. 1(a) as F’(‘a) =
1eQeQ[IE"Q}C°"(q )e““P° P e,q,,, where
1- x
[ Cov — / dx/
(5)

(1 —x— y)M2 +xyq* —mp’

with the physical meson mass M. Similarly, the amplitude
of the photon being attached to the antiquark line is
obtained by changing x - 1 —x —y in Eq. (5) but the
two results are found to give the same numerical values.

Thus, we obtain the total result as /,° = 2[[;’;9)]C°V.

For the LF calculation in parallel with the manifestly
covariant one, we use the plus component (u = +) of the
currents J# but with two different reference frames, i.e.,
(1) ¢t # 0 frame and (2) g+ = 0 frame.

In the ¢* #0 frame, we take P=(P",P~,P,)=
(P*M2/P*,0) and g=(q".q™.q.) = (aP* .M/P*.0) 5o
that g> = g ¢~ of the virtual photon is given by

q* = aM?, (6)

where a = g*/PT = 1 — P'* /P™. We should note that ¢ =
(aP*,M?/P*,0) and P =P —q = ((1 —a)P*,0,0) are
valid only for a # 1 but will differ for the  — 1 limit as we
shall discuss shortly. In this g+ # 0 frame, the Cauchy
integration over £k~ in Eq. (2) has two nonzero contributions
to the residue calculations, i.e., one coming from the interval

()

One-loop Feynman diagrams that contribute to P — y*y. The single covariant Feynman diagram (a) is the same as the sum of

(i) 0 <k™ < P'* [see Fig. 1(b)] and the other from
(i) P'* < kT < PT [see Fig. 1(c)]. That is, the Feynman
covariant diagram in Fig. 1(a) is equivalent to the sum of two
LF time-ordered diagrams in Figs. 1(b) and 1(c). The internal
momentum k" is defined by k* = (1 — x)P*, where x is the
Lorentz invariant longitudinal momentum variable. In this
case, the four momenta of the on-mass-shell quark (p?,, =
mQ) and antiquark (kOn =m Q) propagators are defined by
Plon = (XP ’plon’ ) and kon = ((1 _)C)P+ k(:ka_)
respectively.

While the residue is at the pole of k= = kg,, which
is placed in the lower half of complex-k~ plane for the
region of 0 < k™ < P'*[see Fig. 1(b)], the residue is at the
pole of py = pj,,» Which is placed in the upper half
of complex-k~ plane for the region of P’ <kt < P*
[see Fig. 1(c)]. Thus, by defining the amplitude [F?‘b,c)]LF =
leQeQ[IEnQ )]LF(qz)eJr”/’”P,,qug for Figs. 1(b) and 1(c), the
Cauchy integration of Eq. (2) over k~ in the two regions
yields

N, (1 dx m
Mo LF c 2 0
[I(b)]0<(l<1 4ﬂ3 , (1 _x) / d kJ_ (a_ I)M%X(x’ kJ_)a
(7)
and
[["2LF NL. a x'dx
(¢)10<a<l — (l_x)
moy(x.k, )
d’k o . (8
/ Ky X Mz—x(l— )M% (8)
respectively, where x' = x/ a and
g
x(x. k)= 9)

x(M* = M3)’

. ki +mg, . . .
with M3 = xf]_’;l)Q being the invariant mass.' We confirmed

LF Mo1LF
O<a<l + [I(c) ]0<a<l

mQ mQ

numerically ~that [/ (a)]COV:[I (b)) as

expected.

'For the calculation of the trace term S* with u = +, since the
result is given by S* = 8imgpe, _,,P" (e, X q ), one should first
take q; # 0 and then take q; — O limit at the end of the trace
calculation.
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Now, we find a very interesting LF result by taking « — 1
limit, which in fact allows our direct calculation of the
timelike TFFs in LFQM possible as we present in the next
section, Sec. III. In the @ = 1 case, the four momenta ¢
and P are given by ¢=(P*,g?°/PT,0) and P'=
(0,(M*>=g*)/P™",0), respectively. Since g and P’ in the
a = 1 case are different from the « # 1 (i.e., g> = aM?) case,
one should not directly substitute « = 1 in Egs. (7) and (8) to
obtain the transition amplitudes corresponding to the @ = 1
case. To obtain the amplitude for the @ = 1 case, one needs to
go back and start from Eq. (2) again to do the Cauchy
integration over k= with the specifically given four momenta
g and P’ at « = 1. By doing the Cauchy integration of

Eq. (2) over k™ in the @ = 1 case, we find [I '("Q)]]O;F , =0and
N. [V dx m

IO = ¢ —/d2k ¢ K.

[ (C)] 0 (1 —)C)2 J_M% _ QZ(X J_)

o=l g3

(10)

That is, we find in the g™ # 0 frame at a = 1 that only
Fig. 1(c) contributes to the total transition amplitude. We also
numerically confirm that Eq. (10) exactly coincides with the

manifestly covariant result / ?:ﬁ given by Eq. (5) as it must be.

For the g™ = 0 frame, we take P = (P*, M?/P*,0) and
g=1(0,g7,q,) so that ¢> =—q% =—-Q> Since this
g™ = 0 frame essentially corresponds to the @ — 0 limit
but with q; # 0, we refer this frame as the @ = 0 case in
contrast to the o = 1 case discussed above. In the ¢ =0
case, we find that only Fig. 1(b) contributes and the Cauchy
integration of Eq. (2) over k™ in Fig. 1(b) yields

N, [ dx
x(1 =x)

MolLF __ "'c
[I(b)](l:() - 47[3 0

[ k. ()

where M6 = MO(kL — kl) with k,L = kL —+ (1 —X)ql.
We again confirmed numerically that Eq. (11) exactly
coincides with the manifestly covariant result / '{;‘5’ given by

Eq. (5) as it must be. Effectively, we obtain [I:';Q;]C"V =

(IT9ILF, = [0y = (121K, + (17K, ... This result

verifies also the absence of the LF zero-mode in pseudo-

scalar meson TFFs, i.e., [IZ";;]LFI =0 and [/ an’]I&FO =0.

For (n,1') — y*y transitions, we take into account the
presence of the strange quark and antiquark components in
the # and # mesons as well as their mixing with the
nonstrange quark and antiquark components. Making use
of the n — ' mixing scheme (see Appendix), the flavor
assignment of # and 7’ mesons in the quark-flavor basis

n, = (uit + dd)/v/2 and 5, = s5 is given by [72-76]
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cos —sin
()= (g e )3)
7 singg  cos¢ s
In this mixing scheme, we obtain the transition form

factors Fp, for P — y*y(P = x°,n,n') transitions as fol-
lows

(elzl - 6521) Imu(d)
tot

V2

(en +e2) m, -
F’?Y(qz) = COS¢T‘11£{( - sin ¢e2ltot?

Fro(q®) =

Y+ cos eI, (13)

T It

where we again should note that I,¢ = 2[I E"%]CO" =
DI oy + [T, ) = 2[00, = 2[1791LF, with
the factor 2 needed to include the contribution from the
amplitude of the photon attached to the antiquark line.

For the illustration of the numerical results from the
exactly solvable BS model calculation, we show the
normalized pion TFF F, (4*)/F,,(0) for both space-
and timelike regions of momentum transfer —2 < q2 <
3 GeV? in Fig. 2. The used model parameters are mo =
0.22 GeV and M = 0.14 GeV. We note that the value of g
to yield the expenmental data value for FL*(0) =
0.272 GeV~! at ¢*> =0 is given by g= 3.22. While
F ﬂy(qz) in spacelike momentum transfer region (¢> < 0)
is real, it becomes complex in timelike region (g> > 0),
F,,(¢*) = ReF,,(¢*) + ilmF,(¢*). Figures 2(a) and 2(b)
represent the results obtained from [I),2]tF _, in Eq. (7)

(b)10<a<
and [/ mQ]](;Ea _, in Eq. (8), respectively. As one can see, the

imaginary part ImF,,(¢*) (red line) of the form factor
comes only from Fig. 1(c) and starts to appear from the
threshold ¢ = 4m7,. Figure 2(c) shows the normalized
pion TFF, F,,(¢*)/F,,(0). The dotted, dashed and solid
lines in Fig. 2(c) represent Re[F,,(¢*)/F,,(0)],
I[Fey (02)/ Fay(0)] and |Fyy(q)/Fy(O)], respectively.
We confirmed numerically that [IZ';‘?]CO" = [1’(1;('))]16Ea<1 +
[1?2‘5’]550[ o= [szj]bi, = [IE';%]{;EO as mentioned earlier. As
a consistency check for our numerical calculations, we also
compare our direct results of the form factor F(q?) =

ReF(g?) + ilmF(g?) with those obtained from the
dispersion relations (DR) given by
1 w ImF(q"
ReF(g) =17 [ A agr.
T J-o q4"—4
1 ReF
ImF(g?) = ——p/ %d 2 (14)
A

where P indicates the Cauchy principal value. In Fig. 2(c),
the data denoted by (x) represents the DR result of
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(@)
- Re[F(¢*)/F(0)]

Diagram (b)

Im [F(¢*)/F(0)]

-2 -1 0 1 2 3
7*(= -Q%) [GeV?]

X Im from DR
|y (¢%)/ Fry (0)]

F""’Y(q2)/F7f’Y (0)

Lo v b b vy by

05—

e by e b Ly

2 -1 0 1 2 3
7* [GeV?]

FIG. 2. The exactly solvable BS model calculation of the
normalized F,,(¢4*) for both space- and timelike regions
(=2 < ¢* <£3) [GeV?]: (a) and (b) represent the contributions
from Figs. 1(b) and 1(c), respectively, for 0 < a < 1 case.
(c) shows the normalized F,,(¢*)/F,,(0) compared with the
dispersion relation.

ImF(g?) obtained from Eq. (14) and shows an excellent
agreement with our direct result (dashed line). This assures
the validity of our numerical calculation in the timelike
region.
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III. APPLICATION OF THE LIGHT-FRONT
QUARK MODEL

In our previous analysis of the twist-2 and twist-3 DAs of
pseudoscalar and vector mesons [69-71] and the pion
electromagnetic form factor [70], we have shown that
standard LF (SLF) results of the LFQM is obtained by
the replacement of the LF vertex function y in the BS model
with the Gaussian wave function ¢ as follows [see, e.g.,
Eq. (35) in [70]]

dr(x. k)
ﬁ 9’
VK2 + sz

where M — M, implies that the physical mass M included
in the integrand of BS amplitude (except M in the vertex
function y) has to be replaced with the invariant mass M
since the SLF results of the LFQM are obtained from the
requirement of all constituents being on their respective
mass-shell. The mapping given by Eq. (15) was originally
found for the resolution of the LF zero-mode issue in the
vector meson decay constant and its self-consistent covar-
iant description as discussed extensively in [69]. As the
mapping however involves only the radial wave function
and the meson mass, the same mapping holds for the
pseudoscalar mesons as we have discussed in [70,71].
Likewise, the correspondence in Eq. (15) is valid again in
this analysis of a P — y*y transition.

In the standard LFQM [58,59,61,62,76-79] approach,
the wave function of a ground state pseudoscalar meson as
a gg bound state is given by

M—)Mo,

(15)

Pl k1) = g,k )Ryz(x, k), (16)

where ¢y is the radial wave function and the spin-orbit
wave function R;; with the helicity A(1) of a quark
(antiquark) is obtained by the interaction-independent
Melosh transformation [80] from the ordinary spin-orbit
wave function assigned by the quantum numbers J©€.
For the equal quark and antiquark mass mgy = mg, the

Gaussian wave function ¢y is given by

434

ﬂ3/2

My

esz/Zﬂze—M%/Sﬁz’
4x(1 —x)

¢r(x. k) =

(17)

where Ok./0x = My/4x(1 —x) is the Jacobian of the

variable transformation {x,k,} — k = (k.k,) and § is
the variational parameter fixed by our previous analysis of
meson mass spectra [58,61,62]. The covariant form of the
spin-orbit wave function R, is given by

i) (Po)rsvi(po)

R = ,
AL \/EMO

(18)
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and it satisfies ) /1;1721272/1;1 = 1. Thus, the normalization of
our wave function is given by

d’k
1= [Ca [ bkl (19)

Applying the correspondence given by Eq. (15) to
15165, in Eq. (10) and [7)$]55, in Eq. (11), we obtain
the corresponding SLF results [I;,2]34] and [I,, |31 in our
LFQM as follows:

m 2N
e =Y [ 5s [w
—.x

mo  Pp(x. k)

X (20)
2 _ 2 ’
My—a” k2 + mp
and
\/ 2N, d m k

gty = Yo [1 [ aw o LX)

Mj 2

k + m
respectively. We confirm that our result is frame-independent,
Le., [Toll5F | = [TelSH) = [Io2]3E. While the TFFs for
0SLF

P — y*y can be obtained by substituting either [I;°]>
[I?]13LE into Eq. (13), we shall use [I;.2 ]S for the analysis
of the timelike region due to the simple and clean pole
structure given by (M3 — ¢*)~! in Eq. (20) compared to
the pole appearing through [M{]~™' in Eq. (21). It is
important to notice that the internal transverse momentum
k| does not mix with the external virtual photon momen-
tum g = (P*,4?/P*,0)in a = 1 case as shown in Eq. (20)
so that the direct timelike TFF calculation can be done
most effectively. For sufficiently high spacelike momen-
tum transfer Q*(= —¢* = ¢} ) region, both Egs. (20) and
(21) can be approximated in the leading order of 1/Q?
as follows

oy, [

where fp is the pseudoscalar meson decay constant and
wp(x, k) is the transverse momentum dependent DA
(TMDA) [81] that is a 3-dimensional generalization of
the twist-2 pseudoscalar meson DA ¢, p(x):

V2N, /dzkl dr(x, kl)

82 ki—i—mQ

- A X yp(xk ). (23)

— or

/ Pk pp(n k), (22)

¢2P

From Egs. (13), (22) and (23), one can verify that our
LFQM result for F,,(Q?) at sufficiently high Q2 can be
approximated as

PHYSICAL REVIEW D 96, 056008 (2017)

Fo(@) = [ .

The asymptotic PQCD DA, ¢,.,(x) =6x(1—x), leads to the
well-known Brodsky-Lepage limit [15]: QZF,[},(QZ—wo):
V2f,=0.185GeV.

Applying our LFQM to calculate the decay widths
for P — yy(P = 7°n,5') transition, the decay width for
P — yy is given by

T
FP—>yy = Za2M3|FP}'(O>|2’ (25)

where a is the fine structure constant. The form factor
Fp,(0) at Q> =0 may also be expressed in terms of
the decay constants obtained from the Adler-Bell-
Jackiw (ABJ) anomaly (or the chiral anomaly) [82,83]
as follows

1
FABI
O =5y,
ABJ () 1 _% }
F2(0) = 2\/_71[ 0s 6 fosme

ABJ 1 & ]
by (0) = 2\/.” [ in@ + 7o cos 6

where 6 is the mixing angle in the flavor SU(3) octet-singlet
basis and is related with the mixing angle ¢ in the quark-
flavor basis via @ = ¢ — arctan v/2 = ¢ — 54.7°. While the
quadratic (linear) Gell-Mann-Okubo mass formula prefers
0 =-10° ¢ =44.7° (@ =-23° ¢ =31.7°), the KLOE
Collaboration [84] extracted the pseudoscalar mixing angle
¢ by measuring the ratio BR(¢ — #'y)/BR(¢p — ny). The
measured values are ¢ = (39.7+0.7)° and (41.5+
0.350 £ 0.7y £ 0.6,)° with and without the gluonium
content for 7/, respectively. The mixing angle has also been
analyzed on lattice by the RBC-UKQCD Collaboration
[85], where & = —14.1(2.8)° was obtained. However, since
the mixing angle for # —#' is still a controversial issue,
we use more conservatively ¢ = 37° £ 5° to check the
sensitivity of our LFQM.

(26)

IV. NUMERICAL RESULTS

In our numerical calculations within the standard LFQM,
we use the model parameters (i.e. constituent quark masses
mg and the gaussian parameters f,p) for the linear
confining potentials given in Table I, which were obtained
from the calculation of meson mass spectra using the
variational principle in our LFQM [58,59,61]. For the
model parameters given in Table I, our LFQM predictions
of the decay constants for the pion, octet (g) and singlet
(7o) mesons are f,= 130 MeV, f5/f, =132, and
Sfo/fz = 1.16, respectively. Our results of the octet and
singlet meson decay constants are quite comparable with
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TABLE 1. The constituent quark masses my(Q = u(d), s) (in
GeV) and the Gaussian parameters g (in GeV) for the linear
confining potentials obtained from the variational principle in our
LFQM [58,59.,61].

My (d) mg

0.22 0.45

ﬂQQ ﬁxﬁ
0.3659 0.4128

TABLE L. Form factor Fp, (0) (in GeV™") for (P = 7%, 1,1') >
VY-

E.
Model F};‘; (0) F/;?J (0) FP);p (0)
=7y 0.242 0.276 0.272(3)
n—yy (for ¢ =3773)  0.2861005 02325905  0.274(5)
n —yr (for ¢ =3773) 02907005 033279031 0.344(6)

other theoretical predictions such as f5/f, = 1.26 and
fo/fz=11T172], fs/fr =128 and fo/f, = 1.25 [74],
and fg/f, = 1.25 and f/f, = 1.04 £ 0.04 [86].

For the numerical computations of the TFFs given by
Eq. (13) using our LFQM, we use the result [I,,2]3X in
Eq. (20) since it is much more convenient to handle the
singularities in timelike momentum transfer region than
any other reference frame. In Table II, we summarize our
LFQM results of form factor Fp,(0) for (P = z%n,1') —
yy obtained from the direct calculation [F},*;(O)] (see
Egs. (13) and (20)) and from the ABJ formulas
[F ‘}fJ(O)] [see Eq. (26)] compared with the experimental
data [87,88]. For the (1,%#') — yy processes, we use the
mixing angles ¢ = 371550 in the quark-flavor basis. The

experimental values of Fi?(0) = 0.274(5) GeV~' and

FIG. 3.

PHYSICAL REVIEW D 96, 056008 (2017)

F s,’;p (0) = 0.344(6) GeV~! were extracted from the
measured decay widths TP (5 — yy) = 0.516(18) keV
(obtained after combining the PDG average [87] together
with the recent KLOE-2 result [88]) and I'E*P(y/ — yy) =
4.35(14) keV, respectively. For the z° — yy case, while
our result FaB'(0) =0.276 GeV~' obtained from ABJ
anomaly is in good agreement with the data, the direct
result F17(0) = 0.242 GeV~! accounts for about 90% of
the data. For the (1,#') — yy case, while our results

Fp}’(0) prefer ¢p = 32° to fit the data, the direct results
F3(0) prefer ¢ =40° for the best fits of both # and
1’ TFFs.

From the point of view of QCD, the twist-2 DA ¢,.p(x)
of a hadron depends on the scale y which separates
nonperturbative and perturbative regimes. In our LFQM,
we can associate y with the transverse integration cutoff via
|k | | < pu, which is the usual way how the normalization
scale is defined for the LF wave function (see, e.g.
Ref. [15]). In order to estimate this cutoff value, we made
a three-dimensional plot for TMDA wp(x, k) in Eq. (23)
in the form of wp(x,y) by changing the variable k% =

y/(1 =y) so that
Brnlx) = A ® Pk ypnk,) = A Cdyany). (@)

where yp(x,y) = myp(x, [k | = /y/(1=y))/(1 =)
Figure 3 shows the three-dimensional plot (left panel)
of w,(x,y) for the pion and the corresponding two-
dimensional contour plot (right panel). In fact, we obtain
the twist-2 pion DA ¢,.,(x) by performing the transverse
integration up to infinity (or equivalently y up to 1) without

Ue (%, ¥)

Transverse momentum dependent distribution amplitude (TMDA) . (x, k | ) (left panel) for the pion in the form of v, (x, y)

[see Eq. (27)] and the corresponding two-dimensional contour plot (right panel).
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FIG. 4. Transverse momentum dependent distribution amplitude (TMDA) w;(x, k) (left panel) for the s5 sector in the form of
w,s(x,y) [see Eq. (27)] and the corresponding two-dimensional contour plot (right panel).

loss of accuracy due to the presence of Gaussian damping
factor. However, we find that the integration up to y = 0.5
(or equivalently u = |k | = 1 GeV) of y,(x,y) makes up
99% of the full result for ¢,.,(x). This implies that our
cutoff scale corresponds to p = |k, |=1 GeV for the
calculation of the twist-2 ¢,.,(x). The twist-2 and twist-
3 DAs for 7 can be found in our previous works [59,70,71].
In Fig. 4, we show the three-dimensional plot (left panel) of
ws(x,y) for the s5 sector and the corresponding two-
dimensional contour plot (right panel). In the case of s5
sector, the cutoff scale corresponds to y = 1.13 GeV.

In Fig. 5, we show the normalized z° — y*y TFF
F, (0%)/F.(0) [see Fig. 5(a)] and |Q*F,,(Q%)| [see
Fig. 5(b)] for both timelike (¢*> = —Q? > 0) and spacelike
(¢> =—-0? <0) momentum transfer region using
Egs. (13) and (20) and compare them with the available
experimental data for the spacelike region [6,7,18,19]
and for the small timelike region (0 < ¢> < m2 GeV?)
obtained from the pion Dalitz decay [13]. The dotted,
dashed and solid lines in Fig. 5(a) represent our LFQM
predictions of Re[F,,(¢?)/F,,(0)], Im[F,,(¢*)/F,,(0)]
and |F,,(¢*)/F ,(0)|, respectively. We note that the space-
like region can be easily obtained by analytically continuing
the momentum transfer ¢> — —¢g®> in the integrand
of Eq. (20). As one can see from Fig. 5, our result for
low- and intermediate- spacelike Q? region show a good
agreement with the data.

As a consistency check of our LFQM calculations for the
timelike region, we also include the real (imaginary) part of
the form factor obtained from the DR (denoted by +(x)
data points) given by Eq. (14). As one can see, our direct
results for the real and imaginary parts are in perfect
agreement with the results obtained from the DR. While the
exactly solvable BS model calculation shows the dominant
contribution of ImF,, for most of the timelike region, the

LFQM result of ImF,, with the more realistic Gaussian
radial wave function shows dominant contribution only
near the resonance region and the timelike region above
g*> > 1 GeV? is dominated by the real part contribution.
That is, the relative contribution between the real and
imaginary parts depends on the shape of the hadron bound
state wave function. We also note that Kroll [28] made a
rough estimate for the expected size of the timelike form
factor using the modified perturbative approach (MPA)
[89,90], i.e., the timelike form factor is dominantly real for
g larger than 5 GeV?, its imaginary part contributes less
than about 10% to the absolute value. Kroll’s discussion
about the relative strength between the real and imaginary
parts is qualitatively consistent with our LFQM prediction
and the reason for this may be attributed to the usage of
similar type of the Gaussian wave function.

As one can see from Fig. 5(a), our result for the small
timelike region is in good agreement with the very recent
measurement of the 7° — e* e~y Dalitz decay from the A2
Collaboration [13]. The slope parameter can be defined
from the vector meson dominance (VMD) model in which
the normalized TFF is typically parametrized as [87]

1 m>
Fp(my) = =1+ aPm—lzl7 (28)

m
T P
AP

where m;; = \/q’ is the dilepton invariant mass and ap =
(mp/Ap)? reflects the form-factor slope at g> = 0. Our result
for the slope parameter a, for the z° TFF is obtained as

a, = 0.0355, (29)

which shows a good agreement with the current world
average a, = 0.032 £ 0.004 [87] obtained from timelike
measurements [91-93] and the extrapolation of spacelike
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FIG. 5. (a) The the normalized # — y*y transition form factor
F (0?)/F,,(0), and (b) |Q*F,,(Q?)] for both timelike (¢* =
—0? > 0) and spacelike (¢> = —Q% < 0) momentum transfer
regions. The data are taken from [6,7,13,18,19] and [13].

data [6] using a VMD model, as well as the two recent
experimental data extracted from the 7° — eTe~y Dalitz
decay, a, = 0.030 + 0.010 from A2 Collaboration [13] and
a, = 0.0368 + 0.0057 from NA62 Collaboration [10]. Our
result should also be compared with other theoretical
predictions: a, = 0.0288(42) from a Lattice QCD with
two flavors of quarks [S]; a, = 0.0324(12),(19)y from
the method of Padé approximants [94]; a, = 0.032(1) from
a Regge analysis [95]; a, = 0.036 from the ChPT [96];

PHYSICAL REVIEW D 96, 056008 (2017)

a, = 0.029(5) from a study of the Dalitz decay of z° [97];
a,~0.031 [98] and a,~0.035 [99] from a hard-wall
holographic model of QCD; and a,, = 0.024(5) [100] from
a soft-wall holographic model of QCD. For the analysis of
timelike form factor near resonance region in Fig. 5(a), the
maximum value of F,(g*) occurs at ¢* = 4my, due to the

virtual photon wave function term 1/(M3 — ¢*) in Eq. (20).
Since the peak position of the timelike TFF in our LFQM
depends on the value of the constituent quark mass, the
p-pole type resonance may be obtained by simply taking
mu(d) = Mp/2.

Figure 5(b) shows |Q?F,,(Q?)| for the extensive range
(=50 < 0% < 50 GeV?)ofboth time- and spacelike momen-
tum transfer regions compared with the spacelike experi-
mental data [7,18,19]. We note that our LFQM result for
|Q*F,,(Q?)] for the spacelike region 10 < Q% < 45 GeV?is
in good agreement with the data from Belle [19] showing the
asymptotic behavior but disagree with the BABAR data [18]
showing the rapid growth for this Q? regime. In our LFQM
calculation for the perturbative region, we find slightly
different values for the timelike and spacelike TFFs, e.g.
we find the absolute values of |Q?F,, (Q%)| = 0.194 GeV in
the spacelike region and |¢*F,,(¢*)| = 0.186 GeV in the
timelike region at |Q?| = 112 GeV?, respectively. Although
there may be some contributions from the higher-twist and
higher Fock-state as discussed in [32], however, we infer
from the results shown in Fig. 5 that the higher Fock-state
contribution may not be large, especially, for high Q? regime.

In Fig. 6, we show the normalized n — y*y TFF
|Fi1}/(Q2)/Fny(O)| [see Fig. 6(a)] and |Q2Fr]y(Q2)| [see
Fig. 6(b)] for both time- and spacelike momentum transfer
region. The corresponding figures for #' TFFs are shown in
Fig. 7. Since the patterns for the real and imaginary parts of
the 5 and ' TFFs are similar to those of 7° TFF, we only
show the total results for the # and # TFFs but varying the
mixing angles. Since they are rather sensitive to the 1 — 7’
mixing angles, we display the results with the variation of
the mixing angles as a sensitivity check. The dot-dashed,
solid, and dashed lines for |F,,(¢*)/F,,(0)| in Fig. 6 and
\F,y,(q*)/Fy,(0)] in Fig. 7 are obtained from the mixing
angles with ¢,_,, = 32° 37° and 42°, respectively. The
experimental data for spacelike region are taken from
[6,7,20]. The small timelike data in Figs. 6(a) and 7(a)
are taken from the measurements of the 7
(0 < ¢* <Mj; GeV?) and 1" (0 < ¢* < My GeV?) Dalitz
decays;n — £¢y(€ = e, u) [9,11,12] and iy’ — e ey [14].

For the small and medium momentum transfer in both
timelike and spacelike region (i.e. —8 < Q? < 8 GeV?) as
shown in Figs. 6(a) and 7(a), both normalized TFFs F,, and
F,y, are not sensitive to the variation of the mixing angles
¢y—y = (37£5)° and show good agreement with the
available data in spacelike region [6,7,20]. For the com-
parison with the timelike data from the (i,7') Dalitz
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FIG. 6. (a) The normalized n — y*y transition form factor
|F,,(Q%)/F,,(0)], and (b) |Q*F,,(Q?)| for both timelike (¢* =
—0? > 0) and spacelike (¢*> = —Q” < 0) momentum transfer
region. The dot-dashed, solid, and dashed lines are results
obtained from the mixing angles with ¢,_, = 32° 37° and
42°, respectively, and the data are taken from [6,7,9,11,12,20].

we obtain the =

slope parameters A2

decays, n0r)

ay(y)/my g defined by Eq. (28) as follows

A =2.11279%8 eV for ¢ = 3773,
Af = 1.73220%] Gev=  for ¢ = 3777, (30)

PHYSICAL REVIEW D 96, 056008 (2017)

which correspond to A,, = 688f§ MeV and A,,/ =
760f§ MeV for ¢ = 37;5;, respectively. Our results for
the slope parameters for 77 and 5/ TFFs are consistent with
the available experimental data within the error bars: A, 2=
(1.95+0.22) GeV~2 [9] and (1.9540.25) GeV~2 [11]
for n TFF, and A;? = (1.60 £0.16) GeV~= [6], (1.6 +
0.25) GeV~2 [14], and (1.7 +£0.4) GeV~2 [101] for #/
TFF, respectively. We also should note that the ratio of A,
to A, is insensitive to the mixing angle, i.e., A,/ /A, = 1.11
for 32° < ¢p < 42°.

For the resonance properties of F), and F,/, within our
LFQM as shown in Figs. 6(a) and 7(a), the primary and
secondary peaks of both F, (¢*) and F,,(¢*) occurs at
q* = 4m2Q(Q =u,d) and ¢ = 4m?, respectively, regard-
less of their mixing angles. That is, the 7 — # mixing effect
is not significant for the small timelike region correspond-
ing to the n- and #/- Dalitz decays. Particularly, the
secondary peak for F,, is more pronounced than that
for F,,. This may be ascribed to the fact that F,, receives
contribution more from s5 component than QQ(Q = u, d)
components. For this kinematic regions of the n- and #
Dalitz decays, while our LFQM result for the F,, is quite
comparable with the data [9,11,12], our result for F,,
shows large deviation from the recent BESIII data [14]
except near g> = 0 region. This large deviation for Fy,
near g> = Mf, may be expected from the property of our
LFQM, in which the primary peak appears at ¢> = 4mi< 4
rather than ¢*> = M?2. We expect from our LFQM analysis
that the experimental data for both timelike F,, and F,,
would show peaks near g> = M and ¢> = M correspond-
ing to our primary and secondary peaks at g> = 4m§( o and
g*> = m2, respectively.

While the mixing angle effects on F,, and F,;, do not
appear too significant for small and medium momentum
transfer region (i.e. |Q?| < 8 GeV?) as shown in Figs. 6(a)
and 7(a), its effects become substantial for large momentum
transfer region (i.e., |Q*| > 10 GeV?) as shown in
Figs. 6(b) and 7(b). As in the case of z° — y*y transition,
our predictions for both |Q*F, (Q%)| and |Q?F,,(Q?)
show asymptotic behavior for |Q?| > 40 GeV? region. The
single timelike data at g> = s = 112 GeV? in Fig. 6(b) and
the one in Fig. 7(b) are taken from the measurement
of ete™ — y* - 5(y')y process at the center of mass of
/s = 10.58 GeV by the BABAR Collaboration [20]:

s|F
s|F

| = (0.229 £ 0.031) GeV,

vy = 0.251 £0.021) GeV. (31)

In our LFQM calculation for the perturbative region,
we find slightly different values for the timelike and
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FIG. 7. (a) The normalized ' — y*y transition form factor
|F\y,(Q?)/Fy,(0)], and (b) |Q?F,,(Q*)| for both timelike
(¢> = -0% > 0) and spacelike (¢> = —Q? < 0) momentum
transfer region. The same line codes are used as in Fig. 6 and
the data are taken from [6,7,14,20].

spacelike n and ' TFFs, e.g. while the absolute
spacelike values at Q*=112GeV? are |Q?F,,),(0%)|=
0.19170 55 (0.28479917)GeV, the timelike value at g>=
112GeV? are |¢>F,y ), (4%)|=0.1782 155 (0.28039917) GeV
for ¢ = 3715;, respectively. But the corresponding ratios of
the spacelike to timelike 5 and 5/ TFFs at |Q?| = 112 GeV?
are about 1.07 and 1.02, respectively, regardless of the

PHYSICAL REVIEW D 96, 056008 (2017)

mixing angles. Our results at the timelike g*> = 112 GeV? are
also consistent with the perturbative QCD predictions [28],
where |¢*F,,(¢*)|=0.17GeV and |¢*F,,(q*)|=0.28GeV
were obtained. As stated in [51], while the BABAR result
for ¢*F,,(q*) at ¢* = 112 GeV? is about 2 larger than the
asymptotic prediction, the corresponding result for
q*F,,(g*) from the BABAR Collaboration is in agreement
with the asymptotic expectation. Thus, it is hard to estimate
the correct 7 — 1 mixing angle with these two experimental
data points at g> = 112 GeV? in the present time. More
experimental data in perturbative region may be necessary to
draw any definite conclusion on the mixing angle.

V. SUMMARY AND DISCUSSION

In this work, we investigated the (% n,7) = y'y
transitions for the entire kinematic regions analyzing both
spacelike and timelike TFFs in the standard LF (SLF)
approach within the phenomenologically accessible real-
istic LFQM [58,59,61,62]. Performing the LF calculation
in the covariant BS model as the first illustration, we used
three different reference frames, i.e. (1) g+ # 0 frame with
P =g anda = q* /Pt = ¢g*/M?,(2) g" # 0 frame with
Pt =gq" (e, a=1), and 3) ¢* =0 frame with ¢*> =
—q2 = —0? (i.e, @ = 0), and found that all three different
reference LF frames give exactly the same results to the one
obtained from the manifestly covariant calculation as they
must be. Especially, the calculation of Fp, using the g* # 0
frame with a =1 is found to be most effective for the
analysis of the timelike region due to the absence of mixing
between the internal transverse momentum and the external
virtual photon momentum that leads to the very simple pole
structure 1/(g> — M3) in the form factor. We also con-
firmed the absence of the LF zero mode in pseudoscalar
meson TFFs. As a consequence, the g™ = 0 frame (i.e.
a = 0) calculation exhibits that the meson TFF using the
plus component of the current is immune to the zero mode.
Thus, in the g™ = 0 frame (i.e., the well-known Drell-Yan-
West frame), the complete total amplitude is provided by
just the valence contribution depicted in Fig. 1(b). As a
consistency check for our numerical calculations, we also
compared our direct results of the form factor F(q?) =
ReF(q*) + ilmF(q*) with those obtained from the
dispersion relations (DR) and found the excellent agree-
ment between the two results. This assured the reliability of
our numerical calculation in the timelike region.

We then mapped this exactly solvable manifestly covar-
iant BS model to the standard LFQM following the same
correspondence relation Eq. (15) between the two models
that we found in our previous analysis of two-point and
three-point functions for the pseudoscalar and vector
mesons [69,70]. This allowed us to apply the more
phenomenologically accessible Gaussian wave function
provided by the LFQM analysis of meson mass spectra
[58,59,61,62]. In the analysis of the meson-photon TFFs
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using our LFQM, we took the g+ # 0 frame with a = 1
which is the most convenient frame to analyze the timelike
region compare to any other reference frames. For the
(n,n') — y*y transitions, we used the # — #' mixing angle ¢
in the quark-flavor basis varying the ¢ values in the range
of p = 37f55° to check the sensitivity of our LFQM. For the
numerical analyses of the P — y*y(P = z°,n,7') TFFs
using our LFQM, we investigated both the low-energy
and high-energy regimes.

For the low-energy regime, our results for the TFFs and
their slope parameters are in good agreement with the
available data from the Dalitz decays of (z°,7,%’) mesons.
Especially, in the low momentum transfer region, the # and
' TFFs are rather insensitive to the mixing angles. For the
analysis of timelike form factor near resonance region, the
maximum value of F,, occurs at ¢*(= —Q*) = 4m7, due to

the virtual photon wave function term 1/(M3 - ¢?) in
Eq. (20). The p-pole type resonance may be achieved by
finding more realistic form of the photon wave function,
which is open for the future work. For the resonance
properties of F,, and F,, the primary and secondary peaks
of both F,, and F,, occurs at ¢*> = 4mp(Q = u,d) and
g* = 4m?, respectively, regardless of their mixing angles.
We also anticipate from our LFQM analysis that the
experimental data for both timelike F,, and F,, would
show peaks near ¢*> = M, (primary) and ¢*> = M} (sec-
ondary) corresponding to our primary and secondary peaks
at g% = 4mi( o and m2, respectively.

For the high-energy regime, our result of |Q?Fp,(Q?)|
does not show any steep rising behavior for high |Q?|
region as measured from the BABAR Collaboration [18] but
shows scaling behavior for high |Q?| consistent with the
perturbative QCD prediction. This is ascribed to the fact
that our twist-2 DA [59,70] is highly suppressed at the
endpoints (x = 0, 1) unlike the flat DA [22,23] showing the
enhancement at the endpoints. Especially, in our LFQM
calculation for the perturbative region, we find slightly
different values for the timelike and spacelike TFFs, e.g.,
the ratios of the spacelike to timelike TFFs at |Q?| =
112 GeV? are about 1.04 for z° TFF and 1.07 (1.02) for
n(1'), regardless of the n — ' mixing angles. While the
BABAR result [20] for |¢*F,, (¢%)| at ¢* = 112 GeV? is
about 20 larger than the asymptotic prediction, the
corresponding result for |¢?F,.,(¢*)| from the BABAR
Collaboration is in agreement with the asymptotic expect-
ation. Thus, it is hard to predict the correct # — 1’ mixing
angle with these two experimental data points at g*> =
112 GeV? at present time. More experimental data in
perturbative region may be necessary to draw any definite
conclusion on the mixing angle.

While the pseudoscalar meson vertex I'p = y5 is taken in
this work, the generalization of the vertex including the
axial vector coupling [102] may be considered for further
study. The work along this direction is underway.
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APPENDIX: 5 -7/ MIXING

In this appendix, we provide the comparison of the  — 7/
mixing angle between the octet-singlet basis and quark-
flavor basis. The octet-singlet mixing angle 6 of 57 and 7' is
known to be in the range of —10° to —23° [87]. The physical
n and 1" are the mixtures of the flavor SU(3) octet ng and

singlet 7, states:
<;7> B <cos«9 —sin9> <n8>
7]  \sin@ cos6 )’
where ng=(uit+dd—2s5)/\/6 and ny=(uii-+dd+s5)//3.
Analogously, in terms of the quark-flavor(QF) basis

Ny = (uit + dd)/+/2 and 5, = s5, one obtains [72]

n cos¢ —sing Mg

(77’) (sind) cos ¢ ) (m)
The two schemes are equivalent to each other by ¢ = 6 +
arctan v/2 when SU(3) symmetry is perfect. Although it
was frequently assumed that the decay constants follow the
same pattern of state mixing, the mixing properties of
the decay constants will generally be different from those
of the meson state since the decay constants only probe the
short-distance properties of the valence Fock states while the
state mixing refers to the mixing of the overall wave
function [72].

Defining (P(p)|J%”|0) = ~if §” p* (P =n.1) in the
QF basis, the four parameters f% and f% can be expressed
in terms of two mixing angles (¢, and ¢,) and two decay
constants (f, and fy), i.e., [72],

i f cos¢p, —sing,\ [ f,0 3

<fo ff,) - ( sing,  cos ) <0fs>' A
The difference between the mixing angles ¢, — ¢, is due to
the Okubo-Zweig-lizuka(OZI)-violating effects [73] and is
found to be small (¢, — ¢, < 5°). The OZI rule implies
that the difference between ¢, and ¢, vanishes (i.e.,
¢y = ¢s = ¢) to leading order in the 1/N, expansion.
Similarly, the four parameters f% and f% in the octet-singlet
basis may be written in terms of two angles (g and 6,) and
two decay constants (fg and f). However, in this case, 05

and 6, turn out to differ considerably and become equal
only in the SU/(3) symmetry limit [72,74].

(A1)

(A2)
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