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We investigate the ðπ0; η; η0Þ → γ�γ transitions both for the spacelike region and the timelike region using
the light-front quark model (LFQM). In particular, we present the new direct method to explore the timelike
region without resorting to mere analytic continuation from the spacelike region to the timelike region. Our
direct calculation in timelike region shows the complete agreement not only with the analytic continuation
result from the spacelike region but also with the result from the dispersion relation between the real and
imaginary parts of the form factor. For the low energy regime, we compare our LFQM results of the transition
form factors (TFFs) for the low timelike momentum transfer region and the slope parameters at q2 ¼ 0 with
the recent experimental data from the Dalitz decays of ðπ0; η; η0Þ. For the high energy regime, we incorporate
theQCD factorization in our LFQM to examine the asymptotic behavior of TFFs both for the spacelike region
and the timelike region. We compare our results with the available experimental data.
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I. INTRODUCTION

The meson-photon transition form factors (TFFs) such as
FPγðQ2ÞðP ¼ π0; η; η0Þ have been known to be the simplest
exclusive processes involving the strong interaction. They
play a significant role in allowing both the low- and high-
energy precision tests of the standard model, in particular,
the quantum chromodynamics (QCD)[1].
For the low-energy regime, the TFFs enter the prediction

of important observables such as the rates of rare decays
P → l̄lðl ¼ e; μÞ [2] and the hadronic light-by-light
(HLbL) scattering contribution to the muon anomalous
magnetic moment ðg − 2Þμ [3,4]. The HLbL contribution
is in principle obtained by integrating some weighting
functions times the product of a single-virtual and a dou-
ble-virtual TFFs for spacelike momentum [3,5]. While there
are currently no available data for the double-virtual TFFs,
the single-virtual TFFs are available from the γ�γ →
ðπ0; η; η0Þ processes in the small and intermediate momen-
tum transfer range up toQ2 ∼ 8 GeV2. The ðπ0; η; η0Þ → γ�γ
TFFs of the spacelike regon have been measured experi-
mentally by several collaborations [6–8]. Recently, the
single-virtual TFFs for small timelike momentum transfer
(q2 ¼ −Q2 > 0) regions and the slope parameters at q2 ¼ 0
have also been measured [9–14] from the Dalitz decays
P → l̄lγ where ð2mlÞ2 ≤ q2 ≤ m2

P.
For the high-energy regime, the TFFs can be calculated

asymptotically at leading twist as a convolution of
the perturbative hard scattering amplitude and the

gauge-invariant meson distribution amplitude (DA)
[15–17] which incorporates the nonperturbative dynamics
of QCD bound state. In particular, hadronic DA [15–17]
provides an essential information on the QCD interaction of
quarks, antiquarks and gluons inside the hadrons and plays
an essential role in applying QCD to hard exclusive
processes. The prediction for the single-virtual pion TFF,
FπγðQ2Þ, at the asymptotic limit Q2 → ∞ is given by the
well-known Brodsky-Lepage limit [15]:Q2FπγðQ2→∞Þ¼ffiffiffi
2

p
fπ≃0.185GeV. However, the BABAR Collaboration

[18] has measured the FπγðQ2Þ up to about Q2 ∼ 35 GeV2

from reaction eþe− → eþe−π0 in the single tag mode and
have shown not only the serious violation of the Brodsky-
Lepage limit but also the rapid growth for Q2 > 15 GeV2.
On the other hand, the subsequent Belle Collaboration [19]
has reported their measurement for FπγðQ2Þ and has shown
that the measured values of Q2FπγðQ2Þ are consistent with
the asymptotic limit of QCD for Q2 > 15 GeV2. For the
reaction eþe− → eþe−ηð0Þ, the subsequent BABAR data
[20] for the Q2Fηð0ÞγðQ2Þ TFFs provided a consistency
with the perturbative QCD prediction unlike the case of
pion TFF [18]. These discrepancies for the results of
Q2FπγðQ2Þ between the BABAR and the Belle data and
between Q2FπγðQ2Þ and Q2Fηð0ÞγðQ2Þ TFFs for Q2 >
15 GeV2 region have motivated many theoretical studies
using various forms of the meson DAs to understand and
reconcile those discrepancies [21–53].
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Toexamine the issue of the scalingbehavior ofQ2FπγðQ2Þ
in the large Q2, it may be necessary to analyze the
corresponding form factor not only in the spacelike region
but also in the timelike region. To explore the timelike region
beyond the single Dalitz decays [9–14], the eþe− colliders
access the values q2 > m2

P through the eþe− → Pγ annihi-
lation processes. Although the data for Fπγðq2Þ in the large
timelike q2 region is not available yet, the BABAR
Collaboration [54] measured the timelike Fηð0Þγ TFFs from

the reaction eþe− → ηð0Þγ at an average eþe− center of mass
energy of

ffiffiffi
s

p ¼ 10.58 GeV, which corresponds to
q2 ¼ 112 GeV2. However, the theoretical analysis for the
timelike region going beyond q2 > m2

P is highly nontrivial
due to the singular nature and the complexity of the timelike
form factor. Some theoretical subtleties regarding on the
analytic continuation from the spacelike region to the time-
like region can be found in [28,55]. While some theoretical
analyses [56,57] for the TFFs in timelike region can also be
found for some Dalitz decays (ð2mlÞ2 ≤ q2 ≤ m2

P), we do
not yet find any theoretical analysis going beyond the Dalitz
decay region, i.e. q2 > m2

P region.
Thus, we attempt to explore the entire timelike region as

well as the spacelike region in this work. We extend our
previous analysis [58–60] for the single-virtual P →
γ�γðP ¼ π0; η; η0Þ transition in the spacelike region using
the light-front quark model (LFQM) [58–62] to include the
entire timelike region. For the low energy regime, we
compare our LFQM results of the TFFs for the low timelike
momentum transfer region and the slope parameters at
q2 ¼ 0 with the recent experimental data from the Dalitz
decays of ðπ0; η; η0Þ [9–14]. For the high energy regime, we
show the asymptotic behavior of TFFs for both space- and
timelike regions and compare them with the available
experimental data. In particular, we present the new direct
method to explore the timelike region without resorting to
mere analytic continuation from space- to timelike region.
Our direct calculation in timelike region shows the com-
plete agreement with not only the analytic continuation
result from spacelike region but also the result from the
dispersion relation (DR) between the real and imaginary
parts of the form factor.
The paper is organized as follows. InSec. II,we discuss the

meson-photon TFFs in an exactly solvable model first based
on the covariant Bethe-Salpeter (BS) model of (3þ 1)-
dimensional fermion field theory. It has been a common
practice to utilize an exactly solvablemanifestly covariantBS
model to check the existence (or absence) of the LF zero
mode [63–66] as one can pin down the zero mode exactly in
themanifestly covariant BSmodel [67–71]. Performing both
manifestly covariant calculation and the LF calculation, we
explicitly show the equivalence between the two results and
the absence of the zero-mode contribution to the TTF. In the
LF calculation, we analyze both qþð¼ q0 þ q3Þ ≠ 0 and
qþ ¼ 0 frames and show their equivalence in the numerical

calculation. We explicitly demonstrate that our direct LFQM
result for the timelike form factor is in complete agreement
with the result obtained from the DR method. The η − η0
mixing scheme for the calculations of the ðη; η0Þ → γ�γ TFFs
is also introduced in this section. InSec. III, we apply the self-
consistent correspondence relations (see, e.g., Eq. (35) in
[70]) between the covariant BS model and the LFQM and
present the standard LFQM calculation with the more
phenomenologically accessible model wave functions pro-
vided by the LFQM analysis of meson mass spectra [58,61].
The self-consistent covariant descriptions of themeson TFFs
are confirmed in the standard LFQM as we discuss in this
section. In Sec. IV, we present our numerical results for the
ðπ0; η; η0Þ → γ�γ TFFs for both spacelike and timelike
regions and compare them with the available experimental
data. Summary and discussion follow in Sec. V. In the
Appendix, we provide the comparison of the η − η0 mixing
angle between the octet-singlet basis and quark-flavor basis.

II. MANIFESTLY COVARIANT MODEL

The transition form factor FPγ for the P → γ�γ (P ¼ π0;
η; η0) decay is defined from the matrix element of electro-
magnetic current Γμ ¼ hγðP − qÞjJμjPðPÞi as follows:

Γμ ¼ ie2FPγðQ2ÞεμνρσPνερqσ; ð1Þ

where P and q are the momenta of the incident pseudo-
scalar meson and virtual photon, respectively, and ε is the
transverse polarization vector of the final (on-shell) photon.
This process is illustrated by the Feynman diagram in
Fig. 1(a), which represents the amplitude of the virtual
photon being attached to the quark line. While we shall
only discuss the amplitude shown in Fig. 1(a), the total
amplitude should of course include the contribution from
the amplitude of the virtual photon being attached to the
antiquark line as well as the quark line.
In the exactly solvable manifestly covariant BS model,

the covariant amplitude Γμ in Fig. 1(a) is obtained by the
following momentum integral

Γμ ¼ ieQeQ̄Nc

Z
d4k
ð2πÞ4

H0

Np1
NkNp2

Sμ; ð2Þ

where Nc is the number of colors and eQðQ̄Þ is the
quark (antiquark) electric charge. The denominators
Npj

ð¼ p2
j −m2

Q þ iεÞðj ¼ 1; 2Þ and Nkð¼ k2 −m2
Q̄ þ iεÞ

come from the intermediate quark and antiquark propa-
gators of mass mQ ¼ mQ̄ carrying the internal four-
momenta p1 ¼ P − k, p2 ¼ P − q − k, and k, respectively.
The trace term Sμ in Eq. (2) is obtained as

Sμ ¼ Tr½ΓPð=p1 þmQÞγμð=p2 þmQÞ=εð−=kþmQÞ�
¼ 4imQε

μνρσfqνερkσ þ ðP − kÞνqρεσg; ð3Þ
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where we use ΓP ¼ γ5 for the pseudoscalar vertex structure.
For the q̄q bound-state vertex function H0 ¼ H0ðp2

1; k
2Þ of

the meson, we simply take the dimensionless constant
parameter g since the covariant loop is regularized with this
constant vertex in our model calculation.
Using the following Feynman parametrization for the

three propagators

1

Np1
NkNp2

¼
Z

1

0

dx
Z

1−x

0

dy

×
2

½NkþðNp1
−NkÞxþðNp2

−NkÞy�3
; ð4Þ

and shifting the variable k to k0 ¼ k − ðxþ yÞP
þ yq, we obtain the manifestly covariant result
by defining the amplitude in Fig. 1(a) as Γμ

ðaÞ ¼
ieQeQ̄½ImQ

ðaÞ �Covðq2ÞεμνρσPνερqσ, where

½ImQ

ðaÞ �Cov ¼
Ncg
4π2

Z
1

0

dx
Z

1−x

0

dy

×
mQ

xð1 − x − yÞM2 þ xyq2 −m2
Q
; ð5Þ

with the physical meson mass M. Similarly, the amplitude
of the photon being attached to the antiquark line is
obtained by changing x → 1 − x − y in Eq. (5) but the
two results are found to give the same numerical values.
Thus, we obtain the total result as I

mQ
tot ¼ 2½ImQ

ðaÞ �Cov.
For the LF calculation in parallel with the manifestly

covariant one, we use the plus component ðμ ¼ þÞ of the
currents Jμ but with two different reference frames, i.e.,
(1) qþ ≠ 0 frame and (2) qþ ¼ 0 frame.
In the qþ ≠ 0 frame, we take P¼ðPþ;P−;P⊥Þ¼

ðPþ;M2=Pþ;0Þ and q¼ðqþ;q−;q⊥Þ¼ðαPþ;M2=Pþ;0Þ so
that q2 ¼ qþq− of the virtual photon is given by

q2 ¼ αM2; ð6Þ
where α ¼ qþ=Pþ ¼ 1 − P0þ=Pþ. We should note that q ¼
ðαPþ;M2=Pþ; 0Þ and P0 ¼ P − q ¼ ðð1 − αÞPþ; 0; 0Þ are
valid only for α ≠ 1 but will differ for the α → 1 limit as we
shall discuss shortly. In this qþ ≠ 0 frame, the Cauchy
integration over k− in Eq. (2) has two nonzero contributions
to the residue calculations, i.e., one coming from the interval

(i) 0 < kþ < P0þ [see Fig. 1(b)] and the other from
(ii) P0þ < kþ < Pþ [see Fig. 1(c)]. That is, the Feynman
covariant diagram in Fig. 1(a) is equivalent to the sum of two
LF time-ordered diagrams in Figs. 1(b) and 1(c). The internal
momentum kþ is defined by kþ ¼ ð1 − xÞPþ, where x is the
Lorentz invariant longitudinal momentum variable. In this
case, the four momenta of the on-mass-shell quark (p2

1on ¼
m2

Q) and antiquark (k2on ¼ m2
Q̄) propagators are defined by

p1on ¼ ðxPþ; p−
1on;−k⊥Þ and kon ¼ ðð1 − xÞPþ; k−on;k⊥Þ,

respectively.
While the residue is at the pole of k− ¼ k−on, which

is placed in the lower half of complex-k− plane for the
region of 0 < kþ < P0þ[see Fig. 1(b)], the residue is at the
pole of p−

1 ¼ p−
1on, which is placed in the upper half

of complex-k− plane for the region of P0þ < kþ < Pþ

[see Fig. 1(c)]. Thus, by defining the amplitude ½Γþ
ðb;cÞ�LF ≡

ieQeQ̄½ImQ

ðb;cÞ�LFα ðq2ÞεþνρσPνερqσ for Figs. 1(b) and 1(c), the
Cauchy integration of Eq. (2) over k− in the two regions
yields

½ImQ

ðbÞ �LF0<α<1 ¼
Nc

4π3

Z
1

α

dx
ð1 − xÞ

Z
d2k⊥

mQ

ðα − 1ÞM2
0

χðx;k⊥Þ;

ð7Þ
and

½ImQ

ðcÞ �LF0<α<1¼
Nc

4π3

Z
α

0

x0dx
ð1−xÞ

×
Z

d2k⊥
mQχðx;k⊥Þ

x0ð1−x0ÞM2−xð1−xÞM2
0

; ð8Þ

respectively, where x0 ¼ x=α and

χðx;k⊥Þ ¼
g

xðM2 −M2
0Þ
; ð9Þ

with M2
0 ¼

k2⊥þm2
Q

xð1−xÞ being the invariant mass.1 We confirmed

numerically that ½ImQ

ðaÞ �Cov¼½ImQ

ðbÞ �LF0<α<1þ½ImQ

ðcÞ �LF0<α<1 as
expected.

FIG. 1. One-loop Feynman diagrams that contribute to P → γ�γ. The single covariant Feynman diagram (a) is the same as the sum of
the two LF time-ordered diagrams (b) and (c), respectively.

1For the calculation of the trace term Sμ with μ ¼ þ, since the
result is given by Sþ ¼ 8imQεþ−xyPþðε⊥ × q⊥Þ, one should first
take q⊥ ≠ 0 and then take q⊥ → 0 limit at the end of the trace
calculation.
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Now, we find a very interesting LF result by taking α → 1
limit, which in fact allows our direct calculation of the
timelike TFFs in LFQM possible as we present in the next
section, Sec. III. In the α ¼ 1 case, the four momenta q
and P0 are given by q¼ðPþ;q2=Pþ;0Þ and P0¼
ð0;ðM2−q2Þ=Pþ;0Þ, respectively. Since q and P0 in the
α ¼ 1 case are different from theα ≠ 1 (i.e.,q2 ¼ αM2) case,
one should not directly substitute α ¼ 1 in Eqs. (7) and (8) to
obtain the transition amplitudes corresponding to the α ¼ 1
case. To obtain the amplitude for the α ¼ 1 case, one needs to
go back and start from Eq. (2) again to do the Cauchy
integration over k− with the specifically given four momenta
q and P0 at α ¼ 1. By doing the Cauchy integration of
Eq. (2) over k− in the α ¼ 1 case, we find ½ImQ

ðbÞ �LFα¼1 ¼ 0 and

½ImQ

ðcÞ �LFα¼1 ¼
Nc

4π3

Z
1

0

dx
ð1 − xÞ2

Z
d2k⊥

mQ

M2
0 − q2

χðx;k⊥Þ:

ð10Þ

That is, we find in the qþ ≠ 0 frame at α ¼ 1 that only
Fig. 1(c) contributes to the total transition amplitude. We also
numerically confirm that Eq. (10) exactly coincides with the
manifestly covariant result I

mQ

ðaÞ given by Eq. (5) as it must be.
For the qþ ¼ 0 frame, we take P ¼ ðPþ;M2=Pþ; 0Þ and

q ¼ ð0; q−;q⊥Þ so that q2 ¼ −q2⊥ ≡ −Q2. Since this
qþ ¼ 0 frame essentially corresponds to the α → 0 limit
but with q⊥ ≠ 0, we refer this frame as the α ¼ 0 case in
contrast to the α ¼ 1 case discussed above. In the α ¼ 0
case, we find that only Fig. 1(b) contributes and the Cauchy
integration of Eq. (2) over k− in Fig. 1(b) yields

½ImQ

ðbÞ �LFα¼0 ¼
Nc

4π3

Z
1

0

dx
xð1 − xÞ

Z
d2k⊥

mQ

M02
0

χðx;k⊥Þ; ð11Þ

where M0
0 ¼ M0ðk⊥ → k0⊥Þ with k0⊥ ¼ k⊥ þ ð1 − xÞq⊥.

We again confirmed numerically that Eq. (11) exactly
coincides with the manifestly covariant result I

mQ

ðaÞ given by

Eq. (5) as it must be. Effectively, we obtain ½ImQ

ðaÞ �Cov ¼
½ImQ

ðcÞ �LFα¼1 ¼ ½ImQ

ðbÞ �LFα¼0 ¼ ½ImQ

ðbÞ �LF0<α<1 þ ½ImQ

ðcÞ �LF0<α<1. This result
verifies also the absence of the LF zero-mode in pseudo-
scalar meson TFFs, i.e., ½ImQ

ðbÞ �LFα¼1 ¼ 0 and ½ImQ

ðcÞ �LFα¼0 ¼ 0.

For ðη; η0Þ → γ�γ transitions, we take into account the
presence of the strange quark and antiquark components in
the η and η0 mesons as well as their mixing with the
nonstrange quark and antiquark components. Making use
of the η − η0 mixing scheme (see Appendix), the flavor
assignment of η and η0 mesons in the quark-flavor basis
ηq ¼ ðuūþ dd̄Þ= ffiffiffi

2
p

and ηs ¼ ss̄ is given by [72–76]

�
η

η0

�
¼

�
cosϕ − sinϕ

sinϕ cosϕ

��
ηq

ηs

�
: ð12Þ

In this mixing scheme, we obtain the transition form
factors FPγ for P → γ�γðP ¼ π0; η; η0Þ transitions as fol-
lows

Fπγðq2Þ ¼
ðe2u − e2dÞffiffiffi

2
p I

muðdÞ
tot ;

Fηγðq2Þ ¼ cosϕ
ðe2u þ e2dÞffiffiffi

2
p I

muðdÞ
tot − sinϕe2sI

ms
tot ;

Fη0γðq2Þ ¼ sinϕ
ðe2u þ e2dÞffiffiffi

2
p I

muðdÞ
tot þ cosϕe2sI

ms
tot ; ð13Þ

where we again should note that I
mQ
tot ¼ 2½ImQ

ðaÞ �Cov ¼
2ð½ImQ

ðbÞ �LF0<α<1 þ ½ImQ

ðcÞ �LF0<α<1Þ ¼ 2½ImQ

ðcÞ �LFα¼1 ¼ 2½ImQ

ðbÞ �LFα¼0 with

the factor 2 needed to include the contribution from the
amplitude of the photon attached to the antiquark line.
For the illustration of the numerical results from the

exactly solvable BS model calculation, we show the
normalized pion TFF Fπγðq2Þ=Fπγð0Þ for both space-
and timelike regions of momentum transfer −2 ≤ q2 ≤
3 GeV2 in Fig. 2. The used model parameters are mQ ¼
0.22 GeV and M ¼ 0.14 GeV. We note that the value of g
to yield the experimental data value for FExp

πγ ð0Þ ¼
0.272 GeV−1 at q2 ¼ 0 is given by g ¼ 3.22. While
Fπγðq2Þ in spacelike momentum transfer region (q2 < 0)
is real, it becomes complex in timelike region (q2 > 0),
Fπγðq2Þ ¼ ReFπγðq2Þ þ iImFπγðq2Þ. Figures 2(a) and 2(b)
represent the results obtained from ½ImQ

ðbÞ �LF0<α<1 in Eq. (7)

and ½ImQ

ðcÞ �LF0<α<1 in Eq. (8), respectively. As one can see, the

imaginary part ImFπγðq2Þ (red line) of the form factor
comes only from Fig. 1(c) and starts to appear from the
threshold q2 ¼ 4m2

Q. Figure 2(c) shows the normalized
pion TFF, Fπγðq2Þ=Fπγð0Þ. The dotted, dashed and solid
lines in Fig. 2(c) represent Re½Fπγðq2Þ=Fπγð0Þ�,
Im½Fπγðq2Þ=Fπγð0Þ� and jFπγðq2Þ=Fπγð0Þj, respectively.
We confirmed numerically that ½ImQ

ðaÞ �Cov ¼ ½ImQ

ðbÞ �LF0<α<1 þ
½ImQ

ðcÞ �LF0<α<1 ¼ ½ImQ

ðcÞ �LFα¼1 ¼ ½ImQ

ðbÞ �LFα¼0 as mentioned earlier. As

a consistency check for our numerical calculations, we also
compare our direct results of the form factor Fðq2Þ ¼
ReFðq2Þ þ iImFðq2Þ with those obtained from the
dispersion relations (DR) given by

ReFðq2Þ ¼ 1

π
P
Z

∞

−∞

ImFðq02Þ
q02 − q2

dq02;

ImFðq2Þ ¼ −
1

π
P
Z

∞

−∞

ReFðq02Þ
q02 − q2

dq02; ð14Þ

where P indicates the Cauchy principal value. In Fig. 2(c),
the data denoted by ð×Þ represents the DR result of

CHOI, RYU, and JI PHYSICAL REVIEW D 96, 056008 (2017)

056008-4



ImFðq2Þ obtained from Eq. (14) and shows an excellent
agreement with our direct result (dashed line). This assures
the validity of our numerical calculation in the timelike
region.

III. APPLICATION OF THE LIGHT-FRONT
QUARK MODEL

In our previous analysis of the twist-2 and twist-3 DAs of
pseudoscalar and vector mesons [69–71] and the pion
electromagnetic form factor [70], we have shown that
standard LF (SLF) results of the LFQM is obtained by
the replacement of the LF vertex function χ in the BS model
with the Gaussian wave function ϕR as follows [see, e.g.,
Eq. (35) in [70]]

ffiffiffiffiffiffiffiffi
2Nc

p χðx;k⊥Þ
1 − x

→
ϕRðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

Q

q ; M → M0; ð15Þ

where M → M0 implies that the physical mass M included
in the integrand of BS amplitude (except M in the vertex
function χ) has to be replaced with the invariant mass M0

since the SLF results of the LFQM are obtained from the
requirement of all constituents being on their respective
mass-shell. The mapping given by Eq. (15) was originally
found for the resolution of the LF zero-mode issue in the
vector meson decay constant and its self-consistent covar-
iant description as discussed extensively in [69]. As the
mapping however involves only the radial wave function
and the meson mass, the same mapping holds for the
pseudoscalar mesons as we have discussed in [70,71].
Likewise, the correspondence in Eq. (15) is valid again in
this analysis of a P → γ�γ transition.
In the standard LFQM [58,59,61,62,76–79] approach,

the wave function of a ground state pseudoscalar meson as
a qq̄ bound state is given by

Ψλλ̄ðx;k⊥Þ ¼ ϕRðx;k⊥ÞRλλ̄ðx;k⊥Þ; ð16Þ

where ϕR is the radial wave function and the spin-orbit
wave function Rλλ̄ with the helicity λðλ̄Þ of a quark
(antiquark) is obtained by the interaction-independent
Melosh transformation [80] from the ordinary spin-orbit
wave function assigned by the quantum numbers JPC.
For the equal quark and antiquark mass mQ ¼ mQ̄, the

Gaussian wave function ϕR is given by

ϕRðx;k⊥Þ ¼
4π3=4

β3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0

4xð1 − xÞ

s
em

2
Q=2β

2

e−M
2
0
=8β2 ; ð17Þ

where ∂kz=∂x ¼ M0=4xð1 − xÞ is the Jacobian of the
variable transformation fx;k⊥g → k⃗ ¼ ðk⊥; kzÞ and β is
the variational parameter fixed by our previous analysis of
meson mass spectra [58,61,62]. The covariant form of the
spin-orbit wave function Rλλ̄ is given by

Rλλ̄ ¼
ūλðpQÞγ5vλ̄ðpQ̄Þffiffiffi

2
p

M0

; ð18Þ

FIG. 2. The exactly solvable BS model calculation of the
normalized Fπγðq2Þ for both space- and timelike regions
(−2 ≤ q2 ≤ 3) [GeV2]: (a) and (b) represent the contributions
from Figs. 1(b) and 1(c), respectively, for 0 < α < 1 case.
(c) shows the normalized Fπγðq2Þ=Fπγð0Þ compared with the
dispersion relation.
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and it satisfies
P

λλ̄R
†
λλ̄
Rλλ̄ ¼ 1. Thus, the normalization of

our wave function is given by

1 ¼
Z

1

0

dx
Z

d2k⊥
16π3

jϕRðx;k⊥Þj2: ð19Þ

Applying the correspondence given by Eq. (15) to
½ImQ

ðcÞ �LFα¼1 in Eq. (10) and ½ImQ

ðbÞ �LFα¼0 in Eq. (11), we obtain

the corresponding SLF results ½ImQ
tot �SLFα¼1 and ½ImQ

tot �SLFα¼0 in our
LFQM as follows:

½ImQ
tot �SLFα¼1 ¼

ffiffiffiffiffiffiffiffi
2Nc

p
4π3

Z
1

0

dx
ð1 − xÞ

Z
d2k⊥

×
mQ

M2
0 − q2

ϕRðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

Q

q ; ð20Þ

and

½ImQ
tot �SLFα¼0 ¼

ffiffiffiffiffiffiffiffi
2Nc

p
4π3

Z
1

0

dx
x

Z
d2k⊥

mQ

M02
0

ϕRðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

Q

q ; ð21Þ

respectively.We confirm that our result is frame-independent,
i.e., ½ImQ

tot �SLF0<α<1 ¼ ½ImQ
tot �SLFα¼1 ¼ ½ImQ

tot �SLFα¼0. While the TFFs for
P → γ�γ can be obtained by substituting either ½ImQ

tot �SLFα¼1 or
½ImQ
tot �SLFα¼0 into Eq. (13), we shall use ½ImQ

tot �SLFα¼1 for the analysis
of the timelike region due to the simple and clean pole
structure given by ðM2

0 − q2Þ−1 in Eq. (20) compared to
the pole appearing through ½M02

0 �−1 in Eq. (21). It is
important to notice that the internal transverse momentum
k⊥ does not mix with the external virtual photon momen-
tum q ¼ ðPþ; q2=Pþ; 0Þ in α ¼ 1 case as shown in Eq. (20)
so that the direct timelike TFF calculation can be done
most effectively. For sufficiently high spacelike momen-
tum transfer Q2ð¼ −q2 ¼ q2⊥Þ region, both Eqs. (20) and
(21) can be approximated in the leading order of 1=Q2

as follows

½ImQ
tot �SLF ≃ 2fP

Z
1

0

dx
ð1 − xÞQ2

Z
d2k⊥ψPðx;kÞ; ð22Þ

where fP is the pseudoscalar meson decay constant and
ψPðx;k⊥Þ is the transverse momentum dependent DA
(TMDA) [81] that is a 3-dimensional generalization of
the twist-2 pseudoscalar meson DA ϕ2;PðxÞ:

ϕ2;PðxÞ ¼
ffiffiffiffiffiffiffiffi
2Nc

p
fP8π3

Z
d2k⊥

ϕRðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

Q

q mQ

¼
Z

∞

0

d2k⊥ψPðx;k⊥Þ: ð23Þ

From Eqs. (13), (22) and (23), one can verify that our
LFQM result for FπγðQ2Þ at sufficiently high Q2 can be
approximated as

FπγðQ2Þ≃
ffiffiffi
2

p
fπ
3

Z
1

0

dx
ð1 − xÞQ2

ϕ2;πðxÞ: ð24Þ

The asymptotic PQCD DA, ϕ2;πðxÞ¼6xð1−xÞ, leads to the
well-known Brodsky-Lepage limit [15]: Q2FπγðQ2→∞Þ¼ffiffiffi
2

p
fπ≃0.185GeV.
Applying our LFQM to calculate the decay widths

for P → γγðP ¼ π0; η; η0Þ transition, the decay width for
P → γγ is given by

ΓP→γγ ¼
π

4
α2M3jFPγð0Þj2; ð25Þ

where α is the fine structure constant. The form factor
FPγð0Þ at Q2 ¼ 0 may also be expressed in terms of
the decay constants obtained from the Adler-Bell-
Jackiw (ABJ) anomaly (or the chiral anomaly) [82,83]
as follows

FABJ
πγ ð0Þ ¼ 1

2
ffiffiffi
2

p
π2fπ

;

FABJ
ηγ ð0Þ ¼ 1

2
ffiffiffi
6

p
π2

�
1

f8
cos θ −

2
ffiffiffi
2

p

f0
sin θ

�
;

FABJ
η0γ ð0Þ ¼ 1

2
ffiffiffi
6

p
π2

�
1

f8
sin θ þ 2

ffiffiffi
2

p

f0
cos θ

�
; ð26Þ

where θ is the mixing angle in the flavor SU(3) octet-singlet
basis and is related with the mixing angle ϕ in the quark-
flavor basis via θ ¼ ϕ − arctan

ffiffiffi
2

p ≃ ϕ − 54.7°. While the
quadratic (linear) Gell-Mann-Okubo mass formula prefers
θ≃ −10°, ϕ≃ 44.7° (θ≃ −23°, ϕ≃ 31.7°), the KLOE
Collaboration [84] extracted the pseudoscalar mixing angle
ϕ by measuring the ratio BRðϕ → η0γÞ=BRðϕ → ηγÞ. The
measured values are ϕ ¼ ð39.7� 0.7Þ° and ð41.5�
0.3stat � 0.7syst � 0.6thÞ° with and without the gluonium
content for η0, respectively. The mixing angle has also been
analyzed on lattice by the RBC-UKQCD Collaboration
[85], where θ ¼ −14.1ð2.8Þ° was obtained. However, since
the mixing angle for η − η0 is still a controversial issue,
we use more conservatively ϕ ¼ 37°� 5° to check the
sensitivity of our LFQM.

IV. NUMERICAL RESULTS

In our numerical calculations within the standard LFQM,
we use the model parameters (i.e. constituent quark masses
mQ and the gaussian parameters βQQ̄) for the linear
confining potentials given in Table I, which were obtained
from the calculation of meson mass spectra using the
variational principle in our LFQM [58,59,61]. For the
model parameters given in Table I, our LFQM predictions
of the decay constants for the pion, octet (η8) and singlet
(η0) mesons are fπ ¼ 130 MeV, f8=fπ ¼ 1.32, and
f0=fπ ¼ 1.16, respectively. Our results of the octet and
singlet meson decay constants are quite comparable with
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other theoretical predictions such as f8=fπ ¼ 1.26 and
f0=fπ ¼ 1.17 [72], f8=fπ ¼ 1.28 and f0=fπ ¼ 1.25 [74],
and f8=fπ ¼ 1.25 and f0=fπ ¼ 1.04� 0.04 [86].
For the numerical computations of the TFFs given by

Eq. (13) using our LFQM, we use the result ½ImQ
tot �SLFα¼1 in

Eq. (20) since it is much more convenient to handle the
singularities in timelike momentum transfer region than
any other reference frame. In Table II, we summarize our
LFQM results of form factor FPγð0Þ for ðP ¼ π0; η; η0Þ →
γγ obtained from the direct calculation [FTh

Pγð0Þ] (see
Eqs. (13) and (20)) and from the ABJ formulas
[FABJ

Pγ ð0Þ] [see Eq. (26)] compared with the experimental
data [87,88]. For the ðη; η0Þ → γγ processes, we use the
mixing angles ϕ ¼ 37−5°þ5 in the quark-flavor basis. The

experimental values of FExp
ηγ ð0Þ ¼ 0.274ð5Þ GeV−1 and

FExp
η0γ ð0Þ ¼ 0.344ð6Þ GeV−1 were extracted from the

measured decay widths ΓExpðη → γγÞ ¼ 0.516ð18Þ keV
(obtained after combining the PDG average [87] together
with the recent KLOE-2 result [88]) and ΓExpðη0 → γγÞ ¼
4.35ð14Þ keV, respectively. For the π0 → γγ case, while
our result FABJ

πγ ð0Þ ¼ 0.276 GeV−1 obtained from ABJ
anomaly is in good agreement with the data, the direct
result FTh

πγ ð0Þ ¼ 0.242 GeV−1 accounts for about 90% of
the data. For the ðη; η0Þ → γγ case, while our results
FABJ
Pγ ð0Þ prefer ϕ≃ 32° to fit the data, the direct results

FTh
Pγð0Þ prefer ϕ≃ 40° for the best fits of both η and

η0 TFFs.
From the point of view of QCD, the twist-2 DA ϕ2;PðxÞ

of a hadron depends on the scale μ which separates
nonperturbative and perturbative regimes. In our LFQM,
we can associate μwith the transverse integration cutoff via
jk⊥j ≤ μ, which is the usual way how the normalization
scale is defined for the LF wave function (see, e.g.
Ref. [15]). In order to estimate this cutoff value, we made
a three-dimensional plot for TMDA ψPðx;k⊥Þ in Eq. (23)
in the form of ψPðx; yÞ by changing the variable k2⊥ ¼
y=ð1 − yÞ so that

ϕ2;PðxÞ ¼
Z

∞

0

d2k⊥ψPðx;k⊥Þ ¼
Z

1

0

dyψPðx; yÞ; ð27Þ

where ψPðx; yÞ ¼ πψPðx; jk⊥j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y=ð1 − yÞp Þ=ð1 − yÞ2.

Figure 3 shows the three-dimensional plot (left panel)
of ψπðx; yÞ for the pion and the corresponding two-
dimensional contour plot (right panel). In fact, we obtain
the twist-2 pion DA ϕ2;πðxÞ by performing the transverse
integration up to infinity (or equivalently y up to 1) without

TABLE I. The constituent quark masses mQðQ ¼ uðdÞ; sÞ (in
GeV) and the Gaussian parameters βQQ̄ (in GeV) for the linear
confining potentials obtained from the variational principle in our
LFQM [58,59,61].

muðdÞ ms βQQ̄ βss̄

0.22 0.45 0.3659 0.4128

TABLE II. Form factorFPγð0Þ (in GeV−1) for ðP ¼ π0; η; η0Þ →
γγ.

Model FTh
Pγð0Þ FABJ

Pγ ð0Þ FExp
Pγ ð0Þ

π → γγ 0.242 0.276 0.272(3)
η → γγ (for ϕ ¼ 37−5°þ5 ) 0.286þ0.024

−0.027 0.232þ0.029
−0.030 0.274(5)

η0 → γγ (for ϕ ¼ 37−5°þ5 ) 0.290−0.026þ0.024 0.332−0.021þ0.025 0.344(6)

FIG. 3. Transverse momentum dependent distribution amplitude (TMDA) ψπðx;k⊥Þ (left panel) for the pion in the form of ψπðx; yÞ
[see Eq. (27)] and the corresponding two-dimensional contour plot (right panel).
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loss of accuracy due to the presence of Gaussian damping
factor. However, we find that the integration up to y≃ 0.5
(or equivalently μ≃ jk⊥j≃ 1 GeV) of ψπðx; yÞ makes up
99% of the full result for ϕ2;πðxÞ. This implies that our
cutoff scale corresponds to μ≃ jk⊥j≃ 1 GeV for the
calculation of the twist-2 ϕ2;πðxÞ. The twist-2 and twist-
3 DAs for π can be found in our previous works [59,70,71].
In Fig. 4, we show the three-dimensional plot (left panel) of
ψ ss̄ðx; yÞ for the ss̄ sector and the corresponding two-
dimensional contour plot (right panel). In the case of ss̄
sector, the cutoff scale corresponds to μ≃ 1.13 GeV.
In Fig. 5, we show the normalized π0 → γ�γ TFF

FπγðQ2Þ=Fπγð0Þ [see Fig. 5(a)] and jQ2FπγðQ2Þj [see
Fig. 5(b)] for both timelike (q2 ¼ −Q2 > 0) and spacelike
(q2 ¼ −Q2 < 0) momentum transfer region using
Eqs. (13) and (20) and compare them with the available
experimental data for the spacelike region [6,7,18,19]
and for the small timelike region (0 < q2 < m2

π GeV2)
obtained from the pion Dalitz decay [13]. The dotted,
dashed and solid lines in Fig. 5(a) represent our LFQM
predictions of Re½Fπγðq2Þ=Fπγð0Þ�, Im½Fπγðq2Þ=Fπγð0Þ�
and jFπγðq2Þ=Fπγð0Þj, respectively. We note that the space-
like region can be easily obtained by analytically continuing
the momentum transfer q2 → −q2 in the integrand
of Eq. (20). As one can see from Fig. 5, our result for
low- and intermediate- spacelike Q2 region show a good
agreement with the data.
As a consistency check of our LFQM calculations for the

timelike region, we also include the real (imaginary) part of
the form factor obtained from the DR (denoted by þð×Þ
data points) given by Eq. (14). As one can see, our direct
results for the real and imaginary parts are in perfect
agreement with the results obtained from the DR. While the
exactly solvable BS model calculation shows the dominant
contribution of ImFπγ for most of the timelike region, the

LFQM result of ImFπγ with the more realistic Gaussian
radial wave function shows dominant contribution only
near the resonance region and the timelike region above
q2 > 1 GeV2 is dominated by the real part contribution.
That is, the relative contribution between the real and
imaginary parts depends on the shape of the hadron bound
state wave function. We also note that Kroll [28] made a
rough estimate for the expected size of the timelike form
factor using the modified perturbative approach (MPA)
[89,90], i.e., the timelike form factor is dominantly real for
q2 larger than 5 GeV2, its imaginary part contributes less
than about 10% to the absolute value. Kroll’s discussion
about the relative strength between the real and imaginary
parts is qualitatively consistent with our LFQM prediction
and the reason for this may be attributed to the usage of
similar type of the Gaussian wave function.
As one can see from Fig. 5(a), our result for the small

timelike region is in good agreement with the very recent
measurement of the π0 → eþe−γ Dalitz decay from the A2
Collaboration [13]. The slope parameter can be defined
from the vector meson dominance (VMD) model in which
the normalized TFF is typically parametrized as [87]

FPðmllÞ ¼
1

1 − m2
ll

Λ2
P

≃ 1þ aP
m2

ll

m2
P
; ð28Þ

where mll ¼
ffiffiffiffiffi
q2

p
is the dilepton invariant mass and aP ¼

ðmP=ΛPÞ2 reflects the form-factor slope atq2 ¼ 0. Our result
for the slope parameter aπ for the π0 TFF is obtained as

aπ ¼ 0.0355; ð29Þ
which shows a good agreement with the current world
average aπ ¼ 0.032� 0.004 [87] obtained from timelike
measurements [91–93] and the extrapolation of spacelike

FIG. 4. Transverse momentum dependent distribution amplitude (TMDA) ψss̄ðx;k⊥Þ (left panel) for the ss̄ sector in the form of
ψss̄ðx; yÞ [see Eq. (27)] and the corresponding two-dimensional contour plot (right panel).
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data [6] using a VMD model, as well as the two recent
experimental data extracted from the π0 → eþe−γ Dalitz
decay, aπ ¼ 0.030� 0.010 from A2 Collaboration [13] and
aπ ¼ 0.0368� 0.0057 from NA62 Collaboration [10]. Our
result should also be compared with other theoretical
predictions: aπ ¼ 0.0288ð42Þ from a Lattice QCD with
two flavors of quarks [5]; aπ ¼ 0.0324ð12Þstatð19Þsyst from
the method of Padé approximants [94]; aπ ¼ 0.032ð1Þ from
a Regge analysis [95]; aπ ¼ 0.036 from the ChPT [96];

aπ ¼ 0.029ð5Þ from a study of the Dalitz decay of π0 [97];
aπ ≈ 0.031 [98] and aπ ≈ 0.035 [99] from a hard-wall
holographic model of QCD; and aπ ¼ 0.024ð5Þ [100] from
a soft-wall holographic model of QCD. For the analysis of
timelike form factor near resonance region in Fig. 5(a), the
maximum value of Fπγðq2Þ occurs at q2 ≃ 4m2

Q due to the
virtual photon wave function term 1=ðM2

0 − q2Þ in Eq. (20).
Since the peak position of the timelike TFF in our LFQM
depends on the value of the constituent quark mass, the
ρ-pole type resonance may be obtained by simply taking
muðdÞ ¼ Mρ=2.
Figure 5(b) shows jQ2FπγðQ2Þj for the extensive range

(−50 ≤ Q2 ≤ 50 GeV2) of both time- and spacelikemomen-
tum transfer regions compared with the spacelike experi-
mental data [7,18,19]. We note that our LFQM result for
jQ2FπγðQ2Þj for the spacelike region 10 ≤ Q2 ≤ 45 GeV2 is
in good agreement with the data fromBelle [19] showing the
asymptotic behavior but disagree with the BABAR data [18]
showing the rapid growth for this Q2 regime. In our LFQM
calculation for the perturbative region, we find slightly
different values for the timelike and spacelike TFFs, e.g.
we find the absolute values of jQ2FπγðQ2Þj≃ 0.194 GeV in
the spacelike region and jq2Fπγðq2Þj≃ 0.186 GeV in the
timelike region at jQ2j ¼ 112 GeV2, respectively. Although
there may be some contributions from the higher-twist and
higher Fock-state as discussed in [32], however, we infer
from the results shown in Fig. 5 that the higher Fock-state
contributionmaynot be large, especially, for highQ2 regime.
In Fig. 6, we show the normalized η → γ�γ TFF

jFηγðQ2Þ=Fηγð0Þj [see Fig. 6(a)] and jQ2FηγðQ2Þj [see
Fig. 6(b)] for both time- and spacelike momentum transfer
region. The corresponding figures for η0 TFFs are shown in
Fig. 7. Since the patterns for the real and imaginary parts of
the η and η0 TFFs are similar to those of π0 TFF, we only
show the total results for the η and η0 TFFs but varying the
mixing angles. Since they are rather sensitive to the η − η0
mixing angles, we display the results with the variation of
the mixing angles as a sensitivity check. The dot-dashed,
solid, and dashed lines for jFηγðq2Þ=Fηγð0Þj in Fig. 6 and
jFη0γðq2Þ=Fη0γð0Þj in Fig. 7 are obtained from the mixing
angles with ϕη−η0 ¼ 32°, 37° and 42°, respectively. The
experimental data for spacelike region are taken from
[6,7,20]. The small timelike data in Figs. 6(a) and 7(a)
are taken from the measurements of the η
(0 ≤ q2 ≤ M2

η GeV2) and η0 (0 ≤ q2 ≤ M2
η0 GeV

2) Dalitz

decays; η → ll̄γðl ¼ e; μÞ [9,11,12] and η0 → eþe−γ [14].
For the small and medium momentum transfer in both

timelike and spacelike region (i.e. −8 ≤ Q2 ≤ 8 GeV2) as
shown in Figs. 6(a) and 7(a), both normalized TFFs Fηγ and
Fη0γ are not sensitive to the variation of the mixing angles
ϕη−η0 ¼ ð37� 5Þ° and show good agreement with the
available data in spacelike region [6,7,20]. For the com-
parison with the timelike data from the ðη; η0Þ Dalitz

FIG. 5. (a) The the normalized π → γ�γ transition form factor
FπγðQ2Þ=Fπγð0Þ, and (b) jQ2FπγðQ2Þj for both timelike (q2 ¼
−Q2 > 0) and spacelike (q2 ¼ −Q2 < 0) momentum transfer
regions. The data are taken from [6,7,13,18,19] and [13].
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decays, we obtain the slope parameters Λ−2
ηðη0Þ ¼

aηðη0Þ=m2
ηðη0Þ defined by Eq. (28) as follows

Λ−2
η ¼ 2.112−0.031þ0.038 GeV−2 for ϕ ¼ 37−5°þ5 ;

Λ−2
η0 ¼ 1.732−0.035þ0.031 GeV−2 for ϕ ¼ 37−5°þ5 ; ð30Þ

which correspond to Λη ¼ 688þ5
−6 MeV and Λη0 ¼

760þ8
−7 MeV for ϕ ¼ 37−5°þ5 , respectively. Our results for

the slope parameters for η and η0 TFFs are consistent with
the available experimental data within the error bars:Λ−2

η ¼
ð1.95� 0.22Þ GeV−2 [9] and ð1.95� 0.25Þ GeV−2 [11]
for η TFF, and Λ−2

η0 ¼ ð1.60� 0.16Þ GeV−2 [6], ð1.6�
0.25Þ GeV−2 [14], and ð1.7� 0.4Þ GeV−2 [101] for η0
TFF, respectively. We also should note that the ratio of Λη0

to Λη is insensitive to the mixing angle, i.e., Λη0=Λη ≃ 1.11
for 32° ≤ ϕ ≤ 42°.
For the resonance properties of Fηγ and Fη0γ within our

LFQM as shown in Figs. 6(a) and 7(a), the primary and
secondary peaks of both Fηγðq2Þ and Fη0γðq2Þ occurs at
q2 ≃ 4m2

QðQ ¼ u; dÞ and q2 ≃ 4m2
s , respectively, regard-

less of their mixing angles. That is, the η − η0 mixing effect
is not significant for the small timelike region correspond-
ing to the η- and η0- Dalitz decays. Particularly, the
secondary peak for Fη0γ is more pronounced than that
for Fηγ. This may be ascribed to the fact that Fη0γ receives
contribution more from ss̄ component than QQ̄ðQ ¼ u; dÞ
components. For this kinematic regions of the η- and η0

Dalitz decays, while our LFQM result for the Fηγ is quite
comparable with the data [9,11,12], our result for Fη0γ

shows large deviation from the recent BESIII data [14]
except near q2 ¼ 0 region. This large deviation for Fη0γ

near q2 ¼ M2
ρ may be expected from the property of our

LFQM, in which the primary peak appears at q2 ¼ 4m2
uðdÞ

rather than q2 ¼ M2
ρ. We expect from our LFQM analysis

that the experimental data for both timelike Fηγ and Fη0γ

would show peaks near q2 ¼ M2
ρ and q2 ¼ M2

ϕ correspond-

ing to our primary and secondary peaks at q2 ¼ 4m2
uðdÞ and

q2 ¼ m2
s , respectively.

While the mixing angle effects on Fηγ and Fη0γ do not
appear too significant for small and medium momentum
transfer region (i.e. jQ2j < 8 GeV2) as shown in Figs. 6(a)
and 7(a), its effects become substantial for large momentum
transfer region (i.e., jQ2j > 10 GeV2) as shown in
Figs. 6(b) and 7(b). As in the case of π0 → γ�γ transition,
our predictions for both jQ2FηγðQ2Þj and jQ2Fη0γðQ2Þj
show asymptotic behavior for jQ2j ≥ 40 GeV2 region. The
single timelike data at q2 ¼ s ¼ 112 GeV2 in Fig. 6(b) and
the one in Fig. 7(b) are taken from the measurement
of eþe− → γ� → ηðη0Þγ process at the center of mass offfiffiffi
s

p ¼ 10.58 GeV by the BABAR Collaboration [20]:

sjFηγj ¼ ð0.229� 0.031Þ GeV;
sjFη0γj ¼ 0.251� 0.021Þ GeV: ð31Þ

In our LFQM calculation for the perturbative region,
we find slightly different values for the timelike and

FIG. 6. (a) The normalized η → γ�γ transition form factor
jFηγðQ2Þ=Fηγð0Þj, and (b) jQ2FηγðQ2Þj for both timelike (q2 ¼
−Q2 > 0) and spacelike (q2 ¼ −Q2 < 0) momentum transfer
region. The dot-dashed, solid, and dashed lines are results
obtained from the mixing angles with ϕη−η0 ¼ 32°, 37° and
42°, respectively, and the data are taken from [6,7,9,11,12,20].
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spacelike η and η0 TFFs, e.g. while the absolute
spacelike values at Q2¼112GeV2 are jQ2Fηðη0ÞγðQ2Þj≃
0.191þ0.024

−0.025ð0.284−0.017þ0.016ÞGeV, the timelike value at q2¼
112GeV2 are jq2Fηðη0Þγðq2Þj≃0.178þ0.024

−0.025ð0.280−0.017þ0.016ÞGeV
for ϕ ¼ 37−5°þ5 , respectively. But the corresponding ratios of
the spacelike to timelike η and η0 TFFs at jQ2j ¼ 112 GeV2

are about 1.07 and 1.02, respectively, regardless of the

mixing angles. Our results at the timelikeq2 ¼ 112 GeV2 are
also consistent with the perturbative QCD predictions [28],
where jq2Fηγðq2Þj≃0.17GeV and jq2Fη0γðq2Þj≃0.28GeV
were obtained. As stated in [51], while the BABAR result
for q2Fηγðq2Þ at q2 ¼ 112 GeV2 is about 2σ larger than the
asymptotic prediction, the corresponding result for
q2Fη0γðq2Þ from the BABAR Collaboration is in agreement
with the asymptotic expectation. Thus, it is hard to estimate
the correct η − η0 mixing angle with these two experimental
data points at q2 ¼ 112 GeV2 in the present time. More
experimental data in perturbative region may be necessary to
draw any definite conclusion on the mixing angle.

V. SUMMARY AND DISCUSSION

In this work, we investigated the ðπ0; η; η0Þ → γ�γ
transitions for the entire kinematic regions analyzing both
spacelike and timelike TFFs in the standard LF (SLF)
approach within the phenomenologically accessible real-
istic LFQM [58,59,61,62]. Performing the LF calculation
in the covariant BS model as the first illustration, we used
three different reference frames, i.e. (1) qþ ≠ 0 frame with
P− ¼ q− and α ¼ qþ=Pþ ¼ q2=M2, (2) qþ ≠ 0 frame with
Pþ ¼ qþ (i.e., α ¼ 1), and (3) qþ ¼ 0 frame with q2 ¼
−q2⊥ ¼ −Q2 (i.e, α ¼ 0), and found that all three different
reference LF frames give exactly the same results to the one
obtained from the manifestly covariant calculation as they
must be. Especially, the calculation of FPγ using the qþ ≠ 0

frame with α ¼ 1 is found to be most effective for the
analysis of the timelike region due to the absence of mixing
between the internal transverse momentum and the external
virtual photon momentum that leads to the very simple pole
structure 1=ðq2 −M2

0Þ in the form factor. We also con-
firmed the absence of the LF zero mode in pseudoscalar
meson TFFs. As a consequence, the qþ ¼ 0 frame (i.e.
α ¼ 0) calculation exhibits that the meson TFF using the
plus component of the current is immune to the zero mode.
Thus, in the qþ ¼ 0 frame (i.e., the well-known Drell-Yan-
West frame), the complete total amplitude is provided by
just the valence contribution depicted in Fig. 1(b). As a
consistency check for our numerical calculations, we also
compared our direct results of the form factor Fðq2Þ ¼
ReFðq2Þ þ iImFðq2Þ with those obtained from the
dispersion relations (DR) and found the excellent agree-
ment between the two results. This assured the reliability of
our numerical calculation in the timelike region.
We then mapped this exactly solvable manifestly covar-

iant BS model to the standard LFQM following the same
correspondence relation Eq. (15) between the two models
that we found in our previous analysis of two-point and
three-point functions for the pseudoscalar and vector
mesons [69,70]. This allowed us to apply the more
phenomenologically accessible Gaussian wave function
provided by the LFQM analysis of meson mass spectra
[58,59,61,62]. In the analysis of the meson-photon TFFs

FIG. 7. (a) The normalized η0 → γ�γ transition form factor
jFη0γðQ2Þ=Fη0γð0Þj, and (b) jQ2Fη0γðQ2Þj for both timelike
(q2 ¼ −Q2 > 0) and spacelike (q2 ¼ −Q2 < 0) momentum
transfer region. The same line codes are used as in Fig. 6 and
the data are taken from [6,7,14,20].

SPACELIKE AND TIMELIKE FORM FACTORS FOR THE … PHYSICAL REVIEW D 96, 056008 (2017)

056008-11



using our LFQM, we took the qþ ≠ 0 frame with α ¼ 1
which is the most convenient frame to analyze the timelike
region compare to any other reference frames. For the
ðη; η0Þ → γ�γ transitions, we used the η − η0 mixing angle ϕ
in the quark-flavor basis varying the ϕ values in the range
of ϕ ¼ 37þ5°

−5 to check the sensitivity of our LFQM. For the
numerical analyses of the P → γ�γðP ¼ π0; η; η0Þ TFFs
using our LFQM, we investigated both the low-energy
and high-energy regimes.
For the low-energy regime, our results for the TFFs and

their slope parameters are in good agreement with the
available data from the Dalitz decays of ðπ0; η; η0Þ mesons.
Especially, in the low momentum transfer region, the η and
η0 TFFs are rather insensitive to the mixing angles. For the
analysis of timelike form factor near resonance region, the
maximum value of Fπγ occurs at q2ð¼ −Q2Þ≃ 4m2

Q due to
the virtual photon wave function term 1=ðM2

0 − q2Þ in
Eq. (20). The ρ-pole type resonance may be achieved by
finding more realistic form of the photon wave function,
which is open for the future work. For the resonance
properties of Fηγ and Fη0γ , the primary and secondary peaks
of both Fηγ and Fη0γ occurs at q2 ≃ 4m2

QðQ ¼ u; dÞ and
q2 ≃ 4m2

s , respectively, regardless of their mixing angles.
We also anticipate from our LFQM analysis that the
experimental data for both timelike Fηγ and Fη0γ would
show peaks near q2 ¼ M2

ρ (primary) and q2 ¼ M2
ϕ (sec-

ondary) corresponding to our primary and secondary peaks
at q2 ¼ 4m2

uðdÞ and m2
s , respectively.

For the high-energy regime, our result of jQ2FPγðQ2Þj
does not show any steep rising behavior for high jQ2j
region as measured from the BABAR Collaboration [18] but
shows scaling behavior for high jQ2j consistent with the
perturbative QCD prediction. This is ascribed to the fact
that our twist-2 DA [59,70] is highly suppressed at the
endpoints (x ¼ 0, 1) unlike the flat DA [22,23] showing the
enhancement at the endpoints. Especially, in our LFQM
calculation for the perturbative region, we find slightly
different values for the timelike and spacelike TFFs, e.g.,
the ratios of the spacelike to timelike TFFs at jQ2j ¼
112 GeV2 are about 1.04 for π0 TFF and 1.07 (1.02) for
ηðη0Þ, regardless of the η − η0 mixing angles. While the
BABAR result [20] for jq2Fηγðq2Þj at q2 ¼ 112 GeV2 is
about 2σ larger than the asymptotic prediction, the
corresponding result for jq2Fη0γðq2Þj from the BABAR
Collaboration is in agreement with the asymptotic expect-
ation. Thus, it is hard to predict the correct η − η0 mixing
angle with these two experimental data points at q2 ¼
112 GeV2 at present time. More experimental data in
perturbative region may be necessary to draw any definite
conclusion on the mixing angle.
While the pseudoscalar meson vertex ΓP ¼ γ5 is taken in

this work, the generalization of the vertex including the
axial vector coupling [102] may be considered for further
study. The work along this direction is underway.
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APPENDIX: η− η0 MIXING

In this appendix, we provide the comparison of the η − η0
mixing angle between the octet-singlet basis and quark-
flavor basis. The octet-singlet mixing angle θ of η and η0 is
known to be in the range of −10° to−23° [87]. The physical
η and η0 are the mixtures of the flavor SUð3Þ octet η8 and
singlet η0 states:�

η

η0

�
¼

�
cos θ − sin θ

sin θ cos θ

��
η8

η0

�
; ðA1Þ

where η8¼ðuūþdd̄−2ss̄Þ= ffiffiffi
6

p
and η0¼ðuūþdd̄þss̄Þ= ffiffiffi

3
p

.
Analogously, in terms of the quark-flavor(QF) basis
ηq ¼ ðuūþ dd̄Þ= ffiffiffi

2
p

and ηs ¼ ss̄, one obtains [72]�
η

η0

�
¼

�
cosϕ − sinϕ

sinϕ cosϕ

��
ηq

ηs

�
: ðA2Þ

The two schemes are equivalent to each other by ϕ ¼ θ þ
arctan

ffiffiffi
2

p
when SUfð3Þ symmetry is perfect. Although it

was frequently assumed that the decay constants follow the
same pattern of state mixing, the mixing properties of
the decay constants will generally be different from those
of the meson state since the decay constants only probe the
short-distance properties of the valence Fock states while the
state mixing refers to the mixing of the overall wave
function [72].
Defining hPðpÞjJqðsÞμ5 j0i ¼ −ifqðsÞP pμ (P ¼ η; η0) in the

QF basis, the four parameters fqP and fsP can be expressed
in terms of two mixing angles (ϕq and ϕs) and two decay
constants (fq and fs), i.e., [72],� fqη fsη

fqη0 fsη0

�
¼

�
cosϕq − sinϕs

sinϕq cosϕs

��
fq0

0fs

�
: ðA3Þ

The difference between the mixing angles ϕq − ϕs is due to
the Okubo-Zweig-Iizuka(OZI)-violating effects [73] and is
found to be small (ϕq − ϕs < 5°). The OZI rule implies
that the difference between ϕq and ϕs vanishes (i.e.,
ϕq ¼ ϕs ¼ ϕ) to leading order in the 1=Nc expansion.
Similarly, the four parameters f8P and f0P in the octet-singlet
basis may be written in terms of two angles (θ8 and θ0) and
two decay constants (f8 and f0). However, in this case, θ8
and θ0 turn out to differ considerably and become equal
only in the SUfð3Þ symmetry limit [72,74].
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