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The scale magnetic effect (SME) is the generation of electric current due to a conformal anomaly in an
external magnetic field in curved spacetime. The effect appears in a vacuum with electrically charged
massless particles. Similarly to the Hall effect, the direction of the induced anomalous current is
perpendicular to the direction of the external magnetic field B and to the gradient of the conformal factor τ,
while the strength of the current is proportional to the beta function of the theory. In massive
electrodynamics the SME remains valid, but the value of the induced current differs from the current
generated in the system of massless fermions. In the present paper we use the Wigner-Weyl formalism to
demonstrate that in accordance with the decoupling property of heavy fermions the corresponding
anomalous conductivity vanishes in the large-mass limit with m2 ≫ jeBj and m ≫ j∇τj.
DOI: 10.1103/PhysRevD.96.056006

I. INTRODUCTION

Anomalous transport phenomena have attracted the atten-
tion of the scientific community in recent years [1,2].
Anomalous transport is associated with quantum anomalies
]3 ] which break the original symmetries of classical systems
due to quantum fluctuations. The axial anomaly and the
mixed axial-gravitational anomaly are suggested to lead to
various transport phenomena, such as the chiral magnetic
[4,5], chiral separation [6,7], and chiral vortical effects [8,9]
which generate both electric (vector) and axial (pseudovec-
tor) currents as well as energy flows [10,11] in usual or
chirally imbalancedmatter. These currents and flowsmay be
directed along the axis of a background magnetic field or
along a vorticity vector in the case where the matter is
rotating.Anomalous transport appears both in solid state [12]
and particle [13] physics contexts.
The basic rule is that anomalous symmetry breaking may

be associated with a certain (anomalous) transport law that
cannot otherwise appear in a classical system with an
unbroken classical symmetry. Besides the axial anomalies,
certain theories may also exhibit the conformal anomaly
associated with the breaking of the classical conformal
invariance at the quantum level. In Ref. [14], it was
indeed shown that the anomalous breaking of conformal
(scale) symmetry in conformally invariant gauge theories
should also lead to the emergence of two new transport
phenomena—the scale magnetic effect (SME) and the scale
electric effect (SEE)—which generate electric current in an
electromagnetic field background in curved spacetime. The

SME is a stationary phenomenon which induces an electric
current perpendicularly to the direction of the external
magnetic field in a static curved space. The SEE is a
nonstationary effect which is realized in an external electric
field in a time-dependent gravitational background. The
generated electric currents are proportional to the beta
function of the corresponding theory. The explicit expres-
sions for the SME and SEE are given, respectively, in
Eqs. (5) and (6) below. Both of these effects appear in the
theory with vanishing fermion masses or with nearly
vanishing fermion masses that are much smaller than the
energy scales associated with both the external electric/
magnetic field and the variations of the gravitational field.
The aim of the present article is to consider the opposite

limit when the fermion mass is much larger than the energy
scales given by the external electromagnetic field and the
gradient of the gravitational field. First, we notice that
the SME and SEE phenomena are associated with the
contribution of the conformal anomaly to the trace of the
energy-momentum tensor in a classical electromagnetic
field background [14]. In the (classically conformal) mass-
less case this trace is entirely given by an anomalous
contribution which originates from the change of the
integration measure with respect to theWeyl transformation
[15]. In the massive case the trace of the energy-momentum
tensor also contains a nonanomalous extra contribution
emerging due to the explicit breaking of the conformal
symmetry in the classical Lagrangian. In our article we
calculate the nonanomalous contribution to the scale mag-
netic effect in QED using the Wigner-Weyl formalism. We
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demonstrate that in the limit of large fermion mass the
nonanomalous contribution cancels precisely the anomalous
contribution coming from the integration measure over the
fermionic fields. Therefore, in agreement with decoupling
theorems, the scale magnetic effect is strongly suppressed
for sufficiently massive fermions.
The structure of the paper is as follows. The next three

sections are devoted to brief reviews of the scale magnetic
and electric effects (Sec. II), relevant features of QED in a
curved spacetime (Sec. III), and the basics of the Wigner-
Weyl approach (Sec. IV). In Sec. V we derive the non-
anomalous part of the electric current of the SME in QED
with massive fermions, and demonstrate that it cancels
precisely the contribution of the integration measure. The
last section is devoted to a discussion of our results.

II. SCALE MAGNETIC/ELECTRIC EFFECTS

A. Massless fermions

Let us consider massless QED with one species of Dirac
fermion ψ in (3þ 1) spacetime dimensions:

L ¼ −
1

4
FμνFμν þ ψ̄iγμDμψ ; ð1Þ

where γμ are the Dirac matrices, Fμν ¼ ∂μAν − ∂νAμ is
the field-strength tensor of the gauge field Aμ, and Dμ ¼
∂μ þ ieAμ is the covariant derivative.
In massless QED the trace of the classical stress-energy

tensor Tμν is identically zero, ðTμ
μÞcl ≡ 0, because of the

conformal invariance of the theory at the classical level.
The theory does not contain a characteristic energy
scale, thus implying the invariance of the classical action
S ¼ R

d4xL under the scale transformations x → λ−1x,
Aμ → λAμ, and ψ → λ3=2ψ . However, quantum corrections
make the electric charge e dependent on the renormaliza-
tion energy scale, e ¼ eðμÞ. The apparent noninvariance of
the quantum theory on the energy scale is explicitly
manifested in the nonzero beta function of the theory:

βðeÞ ¼ de
d ln μ

: ð2Þ

As a result, in the background of the classical electromag-
netic field Acl

μ the trace of the stress-energy tensor becomes
nonzero due to quantum corrections [3]:

hTα
αðxÞi ¼

βðeÞ
2e

Fcl;μνðxÞFcl
μνðxÞ: ð3Þ

Below, we study the effects in classical background gauge
fields only and therefore we omit hereafter the superscript
“cl” in Acl

μ and Fcl
μν.

The simplest way to reveal anomalous transport effects
emerging due to the conformal (scale) anomaly (3) is to
consider the following conformally flat metric:

gμνðxÞ ¼ e2τðxÞημν; ð4Þ

where ημν ¼ diagðþ1;−1;−1;−1Þ is the flat Minkowski
metric. Starting from Eq. (3), and assuming that the
conformal factor in Eq. (4) is small jτj ≪ 1, one can show
that in the curved background (4) the conformal (scale)
anomaly generates an anomalous electric current in the
presence of the background of a magnetic field B,

J ¼ 2βðeÞ
e

∇τðxÞ × BðxÞ; ð5Þ

which is proportional to the gradient of the local scale
factor τðxÞ of the conformally flat metric (4). The anoma-
lous generation of the electric current by the background
magnetic field (5) is the SME proposed in Ref. [14].
In the electric field background E the anomalous gen-

eration of the electric current resembles Ohm’s law [14],

J ¼ σðxÞEðxÞ; ð6Þ

with the essential difference being that the metric-
dependent anomalous electric conductivity

σðt; xÞ ¼ −
2βðeÞ
e

∂τðt; xÞ
∂t ð7Þ

may take negative values. Equations (6) and (7) determine
the SEE. It was suggested that the SEE describes the negative
vacuum conductivity associated with the Schwinger pair
production in an expanding de Sitter universe. Earlier,
a negative electric conductivity was indeed found for
fermionic [16] and bosonic [17] Schwinger effects.
Notice that the classical electric current induced by the

external electromagnetic field in the conformal background
(4) is identically zero. The scale magnetic [Eq. (5)] and
scale electric [Eq. (6)] effects are related to each other as
they originate from the same Lorentz-covariant expression
[14]. The corresponding currents are proportional to the
beta function (2). Below, we rederive the SME current (5)
using a straightforward calculation based on a truncated
Wigner expansion. This approach will also allow us to
identify possible effects of a nonzero fermion mass on the
anomalous current.

B. Massive fermions

QED with one species of massive Dirac fermion is
described by the following Lagrangian:

L ¼ −
1

4
FμνFμν þ ψ̄ðiγμDμ −mÞψ : ð8Þ

With the help of the perturbative methods the trace of the
corresponding energy-momentum tensor can be repre-
sented in the operator form [18]:
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Tα
αðxÞ ¼

βðeÞ
2e

FμνðxÞFμνðxÞ þ ð1þ γmÞmψ̄ψ

þ discontinuous terms; ð9Þ

where γm ¼ 3αQED=2π þ � � � is the mass anomalous dimen-
sion, αQED ¼ e2=4π is the fine-structure constant, and the
ellipsis denotes higher-order corrections in αQED. It is
however more illuminating to derive Eq. (9) using the
Fujikawa method in the path integral formalism [15] which
attributes a leading Oðα1QEDÞ part of the first term in Eq. (9)
to the contribution from the integration measure over the
fermionic fields. The remaining terms appear due to virtual
photons and nonanomalous contributions originating from
the classically nonconformal mass term of the action (8),
which include higher-order OðαnQEDÞ terms with n ≥ 1.
The electric current generated by the scale magnetic

effect depends on the expectation value of the trace of the
energy-momentum tensor in the background of the
classical gauge field Acl

μ [14]. In the massive theory this
trace includes both anomalous and nonanomalous parts
coming from the quantum measure and the classical action,
respectively (9). The anomalous part gives the known
contribution to the current (5). As for the nonanomalous
part, we may only say that in the heavy mass limit
(m → ∞) the fermions should decouple from the dynamics
of the model [19] and therefore the contribution from the
nonanomalous part should cancel the anomalous term (5).
Let us consider QED [Eq. (8)] in the classical electro-

magnetic field background with the field strength Fcl
μν in

addition to the dynamical photons. Using symmetry prop-
erties as well as dimensional arguments one finds that the
leading terms of the local derivative expansion in the
dimensional regularization give hð1þ γmÞmψ̄ðxÞψðxÞi ¼
C1m4 þ C2Fcl;μνðxÞFcl

μνðxÞ þOðm−2Þ, where the constants
C1 and C2 may, in principle, contain a divergent depend-
ence on the parameter ϵ ¼ D − 4 of the dimensional
regularization as well as a dependence on the dimensional
parameter μ through the combination logðμ=mÞ. The first
term in this expression is irrelevant for the dynamics of the
model. The factor in front of the field-dependent term is
then fixed by the decoupling theorem:

hð1þ γmÞmψ̄ðxÞψðxÞi ¼ const −
βðeÞ
2e

Fcl;μνðxÞFcl
μνðxÞ

þOðm−2Þ: ð10Þ
This expression is valid in any regularization in the limit,
when both the classical electromagnetic field and gradients
of the metric are smaller than the corresponding power of
the fermion mass m.
Equation (9) is consistent with the existing calculations

of the triangle correlator hTJJi of the fermionic stress
tensor T and two external electric currents J which may
alternatively be used to compute the electric current
generated by the scale electric and magnetic effects. The

hTJJi correlator vanishes in the limit when the large
fermionic massm exceeds the external momenta associated
with the vertices of the triangle diagram [20,21], thus
indicating that the induced electric current should also
vanish in the m → ∞ limit. It was proposed that the
dependence on the mass m enters the anomalous relation
(3) through the modified effective β function [21],

βðp2; m2;M2Þ ¼ −ep2
dΠRðp2; m2;M2Þ

dp2
; ð11Þ

determined via the renormalized photon self-energy

ΠRðp2; m2;M2Þ ¼ Πðp2; m2Þ − Πðp2 ¼ −M2; m2Þ: ð12Þ

It is worth mentioning that this definition of the beta
function differs slightly from the standard textbook defi-
nition, as the latter is determined by the dependence of the
polarization operator on the mass scaleM rather than on the
value of the momentum p. The two definitions coincide in
the ultraviolet limit M → ∞. Therefore, the concrete form
of Eq. (11) depends on the details of the regularization
scheme [21,22].
Notice that in an alternative heat kernel approach the

correlator hTJJi can be computed using different calcu-
lation schemes [22] which give different expressions in the
domain p2 ≪ m2. However, all computations share the
same qualitative feature: the correlator hTJJi tends to zero
in the infrared region p2 ≪ m2 [20–22].
In the present paper we develop the Wigner-Weyl

approach to compute the electric current generated by
the scale magnetic effect. In agreement with the decoupling
theorem, we explicitly demonstrate that the electric current
of massive fermions contains both anomalous and non-
anomalous contributions which cancel each other exactly in
the large-mass limit.

III. QED IN CURVED SPACETIME

A. Fermionic Lagrangian in curved spacetime

A Dirac fermion field ψ with mass m in a curved
background is described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L; ð13Þ

with the following Lagrangian [23]:

L ¼ i
2
½ψ̄eμaγa∇μψ − ð∇μψ̄Þeμaγaψ � −mψ̄ψ ; ð14Þ

where ∇μψ̄ ≡ ð∇μψÞ†γ0 and γa are the standard, coordi-
nate-independent Dirac matrices. The vierbein (tetrad)
field eμa ≡ eμaðxÞ is related to the spacetime metric gμν as
follows: gμν ¼ eaμebνηab, where ηab is the metric of the flat
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Minkowski spacetime and eμa ¼ gμνηabebν . The raising/
lowering of the curved spacetime indices (denoted by
the greek letters μ; ν;…) and of the flat indices (denoted
by the latin letters a; b;…) of the vierbein eaμ are done with
respect to the curved metric gμν and the flat metric ηab,
respectively. For example, eμa ¼ gμνeνa ¼ gμνηabeνb, etc.
The covariant derivative

∇μ ¼ Dμ þ Γμ; Dμ ¼ ∂μ þ ieAμ ð15Þ
enforces the invariance of the Lagrangian (14) with respect
to the U(1) gauge transformations

ψðxÞ → eiαðxÞψðxÞ; ψ̄ðxÞ → e−iαðxÞψ̄ðxÞ;

AμðxÞ → AμðxÞ −
1

e
∂μαðxÞ; ð16Þ

and local Lorentz transformations in the curved spacetime
xμ → xμ

0 ¼ Λμ
νxν. The latter is done with the help of the

(matrix) spin connection

Γμ ¼ −
i
4
ωab
μ σab; ð17Þ

where

σab ¼
i
2
½γa; γb� ð18Þ

is the generator of the Lorentz transformations and

ωμ
ab ¼ eνaΓν

σμeσb þ eνa∂μeνb; ð19Þ

with the Christoffel symbols

Γν
αμ ¼

1

2
gνβð∂αgβμ þ ∂μgαβ − ∂βgαμÞ: ð20Þ

Avariation of the Lagrangian (14) with respect to ψ̄ leads to
the covariant Dirac equation:

ðieμaγa∇μ −mÞψ ¼ 0: ð21Þ
Below, we consider the conformally flat metric (4). The

corresponding components of the vierbein can be chosen as
eμa ¼ eτδaμ, so that eμa ¼ e−τημa and

eμa ¼ e−τδμa: ð22Þ
The metric determinant in Eq. (13) is g≡ det gμν ¼ −e8τ.
In the conformally flat metric (4) the spin connection part

(17) in the Lagrangian (14) takes the following form:

eμaγaΓμ ¼ γaΓaðxÞ; Γa ¼
3

2
e−τ∂aτ; ð23Þ

where we took into account that ωab
μ ¼ δaμ∂bτ − δbμ∂aτ.

Generally, the curved background affects the fermionic
fields via the volume element

ffiffiffiffiffiffi−gp
in the action (13), the

vierbein field eμa, and the spin connection Γμ in the
Lagrangian (14) and Eq. (15). However, in the conformal
background (4) the contribution from the spin connection
drops out from the Lagrangian (14) because the spin
connection (23) is a real-valued vector Γ�

μ ≡ Γμ propor-
tional to the identity matrix in the spinor space. Then the
Lagrangian (24) gets simplified:

L ¼ i
2
½ψ̄eμaγaDμψ − ðDμψ̄Þeμaγaψ � −mψ̄ψ ; ð24Þ

where the electromagnetic covariant derivative Dμ is given
in Eq. (15).

B. Partition function and electric current

We consider fermions in the fixed curved spacetime
given by the metric gμν subjected to the fixed background of
the external electromagnetic field Aμ. The fermionic
partition function

Z½A; g� ¼
Z

Dψ̄DψeiS

≡
Z

Dψ̄Dψ exp

�
i
Z

d4xψ̄ðxÞD½A; g;m�ψðxÞ
�

¼ const · detD½A; g;m� ð25Þ

is proportional to the determinant of the fermionic oper-
ator D which enters the Lagrangian density (14) in the
action (13):

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
LðxÞ ¼ ψ̄ðxÞD½A; g;m�ψðxÞ: ð26Þ

In this article we consider the scale magnetic effect
which arises in thermal equilibrium in a static gravitational
field with a time-independent metric [Eq. (4)] in the
background of an external magnetic field B ≠ 0. The
electric field is zero, E ¼ 0. Since we consider the system
in thermal equilibrium it is convenient to perform a Wick
rotation of the time coordinate x0 → x4 ¼ −ix0 and for-
mulate the theory in Euclidean four-dimensional spacetime.
The operator D in Euclidean space can be explicitly
calculated with the help of Eqs. (15), (22), (24), and (26):

D ¼ −
i
2

X4
μ¼1

γμ
h
e3τðxÞ

∂
∂xμ þ

∂
∂xμ e

3τðxÞ
i

− e3τðxÞ
X4
μ¼1

γμeAμðxÞ − ie4τðxÞm; ð27Þ

where γμ are the EuclideanDiracmatrices. Correspondingly,
we have
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Z½A; g� ¼
Z

Dψ̄Dψ exp

�
−
Z

d4xψ̄ðxÞD½A; g;m�ψðxÞ
�
:

ð28Þ

The local electric current induced by the external gauge
field Aμ in the curved spacetime background gμν is given by
the following variational derivative:

Jμðx;A; gÞ ¼ −
δ logZ½A; g�

δAμðxÞ
: ð29Þ

In flat space with the Euclidean metric ημν ¼ δμν the
integration measure over the fermion field Dηψ̄Dηψ in
Eq. (28) is independent of the gauge field. In the curved
background with the conformal metric (4) the integration
measure Dgψ̄Dgψ acquires a dependence on the external
gauge field [15]:

Dgψ̄Dgψ ¼ Dηψ̄
τDηψ

τ

· exp

�
β1 loopQED

2e

Z
d4xτðxÞFμνðxÞFμνðxÞ

�
; ð30Þ

where ψτðxÞ ¼ e
3
2
τðxÞψðxÞ, while

β1 loopQED ¼ e3

12π2
; ð31Þ

is the one-loop QED beta function. Equation (30) originates
from the transformation of the measure given in Ref. [15]
under the Weyl transformations

ψðxÞ → e−3τðxÞ=2ψðxÞ; ð32Þ

gμνðxÞ → e2τðxÞgμνðxÞ: ð33Þ

Since we consider the response of the virtual fermions on
the background electromagnetic field in the vacuum, the
background field is assumed to be induced by an external
electric current located outside of the considered region of
space. In this case we have two contributions to the induced
electric current,

Jμðx;A; gÞ ¼ Jμmeasureðx;A; gÞ þ Jμactionðx;A; gÞ; ð34Þ

given, respectively, by the one-loop anomalous contribu-
tion from the fermionic integration measure

Jμmeasureðx;A; gÞ≡ −
2βð1ÞðeÞ

e
FμνðxÞ∂ντðxÞ;

þ 2βð1ÞðeÞ
e

τðxÞ∂νFμνðxÞ: ð35Þ

Here, the second line is proportional to the external current
that creates the given external field. We assume that it is

localized outside the region of observations. The remaining
contribution comes from the classical action:

Jμactionðx;A; gÞ ¼ −
δ logZη½A; g�

δAμðxÞ
; ð36Þ

where

Zη½A; g� ¼
Z

Dηψ̄
τDηψ

τe−
R

d4xψ̄ðxÞD½A;g;m�ψðxÞ

¼
Z

Dηψ̄
τDηψ

τe−
R

d4xψ̄ τðxÞD½eτA;η;eτm�ψτðxÞ: ð37Þ

C. The case of massless fermions

One can see that even for a vanishing mass there may be
an extra contribution to the electric current given by

Jμactionðx;A; gÞjm¼0 ≡ eτðxÞTr
�
Gη

δD½Aτ; η; 0�
δAτ

μðxÞ
�
; ð38Þ

where AτðxÞ ¼ eτðxÞAðxÞ and the Green function

Gηðx; yÞ ¼
1

Zη½A;g�
Z

Dηψ̄
τDηψ

τψτðxÞψ̄ τðyÞ

× exp

�
−
Z

d4xψ̄ τðxÞD½eτA;η;0�ψτðxÞ
�

ð39Þ

satisfies the relation

D½Aτ; η; 0�Gηðx; yÞ ¼ δð4Þðx − yÞ: ð40Þ

The field AτðxÞ gives rise to the “magnetic” field ∂ ½iAτ
j�ϵ

ijk0

and to the “electric” field ∂ ½0Aτ
k�. According to the results of

Ref. [24], in such systems the vacuum current proportional
to the first power of the “magnetic” or “electric” field is also
proportional to the topological invariant in momentum
space, which vanishes for the system under consideration.
The terms linear in the first derivatives of the “magnetic” or
“electric” field might appear with a dimensionless coef-
ficient. If it exists, such a term would have the form
JkactionðxÞ ¼ consteτðxÞ∂i∂ ½iAτ;k�ðxÞ, i.e., it should be propor-
tional to the electric current that creates the given external
field. Essentially, it is the renormalization of this current
due to the quantum fluctuations as well as due to the
contribution from the second line in Eq. (35). In our
consideration we assume that such a current is localized
far outside the region of observations. This assumption
ensures that in the relevant order the extra contribution to
the SME current is absent. The terms proportional to the
second power of the “magnetic” field in the conformal limit
are suppressed as 1=Λ, where Λ is the ultraviolet cutoff.
The same conclusion is valid for the higher-order correc-
tions. Overall, the component Jkaction vanishes to all orders
for the system of massless fermions.
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D. The general case

Below, we consider the case of massive fermions where
the current Jkaction remains nonvanishing. We will explore
the following relation:

Jμactionðx;A; gÞ≡ Tr

�
G
δD½A; g;m�
δAμðxÞ

�
; ð41Þ

where

Gðx; yÞ ¼ 1

Zη½A; g�
Z

Dηψ̄
τDηψ

τe−3ðτðxÞþτðyÞÞ=2ψτðxÞψ̄ τðyÞ

× e−
R

d4xψ̄ τðxÞe−3τðxÞ=2D½A;g�e−3τðxÞ=2ψτðxÞ ð42Þ
is the fermionic Green function satisfying the relation

e3ðτðyÞ−τðxÞÞ=2D½A; g�Gðx; yÞ ¼ δð4Þðx − yÞ; ð43Þ
which is equivalent to

D½A; g�Gðx; yÞ ¼ δð4Þðx − yÞ: ð44Þ
According to Eqs. (15), (22), and (24), the variation of the
local operator D with respect to the gauge potential Aμ in
Eq. (41) gives the following ultra-local two-point operator:�

δD
δAμðxÞ

�
ðy; zÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
eμaðxÞγa1x;y1x;z

¼ −ee−3τðxÞγμ1x;y1x;z; ð45Þ
where we denoted for compactness

1x;y ¼ δð4Þðx − yÞ: ð46Þ
The first prefactor “e” in the last line of Eq. (45) is the
electric charge. It is then convenient to rewrite the induced
electric current (41) in the following compact form:

JμðxÞ ¼ −ee−3τðxÞTry;z½Gðy; zÞ · γμ1x;y1x;z�; ð47Þ
where the exponential prefactor corresponds to a trivial
conformal volume factor coming from the fact that the
electric current has the dimension ½mass�3.
Technically, our aim is to calculate the electric current

(47) with the help of the Green function (42) determined by
Eqs. (44) and (27). To this end wewill use theWigner-Weyl
formalism described in the next section.

IV. WIGNER-WEYL FORMALISM

Let us very briefly review the basic features of Wigner
functions and Weyl symbols in quantum mechanics that we
will use later in the quantum field theory. A pedagogical
overview of the Wigner-Weyl quantization formalism may
be found, for example, in Refs. [25–27]. We choose
the system of units ℏ ¼ c ¼ 1 and work in (3þ 1)-
dimensional spacetime.

Let Â be an operator that is a function of the position
operator x̂ and the momentum operator p̂ which obey the
standard commutation rule:

½x̂k; p̂l� ¼ iδkl: ð48Þ

The Weyl symbol ~A of the operator Â is a function of the
three-dimensional coordinate x and momentum p and is
given by the following Wigner transformation [28–30]:

~Aðx; pÞ ¼
Z

d3re−iprhx − r=2jÂðx̂; p̂Þjxþ r=2i; ð49Þ

which is expressed via the matrix elements hxjÂjx0i of the
operator Â in the basis of wave functions jxi labeled by the
coordinate x. The Wigner transformation maps operators to
functions.
The Wigner function1

Wðx; pÞ ¼
Z

d3re−iprhx − r=2jρ̂jxþ r=2i ð50Þ

is the Wigner transform (49) of the density matrix operator
ρ̂. For pure states ρ̂ ¼ jψihψ j, the Wigner function (50) can
be directly expressed via the wave functions ψðxÞ ¼ hxjψi
as follows:

Wðx; pÞ ¼
Z

d3re−iprψðx − r=2Þψ�ðxþ r=2Þ: ð51Þ

The Wigner-Weyl formalism has many useful features.
The trace of the two operators Â and B̂ is given by a
convolution of their Weyl symbols over the whole phase
space:

TrðÂ B̂Þ ¼
Z

d3xd3p
ð2πÞ3

~Aðx; pÞ ~Bðx; pÞ: ð52Þ

Therefore, the expectation value of an operator Â can be
expressed as a convolution of the Weyl symbol of the
operator Â and the Wigner function W:

hÂi≡ Trðρ̂ ÂÞ ¼
Z

d3xd3p
ð2πÞ3 Wðx; pÞ ~Aðx; pÞ: ð53Þ

Weyl symbols of certain operators are easy to calculate.
For our purposes (which will become evident below), let us
consider the following operator:

K̂ðx̂; p̂Þ ¼ Âðp̂Þ þ 1

2
½Bðx̂Þbp̂þ bp̂Bðx̂Þ� þ Ĉðx̂Þ; ð54Þ

1We rescale the Wigner function in Eq. (50) by the factor ð2πÞ3
compared to the standard definition [25] in order to keep the
conventional form of the phase-space volume in Eq. (53) and
thereafter.
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where b is a fixed vector, and the operator Â is a function of
a momentum operator p̂ only while the operators B̂ and Ĉ
depend only on the coordinate operator x̂. TheWeyl symbol
of the operator (54) is given by the sum of the correspond-
ing functions,

~Kðx; pÞ ¼ AðpÞ þ BðxÞbpþ CðxÞ; ð55Þ

so that the Weyl transformation (49) for the particular form
of the operator (54) amounts to the simple substitutions
x̂ → x and p̂ → p. For more complex operators this is not
the case.
The Weyl transform of a product of two operators D̂ and

Ĝ can be expressed in terms of the Wigner transformations
of these operators via the Groenewold formula [31]:

gDGðx; pÞ ¼ ~Dðx; pÞ ⋆ ~Gðx; pÞ; ð56Þ

where the Moyal (star) product [32]

⋆ ≡e
i
2
∂↔xp ¼ 1þ i

2
∂↔xp −

1

8
∂2
xp

↔

þ � � � ð57Þ

is essentially an exponentiation of the Poisson bracket
kernel which can be expanded in powers of the double-
derivative operator [30]

∂↔xp ¼ ∂⃖x∂⃗p − ∂⃖p∂⃗x ð58Þ

that acts on both the left and right sides (for example,

f∂↔xpg ¼ ∂xf∂pg − ∂pf∂xg, etc).
Stationary systems may be described by the time-

independent Wigner function (51). Nonstationary proc-
esses may be treated with the help of the time-dependent
Wigner functionWðx; p; tÞ in which the time variable enters
in a different way compared to the spatial coordinates.
The time evolution of the Wigner function is determined by
the Hamiltonian of the system H via the Moyal (star)
bracket (58) [32]:

i
∂
∂tWðx; p; tÞ ¼ H ⋆ Wðx; p; tÞ −Wðx; p; tÞ ⋆ H: ð59Þ

Before going into further details we would like to
highlight why the Wigner approach is a particularly useful
method for our problem. We calculate the quantum average
(47) of a current j which is given by the trace of the product
hji ¼ Tr½GB� of the Green function G and the simple
operator B. The trace can be calculated as the convolution
(52) of the corresponding Weyl symbols ~G and ~B. We will
see that the Weyl symbol ~B may be easily obtained by the
Weyl transformation (49) of the operator B itself, while the
Weyl symbol ~G of the Green function G may be calculated
using the Groenewold formula (56) applied to the identity

1 ¼ DG, where D is an operator which possesses the Weyl
symbol ~D of a simple functional form. Since ~1≡ 1, the
Groenewold equation (56) transforms to 1 ¼ ~D ⋆ ~G which
can be solved iteratively with respect to the Green function
~G in terms of the gradient expansion (57) of the expo-
nentiated double-derivative operator (58). This strategy—
which was applied for the first time to Euclidean quantum
field theory in Ref. [24] and is common for noncommu-
tative field theories [33]—will be realized in the next
section.

V. THE NONANOMALOUS CONTRIBUTION
TO THE ELECTRIC CURRENT

A. Closed form of the electric current

In order to determine the nonanomalous contribution
Jaction to the generated electric current we apply theWigner-
Weyl formalism to the vacuum of QED in nontrivial
gravitational and electromagnetic backgrounds. We are
interested in stationary effects in thermal equilibrium in
three spatial dimensions x ¼ ðx1; x2; x3Þ, which may be
formulated in Euclidean four-dimensional space in which
the fourth “time” coordinate plays the role of the imaginary
time x4. In order to ensure the validity of the Wick rotation
of our Euclidean results back to Minkowski spacetime, we
assume that the electric field is vanishing (it would
otherwise be imaginary in Euclidean space) and that the
metric is a time-independent quantity.
The Wigner-Weyl formalism may naturally be general-

ized to four-dimensional Euclidean space in which the
four-component coordinate operator x̂ ¼ ðx̂1;…; x̂4Þ is
conjugated with the four-component momentum operator
p̂. This technique—which utilizes the Groenewold for-
mula (56) and the derivative expansion of the Moyal
product (57) at the level of the Green functions and the
Weyl symbols of the corresponding operators—has been
worked out in detail in Ref. [24]. Below, we describe the
essential details of the approach.
In coordinate space the momentum operator p̂ takes the

familiar form of the derivative operator p̂μ ¼ −i∂xμ, with
μ ¼ 1;…; 4, and the fermionic operator (27) takes the
following form:

D̂ðx̂; p̂Þ ¼ 1

2
½e3τðx̂Þ=̂pþ =̂pe3τðx̂Þ� − e=Aðx̂Þ − ie4τðx̂Þm; ð60Þ

where we used the standard “slashed” notation =a ¼P
4
μ¼1 γμaμ.
The Weyl symbol of the fermionic operator D̂ is given by

the Wigner transformation (49):

~Dðx; pÞ ¼ e3τðxÞ½=p − e=AðxÞ� − ie4τðxÞm; ð61Þ

where we used the fact that the operator (60) matches the
general form of the operator (54) with the known Weyl
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symbol (55). Then, the Weyl symbol for the fermionic
Green function (42) is formally given by the Wigner
transform (49):

~Gðx; pÞ ¼
Z

d4re−iprGðx − r=2; xþ r=2Þ: ð62Þ

This expression assumes that the Green function G is
defined in a background of a classical U(1) gauge field Aμ

in a fixed gauge. Therefore, one can suggest that Eq. (62)
does not require the explicit introduction of a parallel gauge
transport in the form of the Schwinger line Pðx; yÞwhich is
an exponentiated gauge field integrated along an open
contour joining the two points of the Green function (62).
Below, we explicitly demonstrate that the inclusion of
the Schwinger line does not affect the final result for the
electric current in the magnetic field background. The
presence of the Schwinger line is more suitable for systems
with dynamical gauge fields [34].
Notice that, in addition to the gauge transport line, one

could also expect the appearance of the spin connection
transport. However, in the background of the conformally
flat metric (4) the spin connection term does not enter the
Lagrangian (24) and therefore the parallel spin transport is
trivial.
The Weyl symbol of the Green function (62) can be

calculated explicitly with the help of the Groenewold
formula (56) applied to Eq. (44):

1 ¼ ~Dðx; pÞ ⋆ ~Gðx; pÞ; ð63Þ

with ~D given explicitly in Eq. (61). The star product in
Eq. (63) is a straightforward generalization of Eqs. (57) and
(58) to four-dimensional Euclidean space:

⋆ ≡e
i
2
∂↔ ¼ 1þ i

2
∂↔ −

1

8
∂↔2 þ � � � ; ð64Þ

with

∂↔ ≡ ∂↔xp ¼
X4
μ¼1

ð∂⃖xμ ∂⃗pμ
− ∂⃖pμ

∂⃗xμÞ: ð65Þ

The nonanomalous electric current (47) can be calcu-
lated with the help of a four-dimensional generalization of
the convolution formula (52):

JμactionðxÞ ¼ −ee−3τðxÞ
Z

d4sd4p
ð2πÞ4 tr½ ~Gðs; pÞ ~1xðs; pÞγμ�;

ð66Þ
where the trace goes over the spinor indices only. The
Wigner transform ~1xðs; pÞ of the product 1xðy; zÞ≡
1x;y1x;z of the unit operators (46) can be calculated
straightforwardly with the help of Eq. (49):

~1xðs; pÞ ¼ δð4Þðx − sÞ; ð67Þ

where s is the four-dimensional spacetime coordinate and p
is the four-dimensional momentum. Substituting Eq. (67)
into Eq. (66), we get the compact expression for the
nonanomalous electric current via the Wigner transform
of the fermionic propagator ~Gðx; pÞ:

JμactionðxÞ ¼ −ee−3τðxÞ
Z

d4p
ð2πÞ4 tr½

~Gðx; pÞγμ�: ð68Þ

Now let us briefly demonstrate that the inclusion of the
parallel gauge transport

Pðx; yÞ ¼ exp

�
ie
Z

y

x
dxμAμðxÞ

�
ð69Þ

in the definition of the Weyl symbol (62) for the fermionic
Green function (42) gives us the gauge-invariant symbol

~Ginvðx; pÞ ¼
Z

d4re−iprPðx − r=2; xþ r=2Þ

×Gðx − r=2; xþ r=2Þ; ð70Þ

which does not affect the result for the anomalous current
(68). To this end, we choose the contour connecting the
points x − r=2 and xþ r=2 in the form of a straight line,

x̄μðtÞ ¼ xμ þ
�
t −

1

2

�
rμ; ð71Þ

parametrized by the parameter t ∈ ½0; 1�. Taking the gauge
potential of the magnetic field B in the symmetric gauge,
Aμ ¼ ð−eBx2=2; eBx1=2; 0; 0Þ, we calculate the Schwinger
line (69) with the straight open contour (71), and then we
get the following expression for the gauge-invariant Weyl-
symbol (70):

~Ginvðx;pÞ ¼
Z

d4re−ipreiðx1r2−x2r1ÞeB=2Gðx− r=2; xþ r=2Þ

≡ ~Gðx;p− p̄ðxÞÞ; ð72Þ

where the standard Weyl symbol ~Gðx; pÞ is given in
Eq. (62) and p̄ðxÞ ¼ ðBx2=2;−Bx1=2; 0; 0Þ. The next
step is to calculate the anomalous current (68) using the
invariant Weyl symbol ~Ginv of Eq. (72) instead of the
standard symbol ~G. However, by shifting the integration
variable p → pþ p̄ðxÞ we find that both definitions of the
Weyl symbol (62) and (70) lead to the same current of
Eq. (68). Therefore, the Schwinger line (the parallel gauge
transport) may indeed be ignored in the definition of the
Weyl symbol in the background of the classical mag-
netic field.
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Below, we explicitly calculate the induced electric
current (68) in the leading order in the derivative expansion
of the star product (64). The derivative series also corre-
sponds to a semiclassical expansion in the powers of the
Planck constant ℏ. The latter is evident from the form of the
exponential operator (64) in which the Planck constant is

reinstated: ⋆¼ expfi ℏ
2
∂↔g.

B. Electric current in the leading order

The electric current is given in Eq. (68) where the
Wigner transform of the fermionic propagator ~Gðx; pÞ is
completely determined by Eqs. (61), (63), (64), and (65).
The Groenewold equation (63) for ~G can be solved
iteratively in terms of the series

~G ¼ ~Gð0Þ þ ~Gð1Þ þ ~Gð2Þ þ � � � ð73Þ
Notice that the iterative solution is the derivative expansion
(64) as each power of the double-faced derivative (65) gives
one power of a spatial derivative of either the conformal
factor τðxÞ or electromagnetic field AμðxÞ.
The nth-order term ~GðnÞðx; pÞ is a local function of x and

p proportional to the products of derivatives over x of the
form ð∂l1τðxÞÞ…ð∂lLτðxÞÞð∂mMAðxÞÞ…ð∂m1AðxÞÞ, where
the sum over the positive integers li and mi is equal to the
order of the expansion, l1þ���þlLþm1þ���þmM¼n.
The electric current generated by the scale magnetic effect
is given by the first-order (linear) response both in the
conformal factor τ and in the electromagnetic field,
∂ατ∂βAγ , so that the effect appears in the second-order

term ~Gð2Þ in the expansion (73).
The zeroth-order term in the expansion (73) is the

usual (algebraic) inverse of the Weyl symbol (61) of the
fermionic operator D̂:

~Gð0Þðx; pÞ ¼ ~D−1ðx; pÞ≡ 1= ~Dðx; pÞ

¼ ½=p − e=AðxÞ� þ ieτðxÞm
½p − eAðxÞ�2 þ e2τðxÞm2

e−3τðxÞ: ð74Þ

By expanding the Groenewold equation (63) in powers of

the double derivative ∂↔, we express—via the Weyl symbol
(61) and its inverse (74)—the first-order term

~Gð1Þ ¼ −
i
2
~D−1ð ~D ∂↔ ~D−1Þ; ð75Þ

and then the second-order term

~Gð2Þ ¼ ~Gð2Þ
I þ ~Gð2Þ

II ; ð76aÞ

~Gð2Þ
I ¼ −

1

4
~D−1f ~D ∂↔½ ~D−1ð ~D ∂↔ ~D−1Þ�g; ð76bÞ

~Gð2Þ
II ¼ 1

8
~D−1ð ~D ∂↔ 2 ~D−1Þ: ð76cÞ

The second-order term (76) can further be rewritten as
follows:

~Gð2Þ
I ¼ −

1

4
ðRμ∂pμ

− Cμ∂xμÞ½ðCνRν − RνCνÞ ~D−1�; ð77aÞ

~Gð2Þ
II ¼ 1

8
½RμνðCμCν þ CνCμ − CμνÞ

þ CμνðRμRν þ RνRμ − RμνÞ
− Sμνð2RμCν þ 2CνRμ − Sμν − SνμÞ� ~D−1; ð77bÞ

where

Rμ ¼ ~D−1∂xμ
~D; Cμ ¼ ~D−1∂pμ

~D; ð78aÞ

Rμν ¼ ~D−1∂xμ∂xν
~D; Cμν ¼ ~D−1∂pμ

∂pν
~D; ð78bÞ

Sμν ¼ ~D−1∂pμ
∂xν

~D: ð78cÞ

In deriving Eq. (77) we used the following identities:

∂xμ
~D−1 ¼ −Rμ

~D−1; ∂pμ
~D−1 ¼ −Cμ

~D−1; ð79aÞ

∂xμ∂xν
~D−1 ¼ ðRμRν þ RνRμ − RμνÞ ~D−1; ð79bÞ

∂pμ
∂pν

~D−1 ¼ ðCμCν þ CνCμ − CμνÞ ~D−1; ð79cÞ

∂pμ
∂xν

~D−1 ¼ ðCμRν þ RνCμ − SμνÞ ~D−1: ð79dÞ

Notice that the quantities (78) are matrices in spinor space
and therefore in general they do not commute with each
other. Moreover, Sμν≠Sνμ, while Rμν ≡ Rνμ andCμν ≡ Cνμ.
Using the relations

∂xμRν ¼ Rμν − RμRν; ∂pμ
Cν ¼ Cμν − CμRν; ð80aÞ

∂pμ
Rν ¼ Sμν − CμRν; ∂xμCν ¼ Sνμ − RμCν; ð80bÞ

we rewrite Eq. (77a) as follows:

~Gð2Þ
I ¼ −

1

4
½RνðCμν − fCμ;CνgÞRμ −RνðSνμ − fRμ;CνgÞCμ

þCνðRμν − fRμ;RνgÞCμ −CνðSμν − fCμ;RνgÞRμ

−Rν½Cμ;Rμ�Cν þCν½Cμ;Rμ�Rν þ ½Rμ;Cν�Sμν
−RμRνCμν −CμCνRμν�; ð81Þ

where

½A;B� ¼ AB − BA; fA;Bg ¼ ABþ BA ð82Þ

are, respectively, the commutator and anticommutator.

SCALE MAGNETIC EFFECT IN QUANTUM … PHYSICAL REVIEW D 96, 056006 (2017)

056006-9



The second-order correction ~Gð2Þ is now equal to the sum

(76a) of the two terms ~Gð2Þ
I and ~Gð2Þ

II given, respectively, in
Eqs. (77b) and (81). Since these terms do not contain
external derivatives, we should expand them in powers of
the derivatives and eventually keep the terms containing the
product ∂μτ∂νAα. As one can see from the explicit
definitions (61) and (78), the relevant terms enter the S
and R quantities:

Sμνðx; pÞ ¼ 3Cμðx; pÞ∂ντðxÞ; ð83aÞ

Rμðx; pÞ ¼
�
3 −

im
~Dðx; pÞ

�
∂μτðxÞ − Cνðx; pÞ∂μAνðxÞ;

ð83bÞ

Rμνðx; pÞ ¼ −3∂fμ;τðxÞ∂νgAαðxÞCαðx; pÞ: ð83cÞ

In Eq. (83c) all irrelevant terms with double derivatives are
not shown. The symmetrization with respect to the Lorentz
indices is denoted by the curly brackets.
Equation (83) indicates that every term in the second-

order corrections to the Weyl symbol of the Green function
[Eqs. (77b) and (81)] contains the required combination of
the derivatives ∂μτ∂νAα. Since we are looking for the terms
bilinear in τ and Aμ, we keep the mentioned combination
while setting τ and Aμ to zero in the prefactors of these
terms. Denoting the latter with the superscript “(0),” one
then immediately gets the following expressions for the S
and R Lorentz structures (83):

Sð0Þμν ðx; pÞ ¼ 3PμðpÞ∂ντðxÞ; ð84aÞ

Rð0Þ
μ ðx;pÞ¼ ½3− imP0ðpÞ�∂μτðxÞ−PνðpÞ∂μAνðxÞ; ð84bÞ

Rð0Þ
μν ðx; pÞ ¼ −3∂fμ;τðxÞ∂νgAαðxÞPαðpÞ; ð84cÞ

where

PμðpÞ≡ Cð0Þ
μ ðpÞ ¼ lim

τ→0
lim
A→0

Cμðx; pÞ ð85Þ

is the vector Cμ given by the second expression in Eq. (78a)
in flat space in the absence of an external electromagnetic
field.
Using the explicit form of the Weyl symbol ~D of

the fermionic operator (61) and the second relation in
Eq. (78a), we explicitly get for Eq. (85)

PμðpÞ ¼
1

p2 þm2
ð=pþ imÞγμ; ð86Þ

where γμ are Euclidean gamma matrices for μ ¼ 1;…; 4
and γ0 ≡ 1 is a unit matrix.2 In addition, we notice that
because the Weyl symbol ~D is a linear function of the
momentum p, the second relation in Eq. (61) gives us
Cμν ≡ 0.
Finally, we substitute the Lorenz structures (84c) and

(85) into the second-order corrections to the Weyl symbol
of the Green function [Eqs. (77b) and (81)], sum them up,
and put the result into the definition of the induced electric
current (68). Then, in order to keep only the second-order
corrections, we set τ ¼ 0 in the volume prefactor of the
current (68), and after algebraic manipulations we get the
following compact expression for the generated nonanom-
alous electric current:

Jaction;μ ¼ −
ime2

4

∂τ
∂xα

∂Aβ

∂xν
Z

d4p
ð2πÞ4 trðPμPναβÞ; ð87Þ

where the trace is taken over the spinor space, while the
tensor structure

Pναβ ¼ ffP0; Pνg; fPα; Pβgg þ f½P0; Pα�; ½Pν; Pβ�g
− ffP0; Pβg; fPν; Pαgg; ð88Þ

is given in terms of the commutators and anticommutators
(82) of the matrices (86).
The electric current (87) is invariant under the U(1)

gauge transformations (16) since the expression under the
integral in Eq. (87) is antisymmetric with respect to the
interchange of the indices β and ν. The latter fact can be
checked directly by manipulation of Eq. (88). Therefore,
the derivative ∂νAβ in Eq. (87) always appears in the
form of the gauge-invariant electromagnetic field tensor,
∂νAβ − ∂βAν ≡ Fνβ.
Substituting Eq. (86) into Eq. (88) and taking the trace

over the spinor indices, we get the electric current (87),

Jaction;μ ¼ −αðmÞe2Fμν∂ντ; ð89Þ

where the prefactor αðmÞ is given by the integral

αðmÞ ¼ 4m2

Z
d4p
ð2πÞ4

ðp2 þ 2m2Þ
ðp2 þm2Þ4 ; ð90Þ

which evaluates to a finite mass-independent quantity,

αðmÞ ¼ 1

6π2
: ð91Þ

We note that despite the fact that Eq. (89) has a visibly
covariant four-tensor form, our Euclidean derivation is

2For convenience, we complemented the four-vector (86) with
the fifth μ ¼ 0 component. In Euclidean space our choice γ0 ≡ 1
does not interfere with the γ0 matrix of Minkowski space.
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formally valid only for the spatial indices μ and ν which do
not allow us to consider either a nonzero background
electric field E or a time-dependent conformal metric
factor τ ¼ τðtÞ. Restricting ourselves to the case of
the pure magnetic field background B ≠ 0 in spatially
inhomogeneous curved space τ ¼ τðxÞ, we obtain from
Eqs. (89) and (91) the following nonanomalous contribu-
tion to the electric current in massive QED:

Jaction ¼ −
e2

6π2
∇τ × B: ð92Þ

Taking into account the value of the one-loop QED beta
function (31), we find that the part of the electric current
(92) precisely cancels the one-loop anomalous part,

Jmeasure ¼
2β1 loopQED

e
∇τðxÞ × BðxÞ; ð93Þ

which comes from the integration measure (35). Therefore,
in the limit of heavy fermions the electric current generated
by the SME vanishes,

J ¼ Jmeasure þ Jaction ¼ 0þOð∂2=m2Þ; ð94Þ

where the second term denotes higher-derivative terms
which are suppressed in the large-mass limit. These terms
appear naturally in the derivative series (73) which iter-
atively define the Wigner transform of the fermionic
propagator as the solution of the Groenewold equation (63).

VI. DISCUSSIONS AND CONCLUSION

In this paper we discussed the SME which generates a
vacuum electric current in an external magnetic field in a
curved spacetime [14]. The origin of the effect is the
conformal anomaly which breaks, at the quantum level, a
conformal symmetry in classically conformal gauge theo-
ries. This effect has already been considered in QED with
massless fermions. In this paper we asked the natural
question of what happens with the SME if the fermions are
massive so that the conformal invariance is already explic-
itly broken at the classical level. In particular, we consid-
ered the limit when the fermion massm is much larger than
the scale of the external magnetic field m2 ≫ jBj and the
scale of the spatial gradient of the conformal factor τ of the
metric, m ≫ j∇τj. This limit is opposite to the classically
conformal case considered in Ref. [14].
We demonstrated that the anomalous electric current

generated by the massive fermions can conveniently be
calculated by the Wigner-Weyl formalism which gives the
derivative series inversely proportional to increasing
powers of the fermion mass m. We have found that there
are two contributions to the electric current generated by
the SME.

The first contribution Jmeasure comes from the integration
measure over the fermionic fields. This current is anoma-
lous because the measure is not invariant under conformal
(Weyl) transformations in the presence of the background
electromagnetic field [15]. As a result, the anomalous
contribution Jmeasure does not depend on the fermion mass
because the quantum measure is independent of the details
of the classical fermionic action. At small fermion masses
the anomalous term provides the major contribution to the
SME current. The current Jmeasure should also contain
contributions induced by exchanges by virtual photons.
These loop corrections were not considered in the present
paper since they are suppressed by higher orders of the fine-
structure constant αQED.
The second contribution Jaction originates from the

classically nonvanishing terms in the trace of the energy-
momentum tensor. These terms appear due to the explicit
breaking of the scale invariance at the level of the classical
Lagrangian. Despite the fact that our derivation involved
integrals in unbounded momentum space, the second
contribution to the electric current is a finite quantity in
both the ultraviolet and infrared regimes. The absence of
the ultraviolet divergences implies that the anomalous
current does not require regularization and subsequent
renormalization. Our result was obtained in the classical
electromagnetic field background Aμ in the leading order of
the Wigner expansion. Next, higher-order terms in the
Wigner expansion would correspond to (spatial) derivative
series in terms of the electromagnetic gauge field Aμ and
conformal factor τ. Quantum fluctuations of the electro-
magnetic field on top of the classical magnetic background
would generate perturbative series over the electromagnetic
coupling e at each given order of the Wigner expansion. We
expect that the perturbative series would generate standard
ultraviolet divergences which will be absorbed into the
renormalization of the gauge coupling e. Thus, due to the
renormalizability of QED, we expect that in the leading
(lowest-derivative) order of the Wigner expansion the
quantum corrections would lead to a renormalization of
the electric charge without qualitatively altering the expres-
sion for the anomalous electric current (92).
We have explicitly found that for massive fermions the

electric currents Jmeasure and Jaction (originating, respec-
tively, from the anomalous symmetry breaking and from
the explicit symmetry breaking) cancel each other in the
leading order in the number of derivatives. Therefore, for
sufficiently heavy fermions the SME should be strongly
suppressed. This conclusion is in agreement with the
decoupling theorem for massive particles [19].
It is clear that the apparent Euclidean covariant structure

of the generated current (89) is common both for the scale
magnetic (5) and scale electric (6) effects [14]. Therefore,
we believe that our conclusion may also be valid for the
scale electric effect, which has not been explicitly discussed
in this paper.
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Finally we notice that there is a potential possibility to
observe the scale magnetic effect in tabletop laboratory
experiments with Dirac and Weyl semimetals. These
materials possess both crucial ingredients, as they host
relativistic massless fermionic excitations subjected to a
gravitational field background. The relativistic fermions
emerge naturally due to topological properties of the
electronic band structure of these materials [35], while
the emergent gravity may be induced by elastic deforma-
tions of their crystal structure [36]. The latter effect is
very common for many solid state systems [37]. Thus,
elastically deformed topological materials may provide a
useful experimental tool to study a plethora of properties

[23] of relativistic quantum field theory in curved space-
time, including the scale magnetic effect.
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