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We study the s-wave kaon-nucleon bound state with the strangeness S ¼ −1 in the Bethe-Salpeter
formalism in the ladder and instantaneous approximations. We solve the Bethe-Salpeter equation of the
bound state and obtain the Bethe-Salpeter amplitude. It is shown that the K−p bound state exists in this
formalism. We also study the decay width of the bound state based on the Bethe-Salpeter techniques. The
mass of this bound state is 1422 MeV, and its decay width is obviously smaller than that of Λð1405Þ. These
results indicate that there may be some other structures in the observed resonance.
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I. INTRODUCTION

In the last decade, several nonconventional states were
observed [1,2]. In the light baryon spectrum, one of such
resonances is Λð1405Þ, which is just below the K̄N
threshold and emerges in the meson-baryon scattering
amplitude with IðJPÞ ¼ 0ð1=2−Þ and strangeness S ¼ −1
[1,3]. It was discovered in the Σπ invariant mass spectrum
of the channel K−p → πππΣ [4–6]. Various experimental
and theoretical investigations for Λð1405Þ have been
preformed in recent years. The failure of the traditional
quark model to interpret Λð1405Þ makes people consider
exotic configurations such as the K̄N molecular structure
[7,8]. This molecular configuration has been supported by
recent lattice QCD results [9].
Meanwhile, several studies propose that Λð1405Þ has a

two-pole structure and the spectrum in experiments exhibits
one effective resonance shape [10]. Recently, the
SIDDHARTA Collaboration has determined the energy
shift and width of kaonic hydrogen, which provides a
strong and direct constraint on the K̄N scattering amplitude
[11,12]. Based on this constraint, various studies confirm
the two-pole structure ofΛð1405Þ [13–17]. In this work, we
will focus on the bound state below the K̄N threshold,
which might consist of the proton and antikaon.
The chiral perturbation theory (ChPT) is a useful

effective field theory to deal with meson-meson (baryon)
interactions at the low energy scale [18,19]. A systematic
and successful approach (the unitary chiral approach)
combining ChPT and the unitarity condition of the scatter-
ing amplitude has been developed to describe the K−p
scattering data [3,20]. In this paper, we will consider the

Bethe-Salpeter equation method. The unitary chiral
approach is based on the scattering theory. In this approach,
the scattering amplitude can be obtained by regarding the
two-body interaction obtained in chiral perturbation theory
as the potential and solving the Lippmann-Schwinger
equation [3,20]. The two-particle Bethe-Salpeter equation
is derived from the relativistic quantum field theory. The
basic concept is to relate the Bethe-Salpeter amplitude to
the two-body propagator (four-point propagator) for which
an integral equation can be derived from perturbation
theory [21–23]. In the unitary chiral approach, the bound
state and resonance can be expressed as pole singularities in
the scattering amplitude. The bound state and resonance
poles appear in the first and second Riemann sheets,
respectively [3,20]. In the Bethe-Salpeter technique, the
bound state gives rise to a pole in the Fourier transform of
the two-body propagator, and we cannot get the continuum
(or scattering) state by solving the homogeneous Bethe-
Salpeter equation [23]. Both of the two approaches include
a loop integration in momentum space, which might lead to
an ultraviolet divergence. The unitary chiral approach deals
with the divergence in the so-called on-shell factorization
approach [3,20,24]. In the Bethe-Salpeter technique, this
divergence can be avoided, which will be shown below
[25–28]. Besides, we solve Bethe-Salpeter amplitude from
the Bethe-Salpeter equation, while the scattering amplitude
is solved in the unitary chiral approach. The dependence of
the Bethe-Salpeter amplitude on the momentum transform
reveals the structure of the bound states [25–28].
The Bethe-Salpeter techniques were developed by

Feynman [21], Salpeter and Bethe [22], and Lurie [23].
It has been applied to theoretical studies concerning heavy
baryons and molecular bound states [25–28]. In previous
studies, the possible bound states of KK̄,DK, and BK̄ have
been investigated in the Bethe-Salpeter formalism with the
kernel introduced by ChPT in the ladder and instantaneous
approximations [26–28]. We will try to study the K−p
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bound state in this framework in the present paper. We will
take these two approximations into account and consider
the interaction kernel provided by the leading order of
ChPT. We will investigate whether the bound state exists or
not and study its decay in this picture. We will also discuss
the extent to which the K−p component contributes to the
observed Λð1405Þ resonance.
The remainder of this paper is organized as follows. In

Sec. II, we derive the Bethe-Salpeter equation for the K−p
system in detail and present the normalization condition of
the Bethe-Salpeter amplitude. In Sec. III, the decay of the
K−p bound state to Σþπ− is discussed. The numerical
results are presented in Sec. IV. In the last section, we give a
summary and some discussions.

II. BETHE-SALPETER FORMALISM FOR THE
BOUND STATE CONTAINING THE PROTON

AND ANTIKAON

A. Bethe-Salpeter equation for the K − p system

In this section, we will derive the Bethe-Salpeter
equation for the K−p system. We assume that the bound
state exists and its mass is M. We denote it by Λ�. In this
picture, the Bethe-Salpeter amplitude can be defined as
[23,25–31]

χðx1; x2; PÞ ¼ h0jTψðx1Þϕðx2ÞjΛ�i; ð1Þ

with ψðx1Þ and ϕðx2Þ being field operators of the proton
and K−, respectively, and P being the momentum of
the system. In the momentum space, the Bethe-Salpeter
amplitude, χPðpÞ, is related to χðx1; x2; PÞ through the
equation [23]

χðx1; x2; PÞ ¼ eiPX
Z

d4p
ð2πÞ4 χPðpÞe

ipx; ð2Þ

where p and xð¼ x1 − x2Þ are the relative momentum and
the relative coordinate of two constituents, respectively, and
X is the center of mass coordinate, which is defined as
X ¼ λ1x1 þ λ2x2, where λ1 ¼ m1

m1þm2
, λ2 ¼ m2

m1þm2
, with m1

and m2 being the masses of the proton and the K− meson,
respectively. The momentum of the proton is p1 ¼ λ1Pþ p
and that of K− is p2 ¼ λ2P − p. The derivation of the
Bethe-Salpeter formalism for the two fermion systems can
be found in the textbook [23]. In the same way, one can
prove that the form of the Bethe-Salpeter equation is still
valid for the fermion and scalar object system [25].
Therefore, the Bethe-Salpeter amplitude in our case
satisfies the homogeneous integral equation [23,25–31]

χPðpÞ¼ sFðλ1PþpÞ
Z

d4q
ð2πÞ4KðP;p;qÞχPðqÞsBðλ2P−pÞ;

ð3Þ

where sF and sB are propagators of the proton and K−,
respectively. We also define the relative longitudinal
momentum plð¼ v · pÞ and transverse momentum
pt½¼ p − ðv · pÞv� with vð¼ P=MÞ being the 4-velocity
of the bound state, and KðP; p; qÞ is the interaction kernel
that can be described by the sum of all the irreducible
graphs which cannot be split as into two pieces by cutting
two-particle lines as defined in Ref. [23]. For the propa-
gators, we have

sFðλ1PþpÞ¼ i½ðλ1MþplÞ=vþ=ptþm1�
ðλ1Mþpl−ω1þ iϵÞðλ1Mþplþω1− iϵÞ ;

sBðλ2P−pÞ¼ i
ðλ2M−pl−ω2þ iϵÞðλ2M−plþω2− iϵÞ ;

ð4Þ

with ω1ð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1ð2Þ − p2
t

q
.

In general, considering =vuðv; sÞ ¼ uðv; sÞ, χPðpÞ can be
written as [29–31]

χPðpÞ ¼ ðg1 þ g2γ5 þ g3γ5=pt þ g4=pt þ g5σμνεμναβptαvβÞ
× uðv; sÞ; ð5Þ

where uðv; sÞ is the spinor of the bound state with helicity s
and giði ¼ 1; 2 � � � 5Þ are Lorentz-scalar functions. With the
constraints imposed by parity and Lorentz transformations,
it is easy to prove that χPðpÞ can be simplified as [29–31]

χPðpÞ ¼ ½f1ðpÞ þ f2ðpÞ=pt�uðv; sÞ; ð6Þ

in which f1ðpÞ and f2ðpÞ are two independent Lorentz-
scalar functions of p.
The Bethe-Salpeter equation can be treated in the so-

called ladder approximation [23]. In this approximation,
KðP; p; qÞ is replaced by its lowest-order value [23]. Here,
we adapt ChPT to describe the s-wave meson-baryon
interaction. For the s-wave amplitude, the most important
piece is the Weinberg-Tomozawa contact interaction at
the lowest orderOðpÞ of ChPT [3,32]. According to ChPT,
the Lagrangian for the Weinberg-Tomozawa contact inter-
action as shown in Fig. 1 is [3,19,20]

FIG. 1. Feynman diagram for the Weinberg-Tomozawa inter-
action in ChPT.
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L ¼ ψ̄ iγμ
Cif

4f2
ðϕ∂μϕ − ∂μϕϕÞψ ; ð7Þ

where Cif is the isospin coefficient (i and f represent the initial and final states, respectively) and f corresponds to the meson
decay constant in the chiral limit at the tree level. Using this interaction term, we obtain the formalism ofKðP; p; qÞ in terms
of pl and pt,

KðP; p; qÞ ¼ −iCif
1

4f2
ð=p2 þ =q2Þ ¼ −iCif

1

4f2
½2ðλ2M − plÞ=v − ð=pt þ =qtÞ�; ð8Þ

where we use the covariant instantaneous approximation, pl ¼ ql, in the last line.
Now, we substitute Eqs. (4), (6), and (8) into the Bethe-Salpeter equation (3) and obtain the coupled integral equations

about f1ðpl; ptÞ and f2ðpl; ptÞ:

4f1ðpl; ptÞ ¼
iCif

f2

Z
d4q
ð2πÞ4 ·

� ½2ðλ1M þ plÞðλ2M − plÞ − p2
t − pt · qt� · f1ðql; qtÞ

ðλ1M þ pl − ω1 þ iϵÞðλ1M þ pl þ ω1 − iϵÞðλ2M − pl − ω2 þ iϵÞðλ2M − pl þ ω2 − iϵÞ

−
m1ðpt · qt þ q2t Þ · f2ðql; qtÞ

ðλ1M þ pl − ω1 þ iϵÞðλ1M þ pl þ ω1 − iϵÞðλ2M − pl − ω2 þ iϵÞðλ2M − pl þ ω2 − iϵÞ
�
; ð9Þ

4p2
t f2ðpl; ptÞ ¼

iCif

f2

Z
d4q
ð2πÞ4 ·

�
−m1ðp2

t þ pt · qtÞ · f1ðql; qtÞ
ðλ1M þ pl − ω1 þ iϵÞðλ1M þ pl þ ω1 − iϵÞðλ2M − pl − ω2 þ iϵÞðλ2M − pl þ ω2 − iϵÞ

þ ½2ðλ1M þ plÞðλ2M − plÞpt · qt − p2
t pt · qt − p2

t q2t �f2ðql; qtÞ
ðλ1M þ pl − ω1 þ iϵÞðλ1M þ pl þ ω1 − iϵÞðλ2M − pl − ω2 þ iϵÞðλ2M − pl þ ω2 − iϵÞ

�
: ð10Þ

We define the functions ~f1ð2ÞðptÞ ¼
R dpl

2π f1ð2Þðpl; ptÞ. In the Λ� rest frame, one has pt ¼ ð0;−p⃗tÞ and jptj ¼ jp⃗tj.
Performing the integration over pl on both sides through the residue theorem, we find that ~f1ð2Þðp⃗tÞ satisfy the coupled
integral equations as

~f1ðp⃗tÞ ¼
Cif

4f2

Z
d3q⃗t
ð2πÞ3 ·

��
2ð2λ1M þ ω1ÞðM þ ω1Þ − jp⃗tj2 − p⃗t · q⃗t

2ω1½ðM þ ω1Þ2 − ω2
2�

þ 2ω2ðM − ω2Þ þ jp⃗tj2 þ p⃗t · q⃗t
2ω2½ðM − ω2Þ2 − ω2

1�
�
· ~f1ðq⃗tÞ

−m1 ·

� jq⃗tj2 þ p⃗t · q⃗t
2ω1½ðM þ ω1Þ2 − ω2

2�
−

jq⃗tj2 þ p⃗t · q⃗t
2ω2½ðM − ω2Þ2 − ω2

1�
�
· ~f2ðq⃗tÞ

�
; ð11Þ

~f2ðp⃗tÞ ¼
Cif

4ð−jp⃗tj2Þf2
Z

d3q⃗t
ð2πÞ3 ·

��
m1ðjp⃗tj2 þ p⃗t · q⃗tÞ

2ω1½ðM þ ω1Þ2 − ω2
2�
−

m1ðjp⃗tj2 þ p⃗t · q⃗tÞ
2ω2½ðM − ω2Þ2 − ω2

1�
�
· ~f1ðq⃗tÞ

−
�
2ð2λ1M þ ω1ÞðM þ ω1Þp⃗t · q⃗t − jp⃗tj2p⃗t · q⃗t − jp⃗tj2jq⃗tj2

2ω1½ðM þ ω1Þ2 − ω2
2�

þ 2ω2ðM − ω2Þp⃗t · q⃗t þ jp⃗tj2p⃗t · q⃗t þ jp⃗tj2jq⃗tj2
2ω2½ðM − ω2Þ2 − ω2

1�
�
· ~f2ðq⃗tÞ

�
; ð12Þ

withω1ð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1ð2Þ þ jp⃗tj2
q

. These two equations involve the integrations of qt. They look like divergent integrations since

qt varies from 0 to þ∞. However, the Bethe-Salpeter amplitudes (f1 and f2) decrease to zero rapidly at the large
momentum transfer, and thus there is no divergence in practice [23,25–28].

B. Normalization condition of the Bethe-Salpeter amplitude

In Eqs. (9) and (10), we leave the normalization of ~f1 and ~f2 undetermined. Following Ref. [23], the normalization
condition for the Bethe-Salpeter equation can be written as

i
ð2πÞ4

Z
d4pd4qχ̄PðpÞ

∂
∂P0

½Iðp; q; PÞ þ Kðp; q; PÞ�χPðqÞ ¼ 2P0; ð13Þ
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where Iðp; q; PÞ is the inverse of the four-point propagator

Iðp; q; PÞ ¼ δð4Þðp − qÞ½sFðλ1Pþ pÞ�−1½sBðλ2P − pÞ�−1:
ð14Þ

One can recast the normalization condition for the Bethe-
Salpeter amplitude into the form [30]

−
Z

d4p
ð2πÞ4 fTr½αPðpÞβPðpÞsFðp1Þðλ1ε=ÞsFðp1ÞsBðp2Þ�

þ Tr½αPðpÞβPðpÞð2λ2p2 · εÞsFðp1ÞsBðp2ÞsBðp2Þ�g
¼ 2P0; ð15Þ

where ε¼ð1;0;0;0Þ and αPðpl;ptÞ[βPðpl; ptÞ] is the trans-
verse projection of the Bethe-Salpeter amplitude given by

αPðpl; ptÞ ¼ −isFðp1Þ−1χPðpl; ptÞsBðp2Þ−1;
βPðpl; ptÞ ¼ −isBðp2Þ−1χ̄Pðpl; ptÞsFðp1Þ−1: ð16Þ

Substituting Eq. (3) into the above equations, we obtain

αPðpl; ptÞ ¼ ½ ~h1ðptÞ þ =pt
~h2ðptÞ�uðv; sÞ;

βPðpl; ptÞ ¼ ūðv; sÞ½ ~h1ðptÞ þ =pt
~h2ðptÞ�; ð17Þ

with

~h1ðptÞ ¼
Z

d3qt
ð2πÞ3

Cifðpt · qt þ jqtj2Þ ~f2ðqtÞ
4f2jptj2

;

~h2ðptÞ ¼
Z

d3qt
ð2πÞ3

Cifðpt · qt þ jqtj2Þ ~f1ðqtÞ
4f2

: ð18Þ

Then, we substitute Eqs. (17) and (18) into Eq. (15) and
integrate out the relative longitudinal momentum ql. In the
Λ� rest frame, the normalization condition can be written in
the following form:

−
Z

d3p⃗t

2ð2πÞ3
4M

ðM þ ω1 − ω2Þ2
�

λ1
2ω2ðM − ω1 − ω2Þ2

½−4~h1ðp⃗tÞ ~h2ðp⃗tÞp⃗2
t ðλ2M − ω2Þ

− ~h21ðp⃗tÞðλ22M2 þm2
1 − 2λ2Mω2 þ 2λ2Mm1 − 2m1ω2 þ ω2

2 − p⃗2
t Þ

þ ~h22ðp⃗tÞp⃗2
t ðλ22M2 − 2λ2Mm1 þm2

1 þ 2m1ω2 þ ω2
2 − p⃗2

t Þ�

þ λ2ðM þ λ1λ2M − ω1Þ
ω1ðM þ ω1 þ ω2Þ2

½ ~h21ðp⃗tÞðm1 − λ1M − ω1Þ þ ~h1ðp⃗tÞ ~h2ðp⃗tÞp⃗2
t þ ~h22ðp⃗tÞp⃗2

t ðλ1M þ ω1 þm1Þ�
�

¼ 2M: ð19Þ

III. DECAY WIDTH OF THE K − p BOUND STATE

In this section, we will proceed to apply the Bethe-
Salpeter technique to derive the decay width of the K−p
bound state. According to the experiments, Λð1405Þ
exclusively decays into ΣπðI ¼ 0Þ. In fact, Dalitz and
Deloff analyzed the Σþπ− spectrum to extract the mass
and width of Λð1405Þ [33]. This clear spectrum is
frequently shown as a representative of the Λð1405Þ
spectrum and used for the input of theoretical models
[3]. Therefore, we will study the decay width of the K−p
bound state into the above final state. As shown in Fig. 2,

the relevant interaction vertex is given in Eq. (7) at
the lowest order OðpÞ through ChPT [3,20]. We define
pa½¼ ðEa;−p⃗aÞ� and pb½¼ ðEb;−p⃗bÞ� to be the momenta
of Σþ and π−, respectively. p0ð¼ λ02pa − λ01pbÞ is defined as
the relative momentum of Σþ and π−, where λ01 ¼ ma

maþmb
,

λ02 ¼ mb
maþmb

, with ma and mb being the masses of Σþ and
π−, respectively, and p0

lð¼ v · p0Þ is the relative longi-
tudinal momentum of Σþ and π−. According to the
kinematics of the two-body decay, in the rest frame of
the bound state, one has

Eb ¼
M2 −m2

a þm2
b

2M
; Ea ¼

M2 −m2
b þm2

a

2M
;

jp⃗aj ¼ jp⃗bj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2 − ðma þmbÞ2ÞðM2 − ðma −mbÞ2Þ

p
2M

:

ð20Þ

The differential decay width reads

dΓ ¼ 1

32π2
jMj2 jp⃗aj

M2
dΩ; ð21Þ

where Ω is the solid angle of Σþ.FIG. 2. Feynman diagram for the decay Λ� → Σþπ−.
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Next, we will present the amplitude based on the
techniques in the textbook [23]. According to the
Lehmann-Symanzik-Zimmermann (LSZ) reduction for-
mula, the S-matrix element for this process is

hΣðpaÞπðpbÞjΛ�ðPÞiH
¼ −i

Z
d4x2d4y2eipax2eipby2 ūΣðpaÞ

· ðm2
b − ∂2

y2Þði∂x2 −maÞh0jψðx2Þϕðy2ÞjΛ�ðPÞiI;
ð22Þ

where I and H represent the interaction and Heisenberg
pictures, respectively. Following Eq. 9(77) in Ref. [23],
one has

h0jψðx2Þϕðy2ÞjΛ�ðPÞiI
¼ −

Z
d4x1d4y1Tðx2; y2; x1; y1ÞχPðx1; y1Þ; ð23Þ

in which Tðx2; y2; x1; y1Þ is defined to be the truncated Bethe-Salpeter irreducible part. By “truncation,” we mean the
removal of the two propagators corresponding to the incoming lines as shown in Fig. 3. Tðx2;y2;x1;y1Þ can be evaluated
perturbatively:

Tðx2; y2; x1; y1Þ ¼
Cif

4f2

Z
d4xis1ðxi − x2Þs2ðxi − y2Þγμð∂xi − ∂⃖xiÞδð4Þðx1 − xiÞδð4Þðy1 − xiÞ

¼ Cif

4f2

Z
d4xi

Z
d4pA

ð2πÞ4 e
ipAðxi−x2Þði=pA −maÞ−1

Z
d4pB

ð2πÞ4 e
ipBðxi−y2Þðp2

B −m2
bÞ−1γμð∂xi − ∂⃖xiÞ

× δð4Þðx1 − xiÞδð4Þðy1 − xiÞ: ð24Þ

Substituting Eqs. (23) and (24) into Eq. (22), we have

hΣðpaÞπðpbÞjΛ�ðPÞiH¼ i
Cif

4f2

Z
d4x2d4y2eipax2eipby2 ūðpaÞði∂x2 −maÞðm2

b−∂2
y2Þ

Z
d4x1d4y1

Z
d4xiδð4Þðx1−xiÞδð4Þðy1−xiÞ

·
Z

d4pA

ð2πÞ4e
ipAðxi−x2Þði=pA−maÞ−1

Z
d4pB

ð2π4Þe
ipBðxi−y2Þðp2

B−m2
bÞ−1γμð∂xi − ∂⃖xiÞχPðx1;y1Þ

¼ i
Cif

4f2
ūðpaÞ

Z
d4x1d4y1

Z
d4xieipaxieipbxið=p2þ=pbÞδð4Þðx1−xiÞδð4Þðy1−xiÞχPðx1;y1Þ

¼ ið2πÞ4δðP−pa−pbÞ
Cif

4f2

Z
d4p
ð2πÞ4 ūðpaÞð=p2þ=pbÞχPðpÞ; ð25Þ

where we use the relation χPðxi; xiÞ ¼ eiPxi
R d4p

ð2πÞ4 χPðpÞ. According to Eqs. (6) and (25), the amplitude of the Λ� → Σþπ−

process is

M ¼ i
Cif

4f2

Z
d3pt

ð2πÞ3 ūΣðpaÞ½ðλ2M − p0
lÞ=v − =pt þ =pb� · ð ~f1ðptÞ þ ~f2ðptÞ=ptÞuΛðPÞ; ð26Þ

in which we have considered the instantaneous approximation, pl ¼ p0
l, again.

In the Λ� rest frame, averaging over the spins of the initial state and summing over the spins of the final state, the
unpolarized decay width of Λ� is

FIG. 3. The truncated Bethe-Salpeter irreducible part
Tðx2; y2; x1; y1Þ.
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Γ ¼ jp⃗aj
32π5M2

C2
if

16f4

Z
djq⃗tjjq⃗tj2

Z
djp⃗tjjp⃗tj2

· f4M ~f1ðjp⃗tjÞ ~f1ðjq⃗tjÞ½ð2Eb þ 2p0
lÞðpa · pbÞ − Eam2

b þ Eap02
l þ 2Ebmap0

l þmam2
b þmap02

l �
þ 4~f2ðjp⃗tjÞ ~f2ðjq⃗tjÞjp⃗tj2jq⃗tj2ðEa þmaÞ þ 4~f1ðjp⃗tjÞ ~f2ðjq⃗tjÞjq⃗tj2½ðpa · pbÞ þ Eap0

l

þ Ebma þmap0
l� þ 4~f2ðp⃗tÞ ~f1ðjq⃗tjÞjp⃗tj2½ðpa · pbÞ þ Eap0

l þ Ebma þmap0
l�g; ð27Þ

with p0
l ¼ λ02Ea − λ01Eb.

IV. NUMERICAL RESULT

In this part, we will solve the Bethe-Salpeter equation
numerically and try to search for the possible solution of the
K−p bound state. To find out the bound state in this system,
one only needs to solve the homogeneous Bethe-Salpeter
equation. One solution corresponds to a possible bound
state. Since the Bethe-Selpeter amplitude for the ground
state is in fact rotationally invariant, ~f1ð2Þ depends only on

jptj. Generally, jptj varies from 0 to þ∞, and ~f1ð2Þ would
decrease to zero when jptj → þ∞. We replace jptj by the
variable

jptj ¼
�
ϵþ 50 · ln

�
1þ 1þ t

1 − t

��
MeV; ð28Þ

where ϵ is a small parameter and is introduced to avoid
divergence in numerical calculations and t varies from −1
to 1. We then discretize Eqs. (11) and (12) into n pieces
(n is large enough) through the Gauss quadrature rule. The
Bethe-Salpeter amplitude can be written as n-dimensional

vectors, fðnÞ
1ð2Þ. The coupled integral equations become two

matrix equations fn
1ð2Þ ¼ An×n

1ð2Þ1 · f
n
1 þ An×n

1ð2Þ2 · f
n
2 [A corre-

sponds to the coefficients in Eqs. (11) and (12)]. One can
obtain the numerical results of the Bethe-Salpeter ampli-
tude by solving the eigenvalue equation obtained from the
above two matrix equations.
In our calculation, we take the values of the parameters

as m1 ¼ 938 MeV, m2 ¼ 493 MeV [1]. According to
ChPT, the isospin coefficient Cif ¼ 2 in the K−p →
K−p coupling process [20,34]. For kaons in the meson-
meson interaction, fK ¼ 1.19fπ (fπ ¼ 93 MeV), and we
should expect a similar value here [14,20,34]. It can be seen
from Eqs. (11) and (12) that there is only one free parameter
in our model, the mass M of the possible bound state. We
varyM from 1300 to 1450 MeV in our calculation and find
that the nontrivial solution of the eigenvalue equation exists
when M ¼ 1422 MeV. In other words, the proton and
antikaon could form a bound state in this region, and its
mass is 1422 MeV. The corresponding numerical results of
the Lorentz-scalar functions in the normalized Bethe-
Salpeter amplitude, ~f1ðjptjÞ and ~f2ðjptjÞ, are given in
Fig. 4. One should note that the units of ~f1ðjptjÞ and

~f2ðjptjÞ are 1 and MeV−1, respectively. In the following,
we will take M, ~f1ðjptjÞ and ~f2ðjptjÞ as input when
calculate the decay width of the bound state.
Then, we apply the numerical solution of the Bethe-

Salpeter amplitude to calculate the decay width of Λ� →
Σþπ−. We use the following input parameters [1,20,34]:
ma ¼ 1189 MeV, mb ¼ 139 MeV, and Cif ¼ 1. With the
parameters determined above, the decay width of the
process Λ� → Σþπ− in our calculation is 15 MeV.
Several studies point out the existence of the two-pole

structure in the region of the Λð1405Þ. The main compo-
nent may be the K−p bound state, which is narrow and
stable, and the other is the Σπ continuum (or scattering)
state [1,13,14,16,17]. The results of the pole structure in the
unitary chiral approach within the SIDDHARTA experi-
ment constraints are displayed in Table I. One can see that
our result is in agreement with the pole 1 which is just

FIG. 4. Numerical result for the normalized Bethe-Salpeter
amplitude of the bound state. The units of ~f1 and ~f2 are 1 and
MeV−1, respectively.
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below the K−p threshold. This situation supports the
existence of the K−p bound state. Furthermore, according
to the PDG, the peak and width of theΛð1405Þ resonance is
1405.1þ1.3

−1.0 and 50.5� 2.0 MeV, respectively [1]. We can
see the bound state in our calculations is located in the
range of the Λð1405Þ, and its decay width is quite smaller
than that of Λð1405Þ. That is to say, the K−p bound state
does exist and could contribute to the observed Λð1405Þ,
but there may be some other structures in the observed
resonance region.

V. SUMMARY AND DISCUSSION

The Bethe-Salpeter formalism has been successfully
applied in many theoretical studies concerning heavy mes-
ons, heavy baryons, and molecular bound states automati-
cally including relativistic corrections. In this paper, we
studied the possible s-wave molecular bound state of the
K−p system in this formalism. Considering the interaction
kernel based on theChPTat the leading order, we established
the Bethe-Salpeter equation for theK−p system in the ladder
and instantaneous approximations. Then, we discretized the
integral equations and solved the eigenvalue equation
numerically. We confirmed the existence of the s-wave
K−p bound state in this formalism and obtained its Bethe-
Salpeter amplitude.We also calculated the decaywidth of the
Λ� → Σþπ− process by using the Bethe-Salpeter amplitude.
According to our calculation, the mass of the K−p bound
state is compatible to that of the Λð1405Þ resonance.
In this work, we used the so-called ladder approxima-

tion. One may wonder if this approximation is a good one
since higher-order graphs could give more important

contributions than the ladder graphs. In fact, the legitimacy
of the application of the ladder approximation in the Bethe-
Salpeter formalism has been studied [26,35,36]. It was
shown that including only the ladder graphs in the scalar-
scalar system cannot lead to the correct one-body limit [35]
and gauge invariance cannot be maintained within the
ladder approximation. To solve these problems, the
crossed-ladder graphs should be included at least
[35,36]. However, in our case, the interaction terms at
lowest order OðpÞ of ChPT, which can lead to crossed-
ladder graphs, the Born terms, mainly contribute to the
p-wave interaction [32]. So, we can adopt the ladder
approximation legitimately in our model. Another approxi-
mation we took is the instantaneous approximation. In this
approximation, the energy exchange between the constitu-
ents is neglected. The binding energy of the bound state can
be defined as Eb ¼ M − ðm1 þm2Þ. In our calculation, the
binding energy is −9 MeV. This shows that the binding of
the constituent particles is weak; hence, the exchange of
energy between them can be neglected.
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