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Motivated by cosmological examples, we study quantum field theoretical tunneling from an initial state
where the “classical field,” i.e. the vacuum expectation value of the field operator, is spatially homogeneous
but performing a time-dependent oscillation about a local minimum. In particular, we estimate both
analytically and numerically the exponential contribution to the tunneling probability. We additionally
show that after the tunneling event, the classical field solution—the so-called “bubble”—mediati the phase
transition can either grow or collapse. We present a simple analytical criterion to distinguish between the
two behaviors.
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I. INTRODUCTION

The decay probability of a scalar field settled in a local
minimum of its potential to its global minimum is a
fascinating process which appeals more to the quantum
aspects of quantum field theory than its classical ones.
In a seminal paper by Coleman [1], it was understood that

the tunneling rate could be obtained by studying the so-
called “most probable escape path” (MPEP) introduced in
[2,3]. This path corresponds to a solution of the quantum
equations of motion in Euclidean time and gives the
trajectory in field space along which the tunneling proba-
bility is maximal. Subsequent calculations of the first-order
quantum corrections to this path by Coleman and Callan in
[4] led to the famous formula for the tunneling rate:

Γ
V
¼ Ae−Sð1þOðℏÞÞ: ð1:1Þ

Here, S is twice the imaginary part of the action required to
form a bubble, i.e. the smallest action configuration con-
necting the two vacua and, therefore, the most probable
escape path. A is the dimensionful prefactor that can be
determined by a loop calculation around the bubble solution
and was first estimated in [4].
This result has been since extended to include thermal

[5–7] and gravitational [8] corrections (see [9–13] for a
modern use of these techniques in the Higgs boson case).
Furthermore, much interest in phase transitions which could
occur in the early Universe was sparked recently by the
potentially detectable gravitational wave signals they could

leave behind [14–24]. These situations have in common that
they start from a classically stable and essentially time-
independent situation. The only time dependence arises from
the tunneling process itself. However, in many cosmological
situations the Universe is not in a quasiequilibrium and the
field relevant to the tunneling process may be time depen-
dent. A recent example of such a situation arises at the end of
monodromy inflation [25,26]. Here the inflaton field may
roll through a potential featuring several local minima with
the Hubble expansion slowing down the evolution of the
field, eventually trapping it in one of the minima [27]. Yet,
even after being classically trapped in one minimum, the
field continues to oscillate. Naturally, the question now
arises: what is the probability for a transition from this
oscillating state to one of the neighboring minima, in
particular since this has interesting phenomenological con-
sequences in the form of gravitational waves [27]. Another
example are models of cosmological relaxation [28–35] and
models of dark matter based on axion-monodromies [36],
where again we have evolution in a potential with many
minima and the field continuing to oscillate for a significant
time after it has been trapped in one of them.
For these reasons, we are interested in obtaining a better

understanding of tunneling from a time-dependent initial
state. As a simple first step, we will consider, in the present
paper, the tunneling of a scalar field classically oscillating
around a false vacuum, as motivated by the above exam-
ples. Our aim is to provide first estimates for the tunneling
rate from such a nontrivial state. This has already been
partially studied in [37] and we will compare our results to
theirs and comment on the differences. Calculations have
been performed also for a variety of other nontrivial initial
states, for instance see [38–41] in the case of black holes
and e.g. [42] discussing tunneling from particle collisions.

*luc.darme@ncbj.gov.pl
†jjaeckel@thphys.uni‑heidelberg.de
‡marek.lewicki@fuw.edu.pl

PHYSICAL REVIEW D 96, 056001 (2017)

2470-0010=2017=96(5)=056001(16) 056001-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.056001
https://doi.org/10.1103/PhysRevD.96.056001
https://doi.org/10.1103/PhysRevD.96.056001
https://doi.org/10.1103/PhysRevD.96.056001


Let us start with some qualitative expectations. As the
energy in the oscillating state is higher than in the situation
when the field sits at its minimum it is natural to expect that
the tunneling rate will be increased, and will have addi-
tionally a time dependence. Furthermore, since the oscil-
lating state breaks the SOð3; 1Þ boost symmetries, one
should expect the emergence of other types of “bubble”
solutions besides the usual expanding Coleman-De Luccia
instanton. Finally, even if the minimum around which the
field oscillates is the global minimum, it seems possible
that for sufficiently large oscillations the field actually
transits into a neighboring potential well whose minimum
is higher as long as the oscillations are big enough (in
quantum mechanics transitions under all these circum-
stances are possible and do occur).
In the present paper we calculate the exponential term S

of the decay rate (1.1) and investigate whether or not the
bubble arising from the MPEP will subsequently generate a
phase transition, or instead collapse after its nucleation.
Interestingly, and in accordance with the naive expectation,
we find that on average, the tunneling rate is dominated by
its value at an extremum of the oscillation:

�
Γ
V

�
∝ exp ½−Sext�;

where Sext is twice the imaginary part of the action required
to form a bubble of true vacuum when the oscillating field
is at an extremum of its oscillation. However, for oscil-
lations large enough, the bubble created by the MPEP at
the turning point of the oscillation will collapse, so that the
true decay rate should be suppressed compared to the above
expectation. This happens when:

φ2
out >

ΔV
μ2

;

where, φout is the amplitude of the initial oscillations, ΔV is
the energy difference between the two minima and μ is the
so-called “inverse thickness” of the wall, defined in Sec. II.
This equation also suggests that while is possible to tunnel
from the global minimum to a local one, the bubble a false
vacuum will always collapse, falling short of generating a
phase transition.
These results, along with their corresponding caveats

and a more precise numerical study, will be presented in the
rest of this paper. Let us nevertheless simply comment on
how a phase transition can occur when the oscillations are
larger than the previously mentioned criterion. It is clear
that a phase transition can only occur in this case from
bubbles which do not originate from the MPEP. For
instance, the field inside the bubble could have either a
nonvanishing time derivative when the bubble nucleates,
or simply a value different from the true vacuum one,
triggering subsequent oscillations within the bubble. We

will investigate these possibilities both numerically and
analytically in this work. Notice that one cannot rule out
that more exotic configurations could provide the dominant
contribution in this case.
While the exponential term of the average decay rate

depends only of the tunneling rate from an extremum of the
oscillation, calculating the precise time dependence of the
tunneling rate is a more delicate matter. We present in this
work an intuitive estimation of this dependence. We leave
to a future work [43] a more precise and theoretically sound
study of this effect based on the functional Schrödinger
equation method.
In the following we will proceed as follows. In Sec. II,

we will setup the explicit model we study and briefly
recall the essentials of tunneling and in particular the thin
wall approximation. The latter being very useful for
obtaining analytical estimates. We will then modify the
thin-wall approximation to suit our nontrivial initial state
and pursue both estimates described above. We then
compare the thin-wall results to a numerical calculation
of bubbles and their time evolution in Sec. IVA. Finally,
in Sec. V, we summarize our findings and draw some
conclusions.

II. FALSE VACUUM DECAY AND
MEMBRANE ACTION

Most analytical results dealing with tunneling in QFT
are based on the so-called “thin-wall limit.” We start by
reviewing in this section the standard Coleman approach to
tunneling in QFT and introduce this thin-wall limit. A
particularly interesting aspect of the thin-wall regime is the
possibility of simplifying the problem to the nucleation and
subsequent evolution of a “bubble” of true vacuum. This is
described by a “membrane” action that we will also present
in more details below.

A. The fate of the false vacuum

For concreteness, most of the results in this paper will be
derived using an asymmetric double well potential of the
form

V ¼ gc4

4
ðϕ2=c2 − 1Þ2 − bðϕþ cÞ; ð2:1Þ

where g, c and b are positive constants. This potential has
two minima in ϕF and ϕT , with the latter being deeper with
an asymmetry of approximately 2bc. Note that, more
generally, most of the qualitative properties we will derive
will be also true for all potentials of the general form of
Fig. 1. Anticipating slightly, we will furthermore define the
inverse “thickness” of the wall,

μ≡
ffiffiffiffiffiffiffiffiffi
2gc2

q
; ð2:2Þ
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and assume the following hierarchy, called the thin-wall
limit in the rest of this paper:

bc ≪ μ2c2: ð2:3Þ

It is finally useful to introduce a small parameter for this
hierarchy (2.3), αtw defined by

αtw ≡ b
μ2c

: ð2:4Þ

In the approach of Coleman to vacuum-to-vacuum
tunneling, the exponential contribution of (1.1) can be
obtained by calculating the MPEP: a path in field space
corresponding to a saddle point of the Euclidean action,

SE ¼
Z

dτd3x

�
1

2
ð∂τϕÞ2 þ

1

2
ð∇ϕÞ2 þ VðϕÞ

�
; ð2:5Þ

which matches the false vacuum at spatial infinity limit,
ϕ → ϕF at jx⃗j → ∞. Supposing an Oð4Þ-symmetric sol-
ution, we define r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ jx⃗j2

p
and write the Euclidean

equations of motion as

∂2ϕ

∂r2 þ 3

r
∂ϕ
∂r ¼ V 0ðϕÞ: ð2:6Þ

Solving this equation leads to the “Coleman bounce”
solution. This can be matched with the classical solitonic
solution after the tunneling event is done at Euclidean time
τ ¼ 0. Here ∂τϕ ¼ 0 so that one can smoothly rotate the
Euclidean time into real time, at which point the field
evolves classically again. This simplified story has been
given a sound theoretical basis, both in terms of a path
integral [4,8], and in terms of a functional Schrödinger
equation [44,45] approach.
In the thin-wall limit (2.3), one can neglect the viscous

damping first derivative term, leading for the potential (2.1)
to the usual bounce solution,

ϕ0ðrÞ ¼ −c tanh
�
μ

2
ðr − R0Þ

�
; ð2:7Þ

where R0 is a constant which will be fixed by energy
conservation. The fact that R0 is not imposed by the
Euclidian equation of motion is a consequence of our
choice of neglecting the first derivative term. Indeed,
complete calculations for simplified, piecewise potentials
(see, e.g. [46–49]) fix the initial radius.

B. Membrane action

In the thin-wall limit, we can neglect the details of the
potential shape and parametrize the whole evolution of
the system as a function of the membrane tension σ, the
differential pressure p between the inside and outside of
the membrane and the bubble radius R (we assume a
spherically symmetric bubble). We will suppose that both
the field inside and outside of the bubble are spatially
constant (we will comment on this approximation below).
In the thin-wall limit, we can now derive the membrane
Lagrangian directly from the action of the scalar field
(cf. Appendix), it can be expressed in term of the radius of
the bubble R as

Lm ¼ −4πσR2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
þ 4

3
πpR3 þ 4

3
πpoutΛ3; ð2:8Þ

where Λ is the radius of a large control volume including
the bubble. As we will see this part does not affect the
evolution of the bubble radius R and of the field inside but
is nonetheless required for energy conservation. Writing the
field inside (outside) the membrane cþ φin (−cþ φout), we
have for the pressure and tension,

σ ¼
Z

cþφin

−cþφout

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞ

p
; ð2:9Þ

and

p≡ pin − pout

≡
�
1

2
_φ2
in − Vðcþ φinÞ

�
−
�
1

2
_φ2
out − Vð−cþ φoutÞ

�
:

ð2:10Þ

In particular, for the potential (2.1) introduced earlier, the
tension can be written as

σ ¼ 2μ

3
½c2 þOðφ2

in;φ
2
outÞ�; ð2:11Þ

where we have used the thin-wall limit to approximate the
field within and outside the walls as the two minima of the
potential.

FIG. 1. Schematic form of the potential considered in this work.
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The dominant corrections in the processes we will be

interested in are of the form φ2
in
c2 ×

1
αtw
. The thin-wall

hierarchy implies that they are hierarchically larger than
those arising from the anharmonicity of the potential as in
(2.11). In the rest of this paper, we will therefore only retain
the former and discard the latter.
An important comment about (2.8) is that the observable

which appears naturally in the membrane Lagrangian is the
differential of pressure p, and not the differential energy
density

ε≡ εin − εout

≡
�
1

2
_φ2
in þ Vðcþ φinÞ

�
−
�
1

2
_φ2
out þ Vð−cþ φoutÞ

�
:

ð2:12Þ

While the two are opposite in the static case, we have more
generally p ¼ ð _φ2

in − _φ2
outÞ − ε.1

The equations of motion following from Eq. (2.8) are

R̈þ 2
1 − _R2

R
¼ p

σ
ð1 − _R2Þ3=2; ð2:13Þ

φ̈in þ 3
_φin

_R
R

¼ −V 0ðcþ φinÞ; ð2:14Þ

φ̈out − 3
R2 _R _φout

Λ3 − R3
¼ −V 0ð−cþ φoutÞ: ð2:15Þ

As mentioned above φout decouples from the equation for
the bubble radius and the field inside the bubble. Moreover,
it is the only part whose evolution explicitly depends on
the assumed cutoff radius Λ hinting that the evolution
outside the bubble is not completely accounted for in the
present approximation. As it doesn’t affect the part we are
interested in we will mostly ignore φout. Let us remark,
however, that the energy of the system is only conserved if
one takes it into account. Furthermore, it is clear that we
have two different time scales, one of order μ−1 and the
other of order the initial radius R0. More precisely, φin and
RðtÞ will have both a fast oscillating behavior of frequency
μ slowly modulated over a time scale R0. The hierarchy
(2.3) then implies that the former is orders of magnitude
smaller than the latter. This will be used in the next section
to average over several field oscillations while keeping the
bubble radius around R0.
The Lagrangian (2.8) has three degrees of freedom,

RðtÞ;φinðtÞ and φoutðtÞ and its conserved Hamiltonian is
therefore:

H ¼ _φin
∂Lm

∂ _φin
þ _φout

∂Lm

∂ _φout
þ _R

∂Lm

∂ _R − Lm

¼ 4πσR2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p þ 4

3
π½ð _φ2

in − _φ2
outÞ − p�R3 þ 4

3
πεoutΛ3

¼ 4πσR2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p þ 4

3
πεR3 þ 4

3
πεoutΛ3 ð2:16Þ

Conservation of energy implies that this is equal to the
energy of the scalar field contained in the control volume
before the bubble actually nucleates, Hini ¼ 4

3
πεoutΛ3.

We find2

4πσR2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p þ 4

3
πεR3 ¼ 0: ð2:17Þ

Fixing _R ¼ 0 in (2.17), and noting ε0 the differential energy
density when the bubble nucleates, we see that energy
conservation gives the radius R0 of the classical bubble
right after it nucleates:

R0 ¼
3σ

−ε0
; ð2:18Þ

In the case of a vacuum-to-vacuum tunneling event,
one can fix the value of the false vacuum to zero, so that
ε ¼ ε0 ¼ Vðcþ φinÞ. Writing ~R0 for the initial radius in
this case, Eq. (2.17) is then particularly simple and leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
¼

~R0

R
⇒ _R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
~R0

R

�2
s

;

where the positive sign solution is imposed by the first
equality since it also implies R > ~R0. We therefore recover
the usual evolution of the bubble wall:

RðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~R2
0 þ t2

q
:

More generally (2.17) relates the evolution of the bubble
radius to the differential of energy density ε. An important
comment here is that during the bubble evolution, ε is in
fact not constant. This is a consequence of the spatial
inhomogeneities introduced by the wall and the spatial
perturbations created by its evolution. The explicit bubble
profile can be calculated [37]. However, it is important to
note that at early time (namely as long as we of R ∼ R0 up
to αtw corrections), the oscillating bubble profile does not
significantly modify the predictions of the spatially homo-
geneous model we introduced above. Indeed, corrections to
the tension are of subleading order Oððφin

c Þ2Þ;Oððφout
c Þ2Þ.

1The previous expressions hold as long as the fields are
spatially constant.

2After nucleation, this equation neglects changes in ϵout and is
therefore only approximate.
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Similarly, the contributions to the pressure are suppressed
by factors of

ffiffiffiffiffiffiffi
αtw

p
compared to the dominant corrections to

the vacuum-to-vacuum case.
In the analytical result of the next section, wewill therefore

rely on the spatially homogeneousmodel of (2.8).However, if
onewants to describe accurately the evolution of a contracting
bubble when R < R0, then this simplified picture does not
hold anymore because of two separate effects:

(i) First, the contraction of the bubble wall will lead to
an exponential increase of the amplitude of the
oscillations within the bubble. This can be easily
seen from the equation of motion (2.14) for the
homogeneous field inside the bubble. It will oscillate
around the true vacuum with an amplification/damp-
ing term depending on the evolution of the bubble.
This implies that even small initial oscillations of the
field within the bubble will grow exponentially as
soon as the bubble starts contracting.

(ii) Second, while the wall is contracting, it leaves
behind a region of spatial oscillations around the
false vacuum. Energy conservation then implies that
this region must have a lower energy density than the
initial oscillating field, providing the energy neces-
sary to contract the bubble. This is what we observed
in the lattice simulations of Sec. IV B.

Let us close this section by commenting on the possible
final fate of a contracting bubble. The thin-wall approxi-
mation clearly breaks down for very small radius where the
damping term 2

ρ ∂ρ becomes non-negligible. As it was shown
in [50] (and subsequent literature), one can have in this case
the appearance of solitonic quasiperiodic solutions called
“oscillons.” This depends however on the original radius of
the bubble. In units of μ=2, it was found that at small radius,
a quasiperiodic behavior could be found. In the case of larger
contracting bubbles it was claimed that they will start with a
period of quasirelativistic contraction and then settle shortly
into oscillons before radiating away their energy.

III. DECAY FROM AN OSCILLATING STATE

In this section, we will now take steps to obtain a
tunneling rate for an oscillating initial field. We begin by
applying our thin-wall approximation to the field when it is
at the turning point. In the next step, we consider the
evolution of the bubble. As it turns out for large enough
oscillations the bubble will contract, we provide an ana-
lytical criterion distinguishing between contracting and
expanding bubbles. We then turn to an estimate of the
time-dependent decay rate at points in time when the field
is not at a turning point. This allows us to estimate the time
dependent as well as the average tunneling rate.

A. Tunneling from the turning point

In the limit of small oscillations the fields are approx-
imately harmonic oscillators of the form:

φin ¼ −qinc cos ðμðt − t0ÞÞ
φout ¼ qoutc cos ðμtÞ; ð3:1Þ

where the time origin has been chosen such that the field
outside of the bubble is at an extremum of its oscillation at
t ¼ 0. As in the previous section, we denote by qin and qout
the amplitude of the oscillations, normalized to c.
If our tunneling process occurs at the turning point of

the oscillating field the time derivative of the field is given
by _ϕ ¼ 0 everywhere. This allows for a smooth analytical
continuation to Euclidean space, making this a good
starting point for our investigation.
Energy conservation leads to the expression for the

bubble radius (2.18), which can be explicitly written as

R0 ¼
1

μαtw

�
1þ 1

4αtw
ðq2out − q2inÞ

�
−1
; ð3:2Þ

where we have used the small parameter αtw defined in
Eq. (2.4). Notice that this does not depend on the phase
difference t0. As we will confirm in Sec. IV, in the thin-
wall approximation, the field inside, φin, is quite small in
any case.
The corresponding action is then simply given by the

usual Coleman bounce action,

Sext ≡ 27π2

2

σ4

ε30
¼ π2σ

2
R3
0: ð3:3Þ

B. True vacuum bubble evolution

While bubbles formed from a proper vacuum state
always grow this is not necessarily the case when we
consider an oscillating vacuum. It is therefore a key issue
when studying tunneling in an oscillating background to
find out when the bubble collapses instead of growing. We
present in this section a simple analytical criterion distin-
guishing the two phases.
Once the bubble has nucleated, its subsequent evolution

will be coupled to the evolution of the field inside and
outside of it. As in the previous section, we will now
consider the coupled evolution of the field inside the bubble
(considered homogeneous) and of the bubble wall itself.
The field outside of the bubble is considered as a oscillating
background. The equation for the bubble radius is given by
Eq. (2.13),

R̈þ 2
1 − _R2

R
¼ p

σ
ð1 − _R2Þ3=2 ð3:4Þ

A great deal of simplification can be obtained by
averaging over the oscillations of the fields inside and
outside the bubble. Let us concentrate on the evolution
of the bubble after it nucleates, with _R ≪ 1. In the thin-wall
approximation, we can neglect the slow modulation of time
scale R0, so that we have approximately:
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ε≃ ε0 ¼ −2bc
�
1þ 1

4αtw
ðq2out − q2inÞ

�
R≃ R0

p≃ 2bc

�
1þ q2out cos 2μt − q2in cos 2μðt − t0Þ

4αtw

�
: ð3:5Þ

Focussing on the initial evolution of the bubble averaged
over a few oscillations of the fields inside and outside of the
bubble, we can neglect the second-order terms in _R2 in
(3.4). Averaging over a period 2π=μ then leads to

hR̈ij0 ¼
1

R0

1 − 1
2αtw

ðq2out − q2inÞ
ð1þ 1

4αtw
ðq2out − q2inÞÞ

: ð3:6Þ

Assuming that the subsequent evolution of the bubble will
be governed by its behavior during the first oscillations (an
assumption which we will later confirm numerically up to
large oscillation amplitude in Sec. IV B.), it is clear that the
bubble will contract if:

q2out − q2in > 2αtw: ð3:7Þ

We can recast Eq. (3.7) as a condition on the initial radius of
the bubble, so that all bubbles with radius larger (smaller)
than a critical radius Rc will grow (collapse). Using the
expression (3.7) one can write:

Rc ¼
2

3μαtw
:

This last result has in fact a very simple interpretation.

Neglecting the field oscillations and expanding
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
in

_R from Eq. (2.16) leads to the “vacuum” bubble potential:

Vvac ¼ 4πσR2 −
4

3
πð2bcÞR3:

This potential has a maximum precisely at Rc, so that
every bubble with radius larger (smaller) than Rc will grow
(contract). Our Eq. (3.7) simply states that while the initial
bubble radius depends on the amplitude of the oscillations,
the subsequent average evolution of the bubble radius only
depends on the asymmetry of the potential. This is in fact
consistent with the fact that the evolution of the bubble
in (3.4) is controlled by the differential pressure, for which
the effects of the harmonic oscillations cancel in average
[cf. Eq. (3.5)].
We illustrate this behavior in Fig. 2 by showing the ratio

of the initial radius R0 over the initial radius in absence
of oscillation Rvac in the case where qin ¼ 0. In the more
general case with qin ≠ 0, we have represented the boun-
dary for bubble growth as the red dashed line in Fig. 3(a).
This figure furthermore gives the usual Coleman bounce
action Sext for a tunneling happening at the extremum of the

oscillation of the initial field as expressed in (3.3). Note
that, in principle, the MPEP should associate one qout to
only one qin, and only for this value the result (3.3) is
applicable. In particular, wewill see that for small harmonic
oscillations qin ∼ 0 from quite generic arguments. For
larger field oscillations, we have in general qin > 0 as
we will show in Sec. IVA.
It is interesting to evaluate the minimum action Sext

leading to a growing bubble for a given initial oscillating
state of amplitude qout. This is straightforwardly derived
from (3.2), (3.7) and (3.3), leading to

Sext
Svac

¼
8<
:

	
1þ q2out

4αtw



−3

for qout <
ffiffiffiffiffiffiffiffiffi
2αtw

p

ð2
3
Þ3 for qout >

ffiffiffiffiffiffiffiffiffi
2αtw

p ; ð3:8Þ

where the vacuum-to-vacuum action is:

Svac ≡ π2
μ4c5

3b3
: ð3:9Þ

We have represented this interesting saturation behavior
in Fig. 3(b) which show the ratio of the minimum bounce
action allowing for a growing bubble over the vacuum to
vacuum one as function of the initial amplitude of oscil-
lation qout. In particular, the saturation is reached when
R0 ∼ Rc along the red dashed line of Fig. 3(a). Notice that
we have further included contributions from the anharmo-
nicity of the potential,3 which leads to the slow decrease at
large qout.

FIG. 2. Ratio of the initial radius R0 over the initial radius in
absence of oscillation Rvac in the case where qin ¼ 0. The dash
horizontal line gives the critical radius for bubble growth.

3However, we still neglect the change in oscillation frequen-
cies induced by the anharmonicity and treat both oscillating parts
as simple harmonic oscillations. A more complete treatment is
done numerically in the next section.
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Notice that the results of the previous sections are also
applicable in the limit where αtw ≪ q2out ≪ 1, namely when
the oscillations dominates over the asymmetry of the poten-
tial.4 However, energy conservation (more precisely the fact
that the bubble can form in the first placewith a finite radius),
implies: q2in − q2out < 4αtw. In this regime it is clear from
Eq. (3.7) that the only growing bubbles will be the one with
qin ∼ qout. As wewill see in the next section, theMPEP leads
generally to qin ∼ 0, we expect these types of bubble to
collapse. This is particularly important for a “backward”
tunneling where one supposes that the field is initially
oscillating around the true vacuum. Indeed, even starting
from the deeper minimum, it is possible to nucleate a bubble
of false vacuum satisfying q2in − q2out < 4αtw if the initial
oscillations are larger than the energy difference between the
minima (i.e. negative αtw). However, Eq. (3.7) then implies
that such bubble should subsequently collapse so that no
phase transition can actually occur. Note, however, that all
these considerations above can be applied directly onlywithin
the approximations of this section. Different solutions, for
instance including additional spatial perturbations, could in
principle still mediate a phase transition in this setup.

C. Time-dependent decay rate

We now turn to the estimation of the probability for such a
bubble of truevacuumto formwhen the initial field is not at an
extremum of its oscillation. Stricto sensu, the usual Coleman
bounce result can only be applied when the initial oscillating
field φout of the form of Eq. (3.1), φout ¼ qout cos μt, is at an
extremum of its oscillation. Indeed, one can smoothly rotate
to Euclidean time only when the time-derivative of the field
vanishes. However, it is clear that given the exponential form
of the decay rate, the probability should be dominated
precisely by the extremum, since this is where the energy
difference between the inside and the outside will be
maximized. We will now show that this is what happens in
the thin-wall limit.
Wewill present in a separate, more theoretical paper [43], a

complete description of this process based on the use of the
functional Schrödinger equation and of an adaptation of the
approach of [51] of multidimensional tunneling in quantum
mechanics. Let us however use here amoreheuristic approach
sharing similarities with the calculations andmethod of [37].5

(a) (b)

FIG. 3. (a): Coleman bounce action for all the bubbles satisfying energy conservation given an oscillation amplitudes qin (qout) inside
(outside) the bubble. The red dashed line indicates the boundary between growing (above the line) and contracting bubbles. We have
used b ¼ 1=300, c ¼ 1 and g ¼ 1=5. (b): Ratio of the minimum Coleman bounce action over the vacuum to vacuum one as function of
the initial amplitude of oscillation qout for various values of g.

4In the standard thin-wall approximation the thin-wall param-
eter αtw compares the energy difference between the two vacua
∼bc to the typical height of the wall ∼μ2c2, leading to
αtw ∼ b=ðμ2cÞ. If we have an oscillation, the energy difference
between the turning point and the true vacuum increases by
∼q2outc2μ2. Comparing again to the height of the wall we find that
q2out ≪ 1 should ensure the validity of the thin-wall limit.

5However, and in contrast with [37], we only rotate the bubble
part of the action to Euclidian time, and leave the field outside of
the bubble frozen during the tunneling. Consequently, we disagree
with their results regarding tunneling from an oscillating initial
state. In particular, unlike [37], we find that our tunneling rate tends
to be a small multiplicative correction of the tunneling exponent
compared to the standard Coleman result in the vacuum-to-vacuum
case and it remains so for all values of the bubble radius. Notice
that we have also neglected subdominant corrections from the
anharmonicity of the potential compared to [37].
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Our first step is to estimate the amplitude of the
oscillations qin within the bubble after it nucleates. Such
oscillations are a perfectly sensible solution of the classical
perturbative equation of motion around the bubble solution.
However, they are in fact suppressed during the tunneling
process itself. Indeed, suppose that the bubble radius
follows its usual evolution in Euclidean time τ (correspond-
ing to a Coleman Oð4Þ-symmetric solution):

RðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 − τ2

q
; ð3:10Þ

for τ between −R0 and 0. The Euclidean equivalent of the
equation of motion (2.14) is:

φ00
in þ 3

φ0
inR0

R2
− μ2φin ¼ 0: ð3:11Þ

Normalising τ by ~τ ¼ μτ, we can write this equation as

φ00
in þ 3αtw

φ0
inð−~ταtwÞ
1 − ~τ2α2tw

− φin ¼ 0: ð3:12Þ

Therefore, at zeroth order in αtw, the final amplitude of the
φin oscillations will be suppressed by expð−μR0Þ. Notice
that this depends crucially on the reliability of the thin-wall
limit (as we will see from the numerical study of the next
section). Overall, we can therefore assume that along the
preferred field path during tunneling, the amplitude of any
perturbations inside the bubble should be washed out, so
that when the bubble nucleates, we have qin ≃ 0.
Next, we will suppose that during the tunneling the field

oscillations outside of the bubble do not evolve. We
therefore neglect corrections to the tension σ and suppose
that the pressure during the tunneling is “frozen” to its
value at the time t0 of bubble nucleation:

p0 ¼
�
1

2
_φ2
in −VðcþφinÞ

�
−
�
1

2
_φ2
out −Vð−cþφoutÞ

�����
t¼t0

¼ 2Bc−
μ2c2

2
q2outsin2μt0 þVð−cþφoutÞ

¼ 2Bc

�
1þ q2out

4αtw
cos2μt0

�
:

We then integrate the Euclidean action along the path
corresponding to a tunneling from an extremum of the
oscillation: RðτÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0−τ2

p
where R0 is given in Eq. (3.2).

From the Lagrangian (2.8) and keeping only the bubble
part, we obtain

U ¼ i
Z

0

−R0

dτ

�
−4πσR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R02

p
þ 4

3
πp0R3

�

¼ i4πσ
Z

0

−R0

dτ

�
−RR0 þ

1

3

p0

σ
R3

�
;

and after a bit of algebra we have

U ¼ −i
π2σ

4
R3
0

�
1þ 3q2out

2αtw
sin2 μt0

�
: ð3:13Þ

In the limit qout ¼ 0, we recover the usual result from
Coleman as S ¼ 2iU. In particular, we recover the result of
Eq. (3.8) for t0 ¼ 0.
The result found in (3.13) has the surprising feature that

the decay rate for tunneling from a field value smaller than
ϕF is the symmetric of the one for a field value larger than ϕF

(one should expect tunneling from field value smaller than
ϕF to be suppressed). This property is a consequence of the
fact that we have neglected the variations in the tension σ
stemming from the oscillations. This issue is irrelevant for
our current purpose, since it can at most lead to a factor two
change in the tunneling rate, hence negligible with respect
to the exponential exponent we are estimating. It would still
be interesting to quantify precisely the effect of this region,
but this should come hand-to-hand with an estimation of the
quantum corrections to the tunneling rate since they are
expected to be of the same order.6

Another comment is that the wall region is now an
interface between a quantum and a classical region. While
the corrections to the tension from the oscillations during
the classical evolution were found to be subdominant in
Sec. III B, we leave to future work a proper analysis of this
region. Moreover, the bubble radius evolution RðτÞ that we
used is not the optimal one since we simply used the MPEP
from an extremum of an oscillation. Strictly speaking, we
therefore expect the tunneling rate obtained from Eq. (3.13)
to be only a lower bound. The complete calculation,
including the estimation of the optimal path, will be done
in [43], since, as we will now see, this has no effect on the
exponential exponent itself in the thin-wall limit.
Using the extremum bounce action Sext defined in

Eq. (3.3) we can finally write the time-dependent final
tunneling rate Γ as

ΓðtÞ ∝ exp

�
−Sext

�
1þ 3

2

q2out
αtw

sin2μt

��
: ð3:14Þ

We have illustrated this result in Fig. 4. Let us point out that
since we are considering large exponential term, even a
percent level correction can lead to a large suppression of
the final tunneling rate.
Alternatively, if the field oscillations are fast compared to

all other time relevant time scale (e.g. the Hubble rate), we
can integrate over a period μ−1 to find:

6Especially since it is not clear that one can find a MPEP from
the true vacuum to a field value smaller than ϕF, since the
Euclidean Lagrangian is not bounded in this direction.
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hΓðtÞi ∝ exp

�
−Sext

�
1þ 3

4

q2out
αtw

��
I0

�
Sext

3

4

q2out
αtw

�

≃ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sextq2out=αtw

p exp ½−Sext�; ð3:15Þ

Where we have replaced the modified Bessel function by its
exponential expansion at large parameter. As could have
been expected, the exponential part of the decay probability
is dominated by the probability at the extremum of the
oscillation, while the rest of the oscillations only produce a
nonexponential correction.
Finally, while we have estimated Eq. (3.14) in the limit

of small q2out=αtw. It is clear that the fact that the tunneling
rate at the extremum of the oscillation dominates the
average rate should only be enhanced for larger oscilla-
tions. Therefore, as long as one remains in the thin-wall
limit, we expect that the final result (3.15) should hold.

IV. NUMERICS

All our results up to now are based on the thin-wall
approximation and other simplifications necessary to
obtain analytical results. In this section, we will present
a numerical approach to the bounce from oscillating initial
field states and confront our analytical results with these
direct numerical calculations.

A. The oscillating bounce

First we will review the standard numerical procedure for
finding solutions to our original equation of motion (2.6).
In the case of tunneling from a homogeneous configuration
in the false vacuum ϕF, the standard boundary conditions
needed to obtain a finite action (2.5) are

_ϕðr ¼ 0Þ ¼ 0; ϕðrÞ⟶r→∞
ϕF: ð4:1Þ

The simplest method to find a solution obeying these
conditions is to iterate different ϕðr ¼ 0Þ always keeping
_ϕðr ¼ 0Þ ¼ 0using anovershoot/undershoot algorithmuntil
we find a solution fulfilling the second boundary condition.
Tunneling from an oscillating state requires different

boundary conditions as the second condition in (4.1) cannot
be fulfilled if our background is not the field residing in
the minimum of the potential. The most straightforward
way to find a bubble profile reaching only to a certain field
value ϕF þ φout is to use what we would previously call
undershoot solutions, that is solutions in which the field
derivative vanishes before the field reaches the false
vacuum. We thus replace (4.1) with

_ϕðr¼0Þ¼0; _ϕðr¼ rendÞ¼0; ϕðr¼ rendÞ¼ϕFþφout;

ð4:2Þ
and again find the desired solution using an overshoot/
undershoot iterating ϕðr ¼ 0Þ always keeping _ϕðr¼0Þ¼0
until the remaining conditions are fulfilled. Then our initial
field configuration is simply the numerically obtained ϕðrÞ
for r < rend and ϕðrÞ ¼ ϕF þ φout for r > rend. Lastly, we
define the numerical initial bubble size RN

0 as the value for
which the field equals ϕðr0Þ ¼ ðϕð0Þ − ðϕF þ φoutÞÞ=2.
Before proceeding to the lattice evolution, we will discuss

the agreement between our numerical solution discussed
above and the thin-wall results fromSec. III B. Figure5 shows
the difference between numerically obtained action SNext and
bubble size RN

0 and the thin-wall results for these quantities
Sext and R0 for a range of parameters with no oscillation
φout ¼ 0. We also plot the corresponding value of the
parameter αtw from (2.4) which should be sufficiently small
for the thin-wall approximation to work. Just as expected the
two methods agree very well as long as the splitting between
the vacua controlled by b is sufficiently small.
Next we will check how the thin-wall approximation

holds when the amplitude of oscillation φout increases.
Figure 6 shows the difference between numerically
obtained action SNext and bubble size RN

0 and the thin-wall
results for these quantities Sext and R0 for g ¼ 1=10, c ¼ 1
and several values of b as a function of the amplitude of
the oscillation φout. We continue our plots up to the value
φout ¼ c

ffiffiffiffiffiffiffiffiffi
2αtw

p ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=ðμ2cÞ

p
for each set of parameters,

where the analytical approximation should hold.
As mentioned in Sec. III B, the value of the field inside

the bubble φin is an output of a complete algorithm for
calculating the bubble profile. As expected for small
oscillations this value is very close to the true vacuum
and differs from it only for very large oscillations. This is
shown in Fig. 7, where we also plot several examples of a
resulting bubble profile.
Our main conclusion here is that the numerical results

and analytical approximation of the bubble radius agree
very well even in the presence of oscillations as long as we
are in the thin-wall regime. The action of our numerical

FIG. 4. Ratio of the decay rate exponential exponent S over the
vacuum-to-vacuum one Svac as function of μt=π for various values
of qout=αtw. The extremum of the oscillation occurs at t ¼ 0.
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FIG. 5. Ratio of the numerically obtained action SNext and bubble size R
N
0 and the thin-wall results for these quantities Sext and R0 for a

range of parameters g and b, assuming no oscillation φout ¼ 0 and setting c ¼ 1. Going to the extreme thin-wall limit is numerically
challenging, this is why we do not show the region αtw, b → 0.

FIG. 6. Ratio of the numerically obtained action SNext and bubble size RN
0 and the thin-wall results for these quantities Sext and R0 for

g ¼ 1=10 and c ¼ 1 as a function of φout.

FIG. 7. Value of the field inside the bubble as a function of the field outside for g ¼ 1=10, b ¼ 1=300 and c ¼ 1. Vertical lines show
qout ¼

ffiffiffiffiffiffiffiffiffi
2αtw

p
and the field value corresponding to the top of the potential barrier (from left to right). Numbered points correspond to

example bubble profiles on the right panel.
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solution is always smaller than the analytical result and the
agreement gets worse faster than the bubble size. However
within thin-wall limit the results again are in reasonably
good agreement.

B. Lattice evolution

Our next step is the verification of the bubble evolution
after its nucleation. In Sec. III B, we presented results based
on the membrane approach and now we will verify these by
performing a direct lattice calculation. We will as usual
assume spherical symmetry of the system ϕ ¼ ϕðt; ρÞ
where t is time and ρ is the three dimensional radial
coordinate. This leads to the action

SR ¼
Z

d4x

�
1

2
∂μϕ∂μϕ − VðϕÞ

�

¼ 4π

Z
dtρ2dρ

�
1

2
ð∂tϕÞ2 −

1

2
ð∂ρϕÞ2 − VðϕÞ

�
; ð4:3Þ

and the real time equation of motion

∂2ϕ

∂t2 −
∂2ϕ

∂ρ2 −
2

ρ

∂ϕ
∂ρ ¼ −V 0ðϕÞ: ð4:4Þ

We perform a simple two dimensional lattice evolution
treating the bubble profiles discussed in previous subsection
as an initial condition. We also set the initial time derivative
to a certain value identical for every ρ which means that our
bubble simply moves uniformly with the background after
nucleation. This fixes our boundary conditions to7

∂ρϕðt;ρ¼ 0Þ¼ 0; ϕð0;ρÞ¼ϕbounce; ∂tϕð0;ρÞ¼ _ϕ0:

ð4:5Þ
After the evolution we calculate the bubble size as a function
of timeand find the averagevaluenormalized to the initial size
R=Rðt ¼ 0Þ. If this value is greater thanone the bubblegrows,
while for smaller values the bubble eventually collapses. We
show an example of bubble expansion and collapse in Fig. 8.
For bubbles slightly smaller than the critical valuewe recreate
the oscillon solutions discussed in [52] which oscillate for a
timebefore eventually decaying. In generalwe find very good
agreement with the analytical prediction that bubbles will
grow as long as their radius is bigger than 2=3 of the vacuum-
to-vacuum bubble radius (which corresponds to the oscil-
lation reaching

ffiffiffiffiffiffiffiffiffi
2αtw

p
). This is not surprising as the bubble

obtained numerically and analytically is very similar in the
thin-wall limit as we show in Fig. 9.
We are finally in the position to average our results over a

full oscillation period and compute the resulting decay rate.
Numerically, we simply solve the background field equation
of motion to get the initial position and corresponding speed
within one period of oscillation even for large anharmonic
oscillations.We then use the resulting value in our boundary
conditions (4.2) to find the numerical bounce and conse-
quently the bounce action. Averaging then gives results very
similar to the analytical result in Eq. (3.15). This is not
surprising as the final rate is basically controlled by the
action of the smallest growing bubble. The main difference
between the analytical prediction for a growing bubble and
our lattice results comes from the initial speed of the
background in which the bubble nucleates.
Specifically, for oscillations with amplitude bigger than

qout >
ffiffiffiffiffiffiffiffiffi
2αtw

p
the smallest radius (and action) bubble corre-

sponding to the extremum of the oscillation does not grow.
However a slightly smaller bubble can grow due to nonzero

FIG. 8. Field profiles showing lattice bubble evolution for oscillation reaching 1.2
ffiffiffiffiffiffiffiffiffi
2αtw

p
(left panel) and 0.8

ffiffiffiffiffiffiffiffiffi
2αtw

p
(right panel). The

values defining the potential were set to g ¼ 1=10, b ¼ 1=300 and c ¼ 1.

7Except at the turning point this initial condition differs from
the one we employed in the thin-wall approximation described in
the previous section. There we effectively assumed a vanishing
time derivative inside the bubble.
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initial background speed and these smaller bubbles drive the
vacuum decay. More precisely, for oscillations larger thanffiffiffiffiffiffiffiffiffi
2αtw

p
, we keep in our time average only the bubbles with

boundary conditions (4.5) which do grow. Such solutions are
unlikely to be the result of theMPEP, since oscillations inside
the bubble should be exponentially suppressed along this path
as can be seen in (3.11). However, they are still viable real
time solutions of the classical equations of motion which
furthermore satisfy energy conservation. The resulting aver-
age tunneling rate provides an estimationof the tunneling rate.
Our analytical estimates cannot capture this effect as we have

to assume small harmonic oscillations to obtain closed form
results. However the two agree well as long as we are in the
analytical result validity limit qout<

ffiffiffiffiffiffiffiffiffi
2αtw

p
, as shown

in Fig. 10.

V. SUMMARY AND CONCLUSIONS

Tunneling is one of the most profound phenomena in a
quantum theory. It allows the transit from one localminimum
to another one through a classically “forbidden” region. In
quantum field theory, it proceeds via the formation of a
growing bubble of the new, lower vacuum from quantum
fluctuations. This bubble subsequently grows in classical
evolution. Its close cousin is bubble formation in first-order
phase transitions where a similar bubble is formed from the
classical thermal fluctuations. Both situations have in
common that they start from a time-independent state
corresponding to the minimum of the free energy. Yet, it is
easy to imagine amore complicated situationwhere the initial
state itself exhibits significant timedependence. For example,
in cosmology classically evolving fields canbe trapped in one
of two (or several minima) by the damping effect of Hubble
evolution. But even after the field cannot anymore overcome
the barrier, potentially large residual oscillations remain. This
leads us to the question how tunneling proceeds from such a
time-dependent initial state. In this note, our aim was to take
first steps to achieve such an understanding and provide
estimates for the resulting tunneling rates.
There are (at least) two sets of questions to be answered:

(1) What is the bubble formation rate in such a state? What
is its time dependence? and (2) What is the time evolution
after the initial bubble has formed? Does the bubble grow
or can it actually collapse?

FIG. 9. Ratio of the action Sext and bubble radius R0 to the same quantities calculated in absence of oscillation Svac and Rvac shown for
both analytical results and numerical ones (with subscript N). The values defining the potential were set to g ¼ 1=10, b ¼ 1=300 and
c ¼ 1. The dotted line show the region in which the resulting bubble contracts after nucleation for both analytical result and the result of
lattice evolution (with superscript N).

FIG. 10. False vacuum averaged decay rate as a function of the
amplitude of the oscillation of the background field qout. The
dotted line show the region in which the bubble grows after
nucleation according to our analytical results (qout <

ffiffiffiffiffi
2α

p
). The

results with subscript N show numerically obtained action and
dotted line takes into account bubbles with nonzero initial speed
that grow according to our lattice evolution. The values defining
the potential were set to g ¼ 1=10 and c ¼ 1.
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To be concrete in this article, we looked at an initial
situation where a scalar field initially oscillate in one of two
available minima of a mexican hat potential with two non-
degenerate minima. This situation has previously been
studied by [37]. However, our analysis differs by that we
continue to imaginary time only in the inside region of the
bubble. This leads to a significantly lower decay rate, but it
also returns to the standard result in the limiting case of
vanishing oscillations and large bubbles. A further crucial
difference is that we study the subsequent bubble evolution.
This turns out to be important even for thephase transition rate
since there is a possibility of bubble collapse; i.e. theminimal
action bubble may actually not introduce a phase transition.
Let us now turn to our actual calculations and survey the

situation. We have approached the problem analytically as
well as numerically. To treat the problem analytically we
have developed a version of the thin-wall approximation,
taking into account the oscillating initial state and also
allowing for a potentially oscillating solution inside the
bubble. In the thin-wall limit, the equation of motion is
determined from a Lagrangian that includes a membrane
term contracting the bubble, as well as pressure terms inside
and outside the bubble. For small oscillations, the main
modifications arise from the pressure terms. As pressure is
the difference between kinetic and potential energy of the
field, the oscillating initial state corresponds to an oscillating
pressure the effects of which will be averaged out over the
field oscillations. The average pressure is then roughly equal
to the vacuum-to-vacuum case. On the other hand, the initial
radius of the bubble is fixed by the energy densitywhich does
depend on the amplitude of the oscillation. This distinction
leads to the possible appearance of collapsing bubbles.
As long as the thin-wall limit is realized, our numerical

simulations agree very well with the thin-wall approxima-
tion. In particular, as long as the thin-wall approximation is
fulfilled, the numerical results confirm the expectation that
the field inside is close to the true vacuum. The agreement on
the dividing line between growing and collapsing bubbles is
very good for a sizeable range of parameters. Indeed, for the
growing case, the bubbles themselves seem to be in rather
good qualitative agreement with our analytical estimates.
For contracting bubble we expect that our approximation of
a constant field inside will break down and indeed we
observe growing wiggles in the numerical simulation.
To summarize our results, as onemay expect an oscillating

initial field increases the tunneling rate compared to a field
sitting statically at the false vacuum. However, a new feature
appears: bubbles with minimal action do not always grow—
there is the possibility that they can collapse. This has to be
taken into accountwhen the probability for a phase transition
(and not just bubble nucleation rate) is to be calculated.
To get an appreciation of the challenges ahead let us look

in a bit more detail at the different aspects contained within
the general questions posed above and delineate the open
questions we still face. To determine the time dependence
we need to understand the following:

(i) The standard approach to tunneling is based on a
continuation to imaginary time. However, to do this
smoothly in the usual simple manner requires a
vanishing time derivative before and after the bubble
has formed.However, for an oscillating initial state this
is straightforward only at the turning point of the
oscillation. A more general treatment is required and
wewill return to this in a forthcoming publication [43].

(ii) In the full quantum theory the initial state will have
additional time dependence beyond the oscillations
of the scalar field. Due to interactions the originally
quantum fluctuations will grow. Effectively energy
will be transferred from the coherent oscillations
into fluctuations. Depending on the of values of the
parameters of the model this may be a rather rapid
process (cf. e.g. [53]), leading to a significant time-
evolution. This in turn can then lead to bubble
formation based on these fluctuations.

The bubble evolution will add further questions:
(i) If the minimal action bubbles contract, are there

bubbles of possibly larger action that do grow instead.
Those would then determine the phase transition rate.

(ii) Even if the bubbles collapse they may still be
significant. They are a source of fluctuation growth,
transferring energy from the coherent state to fluc-
tuations. At the same time, and phenomenologically
perhaps more important they are still a violent
phenomenon, and therefore an interesting possible
source of gravitational waves.

Due to the nonvanishing energy above the local ground
state we also have to ask:

(i) Provided that the initial energy is big enough: can
there also be “tunneling” from an initial state close to
the true vacuum to the false vacuum? In the thin-wall
limit and assuming that oscillations are fast compared
to all other changes of the bubble this seems difficult.
As long as oscillations on both sides of the wall are
harmonic, their contribution to the pressure differ-
ential average out and the average pressure difference
is fixed by the energy difference between the true and
the false vacuum. However, at present we have no
stringent argument for the more general case.

To conclude, in many interesting situations, including in
particular in cosmology, phase transitions occurring via
bubble formation may start from an initial state that is not
in equilibrium and therefore explicitly time-dependent.
Here we have taken first steps in understanding the bubble
formation as well as its subsequent evolution. However,
many open questions remain and provide opportunities for
future investigations.
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APPENDIX: DERIVING THE
MEMBRANE ACTION

We start from the usual scalar field action (using the
mostly minus signature for the metric),

S ¼
Z

dxμ
�
1

2
∂μϕ∂μϕ − VðϕÞ

�
; ðA1Þ

where the VðϕÞ is a scalar potential featuring two quasi-
degenerated vacua. Our goal is to use our assumption on the
spatial structure of the classical solitonic solution to express
this action as an integral over time with the radius of the
bubble as the only free parameter. First, we assume a
spherically symmetric field configurations, so that (A1) can
be written as

S ¼ 4π

ZZ
dtdρρ2

�
1

2
ð _ϕ2 − ð∂ρϕÞ2Þ − VðϕÞ

�
; ðA2Þ

where we have used ρ2 ¼ x2 þ y2 þ z2, and denoted the
time derivative with a dot. We will suppose the presence of
a “wall” around the radial position RðtÞ and an homo-
geneous region where ∂ρϕ≃ 0 in the rest of the space.
Noting the field within (outside) the wall as cþ φin
(−cþ φout) we can decompose (A2) as

S¼4π

�ZZ
wall

dtdρρ2
�
1

2
ð _ϕ2−∂ρϕ

2Þ−VðϕÞ
�
þ
Z

dt
R3

3
p

�
;

ðA3Þ

where we have defined the differential pressure as

p¼pin−pout

≡
�
1

2
_φ2
in−VðcþφinÞ

�
−
�
1

2
_φ2
out−Vð−cþφoutÞ

�
:

ðA4Þ
Here we have not included the terms from the infinite
spatial volume outside the bubble, as in our approximation
they do not affect the evolution of the interiors as well as the
bubble position.

Let us now concentrate on the wall region. In Minkowski
space, we can write the unit vectors perpendicular and
parallel to the wall as function of the time and radial
vierbein elements et and eρ:

e⊥ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p ð− _Ret þ eρÞ e∥ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − _R2
p ðet þ _ReρÞ:

We will then make the assumption that in the thin-wall
region,

∂⊥ϕ≡ eμ⊥dμϕ ≫ ∂∥ϕ≡ eμ∥dμϕ:

In particular, the equations of motion in this region can be
written as

−je⊥j2∂2⊥ϕ ¼ ∂2⊥ϕ ¼ V 0ðϕÞ;
where we have neglected the first-order “friction” terms8 in
front of the second-order one. This equation is easily
integrated from the inside of the wall to a point within
the wall into

ð∂⊥ϕÞ2 − ð∂⊥φÞ2jin ¼ 2VðϕÞ − 2Vðcþ φinÞ: ðA5Þ
We then neglect the derivative contributions from inside the
wall in this equation as part of the “thin wall” limit: the field
variation is concentrated within the wall. Further assuming
that Vðcþ φinÞ is close to the second minimum where the
potential energy should be negligible compared to the
potential energy in the wall, we obtain

ð∂⊥ϕÞ2 ¼ 2VðϕÞ: ðA6Þ
We are now ready to calculate the tension term in (A3):Z Z

wall
dtdρρ2

�
1

2
ð _ϕ2 − ∂ρϕ

2Þ − VðϕÞ
�

¼
Z

dt
Z
wall

dρρ2
�
−
1

2
ð∂⊥ϕÞ2 − VðϕÞ

�

¼
Z

dtRðtÞ2
Z
wall

dρ½−ð∂⊥ϕÞ2�

¼ −
Z

dtRðtÞ2
Z

cþφin

−cþφout

dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p

∂⊥ϕ
ð∂⊥ϕÞ2

¼ −
Z

dtRðtÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p Z
cþφin

−cþφout

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞ

p
≡ −

Z
dtR2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
σ;

where we have defined the tension as

σ ¼
Z

cþφin

−cþφout

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞ

p
: ðA7Þ

8which takes, in general, the form R̈Rþ2ð1− _R2Þ
ð1− _R2Þ3=2 ∂⊥ϕ.
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