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Recently, we introduced an approach for more easily interpreting searches for resonances at the LHC—
and to aid in distinguishing between realistic and unrealistic alternatives for potential signals. This
“simplified limits” approach was derived using the narrow width approximation (NWA)—and therefore
was not obviously relevant in the case of wider resonances. Here, we broaden the scope of the analysis.
First, we explicitly generalize the formalism to encompass resonances of finite width. We then examine
how the width of the resonance modifies bounds on new resonances that are extracted from LHC searches.
Second, we demonstrate, using a wide variety of cases, with different incoming partons, resonance
properties, and decay signatures, that the limits derived in the NWA yield pertinant, and somewhat
conservative (less stringent) bounds on the model parameters. We conclude that the original simplified
limits approach is useful in the early stages of evaluating and interpreting new collider data and that the
generalized approach is a valuable further aid when evidence points toward a broader resonance.
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I. INTRODUCTION

New physics searches at the LHC commonly explore
two-body scattering processes for signs that a resonance
arising from physics beyond the standard model (BSM) is
being produced in the s-channel and immediately decaying
to visible final state particles. Observed limits on the
production cross-section (σ) times branching fraction
(BR) for the process as a function of the resonance mass
are compared with the predictions of a few benchmark
models, each corresponding to one choice of spin, electric
charge, weak charge, and color charge for the new
resonance, evaluated for specific parameter values.
However, for a given choice of spin and charges there
will actually be multiple detailed theoretical realizations
corresponding to different strengths and chiralities of the
resonance’s couplings to initial-state partons and to decay
products. The benchmarks shown in the analyses often
correspond to convenient examples that have large pro-
duction rates (like a leptophobic Z0 boson) or are already
encoded in available analysis tools.
In recent work [1], we argued that when first evaluating

new results, especially if signs of a small excess exist, it
would be valuable to compare the data with entire classes of
models, to see whether any resonances with particular
production modes and/or decay patterns (e.g., a spin-zero
state produced through gluon fusion and decaying to
diphotons) could conceivably be responsible for a given
deviation in cross-section data relative to standard model
predictions. Using a simplifed model of the resonance

allowed us to convert an estimated signal cross section into
bounds on the product of the branching ratios correspond-
ing to production and decay. This quickly reveals whether a
given class of models could possibly produce a signal of the
required size at the LHC and circumvents the present need
to make laborious comparisons of many individual theories
with the data one by one. Moreover, the “simplified limits
variable” ζ, which factors in the width-to-mass ratio of the
resonance, produces even more compact and easily inter-
pretable results.
We began by establishing a general framework for

obtaining simplified limits and outlining how it applies
for narrow resonances with different numbers of production
and decay modes. We then analyzed applications of current
experimental interest, including resonances decaying to
dibosons, diphotons, dileptons, or dijets. We further illus-
trated how easy it was to compare the calculated value of
the simplified limits variable ζ for a specific instance of a
new state with the experimental upper bound on ζ in order
to determine whether that particular instance was a viable
candidate to explain the excess.
Here, we report on how to broaden the “simplified

limits” approach of [1]. After all, new physics may appear
as a scattering excess that is not obviously due to a narrow
s-channel resonance. We are therefore generalizing our
simplified limits framework to handle resonances of mod-
erate width treated in the Breit-Wigner approximation.
Our generalized method addresses the implications of

any signs of a small excess, as well as indicating how to
interpret experimental exclusion curves. It builds upon
our previous results for identifying the color [2,3] and spin
[4] properties of new resonances decaying to dijet final
states, extending them to a wider variety of final states and
to situations in which only a small deviation possibly
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indicative of a resonance has been observed. This contrasts
with studies in the literature that have focused on the
discovery reaches for multiple Z0 models at a single collider
[5], compared discovery reaches across multiple colliders
[6], or assessed the potential reach of proposed new
colliders [7]. Recent work [8] more similar in spirit to
ours has focused specifically on a potential 750 GeV
diphoton signal at the LHC [9–14].
In the next section, we will briefly review the key results

from our work on narrow resonances. Section III discusses
how we extend these to broader resonances, treated in
the Breit-Wigner approximation. Section IV discusses
applications to broader resonances decaying to dileptons,
dibosons, and dijets. The final section presents our
conclusions.

II. RECAP: SIMPLIFIED LIMITS
ON NARROW RESONANCES

In [1,15] we proposed a general method for quickly
determining whether a small excess observed in collider
data could potentially be attributable to the production and
decay of a single, relatively narrow, s-channel resonance
belonging to a generic category, such as a leptophobic Z0
boson or a fermiophobic W0 boson. Using a simplified
model of the resonance allows us to convert an estimated
signal cross section into bounds on the product of the
branching ratios corresponding to production and decay.
Moreover, the “simplified limits variable” ζ, which factors
in the width-to-mass ratio of the resonance, produces
even more compact and easily interpretable analyses.
Here we mention a few key results that set the context
for our present work.
The tree-level partonic production cross-section for an

arbitrary s-channel resonance R produced by collisions of
particular initial state partons i, j and decaying to a single
final state x, y at the LHC can be written [16,17]

σ̂ij→R→xyðŝÞ ¼ 16πð1þ δijÞ ·N

·
ΓðR → iþ jÞ · ΓðR → xþ yÞ

ðŝ −m2
RÞ2 þm2

RΓ2
R

N ¼ NSR

NSiNSj

·
CR

CiCj
; ð1Þ

whereNS and C count1 the number of spin- and color-states
for initial state partons i and j and for the resonance R. In
the narrow-width approximation, one focuses on the region
ŝ ≈m2

R and approximates

1

ðŝ −m2
RÞ2 þm2

RΓ2
R
≈

π

mRΓR
δðŝ −m2

RÞ: ð2Þ

Integrating over parton densities, and summing over
incoming partons and over the outgoing partons which
produce experimentally indistinguishable final states, we
find the tree-level hadronic cross section to be

σXYR ≡ σR × BRðR → X þ YÞ

¼ 16π2 ·N ·
ΓR

mR

×

 X
ij

ð1þ δijÞBRðR → iþ jÞ
�
1

s
dLij

dτ

�
τ¼m2

R
s

!

·

 X
xy∈XY

BRðR → xþ yÞ
!
: ð3Þ

Here dLij=dτ corresponds2 to the luminosity function for
the ij combination of partons and XY label the set of
experimentally indistinguishable final states.
Defining a weighting function ωij allows us to reframe

the sum over ij as follows:

X
ij

ð1þ δijÞBRðR → iþ jÞ
�
1

s
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�
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s
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�X

ij

ωij
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s

�

·

�X
i0j0

ð1þ δi0j0 ÞBRðR → i0 þ j0Þ
�

where

ωij ≡ ð1þ δijÞBRðR → iþ jÞP
i0j0 ð1þ δi0j0 ÞBRðR → i0 þ j0Þ : ð5Þ

The fraction ωij lies in the range 0 ≤ ωij ≤ 1 and by
construction

P
ijωij ¼ 1.

Substituting this into the cross-section in Eq. (3), we may
obtain an expression for the product of the sums of
incoming and outgoing branching ratios:

1While N depends on the color and spin properties of the
incoming partons i, j, in most cases [1] this factor is the same for
all relevant production modes in a given situation.

2In particular,

�
dLij

dτ

�
≡ 1

1þ δij

Z
1

τ

dx
x

�
fiðx; μ2FÞfj

�
τ

x
; μ2F

�

þ fjðx; μ2FÞfi
�
τ

x
; μ2F

��
; ð4Þ

where in this paper, for the purposes of illustration, we calculate
these parton luminosities using the CT14LO [18] parton density
functions, setting the factorization scale μ2F ¼ m2

R.
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�X
i0j0

ð1þ δi0j0 ÞBRðR → i0 þ j0Þ
�
·

 X
xy∈XY

BRðR → xþ yÞ
!

¼ σXYR

16π2 ·N · ΓR
mR
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hP

ijωij½1s dL
ij

dτ �τ¼m2
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s

i : ð6Þ

This product is bounded from above by a value depending
on the identities of the incoming (i0j0) and outgoing (x, y)
partons,

BRðR → iþ jÞð1þ δijÞ ·
X
xy∈XY

BRðR → xþ yÞ

≤

8>>><
>>>:

1=4 i ≠ j; ij ≠ xy ∈ XY

1 i ≠ j; ij ¼ xy ∈ XY

1=2 i ¼ j; x ¼ y; ij ≠ xy ∈ XY

2 i ¼ j; x ¼ y; ij ¼ xy ∈ XY

ð7Þ

Framing the information in this way is what enables one
to swiftly discern whether a given class of models is
potentially consistent with a given data set.
Comparisons between data and theory are simplified

by rearranging Eq. (6) so that the left-hand side includes
the ratio of resonance width to mass. This defines the
“simplified limits variable”, ζ:

ζ ≡
�X

i0j0
ð1þ δi0j0 ÞBRðR → i0 þ j0Þ

�

·

 X
xy∈XY

BRðR → xþ yÞ
!
·
ΓR

mR

¼ σXYR

16π2 ·N ×
hP

ijωij½1s dL
ij

dτ �τ¼m2
R
s

i : ð8Þ

When working in the narrow width approximation, and
assuming that Γ=M ≤ 10%, the upper bounds on the
products of branching ratios mentioned above correspond
to upper limits on ζ [Eq. (7)] that are a factor of ten
smaller.

III. EXTENDING THE METHOD TO
BROADER RESONANCES

We now generalize the results obtained in [1] for
resonances of larger widths by employing a Breit-
Wigner representation of the resonance. We focus on
resonances with fully-reconstructable final states: dilep-
tons, dibosons, and dijets and on situations in which the
resonance is far more massive than its decay products.
The total cross-section for the production and decay of

an s-channel resonance in the channel iþ j → R → xþ y

can be obtained by convoluting the parton luminosity with
the partonic cross-section σ̂ðŝÞ as follows

σij;xyR ¼
Z

smax

smin

dŝ σ̂ðŝÞ ·
�
dLij

dŝ

�
; where ð9Þ

σ̂ðŝÞij;xy

≡ Γ2
R

m2
R
·
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m4

R
·
16πN ð1þδijÞBRðR→ iþ jÞ ·BRðR→ xþyÞ�

ŝ
m2

R
−1
�
2þ Γ2

R
m2

R

:

ð10Þ

One can parametrize the cross-section in Eq. (10) in terms
of the resonance mass (mR), its width-to-mass ratio
(ΓR=mR), and the product of the relevant branching ratios
(BRij · BRxy).
In arriving at the form of Eq. (10), we have made several

approximations. Because we are studying systems where a
heavy resonance is decaying to states that are far lighter
thanmR, we have approximated each of the running partial-
widths ðΓðŝÞÞ of the resonance in the numerator by a phase
space factor times the on-shell partial-width

ffiffiffî
s

p
Γ=mR; this

gives rise to the factor of ŝ=mR that impacts the overall
magnitude of σ̂ðŝÞ. Corrections to this approximation are
suppressed by powers of m2=ŝ, where m is the mass of
standard-model particles in the decay—and are therefore
negligible for TeV scale resonance searches. At the same
time, we noted that the presence of the running total-width
in the denominator serves mainly to shift the location of the
resonance peak; we have neglected this smaller effect,
replacing

ffiffiffî
s

p
ΓRðŝÞ bymRΓR. We have checked numerically

that this second approximation has a negligible effect
unless ΓR ≃mR.
In general, experiments searching for resonances present

their constraints either as limits on σ × BR or in terms of
parameters of a given model. More specifically, experi-
ments count the number of events in each bin of the
invariant mass distribution. Constraints are set by defining
likelihoods (usually Poissonian) for signal and signalþ
background hypotheses and performing statistical tests on
these hypotheses. The theoretical prediction for signal
cross-section is determined in terms of a model. Our
proposal of simplified limits simply replaces the theoretical
model prediction with the expressions for the cross-sections
given above. Now instead of couplings and masses,
constraints are placed on the parameters of simplified
limits—ζ and the mass of the resonance. In order to
map simplified limits to a specific model one would need
to specify ωij as well. In this work, we do not follow the
procedure described above to extract limits, simply because
the full likelihoods, nuisance parameters and errors are not
available. We instead use “Brazil band” plots provided by
experimental papers to extract the 2σ exclusion on σ × BR
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as a function of mass. We then equate the extracted cross-
section to the expressions for cross-section given earlier
in order to extract 2σ constraints on the parameter ζ. This
provides only an approximate estimate of the exclusion
on ζ, which suffices for our purpose of demonstrating
the salient features of simplified limits. We take care to
integrate ŝ in Eq. (10) only over the range specified by the
kinematic cuts implemented in each experiment.

A. Extensions and limitations of this approach

As mentioned above, the simplified limits approach
provides a compact and easily interpretable method of
presenting limits on resonance searches. In this section
we list possible extensions of this approach as well as
describing some limitations.

(i) As is done in traditional limits on cross-section times
branching ratio, it is possible to include higher
order corrections to limits on ζ by simply using
K-factors. However, one has to be careful when
higher order effects change the acceptance due to
kinematical cuts.

(ii) The acceptance also depends on the spin of the
resonance. As is sometimes done in the case
of traditional Brazil band plots where limits are
displayed in terms of σ × Branching Ratio ×
Acceptance, one could also present limits in terms
of ζ × Acceptance.

(iii) The simplified limits approach is most directly
applicable to searches where the kinematics of the
final state can be reconstructed entirely, i.e. when
searching for bumps in a invariant mass spectrum.
For resonance searches in which the invariant mass
spectrum cannot be reconstructed, such as
(W0 → lν), other kinematic variables (transverse
mass for W0 → lν) are analyzed. One could also
apply the simplified limits approach in this case.
However, again one needs to be careful about issues
of acceptance and kinematic cuts.

(iv) The simplified limits approach works when inter-
ference of the BSM production process with SM
backgrounds is negligible. This is the case for most
s-channel resonance processes.

(v) Simplified limits for resonances produced in pairs or
produced in association with other particles may be
interesting to consider in the future.

Keeping in mind the limitations of our method, we
restrict our attention to s-channel resonance searches in
which the invariant mass of the resonance can be com-
pletely reconstructed, and consider leading-order analyses.

IV. APPLICATIONS TO BROADER RESONANCES

We will now apply the extended simplified limits
technique to various situations of general theoretical and
experimental interest. Here we discuss electrically neutral

spin-1 resonances decaying to dileptons; a W0 state
decaying to dibosons; and resonances of various spins
and colors decaying to dijets. Note that in each of these
examples the final state may be fully reconstructed.
In the first example, we will illustrate the power of

the extended simplified limits analysis by showing
results both in terms of an upper bound on the
resonance’s combined production and decay branching
ratios and separately in terms of a bound on the
simplified limits variable ζ. Thereafter, we will show
results only in terms of ζ. In discussing each applica-
tion, we will show how the limits compare when the
resonance is treated in the narrow width approximation
(NWA) or assumed to be broader and treated as a Breit-
Wigner shape (BW).
Throughout, we will show the observed limits on ζ

corresponding to LHC data from the ATLAS or CMS
experiments, and in some cases we also show the
expected limits. As discussed in [1] if the observed limit
is ever seen to be much weaker than the expected limit,
meaning that some evidence of a new state has been
found, then a given class of resonance (with a particular
set of dominant production and decay modes) will be a
candidate explanation for the excess only if the product
of branching ratios (or corresponding value of ζ) required
to produce the observed signal falls in the physical zone
(e.g., the product of branching ratios can never be
required to exceed 1).
In each application, we separately illustrate the specific

value the ζ variable takes in benchmark theoretical
models from the literature. Again, as discussed in [1],
if an excess were found, only a model whose predicted
value of ζ fell in the window between the expected and
observed limits on ζ would be a good candidate for
explaining the excess.

A. uū+ dd̄ → R → ll̄

In this application, we study colorless spin-1 resonances
that decay to dileptons. We employ the ATLAS analysis
[19] of dilepton final states at

ffiffiffi
s

p ¼ 13 TeV as the
source of our information on the observed limits on
branching ratios or ζ. The cuts used to identify events
for this analysis are summarized in Appendix A for the
reader’s convenience.
In order to extract the ζ variable we assume that the

acceptance times efficiency for the resonances under
consideration would be identical to that of the Z0
considered by the ATLAS experiment. Since the only
kinematic cuts employed are those on rapidity and
transverse momentum, the geometrical acceptance
depends only on the spin of the resonance—in this case
a spin-1 resonance. In the dijet applications discussed
later on, we will study resonances of different spins and
our analysis will specifically incorporate the impact of
resonance spin upon acceptance.
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Figure 1 shows the observed upper limits3 (at 95%
credibility level) on hadronically-produced vector resonan-
ces decaying to dielectron final states, expressed through
the simplified limits analysis. The upper pane of Fig. 1
shows upper limits on the value of the product of branching
ratios BRðjj̄ÞBRðeþe−Þ, where j ¼ fu; dg. Here we have
assumed universal couplings to quarks (as with a resonance
coupling to baryon number) and neglected the small
contribution of ðs; c; bÞ quarks to the resonance production
cross-section. Similarly the lower plot of Fig. 1 shows
upper limits on ζ. The thicker lines correspond to using the
Breit-Wigner (BW) distribution to evaluate upper limits
whereas the thinner lines are evaluated using the narrow
width approximation (NWA). The grey-shaded rectangle in
the upper pane is the area in which the product of branching
ratios is physical: it cannot exceed 1=4 since the initial and
final states are different, and neither the two initial nor the
two final state particles are identical. The grey-shaded
rectangle in the lower pane is the corresponding physical
region of ζ, given that we are assuming ΓR=MR < 0.3 in
our BW analysis.
From examining either pane, we can see that using the

narrow width approximation gives a conservative upper
limit on the vertical-axis variable, in the sense of not
overstating the strength of the bound. In the upper pane,
the upper bounds on resonances of Γ=M ¼ 0.3 and
Γ=M ¼ 0.03 are vertically displaced from one another
by an order of magnitude. When the same upper limits
are reexpressed in terms of the simplified-limits variable ζ
in the lower pane, the thin NWA curves now overlap since
the value of Γ=M is incorporated within ζ. The bold curves
for Breit-Wigner resonances of different widths are distinct
and we can observe that a broader BW resonance pulls
away from the NWA curve at a relatively lower value ofM.
We use as our comparison a benchmark Z0 model which

couples universally4 to all quarks (in particular, which has
the same value of g2L þ g2R for all up- and down-quarks); a
Z0 coupling to B − Lwould be a familiar example of such a
Z0. The horizontal green dotted lines in the upper (lower)
pane correspond to the product of branching ratios (value of
ζ) for a resonance of this sort and the indicated values of the
resonance width-to-mass ratio. From either pane, it is clear
that the ATLAS upper limits on the vertical-axis variable
exclude this particular benchmark model for Z0 masses
below at least 4 TeV.
Limits that are set using the BW shape tend to be

stronger than those set using the NWA, especially at larger
masses. In other words, the cross-section as evaluated using

FIG. 1. Simplified Limits on a flavor-universal spin-1 reso-
nance decaying to dileptons, shown in terms of branching ratios
(above) and ζ (below). In both panes, the diagonal curves show
the observed experimental ATLAS [19] upper limits (at 95%
credibility level) on a Z0 boson decaying to dileptons. The thin
curves treat the resonance in the narrow width approximation
(NWA); the bold curves are for a finite-width resonance in the
Breit-Wigner (BW) approximation. The shaded rectangle in
each pane is the area in which the product of branching ratios
(or ζ) has a physically reasonable value (see text); the
horizontal green dotted curve shows the theoretical value of
the vertical axis variable corresponding to a benchmark flavor-
universal Z0 boson—and the excluded region for that model
corresponds to masses to the left of the intersection of that line
with the corresponding diagonal curve. Above: Observed upper
limit on the product of branching ratios as a function of
resonance mass. The upper solid red pair of curves is for
Γ=M ¼ 0.03; the lower dashed blue pair is for Γ=M ¼ 0.3.
In each case, using the NWA gives a conservative upper limit,
in the sense of excluding a somewhat smaller region of masses.
Below: The same upper limits, reexpressed in terms of the
simplified-limits variable ζ. The thin NWA curves now overlap
since the value of Γ=M is incorporated within ζ; the bold BW
curves for resonances of different widths are distinct. Note that
a broader BW resonance pulls away from the NWA curve at a
relatively lower value of M. (Note that, by definition, the
bounds on ζ in the NWA are independent of Γ=M).

3Differences between the limits as displayed here and as
originally reported in Ref. [19] arise from choice of PDF (and
scale) and the use of a mass dependent K-factor (∼ ∈ ½1.1; 1.3�).

4In general, the Uð1Þ gauge theory of a Z0 coupling universally
to all quarks would have gauge and/or gravitational anomalies
and a full model could require additional spectators. We use this
object here purely as an illustration.

BROADENING THE REACH OF SIMPLIFIED LIMITS ON … PHYSICAL REVIEW D 96, 055043 (2017)

055043-5



the NWA is smaller than the cross-section as evaluated using
the BW shape. This occurs because large mass resonances
require a large parton momentum fraction (x) to be produced.
At large values of x, the parton distribution functions fall
rapidly. The BW resonance integrates some of the luminosityffiffiffî
s

p
< M, thus giving rise to a larger cross-section. So long

as there are no additional kinematic cuts (especially those
affecting the invariant mass distribution, see Sec. IVB), this
pattern is typical of the limits set on resonances.
While Fig. 1 was produced under the simplifying

assumption that the resonance had flavor-universal cou-
plings to quarks, that assumption does not hold for most
models. Since the relative strength of a resonance’s cou-
plings to uū and dd̄ will affect its production cross-section,
we have also made a more general analysis. Figure 2
illustrates the degree to which the relative strength of the
couplings to up-type and down-type quarks impacts the
simplified limits on spin-1 resonances decaying to dileptons.
Again, the grey-shaded rectangle shows the physical region
of ζ, given that we take ΓR=MR < 0.3 in our BW analysis.
The upper pair of diagonal curves represent the 95%

confidence level upper bounds on ζ for a vector boson that
couples only to down-type quarks; the upper, thin bound
curvewas derived in the NWAwhile the lower thick onewas
derived assuming the resonance has a Breit-Wigner form
withΓ=M ¼ 0.3. The lower pair is similar, but derived under
the assumption that the vector boson couples only to up-type
quarks. The limit on any intermediate case where the
resonance couples to both up-type and down-type quarks
will lie between these extremes; the difference in the strength
of the bound on ζ varies from a factor of a few at lowMR to
nearly a factor of ten at high MR.
As a benchmark, the horizontal dotted line shows the

value of ζ for a sequential standard model Z0
SSM boson,

which, like the standard model Z boson, has unequal
couplings to up-type and down-type quarks. The ATLAS
upper limits on ζ exclude this benchmark model for
resonances masses below at least 4 TeV.

B. Example: ud → R → W�Z

In this second application, we study colorless, electri-
cally-charged spin-1 resonances that decay to WZ. We use
the ATLAS analysis [21] with 15.5 fb−1 at

ffiffiffi
s

p ¼ 13 TeV
as the basis for our work. In this analysis ATLAS searched
for resonances with mass MR > 1 TeV decaying to dibo-
sons (WW, WZ, ZZ), in the fully hadronic channel qqqq.
Selection criteria are summarized in Appendix B for the
reader’s convenience.
Figure 3 shows the expected and observed 95% con-

fidence level limits on ζ for vector resonances decaying to
diboson final states. As above, the grey-shaded region is the
area in which ζ has a physically reasonable value, given
that we are assuming ΓR=MR < 0.3 in our BW analysis;
in the upper pane where the initial and final states are
identical, the product of branching ratios is bounded from
above by 1, while in the lower pane it is bounded from
above by 1=4. In both panes, the diagonal solid curves
correspond to observed limits while the diagonal dashed
ones correspond to expected limits. The thinner red curves
have been derived using the NWA and the thicker blue ones
have been derived assuming a Breit-Wigner form for the
resonance, with Γ=M ¼ 0.3. Also shown in each pane are
two horizontal short-dashed curves corresponding to the
value of ζ, as a function of resonance mass, for our
comparison benchmark models: the heavy vector triplet
(HVT) models [22]. The HVT phenomenological model
was introduced to study charged vector bosons potentially
coupling both to fermions and to electroweak bosons,
and following [22] we illustrate with two choices for
the defining parameter, set A (gV ¼ 1; bold) and set B
(gV ¼ 3; thin).
The upper pane explores the situation where the vector

resonance is both produced throughWZ fusion and decays
back to a hadronically-decaying WZ pair. We see that the
upper limit on ζ lies orders of magnitude outside the
(shaded) region of physically reasonable values of ζ. One

FIG. 2. Simplified limits on a spin-1 resonance decaying to
dileptons and coupling either only to down-type or only to up-
type quarks. The diagonal curves show the observed ATLAS [20]
upper limits (at 95% confidence level) on a vector boson decaying
to dileptons, displayed in theM vs. ζ plane. The shaded region is
the area in which ζ has a physically reasonable value (see text)
and the nearly-horizontal dotted green line shows the theoretical
value of the vertical axis variable corresponding to a SSM Z0
boson for comparison. The various diagonal curves compare
several analyses. The upper blue pair (lower red pair) of curves
represent the bounds on a Z’ boson that couples only to and is
produced only by down-type (up-type) quarks. The limit on any
particular vector resonance coupling to quarks will lie between
these extremes. Within each pair, the upper, thin curve was
derived in the narrow width approximation while the lower thick
one was derived assuming the resonance was a Breit Wigner form
with Γ=M ¼ 0.3; the shading between the members of a pair
highlights the difference between the limit in the NWA and BW
approximations.
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implication is that the upper bound is too weak to give a
meaningful constraint on a fermiophobic vector resonance.
Another is that a fermiophobic vector resonance would not

be a viable candidate to explain any signs of an excess of
events; e.g., if onewere to interpret the fact that the observed
limit lies above the expected limit near MR ¼ 2 TeV as
possible evidence of a resonance, one would have to look to
another class of resonance for an explanation. All of this is
consistent with the results from [1].
In contrast, the lower pane explores the case where the

vector resonance is produced through ud̄þ dū initial states
and decays to WZ; here, the observed upper bound lies
well within the physical region. So if the area aroundMR ¼
2 TeV (where the observed limit is weaker than expected)
were taken as a possible locus of a new resonance, this
production mode would be a viable candidate. In addition,
we see that the ζ values predicted by Models A and B both
fall within or near the “window” between observed and
expected limits, which would make them worthy of further
examination. Again, this is consistent with Ref. [1].
What is new here is that we can see the impact of going

beyond the narrow width approximation. As shown in
Fig. 3, the limits obtained from assuming a BW distribution
are similar to those obtained in the NWA, but not identical.
In this case, ATLAS selected events such that the invariant
mass of the two-fat-jet system lies in the range
1.0 TeV < mJJ < 3.5 TeV. The presence of the hard upper
bound on the invariant mass results tends to “clip” the high-
mass end of the broader BW signal distribution in a way
that does not happen for the NWA case (where all signal
events are in a single invariant mass bin). As a result, the
upper bound on ζ turns out to be slightly weaker than the
limit derived using the NWA limit, contrary to what we
observed in the dilepton example. However, just as in the
dilepton example, the NWA limit still gives a solid first
estimate of the simplified limits constraint even for a
resonance of moderate width.

C. Example: Dijets

We now apply the extended framework to new reso-
nances that decay to dijets. We use the CMS results on
dijets with 20 fb−1 of 8 TeV data [23] as the source of our
limits on ζ; the various selection criteria are summarized
in Appendix C for the reader’s convenience. We study a
variety of scenarios, including scalar, vector, and spin-2
resonances, for interpreting the experimental data. These
cases not only show how the resonance’s spin impacts the
bounds but also illustrate how the limits on resonances
having the same spin but being produced through different
initial-state partons can differ, due to the impact of the
parton distribution functions. Appendix C describes how
we account for the impact of resonance spin on detector
acceptance.
Alongside the experimental limits on ζ for each scenario,

we show the predicted ζðMRÞ for one or two benchmark
models from the literature. Our benchmarks for scalar
resonances decaying to dijets are the scalar octet resonance
of [16,24–27] and the scalar diquark [28–31]; the vector

FIG. 3. Simplified limits on a spin-1 resonance decaying to
dibosons. The diagonal curves show the expected (dashed) and
observed (solid) ATLAS [21] upper limits (at 95% confidence
level) on a W’ boson decaying toW�Z final states, in theM vs. ζ
plane. Within the shaded rectangles, ζ has a physically reasonable
value (see text). The nearly-horizontal dotted lines show the
theoretical value of ζ in the benchmark Heavy Vector Triplet
models of [22]. Upper: The case of a vector resonance produced
by WZ fusion. Thinner curves were derived using the NWA;
thicker curves were derived assuming the resonance has a Breit
Wigner form with Γ=M ¼ 0.3. The gold-shaded region between
the NWA and BW curves for a given kind of limit (observed or
expected) illustrate the degree to which the NWA and BW
approximations yield different results. As discussed in the text,
the BW gives a slightly more conservative limit here, due to the
impact of cuts. Note the values of ζ constrained by observation lie
several orders of magnitude outside the shaded region. Lower:
The case of a vector resonance produced through quark/anti-
quark annihilation. The conventions remain the same. Note that
the upper bounds on ζ lie well within the shaded region.
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resonances we use as benchmarks are the sequential
standard model Z0 and flavor-universal colorons [25,
32–34]. We use the excited quarks from [35–37] and the
RS graviton [38,39] as samples of fermionic and spin-2
resonances, respectively.
In Fig. 4 we consider the 95% confidence level upper

limits on color-octet scalar resonances produced via gluon
fusion (upper panel) and on scalar diquarks produced by
quark fusion (lower panel). In the upper panel, the shaded
rectangle encompasses the area corresponding to physically
reasonable values of ζ, as understood via Eq. (7) with
ΓR=MR ≤ 0.3. The gold shaded region illustrates the
difference between using the narrow width and
Breit-Wigner approximations. In the lower panel, the
dark-shaded rectangle applies to all diquarks and the
light-shaded extension applies only to cases with identical
incoming partons (uu or dd). This panel highlights the
dramatic difference in the ranges of model parameters
excluded depending on the flavor properties of the
diquark—and hence the flavor composition of the incom-
ing partons; accordingly, we obtain lower mass limits from
less than 2 TeV to more than 5 TeV, for the benchmark
model illustrated.
For scalars decaying to dijets, we find that using the NWA

somewhat understates the LHC reach; again, that approxi-
mation therefore provides a conservative upper limit on the
value of ζ. For the color-octet scalar, the NWA and BW
curves are quite close together except at the higher resonance
mass values where the experimental constraints also become
tooweak to impact the physical region of ζ. For diquarks, the
experimental limits generally fall within physical region
for ζ, so that the divergence between the BW and NWA
curves, including the larger separation at high mass values, is
potentially of greater importance.
When we compare the results in Fig. 4 with those for a

vector resonance decaying to dileptons in Fig. 2, we see
that the BW curve begins to visibly diverge from the NWA
curve at different resonance masses: 1.5 TeV for a colorless
vector resonance produced through uū or dd̄ annihilation,
2.5 TeV for color octet scalars produced via gg fusion, and
3.5 TeV for diquarks produced from uu or dd. However,
due to the properties of the parton luminosity functions of
the incoming states, the BW curve falls below the NWA
curve more rapidly for the dijet scenarios; in all three cases,
the NWA and BW curves are an order of magnitude apart in
ζ for a resonance mass of 5 TeV.
Figure 5 shows the corresponding limits for flavor-

universal5 vector resonances that decay to dijets; to leading
order, these are always produced via qq̄ annihilation rather
than gg fusion [40]. As noted in the figure, we have used
NSRCR · ζ as the vertical axis variable, rather than ζ; as can
be seen from Eqs. (8) and (1), this allows us to display the

FIG. 4. Observed upper bounds (at 95% confidence level) on
scalar resonances from CMS dijet resonance searches [23] shown
in the ζ −MR plane. Within the shaded rectangles, ζ has a
physically reasonable value (see text). Upper: The case of a scalar
octet resonance produced by gluon fusion and decaying to gluon
pairs. The gold-shaded region between the thin dashed diagonal
NWA curve and the thick dashed diagonal BW curve (with
Γ=M ¼ 0.3) indicates the difference between the results in those
approximations. We find the NWA yields a conservative upper
limit on ζ. The horizontal green dotted line shows the value of ζ for
the benchmark scalar octet model [16,24–27]. Lower: The cases of
several different scalar diquark resonances ðω3; δ6;Δ6;ϕ6;Φ6Þ, as
in the text. The conventions for thin (NWA) and thick (BW)
diagonal curves and the gold-shaded regions between them are as
above. Note the NWA and BW curves are indistinguishable for
resonance masses below about 3.5 TeV; at higher masses, the
NWA gives a conservative upper limit on the value of ζ. The
horizontal green dotted line marks the value of ζ common to all
these diquark models, with a coupling λ ¼ 0.2.

5Coupling equally to u- and d-quarks, as for a resonance
coupling to baryon number.
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limits for both color-singlet and color-octet vector-bosons
via the same curves. The dark-shaded rectangle indicates
the physical region of NSRCR · ζ for a flavor-universal Z0

U

boson (with ΓR=MR ≤ 0.3, NSR ¼ 3, and CR ¼ 1) while
the light-shaded rectangle shows how the physical region is
extended in the case of a coloron (with NSR ¼ 3, and
CR ¼ 8). The red-shaded region between the diagonal
curves illustrates the difference between the narrow width
and Breit-Wigner approximations. At low resonance
masses, the NWA yields an upper limit on NSRCR · ζ that
is virtually identical to the BW curve; at higher masses, the
NWA computation gives a conservative, but reasonable,
approximation to the BW result. In fact, for the Z0
resonance, the mass range for which the BW curve diverges
most strongly from the NWA curve lies outside the physical
region of NSRCR · ζ.

Finally, Fig. 6 illustrates the upper limits for spin-2
resonances produced either through gluon fusion (upper
curves) or quark annihilation (lower curve), and the gold-
shaded region illustrates the differences between the NWA
and BW calculations. The dark-shaded rectangle shows the
physical region of ζ for a spin-2 resonance produced via gg
fusion and decaying to qq̄, while the light-shaded rectangle
shows how the physical region is extended when the initial
and final states are both qq̄. The limits on spin-2 states
produced via both these channels would lie between these
extremes.
Once again, the NWA yields limits that are more

conservative than those assuming a Breit-Wigner form
for the resonance. At lower resonance masses, where the
experimental constraints fall within the physically reason-
able range of ζ, the NWA and BW results are virtually
identical. At higher resonance masses, where the BW
constraints start to become significantly stronger than those
from the NWA, both sets of constraints eventually become
too weak to limit the physical region of ζ. This plot also
illustrates the same pattern noted earlier, whereby the BW

FIG. 6. Observed upper bounds (at 95% confidence level) on
spin-2 resonances from CMS dijet resonance searches [23] shown
in the ζ −MR plane. The shaded region is the area in which ζ has
a physically reasonable value (see text). The upper pair of
diagonal blue dashed curves is for spin-2 resonances produced
via gluon fusion; the lower pair, for resonances produced via qq̄
annihilation. The difference between the shape of the upper pair
and lower pair of curves is due to the energy dependences of
the parton distribution functions for the initial-state gluons and
quarks. Within each pair of curves, the gold-shaded region
indicates the difference between the upper limit in the NWA
approximation (thin curve) and in the BW approximation with
Γ=M ¼ 0.3 (thick curve). The NWA yields a conservative upper
limit on ζ. For comparison, the horizontal green dotted line
corresponds to the value of ζ for an RS graviton.

FIG. 5. Observed upper bounds (at 95% confidence level) on
flavor-universal vector resonances from CMS dijet resonance
searches [23] in the MR vs ζNSRCR plane. Here, we have
incorporated the factor NSRCR from Eq. (1) explicitly within
the vertical axis variable; as a result, the limits on flavor universal
vector resonances produced only via quark/antiquark annihilation
overlap one another. The impact of a finite width for the
resonances is apparent from the red-shaded gap between the
NWA and BW curves at high resonance mass; note that the BW
limit (thick dashed line) including finite width is stronger than
that obtained in the NWA (thin dashed line). The dark-shaded
rectangle shows the physical region of ζNSRCR for a Z0 boson,
assuming the BW resonances satisfy Γ=M < 0.3; the light-
shaded rectangle shows how that physical region is extended
for a color-octet vector resonance. For purposes of benchmark
comparison, the value of ζNSRCR for a flavor-universal coloron
(Z0

U) model is shown by the upper (lower) horizontal dotted line.
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curve drops visibly below the NWA curve at a lower
resonance mass for states produced via gg fusion compared
with those produced via qq̄ annihilation; again, this is due
to the behavior of the parton luminosity functions.
It is informative to compare the results for resonances

with differing spins that are produced through the same
initial state partons, and therefore incorporate the same
parton luminosity functions. For instance, the exclusion
curves in Fig. 5 and the lower pair of exclusion curves in
Fig. 6 both show results for the qq̄ → R → qq̄ channel; a
spin-1 (spin-2) resonance is studied in Fig. 5 (6). As noted
in Appendix C, the acceptances for the two different spin
states are quite similar in this channel. So we expect that the
exclusion curves should have the same shape (due to the
same Lij) and be vertically displaced from one another.
More precisely, since the vertical axis variable for Fig. 5 is
NSRCR · ζ while that for Fig. 6 is ζ, and since NSRCR ¼ 5

for the spin-2 resonance, we would expect the qq̄ curve in
Fig. 6 to lie log 5 ≈ 0.7 below its analog in Fig. 5. Indeed,
this is what we observe.

V. CONCLUSIONS

A “simplified limits” analysis of hadron collider data [1]
casts resonance search results in terms of the variable ζ,
defined in Eq. (8), by exploiting the fact that the new
physics cross-sections actually depend (to a good approxi-
mation) only on the production and decay (signal) modes
considered. Using this framework, one can easily under-
stand whether any resonance with a particular dominant
production and decay channel could possibly produce a
signal at the LHC matching any observed excess. Once a
viable class of models has been identified, the degree to
which any given theory within that class matches the
observed excess can then be easily found, as it depends
only on the width and branching-ratios of the resonance.
The original simplified limits framework employed the

narrow width approximation. In this paper, we examined
how allowing for a finite width of the resonance modifies
the simplified limit bounds extracted from LHC searches.
We did so by comparing the simplified limit bounds
obtained in the narrow width approximation and at finite
width with the resonance described using the Breit-Wigner
approximation. In particular, we illustrated applications
to data from recent LHC searches covering a variety of
different incoming partons, resonance properties, and
decay signatures:

(i) dilepton resonances [19], which yield the limits
illustrated in Figs. 1 and 2,

(ii) diboson (WZ) resonances [21], with the bosons
decaying to dijets, deriving the results shown
in Fig. 3,

(iii) and dijet resonances [23], whose implications for
particles of various spins and colors are shown in
Figs. 4, 5, and 6.

We have demonstrated that it is straightforward to extend
the simplified limits methodology to resonances with finite
width. Moreover, we found that the simplified limits
derived in the narrow width approximation yield reason-
able, and usually somewhat conservative (less stringent)
bounds on the model parameters, compared to limits
obtained by incorporating the resonance’s finite width.
We have enumerated limitations and possible extensions of
our approach. We have shown that the simplified limits
framework remains extremely valuable in the early stages
of evaluating and interpreting new collider data—and is not
restricted to the case of narrow resonances.
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APPENDIX A: DILEPTON SELECTION
CRITERIA

Here, we summarize the experimental event selection
criteria used in the ATLAS analysis [19] of dilepton final
states at

ffiffiffi
s

p ¼ 13 TeV. This applies to our study of spin-1
resonances decaying to dileptons in Sec. IVA.

(i) For electrons, the pseudorapidity satisfies jηj < 2.47,
with the transition region between central and forward
regions excluded (1.37 ≤ jηj ≤ 1.52). For muons the
pseudorapidity jηj < 2.5 and the region 1.01 ≤ jηj ≤
1.10 is excluded.

(ii) Electron discriminant variable (95–96% efficiency)
as well electron isolation requirements(99% effi-
ciency) are used.

(iii) Muon isolation requirements.
(iv) Electron ET > 17 GeV. Muon pT thresholds of

26 GeV and 50 GeV are used.
(v) Efficiency of triggers for a sample of Z0

χ

(MZ0
χ
¼ 3 TeV): 87% for dielectron and 94% for

dimuon channel.
(iv) Further ETðpTÞ30 GeV for electron (muon) pair.

Data derived correctionsþ smearing.
(v) Representative values of the total acceptance times

efficiency for (MZ0
χ
¼ 3 TeV) are 73% in the dielec-

tron channel and 44% in the dimuon channel.

APPENDIX B: WZ SELECTION CRITERIA

Here, we summarize the experimental event selection
criteria used in the ATLAS analysis [21] with 15.5 fb−1 at
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ffiffiffi
s

p ¼ 13 TeV. This applies to our study of W0 resonances
decaying to dibosons in Sec. IV B.

(i) Large R ¼ 1.0 jets are identified and after a trimming
and subjet identification procedure, the trimmed jets
are required to have pT;J > 200 GeV,mJ > 30 GeV
and jηj < 2.0.

(ii) Boson (W or Z) jets are identified using a boson
tagging procedure that uses two selection criteria,

namely mJ and a variable Dðβ¼1Þ
2 that can be used to

measure the compatibility of a two-prong decay
topology. jmW=Z −mJj < 15 GeV the second cri-

terion requires a pT dependent selection of Dðβ¼1Þ
2 .

The boson-tagging algorithm is configured so that
the average identification efficiency for longitudi-
nally polarised, hadronically decaying W or Z
bosons is 50%. This tagging selection reduces the
multi-jet background by a factor of approximately
60 per jet.

(iii) Further discrimination between boson and back-
ground jets is achieved by requiring that Ntrk < 30,
where Ntrk is defined as the number of charged-
particle tracks pointing to the primary vertex3
with pT > 0.5 GeV.

(iv) leptonic decay modes of W and Z are rejected.
(v) Events are required have two trimmed jets with

pT;J > 450 GeV for the leading jet (to ensure full
trigger efficiency) and mJJ > 1 TeV to avoid dis-
tortions to the mass spectrum from the pT;J cut.

(vi) Small rapidity separation for jets Δy12 < 1.2 for the
leading jets (to reduce t-channel backgrounds).

(vii) pT asymmetry A ¼ pT;J1−pT;J2

pT;J1þpT;J2<0.15
. The signal effi-

ciency for this requirement is very high, e.g., the
efficiency for a HVT W0 signal with a mass of
2.1 TeV is approximately 97%.

APPENDIX C: DIJET SELECTION CRITERIA

Here, we summarize the experimental event selection
criteria used in the CMS results on dijets with 20 fb−1 of
8 TeV data [23]. This applies to our study of various
resonances decaying to dijets in Sec. IV C.

(i) pTj
> 30 GeV.

(ii) 2η� ¼ η1 − η2 > 1.3.
(iii) jηjj < 2.5
(iv) mjj > 890 GeV.
In the narrow width approximation and for the range of

interest of resonance masses ð1250 < MR < 5500Þ GeV, it
is straightforward to determine the acceptance of these cuts
by simply integrating the appropriate normalized Wigner-d
functions. We obtain the following values of acceptance
ðAspinÞ for resonances with various spins:

A0 ≃ 0.57; A1 ≃ 0.47; A1=2 ≃ 0.57

A2ðqq̄ → qq̄Þ≃ 0.54; A2ðgg → qq̄Þ≃ 0.69;

A2ðgg → ggÞ≃ 0.3: ðC1Þ

For broader resonances, signal events are sometimes subject
to the additional requirement mjj < 1250. This can cause
small deviations in the values of the acceptances; since they
are small, we have neglected them in our analysis.
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